KR20130097347A - Mixed microorganisms having degradation activity of alginate and laminarin - Google Patents

Mixed microorganisms having degradation activity of alginate and laminarin Download PDF

Info

Publication number
KR20130097347A
KR20130097347A KR1020120018936A KR20120018936A KR20130097347A KR 20130097347 A KR20130097347 A KR 20130097347A KR 1020120018936 A KR1020120018936 A KR 1020120018936A KR 20120018936 A KR20120018936 A KR 20120018936A KR 20130097347 A KR20130097347 A KR 20130097347A
Authority
KR
South Korea
Prior art keywords
laminarin
alginic acid
bacillus
microorganisms
alginate
Prior art date
Application number
KR1020120018936A
Other languages
Korean (ko)
Other versions
KR101351539B1 (en
Inventor
김중균
김은정
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020120018936A priority Critical patent/KR101351539B1/en
Publication of KR20130097347A publication Critical patent/KR20130097347A/en
Application granted granted Critical
Publication of KR101351539B1 publication Critical patent/KR101351539B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A complex microorganism is provided to effectively decompose alginate and laminarin which are byproducts generated through processing and extracting brown algae, thereby producing reducing sugar such as glucose and producing a physiologically active substance or bioethanol. CONSTITUTION: A complex microorganism (KACC 91706P) includes Bacillus megaterium, Pantoea agglomerans, Stenotrophomonas terrae, Microbacterium oxydans, Bacillus bataviensis, and Bacillus amyloliquefaciens which decompose alginate and laminarin. The alginate and laminarin are a byproduct generated during processing and extracting brown algae.

Description

알긴산 및 라미나린 분해능을 가지는 복합 미생물{Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin}Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin}

본 발명은 알긴산 및 라미나린 분해능을 가지는 복합 미생물에 관한 것으로, 더욱 자세하게는 갈조류 가공 및 추출 공정 중에 발생 되는 부산물인 알긴산 및 라미나린을 분해시키는 바실러스 메가테리움(Bacillus megaterium), 판토아 에글로메란스(Pantoea agglomerans), 스테노트로포모나스 테레(Stenotrophomonas terrae), 마이크로박테리움 옥시단스(Microbacterium oxydans), 바실러스 바타비엔시스(Bacillus bataviensis) 및 바실러스 아밀로리쿼파시엔스(Bacillus amyloliquefaciens)로 구성된 6종의 복합 미생물 및 복합 미생물을 이용한 갈조류 가공 및 추출 공정의 부산물을 분해하는 방법에 관한 것이다.
The present invention relates to a complex microorganism having an alginic acid and laminarin resolution, more specifically Bacillus megaterium ( Bacillus) that decomposes alginic acid and laminarin by-products generated during the brown algae processing and extraction process megaterium ), Pantoea agglomerans ), Stenotrophomonas terrae ), Microbacterium oxydans oxydans ), Bacillus bataviensis ) and Bacillus amyloliquefaciens ( Baccillus amyloliquefaciens ) and six kinds of complex microorganisms and a method for decomposing by-products of brown algae processing and extraction process using the complex microorganisms.

현재 세계적으로 기후변화협약과 환경규제 강화에 의해서 석유 및 석탄을 대체할 수 있는 안정적이며 환경 친화적인 에너지를 개발하기 위한 바이오, 수소 및 태양 등의 신 재생에너지의 연구가 활발히 진행되고 있다. 바이오 에너지 생산의 원료로는 주로 사탕수수 및 옥수수 등의 곡물류와 임업 및 농업 부산물인 목질계 자원들을 이용하고 있으나, 식량난 문제와 작물 종류에 따른 지배 면적 한정성 및 영양분 공급의 어려움, 그리고 셀룰로오스 이외의 헤미셀룰로오스 및 리그닌 등의 추가 전처리 공정에 의한 경제성과 같은 문제로 곡물류와 목질계 자원을 이용한 바이오 연료 생산의 한계가 드러나고 있다.Currently, researches on renewable energy such as bio, hydrogen and solar are being actively conducted to develop stable and environmentally friendly energy that can replace oil and coal by strengthening the climate change convention and environmental regulations. The raw materials for bioenergy production are mainly grains such as sugar cane and corn, and wood-based resources such as forestry and agricultural by-products.However, there are food shortage problems, limited control area and difficulty in supplying nutrients, and cellulose other than cellulose. Problems such as economics due to additional pretreatment processes such as hemicellulose and lignin are revealing the limitations of biofuel production using grains and wood-based resources.

이러한 문제점들을 해결하기 위하여, 최근에는 많은 섬유질 및 다양한 다당류로 구성되어 있는 해양 조류가 새로운 바이오 에너지 원료로서 주목을 받고 있다. 해조류는 목재와 식물계 셀룰로오스보다 빠른 속도로 성장하며 광합성 반응으로 공기 중 이산화탄소를 흡수하므로 온실 가스를 줄일 수 있는 효과가 있고, 해조류 내 리그닌의 함량이 적어 전처리 공정을 간소화할 수 있어서 바이오 연료 원료로서의 많은 잠재성을 내포하고 있다. 대형 해조류는 종에 따라 구성하고 있는 다당류의 종류 및 결합 형태가 다양한데, 특히 다시마, 미역과 같은 갈조류는 녹색식물과 유사성이 많으며, 구조 다당류로 셀룰로오스가 5.7%~14.3%, 세포 사이에는 점질성 다당류인 알긴산, 퓨코이단 및 저장성 다당류인 라미나린 등으로 구성되어 있다.      In order to solve these problems, marine algae, which is composed of many fibers and various polysaccharides, has recently attracted attention as a new bioenergy raw material. Algae grow faster than wood and plant-based cellulose, and absorb carbon dioxide in the air through photosynthetic reactions, thus reducing greenhouse gases, and the low lignin content in seaweeds can simplify the pretreatment process. It has potential. Large seaweeds have various types and binding forms of polysaccharides according to species. Especially, brown algae such as seaweed and seaweed have many similarities to green plants, and they are 5.7% to 14.3% of cellulose and viscous polysaccharides between cells. Phosphorus alginic acid, fucoidan, and laminarin, a hypotonic polysaccharide.

갈조류 가공 공정 및 추출에서 발생 되는 부산물인 라미나린은 β-1,3-글루코오즈 결합이 주 골격이며 부분적으로 β-1,6-글루코오스 결합으로 구성되어 있고, 알긴산은 D-만뉴론산과 L-글루론산이 β-1,4 결합으로 구성되어 있으며, 호모폴리머 형태로 결합된 폴리만뉴론산(MM), 폴리글루론산(GG) 형태 또는 두 성분이 혼합된 헤테로폴리머(MG) 형태가 일정하지 않게 섞여져 구성되어 있다. 현재까지 갈조류로부터 알칼리, 산 또는 효소 처리 등의 가공 방법을 통해 해조 다당류인 알긴산, 퓨코이단을 추출하여 식품 첨가제, 건강 식량 자원으로서 산업적으로 많이 유용하게 이용되고 있으나 갈조류 자체의 분해하기 어려운 복잡한 구조로 인해 바이오 연료 생산용 기질로서 사용하기에 어려움이 있으며, 현재 이용되고 있는 물질 이외에 발생되는 부산물 및 폐기물들의 처리가 문제점으로 남아 있다.     Laminarine, a by-product from brown algae processing and extraction, is composed of β-1,3-glucose bonds and is partially composed of β-1,6-glucose bonds. Alginic acid is D-manneuronic acid and L-. Gluronic acid is composed of β-1,4 bonds, and the polymanneuronic acid (MM), polygluronic acid (GG) form, or heteropolymer (MG) mixture of the two components in the homopolymer form is not uniform. It's mixed together. Until now, alginic acid and fucoidan, which are algae polysaccharides, have been extracted from brown algae through processing methods such as alkali, acid, or enzyme treatment, but they have been used industrially as food additives and health food resources. Due to this, it is difficult to use as a substrate for biofuel production, and treatment of by-products and wastes generated in addition to the materials currently used remains a problem.

최근 갈조류 분해효소를 생산하는 신규 미생물과 효소를 이용한 방법 등이 국내외적으로 보고가 되고 있으나(Franklin et al ., J. Bacteriol ., 186:4759, 2004; Cao et al ., J. Agric . Food Chem ., 55:5113, 2007; C. G. C. Chesters et al., Biochem . J., 86:28, 1963; 한국특허출원 2004-0021662호; 한국등록특허 10-0985841), 알긴산 및 라미나린 분해능이 우수한 복합 미생물을 이용하여 갈조류 부산물을 분해하는 방법 관한 연구는 거의 없으며, 대부분의 연구에서 갈조류의 전체 성분을 대상으로 한 것이 아니라, 특정 성분만을 대상으로 하였기 때문에 큰 실효성을 거두지 못하는 실정이다.Recently, new microorganisms producing brown algae enzymes and methods using enzymes have been reported at home and abroad (Franklin et. al . , J. Bacteriol . , 186: 4759, 2004; Cao et al . , J. Agric . Food Chem . , 55: 5113, 2007; CGC Chesters et al., Biochem . J. , 86:28, 1963; Korean Patent Application No. 2004-0021662; Korean Patent No. 10-0985841), there is little research on decomposing brown algae by-products using complex microorganisms having excellent alginic acid and laminarin degradability, and most of the studies do not target all the brown algae components but only specific ingredients. Because it was a target, it does not have great effectiveness.

이에, 본 발명자들은 갈조류 가공 및 추출 공정 중에 발생 되어 처리에 어려움이 있는 부산물인 알긴산 및 라미나린을 분해하는 방법을 개발하고자 예의 노력한 결과, 알긴산 및 라미나린을 효과적으로 분해할 수 있는 순수 분리한 6종의 미생물이 혼합된 복합 미생물을 확인하고 본 발명을 완성하게 되었다.
Thus, the present inventors have made efforts to develop a method for decomposing alginic acid and laminarin, which are by-products that are difficult to process due to the brown algae processing and extraction process, resulted in six purely separated species capable of effectively decomposing alginic acid and laminarine. To confirm the complex microorganisms mixed with microorganisms of the present invention was completed.

본 발명의 목적은 알긴산 및 라미나린을 효과적으로 분해할 수 있는 6종의 미생물이 혼합된 복합 미생물 및 상기의 복합 미생물을 이용하여 갈조류 가공 및 추출 공정의 부산물을 분해하는 방법을 제공하는데 있다.
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of decomposing by-products of brown algae processing and extraction process using a complex microorganism mixed with six kinds of microorganisms capable of effectively decomposing alginic acid and laminarin and the complex microorganisms.

상기 목적을 달성하기 위하여, 본 발명은 알긴산 및 라미나린 분해능을 가진 바실러스 메가테리움(Bacillus megaterium), 판토아 에글로메란스(Pantoea agglomerans), 스테노트로포모나스 테레(Stenotrophomonas terrae), 마이크로박테리움 옥시단스(Microbacterium oxydans), 바실러스 바타비엔시스(Bacillus bataviensis) 및 바실러스 아밀로리쿼파시엔스(Bacillus amyloliquefaciens)로 구성된 복합 미생물을 제공한다. In order to achieve the above object, the present invention is Bacillus megaterium ( Bacillus) having alginic acid and laminarin resolution megaterium ), Pantoea agglomerans , Stenotrophomonas terrae ), Microbacterium oxydans oxydans), Bacillus Bar Tavira N-Sys (Bacillus bataviensis) and Bacillus amyl Lori query Pacifico Enschede (Bacillus amyloliquefaciens ) to provide a complex microorganism consisting of.

본 발명은 또한, 상기의 복합 미생물을 이용하여 갈조류 가공 및 추출 공정의 부산물을 분해하는 방법을 제공한다.
The present invention also provides a method for decomposing the by-product of the brown algae processing and extraction process using the complex microorganisms.

본 발명의 알긴산 및 라미나린의 분해능력이 뛰어난 복합 미생물의 제공이 가능하며, 복합 미생물은 갈조류 가공 및 추출 공정의 부산물인 알긴산 및 라미나린을 효과적으로 분해하여 글루코오스 등의 환원당을 생산할 수 있어 생리활성물질이나 바이오에탄올 생산 등의 재활용 방법에 응용될 수 있다.
It is possible to provide a complex microorganism having excellent degradability of alginic acid and laminarin of the present invention, the complex microorganism can effectively reduce alginic acid and laminarin by-products of brown algae processing and extraction process to produce reducing sugars such as glucose and bioactive substances It may be applied to a recycling method such as bioethanol production.

도 1은 라미나린 액체배지에 분리한 6종의 균주의 라미나린 분해능을 나타낸 그래프에 관한 것이다 (pH (▲); Cell density (●); Total reducing sugars (□).
도 2는 분리된 6종의 각 균주와 다른 균들을 교차 도말하여 균 상호 간의 길항 작용에 관한 것이다 ((a) EJ1, (b) EJ2, (c) EJ3, (d) EJ4, (e) EJ5, (f) EJ6).
도 3은 (a) 6종 균주를 혼합한 복합미생물과 (b) EJ4 단일 균주의 라미나린 분해반응을 나타낸 그래프에 관한 것이다 (pH (▲); Cell density (●); Total reducing sugars (■); Glucose (◆)).
도 4는 알긴산 평판 배지에 분리된 6종 균주의 복합 미생물을 37℃에서 (a) 0일과 (b) 6일간 배양하였을 때, 분해에 의한 투명환(clear zone)을 형성하는 모습에 관한 것이다.
도 5는 라미나린 평판 배지에 분리된 6종 균주의 복합 미생물을 37℃에서(a) 0일과 (b) 6일간 배양하였을 때, 분해에 의한 투명환(clear zone)을 형성하는 모습에 관한 것이다.
Figure 1 relates to a graph showing the laminarin resolution of the six strains separated in the laminarin liquid medium (pH (▲); Cell density (●); Total reducing sugars (□).
Figure 2 is a cross-plating of each of the six isolated strains and other bacteria relates to the antagonism between the bacteria ((a) EJ1, (b) EJ2, (c) EJ3, (d) EJ4, (e) EJ5 , (f) EJ6).
Figure 3 relates to a graph showing the laminarin decomposition reaction of (a) a complex microorganism mixed six strains and (b) EJ4 single strain (pH (▲); Cell density (●); Total reducing sugars (■) ; Glucose (◆)).
Figure 4 relates to the formation of a clear zone by degradation when the complex microorganism of the six strains isolated on the alginic acid plate medium (a) 0 days and (b) 6 days incubation at 37 ℃.
FIG. 5 relates to the formation of a clear zone by degradation when the complex microorganisms of six strains isolated on laminarin plate medium were cultured at 37 ° C. (a) for 0 days and (b) for 6 days. .

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로Unless defined otherwise, all technical and scientific terms used herein are commonly referred to by those skilled in the art to which this invention belongs.

이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은It has the same meaning as understood. In general, the nomenclature used herein

본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.It is well known in the art and commonly used.

본 발명의 일관점에서, 본 발명은 알긴산 및 라미나린 분해능을 가진 바실러스 메가테리움(Bacillus megaterium), 판토아 에글로메란스(Pantoea agglomerans), 스테노트로포모나스 테레(Stenotrophomonas terrae), 마이크로박테리움 옥시단스(Microbacterium oxydans), 바실러스 바타비엔시스(Bacillus bataviensis) 및 바실러스 아밀로리쿼파시엔스(Bacillus amyloliquefaciens)로 구성된 복합 미생물에 관한 것이다. In one aspect of the invention, the invention is Bacillus MEGATHERIUM (Bacillus with alginic acid and laminarin resolution megaterium ), Pantoea agglomerans ), Stenotrophomonas terrae ), Microbacterium oxydans oxydans ), Bacillus bataviensis ) and Bacillus amyloliquefaciens ( Bacillus) amyloliquefaciens ).

본 발명에 있어서, 상기 알긴산 및 라미나린은 갈조류 가공 및 추출 공정의 부산물인 것을 특징으로 할 수 있다. In the present invention, the alginic acid and laminarin may be characterized as a by-product of the brown algae processing and extraction process.

본 발명의 일 실시예에서, 토양, 갯벌 및 해산 동물의 내장으로부터 채취한 샘플에서 알긴산 및 라미나린 한천배지에서 순수 콜로니를 형성하는 6종의 균주를 확인하였고, 상기 분리된 6개 균주를 EJ1~EJ6으로 명명하였다.In one embodiment of the present invention, six strains forming pure colonies in alginic acid and laminarin agar medium in samples taken from the intestines of soil, mud flats and marine animals were identified, and the six isolates were isolated from EJ1 ~. Named EJ6.

상기 분리된 6종의 균주들의 알긴산 및 라미나린을 분해할 수 있는 능력을 관찰 한 결과, 라미나린 액체 배지에서 가장 높은 분해능을 보인 균주는 EJ4임을 확인할 수 있었다 (도 1). 또한, 알긴산 및 라미나린 평판 배지에서 배양된 각 균주의 콜로니 주변에 환 생성 여부를 확인한 결과, 알긴산 평판 배지에는 EJ1, EJ4 및 EJ6 균주가, 라미나린 평판 배지에서는 EJ4 균주가 다른 균주들에 비해 높은 환을 형성하였으며(표 2), 상기 분리한 종마다 알긴산 및 라미나린 분해능력이 차이가 있음을 확인할 수 있었다. As a result of observing the ability to decompose the alginic acid and laminarin of the six isolated strains, it was confirmed that the strain showing the highest resolution in the laminarin liquid medium is EJ4 (FIG. 1). In addition, the ring formation around the colonies of each strain cultured in alginic acid and laminarin plate medium As a result, the alginic acid plate medium, EJ1, EJ4 and EJ6 strains, laminarin plate medium EJ4 strains formed a higher ring than the other strains (Table 2), the alginic acid and laminarin degradation capacity for each species isolated It was confirmed that there is a difference.

본 발명에 있어서, 상기 복합 미생물은 KACC 91706P인 것을 특징으로 할 수 있다. In the present invention, the complex microorganism may be characterized in that the KACC 91706P.

상기의 복합 미생물의 동정을 수행한 결과, EJ1은 바실러스 메가테리움, EJ2는 판토아 에글로메란스, EJ3은 스테노트로포모나스 테레, EJ4는 마이크로박테리움 옥시단스, EJ5는 바실러스 바타비엔시스 및 EJ6은 바실러스 아밀로리쿼파시엔스로 동정되었다. As a result of the identification of the complex microorganism, EJ1 is Bacillus megaterium, EJ2 is Pantoa eglomerans, EJ3 is Stenotropomonas tere, EJ4 is Microbacterium oxydans, EJ5 is Bacillus bataviensis and EJ6 has been identified as Bacillus amyloliquefaciens.

상기와 같이 동정된 복합미생물은 2012년 2월 7일자로 한국농업미생물자원센터에 기탁하였다 (기탁번호: KACC 91706P).The complex microorganisms identified above were deposited with the Korea Agricultural Microbial Resources Center on February 7, 2012 (Accession Number: KACC 91706P).

본 발명의 다른 관점에서, 본 발명은 복합 미생물을 이용한 갈조류 가공 및 추출 공정의 부산물을 분해하는 방법에 관한 것이다. In another aspect of the present invention, the present invention relates to a method for decomposing byproducts of brown algae processing and extraction processes using complex microorganisms.

상기의 복합 미생물을 이용하여 알긴산 및 라미나린을 분해할 때, 유용한 물질을 생산하는지 확인한 결과, 복합 미생물에 의해 라미나린이 분해되어 생성된 총 환원당과 글루코오스 농도는 각각 6.14g/ℓ 및 3.39g/ℓ로, 라미나린이 분해되면 환원당으로 글루코오스 이외에 올리고당과 같은 중간대사산물이 생성될 수 있음을 알 수 있었다 (도 3b). 이에 비해, 라미나린 분해능력이 뛰어난 EJ4 단일 균주의 분해반응 결과에서는 총 환원당과 글루코오스 농도가 각각 4.23g/ℓ 및 2.23g/ℓ로 생산되었다 (도 3a). 따라서 EJ4 단일 균주보다 복합미생물을 사용하면, 총 환원당을 1.45배, 글루코오스는 1.71배 더 생산함을 확인하였으며,알긴산 및 라미나린 평판배지에서의 단일 균주에 의한 결과와 비교해 보면, 6종의 균주 상호 간의 상조작용(synergism)으로 이들이 혼합된 복합미생물이 더 뛰어난 알긴산 및 라미나린 분해 능력이 있음을 확인하였다 (도 4 및 도 5).When decomposing alginic acid and laminarin using the above-mentioned complex microorganisms, it was confirmed that a useful substance was produced. As a result, the total reducing sugar and glucose concentrations generated by the decomposition of the laminarin by the complex microorganism were 6.14 g / l, respectively. And 3.39g / ℓ, it was found that when the laminarin is decomposed, an intermediate metabolite such as oligosaccharide can be produced in addition to glucose as a reducing sugar (FIG. 3b). In comparison, total reducing sugars and glucose concentrations were 4.23 g / l, respectively, in the digestion reaction of a single strain of EJ4 having excellent laminarine degrading ability. And 2.23 g / l (FIG. 3A). Therefore, when using a microorganism than the EJ4 single strain, it was confirmed that the total reducing sugar produced 1.45 times more, glucose was 1.71 times more, compared with the results of a single strain in alginic acid and laminarin plate medium, 6 strains mutually Synergism of the liver confirmed that the mixed microorganisms mixed therewith had superior alginic acid and laminarin degrading ability (FIGS. 4 and 5).

또한, 상기의 복합 미생물의 서로에 대한 길항 물질을 생산하는지 여부를 확인하기 위하여 알긴산 및 라미나린 평판 배지에 교차 도말하여 비교한 결과, 분리된 6종의 균주 각각은 다른 균주와 상호 간 길항물질을 생산하지 않음을 확인할 수 있었다 (도 2).In addition, as a result of cross-plating and comparing the alginic acid and laminarin plate medium in order to confirm whether the complex microorganisms produce antagonists against each other, each of the six strains isolated each other and the antagonists It could be confirmed that it does not produce (FIG. 2).

본 발명에 있어서, 상기의 복합 미생물과 알긴산 분해요소를 생산하는 것으로 알려진 Pseudomonas sp. (Lee et al ., Kor. J. Microbiol . Biotechnol., 37:350, 2009), Streptomyces sp.(Cao et al., J. Agric . Food Chem ., 55:5113, 2007), Bacillus lilicheniformis AL-577 (Uo et al ., J. Korean . Soc . Food . Sci . Nutr., 35:231, 2006) 및 Erwinia tasmaniensis (Lee et al ., Bioresour . Technol., 102:5962, 2011) 등과 같은 미생물의 알긴산 분해능력을 비교하였을 때, 기존에 알려진 미생물은 각각의 특성에 따라 알긴산 분해효소를 생산하는 최적 반응조건이 다르며, 알긴산이 분해되면서 pH 등의 반응조건이 달라져 각 미생물이 가지는 알긴산 분해능력이 약해지지만, 본 발명은 상호 간 길항작용이 없는 6종의 복합 미생물을 이용하여 알긴산 및 라미나린을 분해시키는 것으로, 알긴산 및 라미나린이 분해되면서 변화되는 반응조건에 대한 충격이 덜해 더 많은 환원당을 생산할 수 있다.
In the present invention, Pseudomonas sp. Known to produce the complex microorganism and alginic acid decomposing elements. Lee et al . , Kor. J. Microbiol . Biotechnol ., 37: 350, 2009), Streptomyces sp. (Cao et. al ., J. Agric . Food Chem . , 55: 5113, 2007), Bacillus lilicheniformis AL-577 (Uo et al . , J. Korean . Soc . Food . Sci . Nutr. , 35: 231, 2006) and Erwinia tasmaniensis Lee et al . , Bioresour . Technol ., 102: 5962, 2011), etc. When comparing the decomposing ability of alginic acid of microorganisms, such as microorganisms, the optimal reaction conditions for producing alginic acid degrading enzymes differ according to their characteristics, and as alginic acid is decomposed, Degradation of alginic acid ability of each microorganism is reduced due to different reaction conditions, but the present invention is to decompose alginic acid and laminarin using six kinds of complex microorganisms without mutual antagonism, which is changed by degrading alginic acid and laminarin. Less impact on the reaction conditions can produce more reducing sugars.

이하, 본 발명을 실시 예에 의하여 더욱 상세하게 설명한다. 이들 실시 예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시 예에 국한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예Example 1. 알긴산 및  1. Alginic acid and 라미나린Laminarin 분해 미생물의 순수분리 Pure separation of degraded microorganisms

본 실시예에서는 알긴산 및 라미나린을 효과적으로 분해하는 미생물을 분리하기 위해 토양, 갯벌 및 해산 동물의 내장으로부터 채취한 샘플에서 미생물 분리를 실시하였다.In this example, microorganisms were separated from samples taken from the intestines of soil, tidal flats, and marine animals to isolate microorganisms that effectively decompose alginic acid and laminarin.

채취해온 샘플을 250㎖ 플라스크의 다시마 첨가 배지(NH4Cl 0.1g/ℓ, 다시마 조각 1㎝×1㎝ 이하, pH 6.8)에 접종하여 8일간 37℃, 180rpm에서 진탕 배양한 후, 각각 0.8% 영양 배지(Nutreient broth, pH 6.8)에 1.5% 한천을 첨가한 고체 배지에 도말하였다. 배양된 각 미생물은 순수한 콜로니로 분리될 때까지 계속하여 새로운 고체 배지에 도말하여 각 균주를 최종 순수 분리하였다. 분리된 순수 균주는 4℃에 보관하면서 2주에 한 번씩 계대배양 하였다.Samples were collected and inoculated in a 250 ml flask of kelp addition medium (NH 4 Cl 0.1 g / l, kelp pieces 1 cm × 1 cm or less, pH 6.8), followed by shaking culture at 37 ° C. and 180 rpm for 8 days, respectively. It was plated on a solid medium to which 1.5% agar was added to the nutrient medium (Nutreient broth, pH 6.8). Each microorganism incubated was subsequently plated in fresh solid medium until isolated into pure colonies, resulting in final pure separation of each strain. The isolated pure strains were subcultured every 2 weeks with storage at 4 ℃.

상기 분리된 순수 균주들에서 유용한 미생물들을 스크리닝하기 위하여, 다음의 두 가지 한천 배지에 상기 순수 균주들을 도말하였다.To screen useful microorganisms in the isolated pure strains, the pure strains were plated in the following two agar media.

ⅰ) 라미나린 분해 미생물들의 선별을 위한 한천 배지(Laminarin 1g/ℓ, MgSO4 0.1g/ℓ, NaCl 0.1g/ℓ, CaCl2 0.1g/ℓ, (NH4)2SO4 2g/ℓ, KH2PO4 0.5g/ℓ, Mineral 0.5㎖, Vitamin 0.5㎖, pH 6.8)Agar medium for the selection of laminarin-degrading microorganisms (Laminarin 1g / l, MgSO 4 0.1g / l, NaCl 0.1g / l, CaCl 2 0.1g / l, (NH 4 ) 2 SO 4 2 g / l, KH 2 PO 4 0.5 g / l, Mineral 0.5 ml, Vitamin 0.5 ml, pH 6.8)

ⅱ) 알긴산 분해 미생물들의 선별을 위한 한천 배지(Alginate 1g/ℓ, Yeast extract 0.5g/ℓ, Peptone 0.5g/ℓ, (Mg4)2SO4 0.5g/ℓ, K2HPO4 0.5g/ℓ, pH 6.8)Ii) Agar medium for the selection of alginic acid-decomposing microorganisms (Alginate 1g / L, Yeast extract 0.5g / L, Peptone 0.5g / L, (Mg 4 ) 2 SO 4 0.5 g / l, K 2 HPO 4 0.5 g / l, pH 6.8)

그 결과, 알긴산 및 라미나린 한천 배지에서 순수 콜로니를 형성하는 6종의 균주를 확인하였고, 상기 분리된 6개 균주를 EJ1~EJ6으로 명명하였다.
As a result, six strains forming pure colonies in the alginic acid and laminarin agar medium were identified, and the six isolates were named as EJ1 to EJ6.

실시예Example 2. 알긴산 및  2. Alginic acid and 라미나린Laminarin 분해 능력 측정 Determination of resolution

실시예 1에서 분리한 상기 6종 균주들이 갈조류의 다당류 종류인 알긴산 및 라미나린을 분해할 수 있는 능력이 있음을 확인하기 위해 상기 분리된 6종 각 균주를 15㎖ 튜브 내의 8㎖ 라미나린 액체 배지에 접종한 다음, 37℃, 180rpm에서 8일간 진탕 배양을 하면서, 균주의 성장 곡선, 총 환원당과 pH를 측정하여 라미나린 분해능을 실험하였다. In order to confirm that the six strains isolated in Example 1 were capable of degrading alginic acid and laminarin, the polysaccharides of brown algae, each of the six strains isolated was 8 ml laminarin liquid medium in a 15 ml tube. After inoculation on, shaking culture for 8 days at 37 ℃, 180rpm, the growth curve, total reducing sugar and pH of the strain was measured to test the laminarin resolution.

또한, 라미나린 배지(Laminarin 0.1g/ℓ, MgSO4 0.1g/ℓ, NaCl 0.1g/ℓ, CaCl2 0.1g/ℓ, (NH4)2SO4 2g/ℓ, KH2PO4 0.5g/ℓ, Mineral 0.5㎖, Vitamin 0.5㎖, pH 6.8)와 알긴산 배지(Peptone 0.5g/ℓ, Sodium alginate 0.1g/ℓ, pH 6.8)에 1.5% 한천을 첨가한 고체 평판 배지의 중앙에 1일간 알긴산 및 라미나린 액체 배지에서 배양한 EJ1~EJ6의 각 균주 배양액 10㎕을 점적(drop)하여 건조시킨 후, 37 ℃ 배양기에서 배양하였다. 배지 위에 콜로니를 형성한 후, 라미나린 평판 배지에는 0.5%(w/v) 콩고레드 용액 10㎖을 투여하여 15분간 염색하고 나서 1M NaCl로 2회 탈색을 한 다음, 콩고레드 용액으로 인해서 붉게 염색된 평판배지 상의 콜로니 주변에 노란색의 환의 형성 유무 및 시간에 따른 환의 크기 변화를 관찰 하였다(Lee, D. S., et al ., Biotechnology letters , 17:355, 1995). 알긴산 평판 배지에는 10% 세틸피리니늄 클로라이드 모노하이트레이트(CPC, cetylpyridinium chloride monohydrate)를 10㎖ 투여하여 10분간 반응시킨 다음, 액을 제거한 후 증류수로 배지 표면을 수세하여 10% CPC에 의해서 불투명한 색으로 변한 배지 상에서 콜로니 주변의 투명환 형성 유무 및 크기의 변화를 관찰하였다(Peter, G., et al ., Amerian Society of Microbiology, 56:2265, 1990). In addition, Laminarin medium (Laminarin 0.1g / L, MgSO 4 0.1 g / l, NaCl 0.1 g / l, CaCl 2 0.1 g / l, (NH 4 ) 2 SO 4 2 g / l, KH 2 PO 4 0.5 g / l, Mineral 0.5 ml, Vitamin 0.5 ml, pH 6.8) and Alginate medium (Peptone 0.5 g / l, Sodium alginate 0.1 g / l, pH 6.8) added 1.5% agar to the center of solid flat media 10 μl of each strain culture solution of EJ1 to EJ6 cultured in daily alginic acid and laminarin liquid medium was dropped and dried, and then cultured in a 37 ° C. incubator. After colonies were formed on the medium, the laminarin plate medium was stained with 10 ml of 0.5% (w / v) Congo red solution for 15 minutes, and then bleached twice with 1 M NaCl, and then stained red with Congo red solution. The formation of a yellow ring around the colonies on the medium and the change in the ring size over time were observed (Lee, DS, et. al ., Biotechnology letters , 17: 355, 1995). 10 ml of cetylpyridinium chloride monohydrate (CPC) was added to the alginate flat medium for 10 minutes, and the solution was removed. The surface of the medium was washed with distilled water and opaque color by 10% CPC. Changes in size and size of transparent rings around colonies were observed on the medium changed to (Peter, G., et al ., Amerian Society of Microbiology , 56: 2265, 1990).

그 결과, 라미나린 액체 배지에서 가장 높은 분해능을 보인 균주가 EJ4임을 확인하였으며(도 1), 라미나린 및 알긴산 평판 배지에서 배양된 각 균주의 콜로니 주변에 환 생성 여부를 확인한 결과, 알긴산 평판 배지에는 EJ1, EJ4 및 EJ6 균주가, 라미나린 평판 배지에서는 EJ4 균주가 다른 균주들에 비해 상대적으로 높은 환을 형성하였다. 따라서 상기 분리한 종마다 알긴산 및 라미나린을 분해능의 차이가 있음을 확인할 수 있었다 (표1).As a result, it was confirmed that the strain showing the highest resolution in the laminarin liquid medium was EJ4 (FIG. 1), and whether the ring was formed around the colonies of each strain cultured in the laminarin and alginic acid flat medium. As a result, Alginic acid plate medium EJ1, EJ4 and EJ6 strains, laminarin plate medium EJ4 strains formed a relatively higher ring than other strains. Therefore, it was confirmed that there is a difference in the resolution of alginic acid and laminarin for each of the isolated species (Table 1).

알긴산 및 라미나린 분해능 비교Alginic Acid and Laminarin Resolution Comparison 다당류 기질Polysaccharide substrate 균주Strain 환의 크기(cm)Ring size (cm)

알긴산


Alginic acid
EJ1EJ1 2.52.5
EJ2EJ2 0.00.0 EJ3EJ3 0.00.0 EJ4EJ4 1.91.9 EJ5EJ5 1.31.3 EJ6EJ6 2.82.8

라미나린


Laminarin
EJ1EJ1 0.10.1
EJ2EJ2 0.40.4 EJ3EJ3 0.40.4 EJ4EJ4 1.81.8 EJ5EJ5 0.20.2 EJ6EJ6 0.40.4

실시예Example 3. 알긴산 및  3. Alginic acid and 라미나린Laminarin 분해 미생물의 동정 및 기탁 Identification and Deposit of Degraded Microorganisms

본 발명의 실시예 1에서 분리한 EJ1~EJ6 각 균주를 그람 염색(Gram staining), 카탈라제 테스트, 콜로니 형태 및 현미경 검사를 통하여 일차적으로 동정하였다. 상기 6종의 각 균주는 영양 상태에서 활발한 운동성을 가지고, 모두 카탈라제 테스트에 양성을 나타내었다(표 2).Each strain of EJ1 to EJ6 isolated in Example 1 of the present invention was primarily identified through Gram staining, catalase test, colony morphology, and microscopic examination. Each of the six strains had vigorous motility in nutrition and all were positive for the catalase test (Table 2).

알긴산 및 라미나린 분해 미생물의 동정Identification of Alginic Acid and Laminarin Degrading Microorganisms 미생물microbe 특징Characteristic 셀 모양Cell shape 콜로니 색Colony color 그람 염색Gram stain 내성 포자 생성 여부Whether resistant spores are produced 카탈라아제 테스트Catalase test EJ1EJ1 L: 1~2㎛, W: 1~1.5㎛L: 1-2 µm, W: 1-1.5 µm 흰색White ++ ++ ++ EJ2EJ2 L: 1~2㎛, W: 0.5~1.5㎛L: 1-2 µm, W: 0.5-1.5 µm 옅은 노란색Pale yellow -- -- ++ EJ3EJ3 L: 2~4㎛, W: 0.4~0.7㎛L: 2-4 탆, W: 0.4-0.7 탆 옅은 노란색Pale yellow -- -- ++ EJ4EJ4 L: 0.1~1.5㎛, W: 0.5~1㎛L: 0.1-1.5 µm, W: 0.5-1 µm 노란색yellow ++ -- ++ EJ5EJ5 L: 3~5㎛, W: 1~1.5㎛L: 3-5 μm, W: 1-1.5 μm 베이지색Beige ++ ++ ++ EJ6EJ6 L: 1~2㎛, W: 0.5~1㎛L: 1-2 µm, W: 0.5-1 µm 흰색White ++ ++ ++

이차 동정은 16S rRNA(16S rRNA coding gene) 염기서열에 기초한 분자계통분류학적 방법으로 수행하였다. 각 균주의 염색체 DNA는 AccuPrep 염색체 DNA 추출 킷트(바이오니아, 한국)를 사용하여 분리하였으며, 분리된 DNA를 주형으로 하여 5'-CCAGCAGCCGCGGTAATACG-3'(서열번호 1) 및 5'-TACCAGGGTATCTAATCC-3'(서열번호 2)의 프라이머를 이용하여 PCR을 수행하였다.Secondary identification was performed by molecular phylogenetic method based on 16S rRNA (16S rRNA coding gene) sequence. Chromosome DNA of each strain was isolated using AccuPrep chromosome DNA extraction kit (Bionia, Korea), and the 5'-CCAGCAGCCGCGGTAATACG-3 '(SEQ ID NO: 1) and 5'-TACCAGGGTATCTAATCC-3' ( PCR was performed using the primer of SEQ ID NO: 2).

PCR 과정 중 초기 변형은 95℃에서 5분간 실행하였고, 30 싸이클 증폭은 95℃에서 10초간, 55℃에서 30초간, 72℃에서 30초간 이루어졌으며, 최종 신장단계는 72℃에서 7분간 수행하였다. PCR 수행결과, 각각의 균주에서 약 1500bp 크기 단편의 16S-rRNA 유전자가 증폭되었다.Initial modification of the PCR process was carried out for 5 minutes at 95 ℃, 30 cycle amplification was performed for 10 seconds at 95 ℃, 30 seconds at 55 ℃, 30 seconds at 72 ℃, the final stretching step was carried out for 7 minutes at 72 ℃. As a result of PCR, about 1500 bp fragment of 16S-rRNA gene was amplified in each strain.

증폭된 PCR product는 (주)마크로젠에 16S-rRNA sequencing 분석을 의뢰한 후, 각 균주들의 16S-rRNA 부분 서열(서열번호 3~8)을 확인하고, BioEdit Sequence Alignment Editor(ver. 5.0.9, Hall, T., Nucleic Acids Symposium Series, 41:95, 1999)를 이용하여 GenBank의 Advanced BLAST(http://www.ncbi.nlm.nih.gov)에서 상동성 검색을 수행하였다(Altschul et al., Nucleic Acids Res ., 25:3389, 1997). The amplified PCR product was commissioned by Macrogen Co., Ltd. for 16S-rRNA sequencing analysis, and then confirmed 16S-rRNA subsequences (SEQ ID NOs. 3 to 8) of each strain, and BioEdit Sequence Alignment Editor (ver. 5.0.9, Hall, T., Nucleic Acids Symposium Homology searches were performed in GenBank's Advanced BLAST (http://www.ncbi.nlm.nih.gov) using the series (41:95, 1999) (Altschul et al. al ., Nucleic Acids Res . , 25: 3389, 1997).

그 결과, EJ1은 바실러스 메가테리움, EJ2는 판토아 에글로메란스, EJ3은 스테노트로포모나스 테레, EJ4는 마이크로박테리움 옥시단스, EJ5는 바실러스 바타비엔시스, EJ6은 바실러스 아밀로리쿼파시엔스로 동정되었다 (표 3).As a result, EJ1 is Bacillus megaterium, EJ2 is Pantoa Eglomerans, EJ3 is Stenotropomomonas tere, EJ4 is Microbacterium oxidans, EJ5 is Bacillus bataviensis, and EJ6 is Bacillus amylolyticus. It was identified as (Table 3).

알긴산 및 라미나린 분해 미생물의 동정Identification of Alginic Acid and Laminarin Degrading Microorganisms 미생물microbe 16S-rDNA
크기
16S-rDNA
size
GenBank
Accession No.
GenBank
Accession No.
균주명Strain name 상동성Homology
EJ1EJ1 1670 bp 1670 bp GU252120.1GU252120.1 BacillusBacillus megateriummegaterium 98%98% EJ2EJ2 1668 bp 1668 bp AM184214.1AM184214.1 PantoeaPantoea agglomeransagglomerans 98%98% EJ3EJ3 1669 bp 1669 bp NR_042569.1NR_042569.1 StenotrophomonasStenotrophomonas terraeterrae 99%99% EJ4EJ4 1429 bp 1429 bp HQ113206.1HQ113206.1 MicrobacteriumMicrobacterium oxydansoxydans 98%98% EJ5EJ5 1671 bp 1671 bp NR_036766.1NR_036766.1 BacillusBacillus bataviensisbataviensis 99%99% EJ6EJ6 1461 bp 1461 bp GQ340479.1GQ340479.1 BacillusBacillus amyloliquefaciensamyloliquefaciens 99%99%

상기의 표 2과 같이 동정 된 복합미생물은 2012년 2월 7일자로 한국농업미생물자원센터에 기탁하였다(기탁번호: KACC 91706P).
Compound microorganisms identified as shown in Table 2 above were deposited with the Korea Agricultural Microbial Resources Center on February 7, 2012 (Accession Number: KACC 91706P).

실시예Example 4: 분리 6종 균주   4: 6 strains isolated 상호간의Mutual 길항작용 측정 Antagonism measurement

본 발명의 실시예 1에서 분리한 6개의 순수 균주 중에서 서로에 대한 길항물질을 생산하는지 여부를 확인하기 위하여 알긴산 및 라미나린 고체 배지에 서로 교차 되도록 도말하여 37℃에서 2일 동안 배양하였다. In order to confirm whether or not to produce an antagonist against each other among the six pure strains isolated in Example 1 of the present invention was plated to cross each other in alginic acid and laminarin solid medium and incubated for 2 days at 37 ℃.

그 결과, 분리된 6종의 균주 각각은 다른 균주와 상호 간 길항물질을 생산하지 않음을 확인하였다 (도 2).
As a result, it was confirmed that each of the six isolated strains do not produce antagonists with each other (Fig. 2).

실시예Example 5. 복합미생물에 의한 알긴산 및  5. Alginic acid by complex microorganisms and 라미나린Laminarin 분해반응 측정 Decomposition reaction measurement

본 발명의 실시예에서 분리한 상기의 6종의 균주의 복합미생물을 이용하여 알긴산 및 라미나린을 분해하여 유용물질을 생산하는 반응특성을 확인하였다.Using the microorganisms of the above six strains isolated in the embodiment of the present invention was confirmed the reaction characteristics to produce useful substances by decomposing alginic acid and laminarin.

이후의 실시예에서 사용한 6종 균주의 복합미생물은 실시예 3에서 동정된 6종의 균주를 동량으로 혼합한 것으로, 6종 균주를 각각 0.1% 라미나린 액체 배지에 배양하여 대수 증식기가 끝났을 때 원심분리로 각 균주들 수확한 후, 혼합하여 사용하였다.The complex microorganisms of the six strains used in the following examples were mixed in the same amount of the six strains identified in Example 3, and each of the six strains were cultured in 0.1% laminarin liquid medium and centrifuged at the end of the logarithmic growth phase. Each strain was harvested by separation, and then mixed and used.

40㎖ 라미나린 액체 배지가 담긴 100㎖ 플라스크를 사용하여, 상기 6종 균주를 같은 양으로 각각 1:1 비율로 총 80㎍(wet cell)을 플라스크 내로 접종하여 37℃, 180rpm에서 15일간 분해 반응을 수행하였다. 상기와 같이 생물분해 반응을 수행하는 동안 3일 간격으로 플라스크 내의 샘플을 채취하여 분해반응의 특성을 분석하였다. 분해반응 동안 배양 배지 내의 pH 변화는 pH meter (이스텍, 한국)를 이용해 측정하였으며, 미생물의 농도는 3배로 희석한 샘플을 큐벳에 담은 후, 분광광도계(한빛 나노 바이오테크, 한국)를 이용하여 특정 파장(375nm)에서 측정하였다. 분해 반응에서 생성되는 총 환원당 (Total reducing sugars) 농도는 배양액을 원심 분리(70,00rpm, 10분) 한 상등액 100㎕와 1㎖ DNS(3.5-dinitrosalicylic acid) 용액을 vortex를 이용하여 균일하게 혼합한 다음, 끓는 물에서 10분간 반응 시키고, 5분간 냉수에서 식힌 다음, 분광광도계를 이용하여 570nm 파장에서, 글루코오스(glucose)를 대조군로 한 표준곡선(standard curve)에 의하여 그 값을 측정하였다. Using a 100 ml flask containing 40 ml laminarin liquid medium, a total of 80 µg (wet cells) were inoculated into the flask at a ratio of 1: 1 in each of the six strains in the same amount, and then digested for 15 days at 37 ° C. and 180 rpm. Was performed. During the biodegradation reaction as described above, samples in the flask were taken at intervals of 3 days to analyze the characteristics of the decomposition reaction. During the degradation reaction, the pH change in the culture medium was measured using a pH meter (ISTECH, Korea). Measurement was made at the wavelength (375 nm). The total reducing sugars produced in the decomposition reaction were uniformly mixed with 100 µl of the supernatant centrifuged (70,00 rpm, 10 minutes) and 1 ml DNS (3.5-dinitrosalicylic acid) solution using vortex. Next, the mixture was reacted in boiling water for 10 minutes, cooled in cold water for 5 minutes, and then measured at a 570 nm wavelength using a spectrophotometer, and measured by a standard curve using glucose as a control.

상기 라미나린 분해반응 결과 생성되는 글루코오스 및 다른 올리고당의 농도는 Sugar-pakTM1(Waters,6.5×300㎜) 컬럼을 사용한 HPLC/RID(Agilent Technologies 1200 series, 미국)를 통해 분석하였다. 분석용 용매는 0.8㎖/min 유속의 물을 사용하였으며, 디텍터와 오븐 온도는 각각 35℃와 80℃로 설정하여 분석하였다.The concentrations of glucose and other oligosaccharides produced as a result of the laminarin decomposition reaction were analyzed by HPLC / RID (Agilent Technologies 1200 series, USA) using a Sugar-pak TM 1 (Waters, 6.5 × 300 mm) column. As analytical solvent, water of 0.8 ml / min flow rate was used, and the detector and oven temperature were set to 35 ° C. and 80 ° C., respectively.

또한, 상기의 실시예 2와 같이, 분리 6종의 균주가 혼합된 복합 미생물을 6일간 배양한 후 라미나린 및 알긴산 평판 배지에서의 환 생성 여부를 확인하였다.In addition, as shown in Example 2, after culturing for 6 days the mixed microorganisms mixed with six strains of isolation was confirmed whether the ring production in laminarin and alginic acid plate medium.

그 결과, 복합미생물을 이용한 라미나린의 분해 결과, 배양 초기 6.8 이었던 pH는 점점 감소하여 배양 15일의 최종 pH 값은 4.17 이였다. 라미나린이 분해되면 환원당으로 글루코오스 외에 올리고당과 같은 중간대사산물이 생성될 수 있음을 알 수 있었으며, 생성된 총 환원당과 글루코오스 농도는 각각 6.14g/ℓ 및 3.39g/ℓ이었다 (도 3b). 이에 비해, 가장 라미나린 분해능력이 뛰어난 EJ4 단일 균주의 분해반응 결과에서는 총 환원당과 글루코오스 농도가 각각 4.23g/ℓ 및 2.23g/ℓ로 생산되었다 (도 3a). 따라서 EJ4 단일 균주보다 복합미생물을 사용하면, 총 환원당은 1.45배, 글루코오스는 1.71배 더 생산함을 확인하였으며,알긴산 및 라미나린 평판배지에서의 단일 균주에 의한 결과와 비교해 보면, 6종의 균주 상호 간의 상조작용(synergism)으로 이들이 혼합된 복합미생물이 더 뛰어난 알긴산 및 라미나린 분해 능력이 있음을 확인하였다 (도 4 및 도 5).
As a result, as a result of the decomposition of laminarin using a microorganism, the pH of the initial culture was 6.8 gradually decreased, the final pH value of the culture 15 days was 4.17. When laminarin was decomposed, it could be seen that in addition to glucose, intermediate metabolites such as oligosaccharides could be formed as reducing sugars, and the total reducing sugars and glucose concentrations were 6.14 g / l, respectively. And 3.39 g / L (FIG. 3B). In comparison, total reducing sugar and glucose concentrations were 4.23 g / l, respectively, in the digestion reaction of a single strain of EJ4, which has the highest laminarine degrading ability. And 2.23 g / l (FIG. 3A). Therefore, when using a microorganism than the EJ4 single strain, it was confirmed that the total reducing sugar produced 1.45 times more, glucose was 1.71 times more, compared with the results of a single strain in alginic acid and laminarin plate medium, 6 strains mutually Synergism of the liver confirmed that the mixed microorganisms mixed therewith had superior alginic acid and laminarin degrading ability (FIGS. 4 and 5).

이상으로, 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
As described above, specific portions of the present invention have been described in detail, and for those skilled in the art, these specific descriptions are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

농업생명공학연구원Agricultural Biotechnology Research Institute KACC91706PKACC91706P 2012020720120207

<110> Pukyong National University Industry-University Cooperation Foundation <120> Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin <130> P12-B031 <160> 8 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer <400> 1 ccagcagccg cggtaatacg 20 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer <400> 2 taccagggta tctaatcc 18 <210> 3 <211> 1670 <212> DNA <213> Bacillus megaterium (EJ1) <400> 3 gttatatttt tgcggctagc tttgatctga acttatggtc ctaaagcggg ccaggccgtt 60 ttctaatctt ggagttacag tcctcggtca tcctngacgg tcgatggatc aggggtcttg 120 ccgcagagaa gagaagagaa cttccaccgt aaccaaaaat tttaaagant tttatagaat 180 tttttttata gctcagatga acgctggcgg cgtgcntaat acatgcaagt cgagcgaact 240 gattagaagc ttgcttctat gacgttagcg gcggacgggt gagtaacacg tgggcaacct 300 gcctgtaaga ctgggataac ttcgggaaac cgaagctaat accggatagg atcttctcct 360 tcatgggaga tgattgaaag atggtttcgg ctatcactta cagatgggcc cgcggtgcat 420 tagctagttg gtgaggtaac ggctcaccaa ggcaacgatg catagccgac ctgagagggt 480 gatcggccac actgggactg agacacggcc cagactccta cgggaggcag cagtagggaa 540 tcttccgcaa tggacgaaag tctgacggag caacgccgcg tgagtgatga aggctttcgg 600 gtcgtaaaac tctgttgtta gggaagaaca agtacaagag taactgcttg taccttgacg 660 gtacctaacc agaaagccac ggctaactac gtgccagcag ccgcggtaat acgtaggtgg 720 caagcgttat ccggaattat tgggcgtaag cgcgcgcagg cggtttctta agtctgatgt 780 gaaagcccac ggctcaaccg tggagggtca ttggaaactg gggaacttga gtgcagaaga 840 gaaaagcgga attccacgtg tagcggtgaa atgcgtagag atgtggagga acaccagtgg 900 cgaaggcggc tttttggtct gtaactgacg ctgaggcgcg aaagcgtggg gagcaaacag 960 gattagatac cctggtagtc cacgccgtaa acgatgagtg ctaagtgtta gagggtttcc 1020 gccctttagt gctgcagcta acgcattaag cactccgcct ggggagtacg gtcgcaagac 1080 tgaaactcaa aggaattgac gggggcccgc acaagcggtg gagcatgtgg tttaattcga 1140 agcaacgcga agaaccttac caggtcttga catcctctga caactctaga gatagagcgt 1200 tccccttcgg gggacagagt gacaggtggt gcatggttgt cgtcagctcg tgtcgtgaga 1260 tgttgggtta agtcccgcaa cgagcgcaac ccttgatctt agttgccagc atttagttgg 1320 gcactctaag gtgactgccg gtgacaaacc ggagggaagg gtgggggatg acgtcaaatc 1380 atcatgcccc ttatgacctg ggctacacac gtgctacaat ggatggtaca aagggctgca 1440 agaccgcgag gtcaagccaa tcccataaaa ccattctcag ttcggattgt aggctgcaac 1500 tcgcctacat gaagctggaa tcgctagtaa tcgcggatca gcatgccgcg gttgaatacg 1560 ttcccgggcc ttgtacacac cgcccgtcac accacgagag tttgtaacac ccgaagtcgg 1620 tggagtaacc gtaaggagct agccgcctaa gtgggacaga tgattggggt 1670 <210> 4 <211> 1668 <212> DNA <213> Pantoea agglomerans (EJ2) <400> 4 gggttctatg ctgtcattcc aaatttaacg cctacacgcc cccccaggtg ggcggccacg 60 tggatnttaa ttccttttcc tccacggggg gaactcccat ggaagtggct tgatagtttt 120 ttgcgggggg gggtggactt ccgaggtgaa ccgctaaaat tcgtattttt tttggggaac 180 tntagtgggg tagatgtgtc tcagtgagaa cggtgggcac gcgcctcaca cgcacgtgta 240 gcggtagcgc acaggagcct gcttttcggg tgacgagtgg cggacgggtg agtaatgtct 300 gggaaactgc ctgatggagg gggataacta ctggaaacgg tagctaatac cgcataacgt 360 cgcaagacca aagaggggga ccttcgggcc tcttgccatc agatgtgccc agatgggatt 420 agctagtagg tggggtaacg gctcacctag gcgacgatcc ctagctggtc tgagaggatg 480 accagccaca ctggaactga gacacggtcc agactcctac gggaggcagc agtggggaat 540 attgcacaat gggcgcaagc ctgatgcagc catgccgcgt gtatgaagaa ggccttcggg 600 ttgtaaagta ctttcagcga ggaggaaggc gttgaggtta ataacctcag cgattgacgt 660 tactcgcaga agaagcaccg gctaactccg tgccagcagc cgcggtaata cggagggtgc 720 aagcgttaat cggaattact gggcgtaagc gcacgcaggc ggtctgtcaa gtcggatgtg 780 aaatccccgg gctcaacctg ggaactgcat tcgaaactgg caggctagag tcttgtagag 840 gggggtagaa ttccaggtgt agcggtgaaa tgcgtagaga tctggaggaa taccggtggc 900 gaaggcggcc ccctggacaa agactgacgc tcaggtgcga aagcgtgggg agcaaacagg 960 attagatacc ctggtagtcc acgccgtaaa cgatgtcgac ttggaggttg tgcccttgag 1020 gcgtggcttc cggagctaac gcgttaagtc gaccgcctgg ggagtacggc cgcaaggtta 1080 aaactcaaat gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgatg 1140 caacgcgaag aaccttacct actcttgaca tccagagaac ttagcagaga tgctttggtg 1200 ccttcgggaa ctctgagaca ggtgctgcat ggctgtcgtc agctcgtgtt gtgaaatgtt 1260 gggttaagtc ccgcaacgag cgcaaccctt atcctttgtt gccagcggtt aggccgggaa 1320 ctcaaaggag actgccagtg ataaactgga ggaaggtggg gatgacgtca agtcatcatg 1380 gcccttacga gtagggctac acacgtgcta caatggcgca tacaaagaga agcgacctcg 1440 cgagagcaag cggacctcat aaagtgcgtc gtagtccgga ttggagtctg caactcgact 1500 ccatgaagtc ggaatcgcta gtaatcgtag atcagaatgc tacggtgaat acgttcccgg 1560 gccttgtaca caccgcccgt cacaccatgg gagtgggttg caaaagaagt aggtagctta 1620 accttcggga gggcgcttac cactttgtga ttcatgactg gggtgagt 1668 <210> 5 <211> 1669 <212> DNA <213> tenotrophomonas terrae (EJ3) <400> 5 tcagcacnnn nagtacggan gggtctatcg tattcatcaa ctaancacnt ctccaccgag 60 ggtgtggcca cgtctcaagc atagcgtgca ctcaccgaca gtctcgtgaa aagngaagta 120 agtgttagca gagagttgcg atctcaatgt gccccagcgt ccatgtttca tttttgaggc 180 ccgtctaaaa gtttgnntgc tcagagtgaa cgctggcggt aggcctaaca catgcaagtc 240 gaacggcagc acaggagagc ttgctctctg ggtggcgagt ggcggacggg tgaggaatgc 300 atcggaatct actctttcgt gggggataac gtagggaaac ttacgctaat accgcatacg 360 acctacgggt gaaagccggg gaccttcggg cctggcgcga atgaatgagc cgatgcccga 420 ttagctagtt ggcggggtaa gagcccacca aggcgacgat cggtagctgg tctgagagga 480 tgatcagcca cactggaact gagacacggt ccagactcct acgggaggca gcagtgggga 540 atattggaca atgggcgcaa gcctgatcca gccataccgc gtgggtgaag aaggccttcg 600 ggttgtaaag cccttttgtt gggaaagaaa agcaatcggt taatacccgg ttgttctgac 660 ggtacccaaa gaataagcac cggctaactt cgtgccagca gccgcggtaa tacgaagggt 720 gcaagcgtta ctcggattac tgggcgtaag cgtgcgtagg tggttgttta agtctgtcgt 780 gaaagccctg ggctcaacct gggaattgcg atggaaactg ggcgactaga gtgtggcaga 840 gggtagtgga attcctggtg tagcagtgaa atgcgtagag atcaggagga acatccgtgg 900 cgaaggcgac tgcctgggcc aacactgaca ctgaggcacg aaagcgtggg gagcaaacag 960 gattagatac cctggtagtc cacgccctaa acgatgcgaa ctggatgttg ggtgcaattt 1020 ggcacgcagt atcgaagcta acgcgttaag ttcgccgcct ggggagtacg gtcgcaagac 1080 tgaaactcaa aggaattgac gggggcccgc acaagcggtg gagtatgtgg tttaattcga 1140 tgcaacgcga agaaccttac ctggccttga catgtcgcga actttccaga gatggattgg 1200 tgccttcggg aacgcgaaca caggtgctgc atggctgtcg tcagctcgtg tcgtgagatg 1260 ttgggttaag tcccgcaacg agcgcaaccc ttgtccttag ttgccagcac gtaatggtgg 1320 gaactctaag gagaccgccg gtgacaaacc ggaggaaggt ggggatgacg tcaagtcatc 1380 atggccctta cggccagggc tacacacgta ctacaatggt agggacagag ggctgcaagc 1440 cggcgacggt aagccaatcc cagaaaccct atctcagtcc ggattggagt ctgcaactcg 1500 actccatgaa gtcggaatcg ctagtaatcg cagatcagca ttgctgcggt gaatacgttc 1560 ccgggccttg tacacaccgc ccgtcacacc atgggagttt gttgcaccag aagcagtagc 1620 ttaaccttcg ggagggcgct tgccacggtg tggccgatga ctggggtga 1669 <210> 6 <211> 1507 <212> DNA <213> Microbacterium oxydans (EJ4) <400> 6 nnnngctcat ctnnnnnnnn agaccgnctg nngnattnnn nncgtcnnng ntnngcnnnn 60 nnnnncgnnn nnnnncnngc nnancgcaga acatannggc ctagntnntn aacgttcacc 120 gccncnnnnt ggagggntgn nnncggnnnt ntnccanaga gtcgnnnctt angncgggca 180 ncataggtac ggagaggttg gctgtgnnng tnnnaacnct acagtctgan agcnggagtg 240 nngacganca tgccacaact gttcngagtg ttccaaggag tgcncggtcc aaanntagga 300 gggaagtcaa gtntgaataa gtttgttcga gatagcatcg aagtcagtcc gcatgcgcag 360 actagagtgc ggtaggggag attggaattc ctggtgtagc ggtggaatgc gcagatatca 420 ggaggaacac cgatggcgaa ggcagatctc tgggccgtaa ctgacgctga ggagcgaaag 480 ggtggggagc aaacaggctt agataccctg gtagtccacc ccgtaaacgt tgggaactag 540 ttgtggggtc ctttccacgg attccgtgac gcagctaacg cattaagttc cccgcctggg 600 gagtacggcc gcaaggctaa aactcaaagg aattgacggg gacccgcaca agcggcggag 660 catgcggatt aattcgatgc aacgcgaaga accttaccaa ggcttgacat acacgagaac 720 actctggaaa caggggactc tttggacact cgtgaacagg tggtgcatgg ttgtcgtcag 780 ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caaccctcgt tctatgttgc 840 cagcacgtaa tggtgggaac tcatgggata ctgccggggt caactcggag gaaggtgggg 900 atgacgtcaa atcatcatgc cccttatgtc ttgggcttca cgcatgctac aatggccggt 960 acaaagggct gcaataccgt gaggtggagc gaatcccaaa aagccggtcc cagttcggat 1020 tgaggtctgc aactcgacct catgaagtcg gagtcgctag taatcgcaga tcagcaacgc 1080 tgcggtgaat acgttcccgg gtcttgtaca caccgcccgt caagtcatga aagtcggtaa 1140 cacctgaagc ccgtggccta acccttgtgg aaggagccgt cgaagtggga tcggtaatag 1200 actatnnagg gggggggggg gggntnnggt tcgagggcgc cnttttgttt gcggtcataa 1260 aaacacatac ctttttgtcg aaaaaggaag tggtagaaac acgagagcgg ggactctcct 1320 ccccgnnnga tttgtgtctg agtgnncccc ccaagtggaa tattttccan nntnccnncc 1380 tcgataaaga gagtggnngt gggncaacnc tctatatggn nggtgtnnct tactngcngg 1440 nnnncccgnn ncnnnttatg tnnncnnnnn ncnncnntaa tgatanaagc ntagagnaca 1500 nntnnca 1507 <210> 7 <211> 1671 <212> DNA <213> Bacillus bataviensis (EJ5) <400> 7 gtgatagttg cnngcgtgct ctcntancac aggctacacc ggtgggcagn ccctctatca 60 ttctttgtgt atccccactg cgcccgtact gccccatgcg gagtacttga ggcatttgat 120 gcagcactaa aggacgggaa ccctccaacc cgtgcgaatc ttagtttatt agggggtatt 180 agttttttcn gctcagacga acgctggcgg cgtgcctaat acatgcaagt cgagcgaatc 240 aataggagct tgctcctgtt gattagcggc ggacgggtga gtaacacgtg ggcaacctgc 300 ctgtaagact gggataactt cgggaaaccg gagctaatac cggataatcc ttttcctctc 360 atgaggaaaa gctgaaagtc ggtttcggct gacacttaca gatgggcccg cggcgcatta 420 gctagttggt gaggtaacgg ctcaccaagg cgacgatgcg tagccgacct gagagggtga 480 tcggccacac tgggactgag acacggccca gactcctacg ggaggcagca gtagggaatc 540 ttccgcaatg gacgaaagtc tgacggagca acgcgccgcg tgagcgatga aggccttcgg 600 gtcgtaaagc tctgttgtta gggaagaaca agtatcggag taactgccgg taccttgacg 660 gtacctaacc agaaagccac ggctaactac gtgccagcag ccgcggtaat acgtaggtgg 720 caagcgttgt ccggaattat tgggcgtaag cgcgcgcagg cggtccttta agtctgatgt 780 gaaagcccac ggctcaaccg tggagggtca ttggaaactg ggggacttga gtgcagaaga 840 ggaaagcgga attccacgtg tagcggtgaa atgcgtagag atgtggagga acaccagtgg 900 cgaaggcggc tttctggtct gtaactgacg ctgaggcgcg aaagcgtggg gagcaaacag 960 gattagatac cctggtagtc cacgccgtaa acgatgagtg ctaagtgtta gagggtttcc 1020 gccctttagt gctgcagcta acgcattaag cactccgcct ggggagtacg gccgcaaggc 1080 tgaaactcaa aggaattgac gggggcccgc acaagcggtg gagcatgtgg tttaattcga 1140 agcaacgcga agaaccttac caggtcttga catcctctga cactcctaga gataggactt 1200 tccccttcgg gggacagagt gacaggtggt gcatggttgt cgtcagctcg tgtcgtgaga 1260 tgttgggtta agtcccgcaa cgagcgcaac ccttgatctt agttgccagc attcagttgg 1320 gcactctaag gtgactgccg gtgacaaacc ggaggaaggt ggggatgacg tcaaatcatc 1380 atgcccctta tgacctgggc tacacacgtg ctacaatgga tggtacaaag ggctgcgaaa 1440 ccgcgaggtt tagccaatcc cataaaacca ttctcagttc ggattgtagg ctgcaactcg 1500 cctacatgaa gccggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1560 cgggccttgt acacaccgcc cgtcacacca cgagagtttg taacacccga agtcggtggg 1620 gtaaccgtaa ggagccagcc gcctaagtgg gacagatgat tggggtgagc n 1671 <210> 8 <211> 1461 <212> DNA <213> Bacillus amyloliquefaciens (EJ6) <400> 8 nnnnngncgn gtnctataca tgcaagtcga gcggacagat gggagcttgc tccctgatgt 60 tagcggcgga cgggtgagta acacgtgggt aacctgcctg taagactggg ataactccgg 120 gaaaccgggg ctaataccgg atgcttgttt gaaccgcatg gttcaaacat aaaaggtggc 180 ttcggctacc acttacagat ggacccgcgg cgcattagct agttggtgag gtaacggctc 240 accaaggcaa cgatgcgtag ccgacctgag agggtgatcg gccacactgg gactgagaca 300 cggcccagac tcctacggga ggcagcagta gggaatcttc cgcaatggac gaaagtctga 360 cggagcaacg ccgcgtgagt gatgaaggtt ttcggatcgt aaagctctgt tgttagggaa 420 gaacaagtac cgttcgaata gggcggtacc ttgacggtac ctaaccagaa agccacggct 480 aactacgtgc cagcagccgc ggtaatacgt aggtggcaag cgttgtccgg aattattggg 540 cgtaaagggc tcgcaggcgg tttcttaagt ctgatgtgaa agcccccggc tcaaccgggg 600 agggtcattg gaaactgggg aacttgagtg cagaaganga gagtggaatt ccacgtgtag 660 cggtgaaatg cgtagagatg tggaggaaca ccagtggcga aggcgactct ctggtctgta 720 actgacgctg aggagcgaaa gcgtggggag cgaacaggat tagatacctg gtagtncacg 780 ccgtaaacga tgagtgctaa gtgttagggg gtttccgccc cttagtgctg cagctaacgc 840 attaagcact ccgcctgggg agtacggtcg caagactgaa actcaaagga attgacgggg 900 gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgaagaa ccttaccagg 960 tcttgacatc ctctgacaat cctagagata ggacgtcccc ttcgggggca gagtgacagg 1020 tggtgcatgg ttgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg 1080 caacccttga tcttagttgc cagcattcag ttgggcactc taaggtgact gccggtgaca 1140 aaccggagga aggtggggat gacgtcaaat catcatgccc cttatgacct gggctacaca 1200 cgtgctacaa tggacagaac aaagggcagc gaaaccgcga ggttaagcca atcccacaaa 1260 tctgttctca gttcggatcg cagtctgcaa ctcgactgcg tgaagctgga atcgctagta 1320 atcgcggatc agcatgccgc ggtgaatacg ttcccgggcc ttgtacacac cgcccgtcac 1380 accacgagag tttgtaacac ccgaagtcgg tgaggtaacc ttttaggagc cagccgcacg 1440 aatgtgcnca ngangnngnn n 1461 <110> Pukyong National University Industry-University Cooperation Foundation <120> Mixed Microorganisms Having Degradation Activity of Alginate and          Laminarin <130> P12-B031 <160> 8 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer <400> 1 ccagcagccg cggtaatacg 20 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer <400> 2 taccagggta tctaatcc 18 <210> 3 <211> 1670 <212> DNA <213> Bacillus megaterium (EJ1) <400> 3 gttatatttt tgcggctagc tttgatctga acttatggtc ctaaagcggg ccaggccgtt 60 ttctaatctt ggagttacag tcctcggtca tcctngacgg tcgatggatc aggggtcttg 120 ccgcagagaa gagaagagaa cttccaccgt aaccaaaaat tttaaagant tttatagaat 180 tttttttata gctcagatga acgctggcgg cgtgcntaat acatgcaagt cgagcgaact 240 gattagaagc ttgcttctat gacgttagcg gcggacgggt gagtaacacg tgggcaacct 300 gcctgtaaga ctgggataac ttcgggaaac cgaagctaat accggatagg atcttctcct 360 tcatgggaga tgattgaaag atggtttcgg ctatcactta cagatgggcc cgcggtgcat 420 tagctagttg gtgaggtaac ggctcaccaa ggcaacgatg catagccgac ctgagagggt 480 gatcggccac actgggactg agacacggcc cagactccta cgggaggcag cagtagggaa 540 tcttccgcaa tggacgaaag tctgacggag caacgccgcg tgagtgatga aggctttcgg 600 gtcgtaaaac tctgttgtta gggaagaaca agtacaagag taactgcttg taccttgacg 660 gtacctaacc agaaagccac ggctaactac gtgccagcag ccgcggtaat acgtaggtgg 720 caagcgttat ccggaattat tgggcgtaag cgcgcgcagg cggtttctta agtctgatgt 780 gaaagcccac ggctcaaccg tggagggtca ttggaaactg gggaacttga gtgcagaaga 840 gaaaagcgga attccacgtg tagcggtgaa atgcgtagag atgtggagga acaccagtgg 900 cgaaggcggc tttttggtct gtaactgacg ctgaggcgcg aaagcgtggg gagcaaacag 960 gattagatac cctggtagtc cacgccgtaa acgatgagtg ctaagtgtta gagggtttcc 1020 gccctttagt gctgcagcta acgcattaag cactccgcct ggggagtacg gtcgcaagac 1080 tgaaactcaa aggaattgac gggggcccgc acaagcggtg gagcatgtgg tttaattcga 1140 agcaacgcga agaaccttac caggtcttga catcctctga caactctaga gatagagcgt 1200 tccccttcgg gggacagagt gacaggtggt gcatggttgt cgtcagctcg tgtcgtgaga 1260 tgttgggtta agtcccgcaa cgagcgcaac ccttgatctt agttgccagc atttagttgg 1320 gcactctaag gtgactgccg gtgacaaacc ggagggaagg gtgggggatg acgtcaaatc 1380 atcatgcccc ttatgacctg ggctacacac gtgctacaat ggatggtaca aagggctgca 1440 agaccgcgag gtcaagccaa tcccataaaa ccattctcag ttcggattgt aggctgcaac 1500 tcgcctacat gaagctggaa tcgctagtaa tcgcggatca gcatgccgcg gttgaatacg 1560 ttcccgggcc ttgtacacac cgcccgtcac accacgagag tttgtaacac ccgaagtcgg 1620 tggagtaacc gtaaggagct agccgcctaa gtgggacaga tgattggggt 1670 <210> 4 <211> 1668 <212> DNA Pantoea agglomerans (EJ2) <400> 4 gggttctatg ctgtcattcc aaatttaacg cctacacgcc cccccaggtg ggcggccacg 60 tggatnttaa ttccttttcc tccacggggg gaactcccat ggaagtggct tgatagtttt 120 ttgcgggggg gggtggactt ccgaggtgaa ccgctaaaat tcgtattttt tttggggaac 180 tntagtgggg tagatgtgtc tcagtgagaa cggtgggcac gcgcctcaca cgcacgtgta 240 gcggtagcgc acaggagcct gcttttcggg tgacgagtgg cggacgggtg agtaatgtct 300 gggaaactgc ctgatggagg gggataacta ctggaaacgg tagctaatac cgcataacgt 360 cgcaagacca aagaggggga ccttcgggcc tcttgccatc agatgtgccc agatgggatt 420 agctagtagg tggggtaacg gctcacctag gcgacgatcc ctagctggtc tgagaggatg 480 accagccaca ctggaactga gacacggtcc agactcctac gggaggcagc agtggggaat 540 attgcacaat gggcgcaagc ctgatgcagc catgccgcgt gtatgaagaa ggccttcggg 600 ttgtaaagta ctttcagcga ggaggaaggc gttgaggtta ataacctcag cgattgacgt 660 tactcgcaga agaagcaccg gctaactccg tgccagcagc cgcggtaata cggagggtgc 720 aagcgttaat cggaattact gggcgtaagc gcacgcaggc ggtctgtcaa gtcggatgtg 780 aaatccccgg gctcaacctg ggaactgcat tcgaaactgg caggctagag tcttgtagag 840 gggggtagaa ttccaggtgt agcggtgaaa tgcgtagaga tctggaggaa taccggtggc 900 gaaggcggcc ccctggacaa agactgacgc tcaggtgcga aagcgtgggg agcaaacagg 960 attagatacc ctggtagtcc acgccgtaaa cgatgtcgac ttggaggttg tgcccttgag 1020 gcgtggcttc cggagctaac gcgttaagtc gaccgcctgg ggagtacggc cgcaaggtta 1080 aaactcaaat gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgatg 1140 caacgcgaag aaccttacct actcttgaca tccagagaac ttagcagaga tgctttggtg 1200 ccttcgggaa ctctgagaca ggtgctgcat ggctgtcgtc agctcgtgtt gtgaaatgtt 1260 gggttaagtc ccgcaacgag cgcaaccctt atcctttgtt gccagcggtt aggccgggaa 1320 ctcaaaggag actgccagtg ataaactgga ggaaggtggg gatgacgtca agtcatcatg 1380 gcccttacga gtagggctac acacgtgcta caatggcgca tacaaagaga agcgacctcg 1440 cgagagcaag cggacctcat aaagtgcgtc gtagtccgga ttggagtctg caactcgact 1500 ccatgaagtc ggaatcgcta gtaatcgtag atcagaatgc tacggtgaat acgttcccgg 1560 gccttgtaca caccgcccgt cacaccatgg gagtgggttg caaaagaagt aggtagctta 1620 accttcggga gggcgcttac cactttgtga ttcatgactg gggtgagt 1668 <210> 5 <211> 1669 <212> DNA <213> tenotrophomonas terrae (EJ3) <400> 5 tcagcacnnn nagtacggan gggtctatcg tattcatcaa ctaancacnt ctccaccgag 60 ggtgtggcca cgtctcaagc atagcgtgca ctcaccgaca gtctcgtgaa aagngaagta 120 agtgttagca gagagttgcg atctcaatgt gccccagcgt ccatgtttca tttttgaggc 180 ccgtctaaaa gtttgnntgc tcagagtgaa cgctggcggt aggcctaaca catgcaagtc 240 gaacggcagc acaggagagc ttgctctctg ggtggcgagt ggcggacggg tgaggaatgc 300 atcggaatct actctttcgt gggggataac gtagggaaac ttacgctaat accgcatacg 360 acctacgggt gaaagccggg gaccttcggg cctggcgcga atgaatgagc cgatgcccga 420 ttagctagtt ggcggggtaa gagcccacca aggcgacgat cggtagctgg tctgagagga 480 tgatcagcca cactggaact gagacacggt ccagactcct acgggaggca gcagtgggga 540 atattggaca atgggcgcaa gcctgatcca gccataccgc gtgggtgaag aaggccttcg 600 ggttgtaaag cccttttgtt gggaaagaaa agcaatcggt taatacccgg ttgttctgac 660 ggtacccaaa gaataagcac cggctaactt cgtgccagca gccgcggtaa tacgaagggt 720 gcaagcgtta ctcggattac tgggcgtaag cgtgcgtagg tggttgttta agtctgtcgt 780 gaaagccctg ggctcaacct gggaattgcg atggaaactg ggcgactaga gtgtggcaga 840 gggtagtgga attcctggtg tagcagtgaa atgcgtagag atcaggagga acatccgtgg 900 cgaaggcgac tgcctgggcc aacactgaca ctgaggcacg aaagcgtggg gagcaaacag 960 gattagatac cctggtagtc cacgccctaa acgatgcgaa ctggatgttg ggtgcaattt 1020 ggcacgcagt atcgaagcta acgcgttaag ttcgccgcct ggggagtacg gtcgcaagac 1080 tgaaactcaa aggaattgac gggggcccgc acaagcggtg gagtatgtgg tttaattcga 1140 tgcaacgcga agaaccttac ctggccttga catgtcgcga actttccaga gatggattgg 1200 tgccttcggg aacgcgaaca caggtgctgc atggctgtcg tcagctcgtg tcgtgagatg 1260 ttgggttaag tcccgcaacg agcgcaaccc ttgtccttag ttgccagcac gtaatggtgg 1320 gaactctaag gagaccgccg gtgacaaacc ggaggaaggt ggggatgacg tcaagtcatc 1380 atggccctta cggccagggc tacacacgta ctacaatggt agggacagag ggctgcaagc 1440 cggcgacggt aagccaatcc cagaaaccct atctcagtcc ggattggagt ctgcaactcg 1500 actccatgaa gtcggaatcg ctagtaatcg cagatcagca ttgctgcggt gaatacgttc 1560 ccgggccttg tacacaccgc ccgtcacacc atgggagttt gttgcaccag aagcagtagc 1620 ttaaccttcg ggagggcgct tgccacggtg tggccgatga ctggggtga 1669 <210> 6 <211> 1507 <212> DNA <213> Microbacterium oxydans (EJ4) <400> 6 nnnngctcat ctnnnnnnnn agaccgnctg nngnattnnn nncgtcnnng ntnngcnnnn 60 nnnnncgnnn nnnnncnngc nnancgcaga acatannggc ctagntnntn aacgttcacc 120 gccncnnnnt ggagggntgn nnncggnnnt ntnccanaga gtcgnnnctt angncgggca 180 ncataggtac ggagaggttg gctgtgnnng tnnnaacnct acagtctgan agcnggagtg 240 nngacganca tgccacaact gttcngagtg ttccaaggag tgcncggtcc aaanntagga 300 gggaagtcaa gtntgaataa gtttgttcga gatagcatcg aagtcagtcc gcatgcgcag 360 actagagtgc ggtaggggag attggaattc ctggtgtagc ggtggaatgc gcagatatca 420 ggaggaacac cgatggcgaa ggcagatctc tgggccgtaa ctgacgctga ggagcgaaag 480 ggtggggagc aaacaggctt agataccctg gtagtccacc ccgtaaacgt tgggaactag 540 ttgtggggtc ctttccacgg attccgtgac gcagctaacg cattaagttc cccgcctggg 600 gagtacggcc gcaaggctaa aactcaaagg aattgacggg gacccgcaca agcggcggag 660 catgcggatt aattcgatgc aacgcgaaga accttaccaa ggcttgacat acacgagaac 720 actctggaaa caggggactc tttggacact cgtgaacagg tggtgcatgg ttgtcgtcag 780 ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caaccctcgt tctatgttgc 840 cagcacgtaa tggtgggaac tcatgggata ctgccggggt caactcggag gaaggtgggg 900 atgacgtcaa atcatcatgc cccttatgtc ttgggcttca cgcatgctac aatggccggt 960 acaaagggct gcaataccgt gaggtggagc gaatcccaaa aagccggtcc cagttcggat 1020 tgaggtctgc aactcgacct catgaagtcg gagtcgctag taatcgcaga tcagcaacgc 1080 tgcggtgaat acgttcccgg gtcttgtaca caccgcccgt caagtcatga aagtcggtaa 1140 cacctgaagc ccgtggccta acccttgtgg aaggagccgt cgaagtggga tcggtaatag 1200 actatnnagg gggggggggg gggntnnggt tcgagggcgc cnttttgttt gcggtcataa 1260 aaacacatac ctttttgtcg aaaaaggaag tggtagaaac acgagagcgg ggactctcct 1320 ccccgnnnga tttgtgtctg agtgnncccc ccaagtggaa tattttccan nntnccnncc 1380 tcgataaaga gagtggnngt gggncaacnc tctatatggn nggtgtnnct tactngcngg 1440 nnnncccgnn ncnnnttatg tnnncnnnnn ncnncnntaa tgatanaagc ntagagnaca 1500 nntnnca 1507 <210> 7 <211> 1671 <212> DNA <213> Bacillus bataviensis (EJ5) <400> 7 gtgatagttg cnngcgtgct ctcntancac aggctacacc ggtgggcagn ccctctatca 60 ttctttgtgt atccccactg cgcccgtact gccccatgcg gagtacttga ggcatttgat 120 gcagcactaa aggacgggaa ccctccaacc cgtgcgaatc ttagtttatt agggggtatt 180 agttttttcn gctcagacga acgctggcgg cgtgcctaat acatgcaagt cgagcgaatc 240 aataggagct tgctcctgtt gattagcggc ggacgggtga gtaacacgtg ggcaacctgc 300 ctgtaagact gggataactt cgggaaaccg gagctaatac cggataatcc ttttcctctc 360 atgaggaaaa gctgaaagtc ggtttcggct gacacttaca gatgggcccg cggcgcatta 420 gctagttggt gaggtaacgg ctcaccaagg cgacgatgcg tagccgacct gagagggtga 480 tcggccacac tgggactgag acacggccca gactcctacg ggaggcagca gtagggaatc 540 ttccgcaatg gacgaaagtc tgacggagca acgcgccgcg tgagcgatga aggccttcgg 600 gtcgtaaagc tctgttgtta gggaagaaca agtatcggag taactgccgg taccttgacg 660 gtacctaacc agaaagccac ggctaactac gtgccagcag ccgcggtaat acgtaggtgg 720 caagcgttgt ccggaattat tgggcgtaag cgcgcgcagg cggtccttta agtctgatgt 780 gaaagcccac ggctcaaccg tggagggtca ttggaaactg ggggacttga gtgcagaaga 840 ggaaagcgga attccacgtg tagcggtgaa atgcgtagag atgtggagga acaccagtgg 900 cgaaggcggc tttctggtct gtaactgacg ctgaggcgcg aaagcgtggg gagcaaacag 960 gattagatac cctggtagtc cacgccgtaa acgatgagtg ctaagtgtta gagggtttcc 1020 gccctttagt gctgcagcta acgcattaag cactccgcct ggggagtacg gccgcaaggc 1080 tgaaactcaa aggaattgac gggggcccgc acaagcggtg gagcatgtgg tttaattcga 1140 agcaacgcga agaaccttac caggtcttga catcctctga cactcctaga gataggactt 1200 tccccttcgg gggacagagt gacaggtggt gcatggttgt cgtcagctcg tgtcgtgaga 1260 tgttgggtta agtcccgcaa cgagcgcaac ccttgatctt agttgccagc attcagttgg 1320 gcactctaag gtgactgccg gtgacaaacc ggaggaaggt ggggatgacg tcaaatcatc 1380 atgcccctta tgacctgggc tacacacgtg ctacaatgga tggtacaaag ggctgcgaaa 1440 ccgcgaggtt tagccaatcc cataaaacca ttctcagttc ggattgtagg ctgcaactcg 1500 cctacatgaa gccggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1560 cgggccttgt acacaccgcc cgtcacacca cgagagtttg taacacccga agtcggtggg 1620 gtaaccgtaa ggagccagcc gcctaagtgg gacagatgat tggggtgagc n 1671 <210> 8 <211> 1461 <212> DNA <213> Bacillus amyloliquefaciens (EJ6) <400> 8 nnnnngncgn gtnctataca tgcaagtcga gcggacagat gggagcttgc tccctgatgt 60 tagcggcgga cgggtgagta acacgtgggt aacctgcctg taagactggg ataactccgg 120 gaaaccgggg ctaataccgg atgcttgttt gaaccgcatg gttcaaacat aaaaggtggc 180 ttcggctacc acttacagat ggacccgcgg cgcattagct agttggtgag gtaacggctc 240 accaaggcaa cgatgcgtag ccgacctgag agggtgatcg gccacactgg gactgagaca 300 cggcccagac tcctacggga ggcagcagta gggaatcttc cgcaatggac gaaagtctga 360 cggagcaacg ccgcgtgagt gatgaaggtt ttcggatcgt aaagctctgt tgttagggaa 420 gaacaagtac cgttcgaata gggcggtacc ttgacggtac ctaaccagaa agccacggct 480 aactacgtgc cagcagccgc ggtaatacgt aggtggcaag cgttgtccgg aattattggg 540 cgtaaagggc tcgcaggcgg tttcttaagt ctgatgtgaa agcccccggc tcaaccgggg 600 agggtcattg gaaactgggg aacttgagtg cagaaganga gagtggaatt ccacgtgtag 660 cggtgaaatg cgtagagatg tggaggaaca ccagtggcga aggcgactct ctggtctgta 720 actgacgctg aggagcgaaa gcgtggggag cgaacaggat tagatacctg gtagtncacg 780 ccgtaaacga tgagtgctaa gtgttagggg gtttccgccc cttagtgctg cagctaacgc 840 attaagcact ccgcctgggg agtacggtcg caagactgaa actcaaagga attgacgggg 900 gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgaagaa ccttaccagg 960 tcttgacatc ctctgacaat cctagagata ggacgtcccc ttcgggggca gagtgacagg 1020 tggtgcatgg ttgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg 1080 caacccttga tcttagttgc cagcattcag ttgggcactc taaggtgact gccggtgaca 1140 aaccggagga aggtggggat gacgtcaaat catcatgccc cttatgacct gggctacaca 1200 cgtgctacaa tggacagaac aaagggcagc gaaaccgcga ggttaagcca atcccacaaa 1260 tctgttctca gttcggatcg cagtctgcaa ctcgactgcg tgaagctgga atcgctagta 1320 atcgcggatc agcatgccgc ggtgaatacg ttcccgggcc ttgtacacac cgcccgtcac 1380 accacgagag tttgtaacac ccgaagtcgg tgaggtaacc ttttaggagc cagccgcacg 1440 aatgtgcnca ngangnngnn n 1461

Claims (4)

알긴산 및 라미나린을 분해할 수 있는 바실러스 메가테리움(Bacillus megaterium), 판토아 에글로메란스(Pantoea agglomerans), 스테노트로포모나스 테레(Stenotrophomonas terrae), 마이크로박테리움 옥시단스(Microbacterium oxydans), 바실러스 바타비엔시스(Bacillus bataviensis) 및 바실러스 아밀로리쿼파시엔스(Bacillus amyloliquefaciens)로 구성된 복합 미생물.
Bacillus megaterium , Pantoea that can decompose alginic acid and laminarin agglomerans ), Stenotrophomonas terrae ), Microbacterium oxydans oxydans ), Bacillus bataviensis ) and Bacillus amyloliquefaciens .
제1항에 있어서, 복합미생물은 KACC 91706P인 것을 특징으로 하는 복합 미생물.
The complex microorganism according to claim 1, wherein the complex microorganism is KACC 91706P.
제1항에 있어서, 상기 알긴산 및 라미나린은 갈조류 가공 및 추출 공정의 부산물인 것을 특징으로 하는 복합 미생물.
The complex microorganism of claim 1, wherein the alginic acid and laminarin are by-products of brown algae processing and extraction.
제1항 내지 제3항 중 어느 한 항의 복합 미생물을 이용하여 갈조류 가공 및 추출공정의 부산물을 분해하는 방법.A method for decomposing the by-product of brown algae processing and extraction process using the complex microorganism of any one of claims 1 to 3.
KR1020120018936A 2012-02-24 2012-02-24 Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin KR101351539B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120018936A KR101351539B1 (en) 2012-02-24 2012-02-24 Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120018936A KR101351539B1 (en) 2012-02-24 2012-02-24 Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin

Publications (2)

Publication Number Publication Date
KR20130097347A true KR20130097347A (en) 2013-09-03
KR101351539B1 KR101351539B1 (en) 2014-01-15

Family

ID=49449746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120018936A KR101351539B1 (en) 2012-02-24 2012-02-24 Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin

Country Status (1)

Country Link
KR (1) KR101351539B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049072A (en) 2014-10-24 2016-05-09 한국해양과학기술원 Novel thermostable beta-glucosidase and the methods of preparation thereof
CN108118017A (en) * 2018-02-09 2018-06-05 北京市农林科学院 A kind of deodorization micro-organism agent and preparation method and application
CN108795808A (en) * 2018-06-15 2018-11-13 湖南省微生物研究院 One plant of Batavia bacillus and its application
CN108821908A (en) * 2018-06-15 2018-11-16 湖南省微生物研究院 A kind of microbial inoculum comprising Batavia bacillus HJ-1 and its application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040105523A (en) * 2003-06-07 2004-12-16 박응렬 Extraction of Bioactive Materials from Brown sea weed and Preparation of Health Food.
KR100625299B1 (en) * 2004-03-30 2006-09-20 배태진 Microorganism for decomposing Laminaria japonica and Undaria pinnatifida and a method for decomposing Laminaria japonica and Undaria pinnatifida using the same
KR101153871B1 (en) * 2009-01-29 2012-07-09 기장물산 (주) Microorganism, Bacillus sp. N7151-B, producing alginate lyase

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049072A (en) 2014-10-24 2016-05-09 한국해양과학기술원 Novel thermostable beta-glucosidase and the methods of preparation thereof
CN108118017A (en) * 2018-02-09 2018-06-05 北京市农林科学院 A kind of deodorization micro-organism agent and preparation method and application
CN108795808A (en) * 2018-06-15 2018-11-13 湖南省微生物研究院 One plant of Batavia bacillus and its application
CN108821908A (en) * 2018-06-15 2018-11-16 湖南省微生物研究院 A kind of microbial inoculum comprising Batavia bacillus HJ-1 and its application
CN108795808B (en) * 2018-06-15 2020-05-05 湖南省微生物研究院 Bacillus badavirus and application thereof
CN108821908B (en) * 2018-06-15 2021-03-02 湖南省微生物研究院 Microbial inoculum containing Bacillus badensis HJ-1 and application thereof

Also Published As

Publication number Publication date
KR101351539B1 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
Yadav et al. Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi, Nepal
Zhilina et al. Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region
Alva Munoz et al. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans
Shankar et al. Screening cellulolytic bacteria from the mid-gut of the popular composting earthworm, Eudrilus eugeniae (Kinberg)
CN102586150B (en) Bacterial strain capable of generating alginate lyase and fermentation method thereof
CN102533601A (en) Bacillus simplex, and culture method and application thereof
CN111019865B (en) Pseudomonas graminis strain capable of degrading cellulose at low temperature and application thereof
CN103352013A (en) Lignocellulose degrading complex bacterium system and application
Rathnan et al. Isolation, screening, identification and optimized production of extracellular cellulase from Bacillus subtilis using cellulosic waste as carbon source
Szymanowska-Powałowska et al. Biotechnological potential of Clostridium butyricum bacteria
KR101351539B1 (en) Mixed Microorganisms Having Degradation Activity of Alginate and Laminarin
Yang et al. A novel microbial habitat of alkaline black liquor with very high pollution load: microbial diversity and the key members in application potentials
KR101316085B1 (en) Microbacterium oxydans Having Property for Degrading Laminarin and Alginic acid
KR101401413B1 (en) Clostridium sp. strain, a method for producing butyric acid using the Clostridium sp. strain, and a method for isolating the Clostridium sp. strain
KR101316086B1 (en) Novel Microorganism Degrading agar and carrageenan
CN103911315A (en) Strain for producing alginate lyase and use thereof
CN105802892A (en) Stenotrophomonas maltophilia for producing keratinase and application of stenotrophomonas maltophilia
CN102093973A (en) Bacterial strain Pandoraea sp. B-6 for processing high-density papermaking black liquor and application
Srimawong et al. Evaluation of hydrogen fermentation by a newly isolated alkaline tolerant Clostridium felsineum strain CUEA03
KR101427979B1 (en) Method for Treating Mixed Seaweed Wastes Using Bacillus alcalophilus
Singh et al. Evaluation of the coal-degrading ability of Rhizobium and Chelatococcus strains isolated from the formation water of an Indian coal bed
KR101104178B1 (en) Bacillus amyloliquefaciens producing acidic cellulase and uses thereof
Liu et al. Analysis of cellulolytic bacterial flora in the rumen of inner mongolian sheep
KR101746398B1 (en) Streptomyces atrovirens WJ2, a new microbe having great activity degrading xylan
KR101453389B1 (en) Novel Microorganism Having Degrading Acitivity of Cellulose, Protein and Lipid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 6