KR20160049072A - Novel thermostable beta-glucosidase and the methods of preparation thereof - Google Patents

Novel thermostable beta-glucosidase and the methods of preparation thereof Download PDF

Info

Publication number
KR20160049072A
KR20160049072A KR1020140144632A KR20140144632A KR20160049072A KR 20160049072 A KR20160049072 A KR 20160049072A KR 1020140144632 A KR1020140144632 A KR 1020140144632A KR 20140144632 A KR20140144632 A KR 20140144632A KR 20160049072 A KR20160049072 A KR 20160049072A
Authority
KR
South Korea
Prior art keywords
glu
glucosidase
tpa
beta
leu
Prior art date
Application number
KR1020140144632A
Other languages
Korean (ko)
Other versions
KR101653340B1 (en
Inventor
이정현
권개경
강성균
이현숙
김윤재
이재은
차선신
김태완
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020140144632A priority Critical patent/KR101653340B1/en
Publication of KR20160049072A publication Critical patent/KR20160049072A/en
Application granted granted Critical
Publication of KR101653340B1 publication Critical patent/KR101653340B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Abstract

The present invention relates to novel beta-glucosidase and a method for preparing the same. The present invention relates to beta-glucosidase isolated from T. pacificus, a gene encoding the beta-glucosidase, a recombinant vector including the gene, a host cell transformed by the recombinant vector, and a method for preparing beta-glucosidase by using the host cell. The beta-glucosidase according to the present invention shows hydrolysis activity on various pNP-glucopyranoside and oligosaccharide as well as laminarin. In particular, the beta-glucosidase shows exo-hydrolysis activity on laminarin, thereby being used to degrade laminarin in combination with endo-hydrolase.

Description

신규의 고호열성 베타-글루코시다아제 및 이의 제조방법{Novel thermostable beta-glucosidase and the methods of preparation thereof}Novel thermostable beta-glucosidase and methods for producing the same are disclosed.

본 발명은 신규의 베타-글루코시아제 및 이를 제조하는 방법에 대한 것이다.The present invention relates to a novel beta-glucosidase and a method for producing the same.

기후변화협약과 환경규제가심해짐에 따라서 석유 및 석탄을 대체할 수 있는 에너지 개발을 위하여 신재생에너지에 대한 연구가 활발히 진행되고 있다.Research on renewable energy is actively being carried out in order to develop energy that can replace petroleum and coal in accordance with climate change convention and environmental regulations.

바이오 에너지를 이용하여 에너지를 얻는 과정에서 사탕수수, 옥수수 등의 곡물류와 임업 및 농업 부산물인 목질계 자원을 이용하였으나,재배 면적의 한정성과 수급의 어려움으로 곡물류와 목질계 자원을 이용한 바이오 연료 생산에 어려움이 있었다.In the process of obtaining energy using bioenergy, grains such as sugarcane, corn and woody resources such as forestry and agricultural by-products were used. However, due to the limitation of cultivation area and difficulty in supplying and receiving it, production of biofuels using grain and woody resources There was difficulty.

이러한 문제점을 극복하기 위하여 최근에는 많은 섬유질과 다당류가 있는 해양조류가 새로운 에너지원으로 주목을 받고 있다.이와 같은 해조류는 다양한 형태의 다당류를 포함하고 있는데,다시마나 미역과 같은 갈조류에서는 구조 다당류로 셀룰로오즈가 5.7% ~ 14.3% 구성되며, 세포 사이에는 점질성 다당류인 알긴산, 퓨코이단 및 저장성 다당류인 라미나린 등으로 구성되어 있다.In order to overcome these problems, marine algae with many fibers and polysaccharides are attracting attention as a new energy source. Such seaweeds contain various types of polysaccharides. In the brown algae such as mana, And 5.7% ~ 14.3%. Among the cells, it is composed of viscous polysaccharides such as alginic acid, fucoidan and laminarin, which is a storage polysaccharide.

라미나린은 β-1,3-글루코오즈 결합이 주 골격이며, 부분적으로 β-1,6-글루코오즈 결합으로 구성되어 있고, 알긴산은 D-만뉴론산과 L-글루론산이 β-1,4 결합으로 구성되어 있으며, 호모폴리머 형태로 결합된 폴리만뉴론산(MM), 폴리글루론산(GG) 형태 또는 두 성분이 혼합된 헤테로폴리머(MG) 형태가 일정하지 않게 섞여져 구성되어 있다. Laminarin is the main skeleton of the β-1,3-glucoside bond, and is partially composed of β-1,6-glucosidic bonds, and alginic acid is D-mannuronic acid and L-glutaric acid are β- (MM), polyglutaric acid (GG), or a heteropolymer (MG) mixture of two components mixed together in homopolymer form.

갈조류로부터 알칼리, 산 또는 효소 처리 등의 가공 방법을 통해 해조 다당류인 알긴산, 퓨코이단을 추출하여 식품 첨가제, 건강 식량 자원으로서 산업적으로 많이 유용하게 이용되고 있으나 갈조류 자체의 분해하기 어려운 복잡한 구조로 인해 바이오 연료 생산용 기질로서 사용하기에 어려움이 있으며, 현재 이용되고 있는 물질 이외에 발생되는 부산물 및 폐기물들의 처리가 문제점으로 남아 있다.Alginic acid and fucoidan, which are seaweed polysaccharides, are extracted from brown algae by processing methods such as alkaline, acid or enzyme treatment, and are used industrially as food additives and health food resources. However, due to the complicated structure of brown algae itself, It is difficult to use it as a substrate for fuel production, and the treatment of by-products and wastes generated in addition to currently used materials remains as a problem.

KR2013-0097347 A호 에서는 라미나린을 분해시키는 바실러스메가테리움(Bacillus megaterium), 판토아 에글로메란스(Pantoeaagglomerans), 스테노트로포모나스 테레(Stenotrophomonas terrae), 마이크로박테리움 옥시단스(Microbacteriumoxydans), 바실러스 바타비엔시스(Bacillus bataviensis) 및 바실러스아밀로리쿼파시엔스(Bacillus amyloliquefaciens)로 구성된 6종의 복합 미생물 및 복합 미생물을 이용한 갈조류 가공 및 추출 공정의 부산물을 분해하는 방법에 관한 것이다.In KR2013-0097347 A, Bacillus megaterium , Pantoea agglomerans , Stenotrophomonas terrae , Microbacterium oxydans, Bacillus subtilis, Bacillus subtilis, The present invention relates to a method for decomposing by-products of brown algae processing and extraction using six complex microorganisms and complex microorganisms consisting of Bacillus bataviensis and Bacillus amyloliquefaciens .

KR2013-0033635 A호 에서는 라미나린분해능을 가지는 마이크로박테리움옥시단스 FS4(MicrobacteriumoxydansFS4)를 기재하고 있다.
In KR2013-0033635 A No. describes a micro tumefaciens oxy thiooxidans FS4 (Microbacteriumoxydans FS4) having a laminarin resolution.

본 발명자들은 상기 라미나린을 분해할 수 있는 신규의 베타-글루코시다아제를 발견하고 본 발명을 완성하였다.The present inventors have found a novel beta-glucosidase capable of degrading laminarin and completed the present invention.

KRKR 2013-00973472013-0097347 AA KRKR 2013-00336352013-0033635 AA

본 발명의 제 1 의 목적은 신규의 베타-글루코시다아제를 제공하는 것을 목적으로 한다.It is a first object of the present invention to provide a novel beta-glucosidase.

본 발명의 제 2 의 목적은 신규의 베타-글루코시다아제 생산 방법을 제공하는 것을 목적으로 한다.A second object of the present invention is to provide a novel method for producing beta-glucosidase.

상기한 목적을 위해서 본 발명의 제 1 의 형태는 서열번호 2의 신규한 베타-글루코시다아제 및 이의 기능적 동등물이다.본 발명의 "기능적 동등물"에는 서열번호 2의 글루코시다아제 효소 중 일부 또는 전부가 치환되거나, 아미노산의 일부가 결실 또는 부가된 아미노산 서열 변형체가 상기 효소 기능을 유지하는 것 모두를 포함된다. 아미노산의 치환은 바람직하게는 보존적 치환이다. 천연에 존재하는 아미노산의 보존적 치환의 예는 다음과 같다; 지방족 아미노산(Gly, Ala, Pro), 소수성 아미노산(Ile, Leu, Val), 방향족 아미노산(Phe, Tyr, Trp), 산성 아미노산(Asp, Glu), 염기성 아미노산(His, Lys, Arg, Gln, Asn) 및 황함유 아미노산(Cys, Met). 아미노산의 결실은 바람직하게는 글루코시다아제 효소의 활성에 직접 관여하지 않는 부분에 위치한다. For the above purpose, a first aspect of the present invention is a novel beta-glucosidase of SEQ ID NO: 2 and functional equivalents thereof. "Functional equivalents" of the present invention include a portion of the glucosidase enzyme of SEQ ID NO: 2 Or the amino acid sequence variant in which all or part of the amino acid is deleted or added, all of which maintains the above enzyme function. Substitution of amino acids is preferably conservative substitution. Examples of conservative substitutions of amino acids present in nature are as follows: (Gly, Ala, Pro), hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr, Trp), acidic amino acids (Asp, Glu), basic amino acids (His, Lys, Arg, Gln, Asn ) And sulfur-containing amino acids (Cys, Met). The deletion of the amino acid is preferably located at a site that is not directly involved in the activity of the glucosidase enzyme.

본 발명의 제 2 의 형태는 상기 서열번호 2의 글루코시다아제를 암호화하는 핵산서열 및 상기 핵산서열에 등가의 핵산서열을 제공한다. 보다 더 구체적으로 상기 핵산서열은 서열번호 1의 핵산서열이다. A second aspect of the present invention provides a nucleic acid sequence encoding the glucosidase of SEQ ID NO: 2 and an equivalent nucleic acid sequence to the nucleic acid sequence. More specifically, the nucleic acid sequence is the nucleic acid sequence of SEQ ID NO: 1.

"등가의 핵산서열"에는 상기 글루코시다아제 서열의 코돈축퇴성 서열을 포함한다. "코돈 축퇴성 서열"이란 상기 자연 발생의 서열과는 상이하나 본 발명에 개시된 자연 발생의 글루코시다아제 효소와 동일한 서열의 폴리펩타이드를 암호화하는 핵산서열을 의미한다.An "equivalent nucleic acid sequence" includes the codon axis degenerate sequence of the glucosidase sequence. The term " codon degenerate sequence "means a nucleic acid sequence which is different from the sequence of naturally occurring but encodes a polypeptide having the same sequence as the naturally occurring glucosidase enzyme disclosed in the present invention.

본 발명의 제 3 의 형태는 서열번호 2의 신규한 베타-글루코시다아제를 암호화하는 유전자를 포함하는 재조합 벡터이다.본 발명에서 사용되는 벡터라는 용어는 또다른 핵산을 그것에 결합시켜 이송시킬 수 있는 핵산 분자를 의미한다. 발현벡터란 용어는 상기 벡터에 의해 운반되는 각 재조합형 유전자에 의해 암호화되는 단백질을 합성시킬 수 있는 플라스미드, 코스미드 또는 파아지를 포함한다. 바람직한 벡터는 그것이 결합된 핵산을 자기 복제 및 발현시킬 수 있는 벡터이다.A third embodiment of the present invention is a recombinant vector comprising a gene encoding the novel beta-glucosidase of SEQ ID NO: 2. The term vector used in the present invention refers to a vector capable of transferring another nucleic acid to it Means a nucleic acid molecule. The term expression vector includes a plasmid, a cosmid or a phage capable of synthesizing a protein encoded by each recombinant gene carried by the vector. A preferred vector is a vector capable of self-replication and expression of the nucleic acid to which it is coupled.

본 발명의 제 4 의 형태는 서열번호 2의 신규한 베타-글루코시다아제를 암호화하는 유전자를 포함하는 재조합 벡터로 형질 전환된 숙주 세포 이다.본 발명에서 사용되는 '형질전환'이란 용어는 외래 DNA 또는 RNA가 세포에 흡수되어 세포의 유전형이 변화되는 것을 말한다.A fourth embodiment of the present invention is a host cell transformed with a recombinant vector comprising a gene encoding the novel beta-glucosidase of SEQ ID NO: 2. The term "transformation" Or RNA is absorbed into the cell and the genotype of the cell is changed.

적합한 형질전환세포로는 원핵생물, 곰팡이, 식물, 동물세포 등이 포함되나, 이들로 제한되는 것은 아니다. 가장 바람직하게는 대장균을 이용한다.Suitable transforming cells include, but are not limited to, prokaryotes, fungi, plants, animal cells, and the like. Most preferably, Escherichia coli is used.

본 발명의 제 5 의 형태는 상기 서열번호 2의 신규한 베타-글루코시다아제를 암호화하는 유전자를 포함하는 재조합 벡터로 형질 전환된 숙수세포를 배양한 후 상기 숙주 세포로부터 베타-글루코시다아제를 분리하는 것을 특징으로 하는 베타-글루코시다아제 생산 방법이다.In a fifth aspect of the present invention, there is provided a method for producing a novel beta-glucosidase, which comprises culturing a recombinant vector transformed with a recombinant vector containing the gene encoding the novel beta-glucosidase of SEQ ID NO: 2 and then isolating beta-glucosidase from the host cell Beta-glucosidase. ≪ / RTI >

본 발명의 제 5 의 형태는 상기 서열번호 2의 베타-글루코시다아제를 이용하여 β-1,3-링크된 폴리사카라이드의 가수 분해 방법이다.A fifth embodiment of the present invention is a method for hydrolyzing a β-1,3-linked polysaccharide using the β-glucosidase of SEQ ID NO: 2.

본 발명자들은 β-글루코시다아제를 암호화 하는 유전자(Tpa-glu)를 새로이 규명하였다. 그 유전자는 487개의 아미노산 잔기를 암호화 하고 있는 1,464개의 쌍으로 이루어진 ORF를 나타냈고, 그로부터 추론된 아미노산 서열은 Pyrococcusfuriosus의 β-글루코시다아제와 77% 동일하다는 것을 밝혀냈다(접근 번호 NP_577802). 유전자는 복제되어져서 Escherichia coli 계에서 발현되었다. 재조합 단백질은 금속 친화성 크로마토그래피에 의해 정제되어져서 특성화됐다. Tpa-glu는 pH 7.5와 75℃에서 최적의 활성을 보였으며, 내열성은 90℃에서 6시간의 반감기를 나타냈다. Tpa-glu는 다양한 pNP-글라이코피라노사이드에 대해서 가수분해 활성을 나타냈는데, pNP-β-글루코글라이코피라노사이드 >pNP-β-갈락토글라이코피라노사이드 >pNP-β-만노글라이코피라노사이드>pNP-β-자일로글라이코피라노사이드 순으로 Kcat/Km 수치를 나타냈다. 더욱이, 그 효소는 β-1,3-링크된폴리사카라이드(라미나린)와 β-1,3- 과 β-1,4-링크된올리고사카라이드 쪽으로의 엑소-가수분해 활성을 나타냈다. 이 보고서는 외측에서 β-1,3-링크된 폴리사카라이드쪽으로 엑소-가수분해 활성을 보이는 초고온성고세균의 효소에 대한 첫 번째 설명이다. 이 효소는 라미나린의 당화에 필요한 β-1,3-엔도글루카네이즈(endoglucanase)의 조합에 적용될 수 있다.The present inventors newly identified a gene (Tpa-glu) encoding? -Glucosidase. The gene showed an ORF of 1,464 pairs encoding 487 amino acid residues and found that the deduced amino acid sequence is 77% identical to the β-glucosidase of Pyrococcus furiosus (Accession No. NP_577802). The gene was cloned and expressed in the Escherichia coli system. The recombinant protein was purified and characterized by metal affinity chromatography. Tpa-glu exhibited optimal activity at pH 7.5 and 75 ° C, and the heat resistance showed a half-life of 6 hours at 90 ° C. Tpa-glu exhibited hydrolytic activity against various pNP-glycopyranosides. PNP-? -Glucoglycopyranoside> pNP-? -Galactoglycopyranoside> pNP-? And Kcat / Km values in the order of lycoperianoside> pNP-? - xyloglucopyranoside. Furthermore, the enzyme exhibited exo-hydrolytic activity towards the β-1,3-linked polysaccharide (laminarin) and β-1,3- and β-1,4 linked oligosaccharides. This report is the first description of the enzyme of the ultra-warm archaebacteria exo-hydrolyzing activity towards the β-1,3-linked polysaccharide from the outside. This enzyme can be applied to the combination of? -1,3-endoglucanase necessary for saccharification of laminarin.

도 1은 Thermococcuspacificus 내에서의 신규의 베타-글라이코실하이드롤라아제의 유전자 클러스터를 보인다.
도 2는 초고온성 고세균(A) 및 Tpa-glu및 Pfu-glu로부터의 여러 패밀리 1 글라이코실하이드롤라아제의 계통학적 관계를 보인다.Tpa-glu는 Thermococcuspacificus로부터의 베타-글루코시다아제이고; Pfu-glu는 Pyrococcusfuriosus로부터의 베타-글루코시다아제이고; Pho-glu는 P. horikoshii로부터의베타-글루코시다아제이고; Tko-gly는 T. kodakaraesis로부터의 베타-글루코시다아제이고; Pfu-man은 P. furiosus로부터의 베타-만노시다아제이다.
도 3은 Tpa-glu에 대한 온도 (A), pH (B) 및 Tpa-glu의 열안정성의 측정값(C)이다.활성분석을 다음의 완충용액(각각 50mM): 소디움 시트레이트, pH 4.0-6.0 (●); 소디움포스페이트, pH 6.0-8.0 (■); 트리스-HCl, pH 8.0-8.5 (▲)의표준조건에서수행하였다.Tpa-glu를90 °C에서전-인큐베이션하였고,나머지활성을75 °C에서측정하였다.
도4는β-1,4- (A) 및β-1,3-링크된 (B) 올리고사카라이드에대한Tpa-glu의가수분해활성을박막크로마토그래피로측정한것이다.반응을4 시간동안75 °C에서1 μg의효소및1 mM의기질을포함하는인산완충액(pH 7.0)에서측정하였다.생성물을박막크로마토그래피로분석하였다.각각의기질을아래선에나타내었다.축약은다음과같다: M, 사이즈마커; G2 글루코스다이머; G3, 글루코스트라이머; G4, 글루코스테트라머; G5 글루코스펜타머;G6 글루코스헥사머.
도5는라미나린에대한Tpa-glu의가수분해활성을박막크로마토그래피로측정한것이다.반응을0.5, 1, 2, 3 및4 시간동안75 °C에서1 μg의효소및0.25%의라미나린을포함하는인산완충액(pH 7.0)에서측정하였다.생성물은박막크로마토그래피로측정하였다.반응시간은아래선에나타내었다.축약은다음과같다: M, 사이즈마커; G2 글루코스다이머; G3, 글루코스트라이머; G4, 글루코스테트라머; G5 글루코스펜타머;G6 글루코스헥사머.
Figure 1 shows the gene cluster of the novel beta-glycosyl hydrolase in Thermococcus pacificus.
Figure 2 shows the phylogenetic relationship of several family 1 glycosyl hydrolases from hyperthermophilic archaea (A) and Tpa-glu and Pfu-glu. Tpa-glu is a beta-glucosidase from Thermococcus pacificus; Pfu-glu is a beta-glucosidase from Pyrococcus furiosus ; Pho-glu is a beta-glucosidase from P. horikoshii ; Tko-gly is a beta-glucosidase from T. kodakaraesis ; Pfu-man is a beta-mannosidase from P. furiosus .
Figure 3 shows the temperature (A), pH (B) and measured thermal stability (C) of Tpa-glu for thermal stability. The activity analysis was performed using the following buffers (50 mM each): sodium citrate, pH 4.0 -6.0 (?); Sodium phosphate, pH 6.0-8.0 (?); Tris-HCl, pH 8.0-8.5 (A). Tpa-glu was pre-incubated at 90 ° C and the remaining activity was measured at 75 ° C.
Figure 4 shows the results of measuring the β -1,4- (A) and β -1,3- links the (B) hydrolysis activity of the oligonucleotide Tpa-glu to the saccharide by thin layer chromatography. The reaction for 4 hours (PH 7.0) containing 1 μg enzyme and 1 mM substrate at 75 ° C. The product was analyzed by thin layer chromatography and the respective substrate is shown below : M, size marker; G2 glucose dimer; G3, Glucostreamer; G4, glucose tetramer; G5 glucose pentamer; G6 glucose hexamer.
Figure 5 shows the hydrolytic activity of Tpa-glu against laminarin by thin-layer chromatography. The reaction was carried out at 75 ° C for 0.5, 1, 2, 3 and 4 hours with 1 μg enzyme and 0.25% laminarin (PH 7.0), the product was determined by thin-layer chromatography, and the reaction time is shown in the line below: M, size marker; G2 glucose dimer; G3, Glucostreamer; G4, glucose tetramer; G5 glucose pentamer; G6 glucose hexamer.

이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정이 되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples illustrate the present invention, and the contents of the present invention are not limited by the examples.

하기 실시예를 위한 재료 및 방법은 다음과 같다.
Materials and methods for the following examples are as follows.

균주와 성장환경Strain and growth environment

Thermococcus pacificus는 German Collection of Microorganisms에서 얻었다. 균주는 일상적으로 YPS 배지에서 85℃에서 배양되었다. E.coli DH5α와 E. coli BL21-Rosetta™(DE3) pLyS(Stratagene, La Jolla, CA, USA) 균주는 복제와 Tpa-glu의 암호화 유전자의 과발현에 각각 사용되었다. E. coli 균주는 Luria-Bertani(LB) 배지에 50ug/ml 카나마이신을 첨가하여 37℃에서 배양되었다.
Thermococcus pacificus was obtained from the German Collection of Microorganisms. The strain was routinely cultured at 85 ° C in YPS medium. E. coli DH5α and E. coli BL21-Rosetta ™ (DE3) pLys (Stratagene, La Jolla, CA, USA) were used for replication and overexpression of the Tpa-glu coding gene, respectively. E. coli strains were cultured at 37 ° C in Luria-Bertani (LB) medium supplemented with 50 ug / ml kanamycin.

Tpa-glu 유전자의 복제Replication of the Tpa-glu gene

T. pacificus의 대략적인 유전자 서열은 우리 그룹이 분석하였다(발표되지는 않았음). T. pacificus의 게노믹 DNA는 전형적인 과정을 통해 준비했다. Tpa-glu 유전자는 다음의 프라이머를 사용한 PCR를 통해 게노믹 DNA로부터 증폭되었다. : 5'-TAAGAAGGAGATATACATATGTATAAGTTTCCTAAAGATTT-3'(밑줄친 NdeI 사이트를 포함하는 센스 프라이머; 서열번호 3); 5'-CTCGAGTGCGGCCGCAAGCTTCCTCCTCACGAGGAAGTCTA-3' (밑줄친 HindIII 사이트를 포함하는 안티센스 프라이머; 서열번호 4). PCR 산물은 NdelI/HindIII로 절단되어졌고 NdeI/HindIII로 절단된 pET-24a(+) 벡터에 결합했다. 더욱더 결합 산물은 E. coli DH5α 세포로 형질전환했다. 양성 형질전환 물질은 제한효소 절단를 사용하여 선별했고, 복제물은 DNA 서열 분석을 통해 확인했다.
The approximate gene sequence of T. pacificus was analyzed by our group (not published). Genomic DNA from T. pacificus was prepared through a typical process. The Tpa-glu gene was amplified from genomic DNA by PCR using the following primers. : 5'-TAAGAAGGAGATATACATATGTATAAGTTTCCTAAAGATTT-3 '(sense primer comprising underlined NdeI site; SEQ ID NO: 3); 5'-CTCGAGTGCGGCCGCAAGCTTCCTCCTCACGAGGAAGTCTA-3 '(an antisense primer comprising an underlined HindIII site; SEQ ID NO: 4). The PCR product was digested with NdelI / HindIII and ligated into the pET-24a (+) vector digested with NdeI / HindIII. Further, the conjugate product was transformed into E. coli DH5α cells. Positive transformants were screened using restriction enzyme digests, and copies were identified by DNA sequencing.

효소 분석Enzyme analysis

Tpa-glu에 대한 적절한 pH 및 온도를 기질로 p-니트로페노일- 글루코피라노사이드 (pNP-glu)를 이용하여 측정하였다. 상기 효소에 대한 pH는 50 mM 소디움 시트레이트 (pH 4.0-6.0), 소디움 포스페이트 (pH 6.0-8.0), 및 Tris-HCl (pH 8.0-8.5)의 완충용액을 사용하여 pH 범위 4.0 내지 8에서 .80 °C로 측정되었다. 상기 효소에 대한온도 범위는 표준 조건에서 60-100 °C로 측정되었다. 0.5 μg 효소 및 1 mM pNP-glu 를 포함하는 모든 반응 혼합물(200 μl)을 10분 동안 항온반응하였다. 유리된 p-니트로페놀의 흡광도를 405 nm 에서 Asys UVM 340 microplate reader (Biochrom, UK)를 이용하여 측정하였다. 모든 반응을 3반복하였다. Tpa-glu 의 열안정성을 여러 기간에 걸쳐 pNP-glu 를 이용하여 75 °C 및 90 °C에서 항온반응하고, 남아있는 활성을 pNP-glu를 기질로 사용하여 측정하였다.The appropriate pH and temperature for Tpa-glu was determined as substrate using p-Nitrophenoyl-glucopyranoside (pNP-glu). The pH for the enzyme was measured at pH 4.0 to 8 using a buffer solution of 50 mM sodium citrate (pH 4.0-6.0), sodium phosphate (pH 6.0-8.0), and Tris-HCl (pH 8.0-8.5) 80 ° C. The temperature range for the enzyme was measured at 60-100 ° C under standard conditions. All reaction mixtures (200 μl) containing 0.5 μg enzyme and 1 mM pNP-glu were incubated for 10 minutes. Absorbance of the liberated p-nitrophenol was measured at 405 nm using an Asys UVM 340 microplate reader (Biochrom, UK). All reactions were repeated three times. The thermal stability of Tpa-glu was incubated with pNP-glu at 75 ° C and 90 ° C for several periods, and the remaining activity was measured using pNP-glu as a substrate.

여러 pNP-글리코피라노사이드 (405 nm 에서 pNP의 ε = 8.4 mM-1 ? cm-1)에 대하여 Tpa-glu의 동력학적 인자를 측정하기 위하여, 표준 반응 혼합액은 최종 1 ml 부피에 50 mM 소디움 포스페이트 (pH 7.0), 0.25-5 mM pNP-글라코피라노사이드 및 H2O를 포함하였다. 반응 혼합액을 효소(1-3 μg) 투입전에 10분간 75 °C에서 예열하였다. 반응을 405 nm 에서 UV-2600 spectrophotometer (Shimadzu, Kyoto) 을 이용하여 2 분간 70 °C 에서 수행하였다. β-글루코시다아제 일 단위(U)를 1분안에 1.0 μmol 의 pNP 생산을 촉진하는데 필요한 양으로 정의하였다. 초기의 속도를 시간 경과 플롯의 초기 경사도로부터 직접적으로 얻었다. Km 및 Kcat 값은 Michaelis-Menten 반응식을 이용하여 계산하였다. 셀로바이오 및 라미나리바이오스에 대한 Tpa-glu의 동역학적 성질을 결정하기 위하여 표준 반응 조건은 최종200 μl 부피에 50 mM 소디움 포스페이트 (pH 7.0), 0.25-7 mM 기질, 및 물을 포함하였다. 반응 혼합물을 효소(2 μg) 첨가 전에 10분간 75 °C에서 예열하였고, 반응을 1-10 분 동안 75 °C 에서 수행하였고, 반응은 800 μl 의 0.1% 디니트로살리실릭산(dinitrosalicylic acid; DNS)를 첨가하여 정지시켰다. 반응혼합액을 5분 동안 100 °C 에서 항온반응하였다.UV-2600 스펙트로포토미터를 사용하여 540 nm 에서 흡광도를 측정하였고,표준곡선을 사용하여 유리된 포도당의 양으로 환산하였다. β-글로코시다아제의 활성의 일 단위(U)를 1분에 1.0 μmol 의 포도당을 생산을 촉매하는데 필요한 효소양으로 정의하였다.
To determine the kinetic parameters of Tpa-glu against several pNP-glycopyranosides (竜 = 8.4 mM -1 cm cm-1 of pNP at 405 nm), the standard reaction mixture was added to a final volume of 1 ml with 50 mM sodium Phosphate (pH 7.0), 0.25-5 mM pNP-glycopyranoside and H2O. The reaction mixture was preheated at 75 ° C for 10 min before the addition of the enzyme (1-3 μg). The reaction was carried out at 405 nm for 2 minutes at 70 ° C using a UV-2600 spectrophotometer (Shimadzu, Kyoto). glucosidase unit (U) was defined as the amount required to promote the production of 1.0 μmol of pNP in 1 minute. Initial velocities were obtained directly from the initial slope of the time course plots. Km and Kcat values were calculated using the Michaelis-Menten equation. The standard reaction conditions included 50 mM sodium phosphate (pH 7.0), 0.25-7 mM substrate, and water in a final volume of 200 μl to determine the kinetic properties of Tpa-glu against cellobiose and laminaria bios. The reaction mixture was preheated at 75 ° C for 10 min before addition of the enzyme (2 μg), the reaction was performed at 75 ° C for 1-10 min and the reaction was initiated by adding 800 μl of 0.1% dinitrosalicylic acid (DNS ) Was added and stopped. The reaction mixture was incubated for 5 minutes at 100 ° C. Absorbance was measured at 540 nm using an UV-2600 spectrophotometer and converted to the amount of glucose liberated using a standard curve. One unit (U) of β-glucosidase activity was defined as the amount of enzyme required to catalyze the production of 1.0 μmol of glucose per minute.

TLC 분석TLC analysis

올리고사카라이드 및 폴리사카라이드에 대한 가수분해 활성을 확인하기 위하여,셀로올리고사카라이드(2-6단위체), 라미나리올리고사카라이드 (2-6단량체), 및 라미나린을 사용하였다.반응혼합액은 50 mM 소디움 포스페이트(pH 7.0), 1 mM 기질, 및 1 μg 효소를 포함했다.생성물을 실리카 겔 60 F254 (Merck, Darmstadt, German) 및 부탄올:아세트산:물 (2: 1 : 1)을 사용하여 박막 크로마토그래피(thin-layer chromatography)로 분석하였다.플레이트를 후드에서 건조하고,메탄올에서 0.03% N-(1-나프틸)-에틸렌디아민 및 5% H2SO4 로 염색하였다.플레이트를 후드에서 10분 동안 110 °C 에서 항온배양했다.
(2-6 units), laminarlyl oligosaccharides (2-6 monomers), and laminarin were used in order to confirm the hydrolytic activity against oligosaccharides and polysaccharides. The product was purified on silica gel 60 F254 (Merck, Darmstadt, Germany) and butanol: acetic acid: water (2: 1: 1) to give a final concentration of 50 mM sodium phosphate (pH 7.0), 1 mM substrate, The plates were dried in a hood and stained with 0.03% N- (1-naphthyl) -ethylenediamine and 5% H2SO4 in methanol. The plates were incubated in the hood for 10 min Lt; RTI ID = 0.0 > 110 C. < / RTI >

<실시예 1>Tpa-glu의 유전자 구조와 서열 분석<Example 1> Gene structure and sequence analysis of Tpa-glu

초고온성 고세균인 Thermococcus pacificus(최적온도 80~88℃)는 펩타이드나 녹말같은 다양한 기질에서 성장할 수 있다(Miroshnichenko et al. 1998). 균주의 유전자 분석에 기초하여 발명자들는 GH1 β-글루코시다아제를 암호화 하는 유전자를 새로이 규명하였는데, 그것은 셀룰로스, 라미나린과 아가로스 분해 효소로 구성된 새로운 글리코사이드 가수분해효소 유전자 군에 위치해 있다(도. 1). 그 유전자는 487개의 아미노산 잔기를 암호화 하고 있는 1,464개의 쌍으로 이루어진 ORF를 드러냈다. Thermococcus pacificus (optimal temperature 80-88 ° C), an extremely thermophilic archaebacteria, can grow on a variety of substrates such as peptides and starches (Miroshnichenko et al . 1998). On the basis of the gene analysis of the strain, the inventors newly identified a gene encoding GH1 [beta] -glucosidase, which is located in a new family of glycoside hydrolases consisting of cellulose, laminarin and agarase enzymes (Fig. One). The gene revealed an ORF of 1,464 pairs encoding 487 amino acid residues.

그로부터 추론된 Tpa-glu의 아미노산 서열은 Pyrococcus furiosus의 β-글루코시다아제와 77%의 동일성을 나타냈고(Bauer et al. 1996), Sulfolobus solfataricus의 β-글리코시다아제와는 54%의 동일성을(Cebellis et al. 1990), T. kodakaraensis의 β-글리코시다아제와는 40%의 동일성(Ezaki et al. 1999), P. horikoshii의 β-글루코시다아제와는 33%의 동일성(matsui et al. 2000)을 나타냈다. 우리는 초고온성 고세균으로부터 나온 1족의 글리코실 하이드롤라아제 간의 계통수를 분석했다. 도. 2A에서 보는 바와 같이, 계통수는 3개의 가지가 있다. 한 가지는 P. horikoshii의 β-글루코시다아제를 포함하는데, 그것은 막 단백질이며 폴리펩타이드 길이도 다른 것들에 비해 약 13% 짧은 것으로 알려져 있다. 두 번째 가지는 T. kodakaraensis의 β-글리코시다아제와 P. furiosus의 β-만노시다아제를 포함한다. 이전의 보고된 결과에 따르면, T. kodakaraensis의 β-글리코시다아제는 β-글리코시다아제와 β-만노시다아제의 두가지 기능을 나타내는데, 그것은 보존부위와 관련이 있다. Tpa-glu는 세 번째 가지에 위치해 있는데, P. furiosus의 β-글루코시다아제와 Sulfolobus solfataricus의 β-글리코시다아제를 포함한다.The amino acid sequence of Tpa-glu deduced therefrom showed 77% identity with β-glucosidase from Pyrococcus furiosus (Bauer et al . 1996) and 54% identity with β-glycosidase from Sulfolobus solfataricus Cebellis et al ., 1990), 40% identity with β-glycosidase from T. kodakaraensis (Ezaki et al ., 1999) and 33% identity with β-glucosidase from P. horikoshii (matsui et al . 2000). We have analyzed the phylogenetic tree of Group 1 glycosyl hydrolase from super-thermophilic archaea. Degree. As can be seen in 2A, there are three branches. One includes P. horikoshii β-glucosidase, a membrane protein whose polypeptide length is known to be about 13% shorter than others. The second branch contains β-glycosidase of T. kodakaraensis and β-mannosidase of P. furiosus . Previous reported results indicate that β-glycosidase of T. kodakaraensis exhibits two functions, β-glycosidase and β-mannosidase, which are related to conserved regions. Tpa-glu is located in the third branch, and contains β-glucosidase of P. furiosus and β-glycosidase of Sulfolobus solfataricus .

우리는 Tpa-glu와 P. furiosus의 β-글루코시다아제 사이에서 한 쌍의 구조기반의 정렬을 수행했다. Tpa-glu는 P. furiosus의 β-글루코시다아제와 하나의 큰 차이를 제외하고는 모든 부위에서 높은 유사성을 보였다. Tpa-glu는 P. fusiosus의 β-글루코시다아제의 α-헬릭스 12와 β-스트랜드d 9 사이에서 고리 부위에 12개의 아미노 잔기(299부터 310)의 삽입 서열이 있다(도 2B). 그러나 이러한 연장된 고리는 다른 초고온성 고세균의 β-글루코시다아제에서도 관찰되며 다양한 크기와 서열을 보인다(데이터는 없음).
We performed a pair of structure-based alignments between Tpa-glu and P. furiosus β-glucosidases. Tpa-glu showed high affinity at all sites except for one large difference from the β-glucosidase of P. furiosus . Tpa-glu has an insertion sequence of 12 amino residues (299 to 310) at the ring site between a-helical 12 of? -Glucosidase of? Fusiosus and? -Strand d9 (Fig. 2B). However, these extended rings are also observed in other hyperthermophilic archaeal β-glucosidases and show varying sizes and sequences (data not shown).

<실시예 2> Tpa-glu의 발현과 특성화Example 2 Expression and Characterization of Tpa-glu

활성 분석용 Tpa-glu를 생산하기 위해서, pET-24a(+) 벡터안에 Tpa-glu의 코딩 형을 포함하는 구성체를 E. coli에서 발현시켰다. 재조합 단백질은 가용성이었고 금속 친화성 크로마토그래피인 TALON™을 사용하여 정제되었다. 정제된 Tpa-glu는 분자 질량 58kDA의 거대한 단백질을 드러냈다(데이터는 없음). Tpa-glu의 가수분해 활성에서 pH의 영향은 pH 4.0부터 8.5의 범위에서 조사됐다. 기질로 pNP-glu를 사용한 분석에서 pH 7.5에서 최적의 활성을 보였다(도. 3A). 가수분해 활성에서 온도의 영향은 60~100℃의 범위에서 밝혀졌는데, Tpa-glu의 최적의 중합효소 활성은 75℃에서 일어나는 것으로 밝혀졌다(도. 3B). Tpa-glu의 내열성은 75℃와 90℃에서 전배양 후 가수분해 활성의 감소를 측정하는 방식으로 시험됐다. 75℃와 90℃에서의 효소의 반감기는 각각 16시간과 6시간이었다(도. 3C).
To produce Tpa-glu for activity analysis, constructs containing the coding type of Tpa-glu in the pET-24a (+) vector were expressed in E. coli . The recombinant protein was soluble and purified using metal affinity chromatography TALON (TM). The purified Tpa-glu revealed a massive protein with a molecular mass of 58 kDa (data not shown). The effect of pH on the hydrolytic activity of Tpa-glu was investigated in the range of pH 4.0 to 8.5. The assay with pNP-glu as substrate showed optimal activity at pH 7.5 (Fig. 3A). The effect of temperature on the hydrolytic activity was revealed in the range of 60-100 ° C, and the optimal polymerase activity of Tpa-glu was found to occur at 75 ° C (Fig. The heat resistance of Tpa-glu was tested by measuring the decrease in hydrolytic activity after pre-incubation at 75 ° C and 90 ° C. The half-life of the enzyme at 75 ° C and 90 ° C was 16 hours and 6 hours, respectively (Fig.

<실시예 3> Tpa-Glu의 동역학적 특성&Lt; Example 3 > Kinetic characteristics of Tpa-Glu

pNP-β-글루코피라노사이드(pNP-glu), pNP-β-갈락토피라노사이드(pNP-gal), pNP-β-만노피라노사이드(pNP-man), pNP-β-자일로피라노사이드 (pNP-xyl), 그리고 셀로바이오스와 라미나리바이오스 등의 β-다이사카라이드 같은 다양한 pNP-글라이코피라노사이드에 대한 Tpa-glu의 가수분해 활성을 테스트했다. Tpa-glu는 다양한 pNP-글라이코피라노사이드에 대해서 가수분해 활성을 나타냈으며 pNP-glu에 0.58 mM의 Km값을 나타내며 가장 높은 친화성을 보였다. Tpa-glu의 가장 높은 촉매 효율(Kcat/Km 값)은 기질로서 pNP-glu를 사용한 경우에 나타났으며, 다음으로 pNP-gal, pNP-man, 그리고 pNP-xyl로 나타났다(표 1). 더욱이, 셀로바이오스와 라미나리바이오스 등의 β-다이사카라이드에 대한 Tpa-glu의 가수분해 활성도 테스트했다. Tpa-glu는 라미나리바이오스에서 2.61 mM의 Km 값을 나타내며 가장 높은 친화성을 보였는데, 이것은 셀로바이오스의 경우에서 발견된 22.48 mM의 수치보다 낮은 것이다. 라미나리바이오스에 대한 Tpa-glu의 Kcat/Km 값은 셀로바이오스의 값보다 3.97-배 높았고, pNP-glu의 값보다 7.02-배 낮았다(표 1). Tpa-glu의 이러한 광범위한 기질 특이성의 특성은 이미 특징되어져서 보고된 초고온성 고세균의 β-글루코시다아제와 β-글리코시다아제의 것들과 유사하였다.pNP-? -glucopyranoside (pNP-glu), pNP-? -galactopyranoside (pNP-gal), pNP-? -mannopyranoside (pNP- The hydrolytic activity of Tpa-glu against various pNP-glycopyranosides, such as pNP-xyl and β-dacarbacide, such as cellobiose and laminalia bios, was tested. Tpa-glu exhibited hydrolytic activity against various pNP-glycopyranosides, exhibiting a Km value of 0.58 mM in pNP-glu and the highest affinity. The highest catalytic efficiency (Kcat / Km value) of Tpa-glu was obtained when pNP-glu was used as a substrate, followed by pNP-gal, pNP-man and pNP-xyl (Table 1). Furthermore, the hydrolytic activity of Tpa-glu against? -Deracarbide such as Celobiose and laminalia bios was also tested. Tpa-glu showed a Km value of 2.61 mM in the lamina bios and showed the highest affinity, which is lower than the 22.48 mM value found in the case of cellobiose. The Kcat / Km value of Tpa-glu against laminaria bios was 3.97-fold higher than that of cellobiose and 7.02-fold lower than that of pNP-glu (Table 1). The properties of this broad substrate specificity of Tpa-glu were similar to those of the hyperthermophilic archaea [beta] -glucosidase and [beta] -glycosidase that have already been characterized and reported.

기질temperament K m (mM) K m (mM) K cat (s-1) K cat (s -1 ) K cat/K m (s-1 mM-1) K cat / K m (s -1 mM -1 ) pNP-β-글로코피라노사이드 pNP- [ beta] -glucopyranoside 0.58 0.58 6464 110.34110.34 pNP-β-갈락토피라노사이드pNP- ? -galactopyranoside 10.3610.36 5858 5.62  5.62 pNP-β-만노피라노사이드pNP- beta -mannopyranoside 5.06 5.06 6 6 1.18  1.18 pNP-β-자일로피라노사이드pNP- ? - xylopyranoside 6.47 6.47 1.18   1.18 0.18  0.18 셀로바이오스Cellobiose 22.4822.48 8989 3.96  3.96 라미나리바이오스(Laminaribiose)Laminaribiose 2.61 2.61 4141 15.71 15.71

<실시예 4> Tpa-glu의 기질 특이성Example 4 Substrate Specificity of Tpa-glu

아비셀(avicel), 셀룰로오스, 만난, 라미나린과 자일란 등 다양한 다당류에 대한 Tpa-glu의 가수분해 활성을 시험했다. 흥미롭게도, Tpa-glu는 다당류 중에서 라미나린에 강한 엑소-가수분해 활성을 보였고, 아비셀,셀룰로오스,만난 및 자일란은 가수분해 하지 못했다(데이터는 없음). P. furiosus의 β-글루코시다아제는 라미나린에 매우 작은 활성만을 보였다. 이미 보고된 결과와 같이, 중온균인 Cellovibrio mixtus의 β-글루코시다아제(Sakellaris et al. 1997)는 기질로서 라미나린을 가수분해하였다. Tpa-glu의 이러한 기질 특이성은 초고온성 고세균의 β-글루코시다아제와 β-글리코시다아제와는 달랐다.The hydrolytic activity of Tpa-glu was tested for various polysaccharides such as avicel, cellulose, mannan, laminarin and xylan. Interestingly, Tpa-glu exhibited strong exo-hydrolytic activity on laminarin in polysaccharides and did not hydrolyze avicel, cellulose, mannan and xylan (data not shown). Β-glucosidase of P. furiosus showed very little activity in laminarin. As already reported, β-glucosidase (Sacellaris et al. 1997) of the mesophilic Cellovibrio mixtus hydrolyzes laminarin as a substrate. This substrate specificity of Tpa-glu was different from β-glucosidase and β-glycosidase in hyperthermophilic archaea.

이러한 질문에 답을 하기 위해, 발명자들은 TLC 분석을 통해 Tpa-glu의 β-1,3,- 과 β-1,4-링크된올리고사카라이드와 마니나린(maninarin)에 대한 가수분해 활성을 시험하였다. Tpa-glu는 모든 올리고당에 대해 가수분해 활성을 나타냈으며 올리고당으로부터 최종 산물로서 단당류 만들었다(도.4A 및 B). 이 결과는 Tpa-glu가 엑소타입의 가수분해를 한다는 것을 말해준다. 더욱이 Tpa-glu는 β-1,3-링크된 올리고사카라이드에 대해서 β-1,4-링크된 올리고사카라이드 보다 더 높을 효율의 기질 특이성을 보였으며, 이러한 결과는 동역학적 자료와 일치한다. 더욱이 도. 5에서 보는 바와 같이 Tpa-glu는 라미나린에 대한 효율성 높은 가수분해 활성을 보였으며 반응 시간에 따라 주요한 최종 산물인 단당류를 생산했다. 다당류인 라미나린을 가수분해한다는 Tpa-glu의 특징은 이미 보고된 초고온성 고세균의 β-글루코시다아제나 β-글리코시다아제의 특징과는 구별되는 것이었다. Tpa-glu가 일차구조의 관하여 P. furiosus의 β-글루코시다아제와 매우 유사함에도 불구하고 Tpa-glu가 왜 독특한 기질 특이성을 갖는지는 명확하지 않다. Tpa-glu의 고리 부위가 효소의 기질 특이성에 중요할 것이라고 가정했다. 위에서 언급한 바와 같이, 고리 부위의 구성체는 P. furiosus의 β-글루코시다아제의 4합체 구성체 중 A-C 2합체에 위치해 있다. 게다가 그것은 S. solfataricus의 β-글리코시다아제에서, 두 번째와 다섯 번째의 βα 단위로부터의 연결 서열과의 이온쌍 네트워크에 관여하는 것으로 보고됐는데, 네트워크는 카르복시기 말단 사이의 4합체 경계면에서 일어나며 16개의 개개의 이온쌍의 상호작용을 수반한다. 발명자들은 Tpa-glu의 기질 특이성이 고리 부위와 4합체 경계면의 4번째 배럴(barrel) 헬릭스 사이의 이온 상호작용과 관련이 있을 것이라고 예측했다. Tpa-glu의 기질 특이성을 이해하기 위해, 단백질의 구조적 또는 돌연변이에 대한 분석 같은 추가적인 조사가 필요하다.To answer these questions, the inventors examined the hydrolytic activity of Tpa-glu on β-1,3, - and β-1,4-linked oligosaccharides and maninarin through TLC analysis Respectively. Tpa-glu exhibited hydrolytic activity against all oligosaccharides and monosaccharide as final product from oligosaccharide (Figs. 4A and B). This result indicates that Tpa-glu hydrolyzes the exo-type. Moreover, Tpa-glu exhibited substrate specificity higher than that of β-1, 4-linked oligosaccharides for β-1,3-linked oligosaccharides, and these results are consistent with kinetic data. Moreover, As shown in Fig. 5, Tpa-glu exhibited highly efficient hydrolytic activity against laminarin and produced the major end product monosaccharide according to the reaction time. The characteristic of Tpa-glu that hydrolyzes the polysaccharide, laminarin, is distinguished from the previously reported characteristics of? -Glucosidase and? -Glycosidase of hyperthermophilic archaea. It is not clear why Tpa-glu has a unique substrate specificity, although Tpa-glu is very similar to β-glucosidase in P. furiosus with respect to the primary structure. The ring site of Tpa-glu was assumed to be important for substrate specificity of the enzyme. As mentioned above, the constituent of the ring site is located in the AC 2 complex of the quadruplet constituent of β-glucosidase of P. furiosus . In addition, it has been reported that it is involved in ion-pair networks with linkage sequences from the second and fifth βα units in β-glycosidases of S. solfataricus , the network occurring at the quadruple interface between carboxy terminal ends, And involves the interaction of individual ion pairs. The inventors predicted that the substrate specificity of Tpa-glu would be related to the ionic interaction between the ring site and the fourth barrel helix at the quaternary interface. To understand the substrate specificity of Tpa-glu, additional investigations are needed, such as structural or mutational analysis of the protein.

상기에서 T. pacificus의 내열성 β-글루코시다아제를 유전자 암호화하는 것의 복제와 특징을 설명했다. 정제된 Tpa-glu는 다양한 pNP-글리코피라노사이드와 올리고사카라이드 뿐만 아니라 라미나린에 대해 가수분해 활성을 보였다. Tpa-glu의 라미나린에 대한 엑소-가수분해 활성은 세포벽 성분으로 라미나린을 포함하는 갈조류의 당화에 β-1,3-엔도글루카네이즈와의 조합으로 사용할 수 있다.
In the above, replication and characteristics of genetic encoding of the thermostable β-glucosidase of T. pacificus have been described. The purified Tpa-glu showed hydrolytic activity against laminarin as well as various pNP-glycopyranosides and oligosaccharides. The exo-hydrolyzing activity of laminarin of Tpa-glu can be used as a cell wall component in combination with β-1,3-endoglucanase in the glycosidation of brown algae containing laminarin.

참고문헌references

Aguilar CF, Sanderson I, Moracci M, Ciaramella M, Nucci R, Rossi M, Pearl LH (1997)Crystal structure of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: resilience as a key factor in thermostability.J Mol Biol271:789-802Aguilar CF, Sanderson I, Moracci M, Ciaramella M, Nucci R, Rossi M, Pearl LH (1997) Crystal structure of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus : Resilience as a key factor in thermostability.J Mol Biol 271: 789 -802

Atomi H, Sato T, Kanai T (2011)Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618-626Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22: 618-626

BaeSS, Kim YJ, Yang SH, Lim JK, Lim JK, Jeon JH, Lee HS, Kang SG, Kim SJ, Lee JH (2006)Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field.J Microbiol Biotechnol 16:1826-1831(2006) Thermococcus onnurineus sp. Kim, YJ, Lim, JK, Lim JK, Jeong JH, Lee HS, Kang SG. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field.J Microbiol Biotechnol 16: 1826-1831

Bauer MW, Bylina EJ, Swanson RV, Kelly RM (1996)Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus.Purification, characterization, gene cloning, and sequence analysis. J Biol Chem271:23749-23755Bauer MW, Bylina EJ, Swanson RV, Kelly RM (1996) Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J Biol Chem 271: 23749-23755

Bhatia Y, Mishra S, Bisaria VS (2002)Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375-407Bhatia Y, Mishra S, and Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22: 375-407

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins. Anal Biochem 72: 248-254

Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J (1997)Genes encoding two different β-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol 63:3902-3910Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J (1997) Genes encoding two different β-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol 63: 3902-3910

Cubellis MV, Rozzo C, Montecucchi P, Rosssi M (1990) Isolation and sequencing of a new beta-galactosidase-encoding archaebacterial gene. Gene 94:89-94Cubellis MV, Rozzo C, Montecchi P, Rossi M (1990) Isolation and sequencing of a new beta-galactosidase-encoding archaebacterial gene. Gene 94: 89-94

De Miguel Bouzas T, Barros-Velazquez J, Villa TG (2006)Industrial applications of hyperthermophilic enzymes: a review. Protein Pept Lett 13:645-651De Miguel Bouzas T, Barros-Velazquez J, and Villa TG (2006) Industrial applications of hyperthermophilic enzymes: a review. Protein Pept Lett 13: 645-651

Ezaki S, Miyaoku K, Nishi K, Tanaka T, Fujiwara S, Takagi M, Atomi H, Imanaka T (1999)Gene analysis and enzymatic properties of thermostable beta-glycosidase from Pyrococcus kodakaraensis KOD1.J Biosci Bioeng88:130-135(1999) Gene analysis and enzymatic properties of thermostable beta-glycosidase from Pyrococcus kodakaraensis KOD1.J Biosci Bioeng88: 130-135

Imanaka T, Atomi H (2002)Catalyzing “hot” reactions: enzymes from hyperthermophilic archaea. Chem Rec 2:149-163Imanaka T, Atomi H (2002) Catalyzing "hot" reactions: enzymes from hyperthermophilic archaea. Chem Rec 2: 149-163

Kado Y, Inoue T, Ishikawa K (2011)Structure of hyperthermophilic β-glucosidase from Pyrococcus furiosus.Acta Crystallogr Sect F Struct Biol Cryst Commun67:1473-1479Kado Y, Inoue T, Ishikawa K (2011) Structure of hyperthermophilic β-glucosidase from Pyrococcus furiosus. Acta Crystallogr Sect F Struct Biol Cryst Commun 67: 1473-1479

Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993)Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305-312Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus . Eur J Biochem 213: 305-312

Matsui I, Sakai Y, Matsui E, Kikuchi H, Kawarabayasi Y, Honda K (2000) Novel substrate specificity of a membrane-bound β-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. FEBS Lett467:195-200(2000) Novel substrate specificity of a membrane-bound β-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii . Matsui I, Sakai Y, Matsui E, Kikuchi H, Kawarabayasi Y. FEBS Lett467: 195-200

Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmolovskaya EA (1998)Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol48:23-29Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmolovskaya EA (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov .: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48: 23-29

Moracci M, Nucci R, Febbraio F, Vaccaro C, Vespa N, La Cara F, Rossi M (1995)Expression and extensive characterization of a β-glycosidase from the extreme thermoacidophilic archaeon Sulfolobus solfataricus in Escherichia coli: authenticity of the recombinant enzyme. Enzyme Microb Technol 17:992-997(1995) Expression and extensive characterization of a β-glycosidase from the extreme thermoacidophilic archaeon Sulfolobus solfataricus in Escherichia coli : authenticity of the recombinant enzyme. Moraxia, Nucci R, Febbraio F, Vaccaro C, Vespa N, La Cara F, Enzyme Microb Technol 17: 992-997

Nucci R, Moracci M, Vaccaro C, Vespa N, Rossi M (1993)Exo-glucosidase activity and substrate specificity of the β-glycosidase isolated from the extreme thermophile Sulfolobus solfataricus. Biotechnol Appl Biochem 17:239-250Nucci R, Moracci M, Vaccaro C, Vespa N, Rossi M (1993) Exo-glucosidase activity and substrate specificity of the β-glycosidase isolated from the extreme thermophile Sulfolobus solfataricus . Biotechnol Appl. Biochem 17: 239-250

RobbFT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (1995)Archaea: a laboratory manual.Cold Spring Harbor Laboratory, Cold Spring Harbor New York pp. 3-29Robb FT, Place AR, Sowers KJ, Schreier HJ, Das Sarma S, Fleischmann EM (1995) Archaea: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor New York pp. 3-29

Schiraldi C, Giuliano M, De Rosa M (2002)Perspectives on biotechnological applications of archaea. Archaea 1:75-86Schiraldi C, Giuliano M, De Rosa M (2002) Perspectives on biotechnological applications of archaea. Archaea 1: 75-86

Zverlow VV, Volkov IY, Velikodvorskaya TV, Schwarz WH (1997)Thermotoga neopolitana bglB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase. Microbiology 143:3537-3542Zverlow VV, Volkov IY, Velikodvorskaya TV, Schwarz WH (1997) Thermotoga neopolitana bglB gene, upstream of lamA , encodes a highly thermostable β-glucosidase that is a laminaribiase. Microbiology 143: 3537-3542

<110> Korea Institute of ocean science & Technology <120> Novel thermostable beta-glucosidase and the methods of preparation thereof <130> PN140029 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 1464 <212> DNA <213> Thermococcus pacificus <400> 1 atgtataagt ttcctaaaga ttttctcttt ggatattcct ggtccgggtt ccagtttgag 60 atgggactcc ccgggagcga ggttccaaac agcgactggt gggtatgggt tcatgacatt 120 gaaaacatag caacgggtct cgttagtggg gacctgccgg agaacgggcc cgcttactgg 180 gatctctata agaaagacca cgatatagcg gaaagcctcg ggatggacgc gattagggga 240 ggaatagagt gggcgagaat cttccccaag ccaacgtttg acgtgaaagc ccgcgttgag 300 aaggatgaag agggcaacat agtctcggtg gaagtccctg aaagttcaat taaggaactc 360 gaaaaaatag ccgacatgaa ggccctcgag cactaccgtg agatctacgc ggactggaaa 420 gagagaggaa agacattcat actcaacctc taccactggc cattgcccct gtggctccat 480 gatcctctta aggtaagaaa actcggaccc gatagagctc cagcaggatg gcttgacgat 540 aagagtgttg ttgagttcgc caagtttgcg gcattcgttg cataccacct cgatgacctc 600 gttgacagct ggagcacgat gaacgagcca aacgtcgtgt atcagaacgg ctacacaagg 660 ccgaccagtg gttttccacc gggatatctg agctttgagg ccgaaagaaa ggcaaagatg 720 aacctcatcc aggcccatgc ccgggcctac gatgttatca aagagtactc tgacaaagat 780 gtggggataa tatacgcata cacatggccc gacccgctca gggaagaggt cgaagatgaa 840 gtgcgggcga taagggagag ggaactctac agcttcgttg atgccgtcca ctttgggaaa 900 gccgccgaca tcgaagaaag ggacgacctc cagggaaagg tggactggct cggcgtgaac 960 tactactcaa ggctggcctt tgacagggtg aacggtcacg tcctccctgt gtcgggttat 1020 ggattctccg gagagagggg tggctacgcc aggtccggaa gggcctgcag cgacttcggg 1080 tgggagattt accccgaagg ccttgaaaag ctccttaagg accttgcaaa aagatacggc 1140 ctccccatga tgataacaga gaatggcata gccgatgccg ctgacaggta ccgctcccac 1200 taccttgtaa gccacctcag ggccgtttac gaggccatga aagagggcgc cgatgtgagg 1260 ggctacctcc actggtcgct aaccgataac tatgaatggg cccagggctt caggatgagg 1320 tttgggctcg tatacgtgga tatggggacc aagaaacgct atttacgtcc aagtgctctt 1380 gttttcagag aaatagcgac cagaaaagag attccggaag aacttgagca cctttccagc 1440 ttagacttcc tcgtgaggag gtag 1464 <210> 2 <211> 487 <212> PRT <213> Thermococcus pacificus <400> 2 Met Tyr Lys Phe Pro Lys Asp Phe Leu Phe Gly Tyr Ser Trp Ser Gly 1 5 10 15 Phe Gln Phe Glu Met Gly Leu Pro Gly Ser Glu Val Pro Asn Ser Asp 20 25 30 Trp Trp Val Trp Val His Asp Ile Glu Asn Ile Ala Thr Gly Leu Val 35 40 45 Ser Gly Asp Leu Pro Glu Asn Gly Pro Ala Tyr Trp Asp Leu Tyr Lys 50 55 60 Lys Asp His Asp Ile Ala Glu Ser Leu Gly Met Asp Ala Ile Arg Gly 65 70 75 80 Gly Ile Glu Trp Ala Arg Ile Phe Pro Lys Pro Thr Phe Asp Val Lys 85 90 95 Ala Arg Val Glu Lys Asp Glu Glu Gly Asn Ile Val Ser Val Glu Val 100 105 110 Pro Glu Ser Ser Ile Lys Glu Leu Glu Lys Ile Ala Asp Met Lys Ala 115 120 125 Leu Glu His Tyr Arg Glu Ile Tyr Ala Asp Trp Lys Glu Arg Gly Lys 130 135 140 Thr Phe Ile Leu Asn Leu Tyr His Trp Pro Leu Pro Leu Trp Leu His 145 150 155 160 Asp Pro Leu Lys Val Arg Lys Leu Gly Pro Asp Arg Ala Pro Ala Gly 165 170 175 Trp Leu Asp Asp Lys Ser Val Val Glu Phe Ala Lys Phe Ala Ala Phe 180 185 190 Val Ala Tyr His Leu Asp Asp Leu Val Asp Ser Trp Ser Thr Met Asn 195 200 205 Glu Pro Asn Val Val Tyr Gln Asn Gly Tyr Thr Arg Pro Thr Ser Gly 210 215 220 Phe Pro Pro Gly Tyr Leu Ser Phe Glu Ala Glu Arg Lys Ala Lys Met 225 230 235 240 Asn Leu Ile Gln Ala His Ala Arg Ala Tyr Asp Val Ile Lys Glu Tyr 245 250 255 Ser Asp Lys Asp Val Gly Ile Ile Tyr Ala Tyr Thr Trp Pro Asp Pro 260 265 270 Leu Arg Glu Glu Val Glu Asp Glu Val Arg Ala Ile Arg Glu Arg Glu 275 280 285 Leu Tyr Ser Phe Val Asp Ala Val His Phe Gly Lys Ala Ala Asp Ile 290 295 300 Glu Glu Arg Asp Asp Leu Gln Gly Lys Val Asp Trp Leu Gly Val Asn 305 310 315 320 Tyr Tyr Ser Arg Leu Ala Phe Asp Arg Val Asn Gly His Val Leu Pro 325 330 335 Val Ser Gly Tyr Gly Phe Ser Gly Glu Arg Gly Gly Tyr Ala Arg Ser 340 345 350 Gly Arg Ala Cys Ser Asp Phe Gly Trp Glu Ile Tyr Pro Glu Gly Leu 355 360 365 Glu Lys Leu Leu Lys Asp Leu Ala Lys Arg Tyr Gly Leu Pro Met Met 370 375 380 Ile Thr Glu Asn Gly Ile Ala Asp Ala Ala Asp Arg Tyr Arg Ser His 385 390 395 400 Tyr Leu Val Ser His Leu Arg Ala Val Tyr Glu Ala Met Lys Glu Gly 405 410 415 Ala Asp Val Arg Gly Tyr Leu His Trp Ser Leu Thr Asp Asn Tyr Glu 420 425 430 Trp Ala Gln Gly Phe Arg Met Arg Phe Gly Leu Val Tyr Val Asp Met 435 440 445 Gly Thr Lys Lys Arg Tyr Leu Arg Pro Ser Ala Leu Val Phe Arg Glu 450 455 460 Ile Ala Thr Arg Lys Glu Ile Pro Glu Glu Leu Glu His Leu Ser Ser 465 470 475 480 Leu Asp Phe Leu Val Arg Arg 485 <210> 3 <211> 41 <212> DNA <213> Tpa-Glu forward primer <400> 3 taagaaggag atatacatat gtataagttt cctaaagatt t 41 <210> 4 <211> 41 <212> DNA <213> Tpa-Glu reverse primer <400> 4 ctcgagtgcg gccgcaagct tcctcctcac gaggaagtct a 41 <110> Korea Institute of Ocean Science & Technology <120> Novel thermostable beta-glucosidase and the methods of          preparation thereof <130> PN140029 <160> 4 <170> Kopatentin 2.0 <210> 1 <211> 1464 <212> DNA <213> Thermococcus pacificus <400> 1 atgtataagt ttcctaaaga ttttctcttt ggatattcct ggtccgggtt ccagtttgag 60 atgggactcc ccgggagcga ggttccaaac agcgactggt gggtatgggt tcatgacatt 120 gaaaacatag caacgggtct cgttagtggg gacctgccgg agaacgggcc cgcttactgg 180 gatctctata agaaagacca cgatatagcg gaaagcctcg ggatggacgc gattagggga 240 ggaatagagt gggcgagaat cttccccaag ccaacgtttg acgtgaaagc ccgcgttgag 300 aaggatgaag agggcaacat agtctcggtg gaagtccctg aaagttcaat taaggaactc 360 gaaaaaatag ccgacatgaa ggccctcgag cactaccgtg agatctacgc ggactggaaa 420 gagagaggaa agacattcat actcaacctc taccactggc cattgcccct gtggctccat 480 gatcctctta aggtaagaaa actcggaccc gatagagctc cagcaggatg gcttgacgat 540 aagagtgttg ttgagttcgc caagtttgcg gcattcgttg cataccacct cgatgacctc 600 gttgacagct ggagcacgat gaacgagcca aacgtcgtgt atcagaacgg ctacacaagg 660 ccgaccagtg gttttccacc gggatatctg agctttgagg ccgaaagaaa ggcaaagatg 720 aacctcatcc aggcccatgc ccgggcctac gatgttatca aagagtactc tgacaaagat 780 gtggggataa tatacgcata cacatggccc gacccgctca gggaagaggt cgaagatgaa 840 gtgcgggcga taagggagag ggaactctac agcttcgttg atgccgtcca ctttgggaaa 900 gccgccgaca tcgaagaaag ggacgacctc cagggaaagg tggactggct cggcgtgaac 960 tactactcaa ggctggcctt tgacagggtg aacggtcacg tcctccctgt gtcgggttat 1020 ggattctccg gagagagggg tggctacgcc aggtccggaa gggcctgcag cgacttcggg 1080 tgggagattt accccgaagg ccttgaaaag ctccttaagg accttgcaaa aagatacggc 1140 ctccccatga tgataacaga gaatggcata gccgatgccg ctgacaggta ccgctcccac 1200 taccttgtaa gccacctcag ggccgtttac gaggccatga aagagggcgc cgatgtgagg 1260 ggctacctcc actggtcgct aaccgataac tatgaatggg cccagggctt caggatgagg 1320 tttgggctcg tatacgtgga tatggggacc aagaaacgct atttacgtcc aagtgctctt 1380 gttttcagag aaatagcgac cagaaaagag attccggaag aacttgagca cctttccagc 1440 ttagacttcc tcgtgaggag gtag 1464 <210> 2 <211> 487 <212> PRT <213> Thermococcus pacificus <400> 2 Met Tyr Lys Phe Pro Lys Asp Phe Leu Phe Gly Tyr Ser Trp Ser Gly   1 5 10 15 Phe Gln Phe Glu Met Gly Leu Pro Gly Ser Glu Val Pro Asn Ser Asp              20 25 30 Trp Trp Val Trp Val His Asp Ile Glu Asn Ile Ala Thr Gly Leu Val          35 40 45 Ser Gly Asp Leu Pro Glu Asn Gly Pro Ala Tyr Trp Asp Leu Tyr Lys      50 55 60 Lys Asp His Asp Ile Ala Glu Ser Leu Gly Met Asp Ala Ile Arg Gly  65 70 75 80 Gly Ile Glu Trp Ala Arg Ile Phe Pro Lys Pro Thr Phe Asp Val Lys                  85 90 95 Ala Arg Val Glu Lys Asp Glu Glu Gly Asn Ile Val Ser Val Glu Val             100 105 110 Pro Glu Ser Ser Ile Lys Glu Leu Glu Lys Ile Ala Asp Met Lys Ala         115 120 125 Leu Glu His Tyr Arg Glu Ile Tyr Ala Asp Trp Lys Glu Arg Gly Lys     130 135 140 Thr Phe Ile Leu Asn Leu Tyr His Trp Pro Leu Pro Leu Trp Leu His 145 150 155 160 Asp Pro Leu Lys Val Arg Lys Leu Gly Pro Asp Arg Ala Pro Ala Gly                 165 170 175 Trp Leu Asp Asp Lys Ser Val Val Glu Phe Ala Lys Phe Ala Ala Phe             180 185 190 Val Ala Tyr His Leu Asp Asp Leu Val Asp Ser Trp Ser Thr Met Asn         195 200 205 Glu Pro Asn Val Val Tyr Gln Asn Gly Tyr Thr Arg Pro Thr Ser Gly     210 215 220 Phe Pro Pro Gly Tyr Leu Ser Phe Glu Ala Glu Arg Lys Ala Lys Met 225 230 235 240 Asn Leu Ile Gln Ala His Ala Arg Ala Tyr Asp Val Ile Lys Glu Tyr                 245 250 255 Ser Asp Lys Asp Val Gly Ile Ile Tyr Ala Tyr Thr Trp Pro Asp Pro             260 265 270 Leu Arg Glu Glu Val Glu Asp Glu Val Arg Ala Ile Arg Glu Arg Glu         275 280 285 Leu Tyr Ser Phe Val Asp Ala Val His Phe Gly Lys Ala Ala Asp Ile     290 295 300 Glu Glu Arg Asp Asp Leu Gln Gly Lys Val Asp Trp Leu Gly Val Asn 305 310 315 320 Tyr Tyr Ser Arg Leu Ala Phe Asp Arg Val Asn Gly His Val Leu Pro                 325 330 335 Val Ser Gly Tyr Gly Phe Ser Gly Glu Arg Gly Gly Tyr Ala Arg Ser             340 345 350 Gly Arg Ala Cys Ser Asp Phe Gly Trp Glu Ile Tyr Pro Glu Gly Leu         355 360 365 Glu Lys Leu Leu Lys Asp Leu Ala Lys Arg Tyr Gly Leu Pro Met Met     370 375 380 Ile Thr Glu Asn Gly Ile Ala Asp Ala Ala Asp Arg Tyr Arg Ser His 385 390 395 400 Tyr Leu Val Ser His Leu Arg Ala Val Tyr Glu Ala Met Lys Glu Gly                 405 410 415 Ala Asp Val Arg Gly Tyr Leu His Trp Ser Leu Thr Asp Asn Tyr Glu             420 425 430 Trp Ala Gln Gly Phe Arg Met Arg Phe Gly Leu Val Tyr Val Asp Met         435 440 445 Gly Thr Lys Lys Arg Tyr Leu Arg Pro Ser Ala Leu Val Phe Arg Glu     450 455 460 Ile Ala Thr Arg Lys Glu Ile Pro Glu Glu Leu Glu His Leu Ser Ser 465 470 475 480 Leu Asp Phe Leu Val Arg Arg                 485 <210> 3 <211> 41 <212> DNA <213> Tpa-Glu forward primer <400> 3 taagaaggag atatacatat gtataagttt cctaaagatt t 41 <210> 4 <211> 41 <212> DNA <213> Tpa-Glu reverse primer <400> 4 ctcgagtgcg gccgcaagct tcctcctcac gaggaagtct a 41

Claims (9)

서열번호 2의 분리된 단백질.The isolated protein of SEQ ID NO: 2. 서열번호 2의 분리된 글루코시다아제 및 이의 기능적 동등물.The isolated glucosidase of SEQ ID NO: 2 and functional equivalents thereof. 서열번호 2의 단백질을 암호화 하는 분리된 핵산서열.A separate nucleic acid sequence encoding the protein of SEQ ID NO: 2. 제 3 항에 있어서, 상기 핵산서열은 서열번호 1인 것을 특징으로 하는 핵산서열.4. The nucleic acid sequence according to claim 3, wherein the nucleic acid sequence is SEQ ID NO: 제 3 항에 따른 핵산서열을 포함하는 재조합 벡터.A recombinant vector comprising the nucleic acid sequence according to claim 3. 제 5 항에 따른 재조합 벡터로 형질전환된 세포.A cell transformed with the recombinant vector according to claim 5. 제 6 항에 따른 형질전환된 세포를 배양하고, 상기 배양된 세포로부터 글루코시다아제 효소를 분리하는 것을 특징으로 하는 글루코시다아제 효소 생산방법.A method for producing glucosidase enzyme, which comprises culturing the transformed cells according to claim 6, and isolating the glucosidase enzyme from the cultured cells. 서열번호 2의 베타-글루코시다아제 또는 이의 기능적 동등물을 이용하여 β-1,3-링크된 폴리사카라이드의 가수 분해 방법A method for hydrolyzing a? -1,3-linked polysaccharide using the β-glucosidase of SEQ ID NO: 2 or a functional equivalent thereof 제 8 항에 있어서 상기 폴리사카라이드는라미나린인 것을 특징으로 하는 가수분해 방법.9. The hydrolysis method according to claim 8, wherein the polysaccharide is laminarin.
KR1020140144632A 2014-10-24 2014-10-24 Novel thermostable beta-glucosidase and the methods of preparation thereof KR101653340B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140144632A KR101653340B1 (en) 2014-10-24 2014-10-24 Novel thermostable beta-glucosidase and the methods of preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140144632A KR101653340B1 (en) 2014-10-24 2014-10-24 Novel thermostable beta-glucosidase and the methods of preparation thereof

Publications (2)

Publication Number Publication Date
KR20160049072A true KR20160049072A (en) 2016-05-09
KR101653340B1 KR101653340B1 (en) 2016-09-12

Family

ID=56020158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140144632A KR101653340B1 (en) 2014-10-24 2014-10-24 Novel thermostable beta-glucosidase and the methods of preparation thereof

Country Status (1)

Country Link
KR (1) KR101653340B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033635A (en) 2011-09-27 2013-04-04 부경대학교 산학협력단 Microbacterium oxydans having property for degrading laminarin and alginic acid
KR20130097347A (en) 2012-02-24 2013-09-03 부경대학교 산학협력단 Mixed microorganisms having degradation activity of alginate and laminarin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033635A (en) 2011-09-27 2013-04-04 부경대학교 산학협력단 Microbacterium oxydans having property for degrading laminarin and alginic acid
KR20130097347A (en) 2012-02-24 2013-09-03 부경대학교 산학협력단 Mixed microorganisms having degradation activity of alginate and laminarin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI GenBank Accession No. 3APG_A: Chain A, Crystal Structure Of Hyperthermophilic Beta-Glucosidase From Pyrococcus Furiosus (2012.10.10.) *

Also Published As

Publication number Publication date
KR101653340B1 (en) 2016-09-12

Similar Documents

Publication Publication Date Title
Ohta et al. Cloning, expression, and characterization of a glycoside hydrolase family 86 β-agarase from a deep-sea Microbulbifer-like isolate
Aulitto et al. Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase
US20170096656A1 (en) Thermostable alginate degrading enzymes and their methods of use
KR102011718B1 (en) Novel β-glucosidase for producing glucose and laminarioligosaccharides from macroalgae
CN109072270B (en) Composition for producing oligosaccharides or glucose and method for producing the same
Naz et al. Enhanced production and characterization of a β-glucosidase from Bacillus halodurans expressed in Escherichia coli
CN104011214A (en) Thermostable C. BESCII enzymes
AU2011349288A2 (en) Thermostable C. bescii enzymes
Conway et al. Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the Caldicellulosiruptor bescii secretome
Okazaki et al. Biochemical characterization of a thermostable β-1, 3-xylanase from the hyperthermophilic eubacterium, Thermotoga neapolitana strain DSM 4359
Li et al. Identification and biochemical characterization of a novel exo-type β-agarase Aga3463 from an Antarctic Pseudoalteromonas sp. strain
US11459554B2 (en) Enzyme complex comprising beta-agarase, kappa-carrageenase and anhydro-galactosidase, and use thereof
Shi et al. High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli
KR101653340B1 (en) Novel thermostable beta-glucosidase and the methods of preparation thereof
KR101706451B1 (en) Maltotrios-Producing Amylase derived from Microbulbifer sp. and the Process for Producing Maltotrios therewith
Kim et al. Novel substrate specificity of a thermostable β-glucosidase from the hyperthermophilic archaeon, Thermococcus pacificus P-4
KR102300386B1 (en) Use of alpha-L-fucosidase having dual enzymatic activity for cleaving alpha- and beta-1,4-glycosidic linkages
Wang et al. Characterization of Thermotoga thermarum DSM 5069 α-glucuronidase and synergistic degradation of xylan
KR101483182B1 (en) Novel endo beta-1,3-glucanase and a preparation method thereof
Seo et al. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis
Jung et al. Broad substrate specificity of a hyperthermophilic α-glucosidase from Pyrobaculum arsenaticum
KR101014802B1 (en) Method for producing glucose using debranching enzyme complex
Paloyan et al. Molecular Cloning and Biochemical Characterisation of a Novel Acidic Laminarinase Derived from Jermuk Hot Spring Metagenome
Anggraeni et al. Characterization of Agarolytic Bacterium Microbulbifer elongatus PORT2 and Its GH16 Agarase
WO2016054185A1 (en) Compositions comprising beta-mannanase and methods of use

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 4