KR20130091482A - Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound - Google Patents

Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound Download PDF

Info

Publication number
KR20130091482A
KR20130091482A KR1020120012796A KR20120012796A KR20130091482A KR 20130091482 A KR20130091482 A KR 20130091482A KR 1020120012796 A KR1020120012796 A KR 1020120012796A KR 20120012796 A KR20120012796 A KR 20120012796A KR 20130091482 A KR20130091482 A KR 20130091482A
Authority
KR
South Korea
Prior art keywords
composite compound
porous composite
metal oxide
cement composition
porous
Prior art date
Application number
KR1020120012796A
Other languages
Korean (ko)
Other versions
KR101323303B1 (en
Inventor
김종호
김종범
박세민
이기원
박수점
김태균
Original Assignee
(주) 빛과환경
주식회사 화승티엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 빛과환경, 주식회사 화승티엔씨 filed Critical (주) 빛과환경
Priority to KR1020120012796A priority Critical patent/KR101323303B1/en
Priority to PCT/KR2012/002462 priority patent/WO2013118940A1/en
Publication of KR20130091482A publication Critical patent/KR20130091482A/en
Application granted granted Critical
Publication of KR101323303B1 publication Critical patent/KR101323303B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3285Coating or impregnation layers comprising different type of functional groups or interactions, e.g. different ligands in various parts of the sorbent, mixed mode, dual zone, bimodal, multimodal, ionic or hydrophobic, cationic or anionic, hydrophilic or hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • C04B2111/00827Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A manufacturing method of a porosity complex compound is provided to have the complex compound which has high photocatalytic activity, dispersibility and stability by forming a porous silica cover which has 3D network structure around a metal oxide. CONSTITUTION: A manufacturing method of a porosity complex compound comprises the following steps. A mixture of sol-shaped metal oxide is manufactured by mixing either one of soluble glass (Na2SiO3), potassium silicate, calcium silicate and silica sol in the metal oxide. The mixture of the metal oxide is gelled and a metal oxide gel is formed. A surface of the metal oxide gel is reformed. The metal oxide gel is dried, and the porosity complex compound in which a silica aerogel is coated around the metal oxide is formed. The porosity complex compound is plasticized. The porosity complex compound in which the silica aerogel is coated around the metal oxide has a 3D network structure. The metal oxide is an oxide which has a photocatalytic activity.

Description

다공성 복합화합물 및 그 제조방법, 다공성 복합화합물을 함유한 시멘트 조성물{Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound}Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound

본 발명은 다공성 복합화합물에 관한 것으로, 금속산화물 주위에 삼차원 그물구조인 다공질의 실리카 피복체를 형성함으로써 비표면적과 분산성의 조절을 통해 단열재, 에너지, 화학적 활용 분야 등에서 널리 응용이 가능한 복합화합물 및 이를 제조하는 방법에 관한 것이다. The present invention relates to a porous composite compound, a composite compound which can be widely applied in thermal insulation, energy, chemical applications, etc. by controlling the specific surface area and dispersibility by forming a porous silica coating having a three-dimensional network structure around the metal oxide It relates to a manufacturing method.

광촉매란 빛을 받아서 화학반응을 촉진시키는 물질을 말하는 것이다. 예를 들어 이산화티탄(TiO2) 등을 광촉매로 이용하는 종래기술로는 제조된 광촉매 분말을 직접 이용하거나, 분말에 바인더를 첨가하여 도료로서 지지체나 담체에 도포시키는 방법과 사염화티탄이나 티타늄알콕사이드 등의 티타늄화합물을 지지체에 코팅한 후 졸겔법을 이용하여 지지체 표면에 아나타제형 이산화티탄 박막을 형성시켜 사용하는 방법 등이 있다. 이산화티탄 분말 자체를 광촉매로서 사용하기 위해서는 황산법과 염소법을 통하여 1차 재료로서 아나타제(anatase) 또는 아나타제와 루타일(rutile)의 결정 구조가 혼합된 분말 이산화티탄을 합성하여야 한다. 이렇게 제조된 이산화티탄 분말은 슬러리 형태로 사용되거나 또는 지지체에 표면코팅되어 사용된다. Photocatalyst refers to a substance that receives light and promotes a chemical reaction. For example, a conventional technique using titanium dioxide (TiO 2 ) or the like as a photocatalyst is directly applied to the prepared photocatalyst powder, or a binder is added to the powder to be applied to a support or a carrier as a coating material, such as titanium tetrachloride or titanium alkoxide. After coating the titanium compound on the support, and using a sol-gel method to form anatase-type titanium dioxide thin film on the surface of the support and the like. In order to use titanium dioxide powder itself as a photocatalyst, powdered titanium dioxide in which anatase or anatase and rutile crystal structures are mixed as a primary material is synthesized through a sulfuric acid method and a chlorine method. The titanium dioxide powder thus prepared is used in the form of a slurry or surface coated on a support.

그러나, 이산화티탄과 같은 금속 산화물은 다른 물질들과 배합할 경우 뻑뻑하고 하얗게 뜨는 현상 및 응집현상이 발생하고, 대부분의 유기물을 산화시켜 이산화탄소와 물로 분해하는 광촉매의 활성 때문에 함께 배합되는 다른 유기원료를 변형시키는 문제가 있을 뿐만 아니라, 고온에서 결정구조가 변형되는 문제점 때문에 산업상 적용이 제한되는 문제가 있다.However, metal oxides such as titanium dioxide, when combined with other materials, cause stiffness and whitening and flocculation, and due to the activity of a photocatalyst that oxidizes most organic materials and decomposes them into carbon dioxide and water, In addition to the problem of deformation, there is a problem that the industrial application is limited due to the problem that the crystal structure is deformed at a high temperature.

또한, 이산화티탄을 졸겔법에 의해 박막을 형성시켜 사용하는 경우는 비표면적이 작을뿐더러 코팅에 의한 광촉매의 활성 저하로 인하여 산업소재에 자유롭게 활용할 수 없는 한계가 있다. In addition, when titanium dioxide is used to form a thin film by the sol-gel method, the specific surface area is small and there is a limit that cannot be freely used in industrial materials due to the deterioration of photocatalytic activity by coating.

따라서, 다양한 분야에 활용하기 위하여는 높은 광촉매 활성을 유지할 수 있으면서도 응집 방지성 즉, 분산성과 안정성이 우수한 광촉매의 개발이 필요한 실정이다.Therefore, in order to use in various fields, it is necessary to develop a photocatalyst that can maintain high photocatalytic activity while having excellent anti-aggregation, that is, excellent dispersibility and stability.

본 발명은 상기와 같은 광촉매의 문제점을 해결하기 위한 것으로, 피복체에 의한 광촉매 활성 저하가 거의 없고 분산성 및 안정성이 우수하여 여러 분야의 산업소재로 활용 가능한 다공성 복합화합물의 제조방법 및 상기 제조방법에 의하여 제조되는 다공성 복합화합물을 제공하는데 목적이 있다.The present invention is to solve the problems of the photocatalyst as described above, there is little reduction in photocatalytic activity by the coating material and excellent in dispersibility and stability, and the method for producing a porous composite compound and the method for producing the industrial composite material can be utilized in various fields It is an object to provide a porous composite compound prepared by.

상기의 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object,

(a)금속산화물에 물유리(Na2SiO3), 포타슘실리케이트, 칼슘실리케이트 및 실리카 졸 중 어느 하나를 혼합하여 졸상의 금속산화물의 혼합물을 제조하는 단계;(a) mixing a metal oxide with any one of water glass (Na 2 SiO 3 ), potassium silicate, calcium silicate and silica sol to prepare a mixture of sol-like metal oxides;

(b)상기 금속산화물의 혼합물을 겔화시켜 금속산화물겔을 형성하는 단계;(b) gelling the mixture of metal oxides to form a metal oxide gel;

(c)상기 금속산화물겔을 표면 개질시키는 단계;(c) surface modifying the metal oxide gel;

(d)상기 금속산화물겔을 건조시켜 상기 금속산화물 주위에 실리카 에어로겔이 피복되어 있는 다공성 복합화합물을 형성하는 단계; 및(d) drying the metal oxide gel to form a porous composite compound coated with silica airgel around the metal oxide; And

(e)상기 다공성 복합화합물을 소성하는 단계;를 포함하는 다공성 복합화합물의 제조방법을 제공한다.
(e) firing the porous composite compound; provides a method for producing a porous composite compound comprising a.

상기 제조방법에 의해 다공성 복합화합물은 금속산화물을 물유리와 혼합하여 겔화되어 금속산화물 주위에 실리카 에어로겔이 피복된 3차원 그물구조의 다공질 실리카 피복체를 형성할 수 있다.By the production method, the porous composite compound may be gelled by mixing metal oxide with water glass to form a porous silica coating having a three-dimensional network structure coated with silica airgel around the metal oxide.

금속산화물 주위에 피복되는 실리카 에어로겔은 2-5nm 크기의 구형 실리카 입자들이 결합되어 3차원적으로 그물망 모양의 클러스터를 형성하는 구조로 되어 있어 나노 단위의 기공을 가진 다공성 구조를 형성한다. 따라서, 본 발명은 금속산화물 주위에 열전도율이 낮은 실리카로 에어로겔을 피복하여 제조하여 기공율이 향상됨으로써 우수한 열적 안정성을 제공할 수 있다. The silica airgel coated around the metal oxide has a structure in which spherical silica particles having a size of 2-5 nm are combined to form a mesh-like cluster in three dimensions, thereby forming a porous structure having nano pores. Accordingly, the present invention can be prepared by coating the airgel with silica having low thermal conductivity around the metal oxide to improve the porosity, thereby providing excellent thermal stability.

또한, 이와 동시에 3차원 그물구조를 갖게 됨으로써 실리카에 의한 빛이 차단되는 문제점을 해결하여 내부의 광촉매까지 도달하므로 활성저하 없이 광촉매 활성을 유지할 수 있으며, 비표면적이 넓어져 흡착능력이 증가하여 광촉매 활성을 높일 수 있고, 광촉매 입자간 응집이 방지되어 분산성이 향상된다. 이와 같이 광촉매 주위에 3차원 다공성 실리카겔이 피복되어 직접적으로 광촉매와 유기 지지체 및 바인더가 접촉을 하지 못하게 되는 특징 때문에 기존 광촉매에서 문제가 되었던 유기 지지체 및 바인더가 분해되는 현상을 막아준다. 본 발명의 제조방법에 의해 제조된 다공성 복합화합물의 모식도를 도 1에 나타내었다. 도 1에 나타난 바와 같이 이산화티탄(TiO2)과 같은 금속산화물 주변을 실리카 에어로겔(SiO2)이 피복하고 있음을 알 수 있다.In addition, at the same time, by having a three-dimensional network structure to solve the problem of blocking light by silica to reach the photocatalyst inside, it can maintain the photocatalytic activity without deactivation, and the specific surface area is widened, the adsorption capacity is increased, the photocatalytic activity Can be increased, and aggregation between the photocatalytic particles is prevented to improve dispersibility. In this way, the three-dimensional porous silica gel is coated around the photocatalyst to prevent the photocatalyst from contacting the organic support and the binder directly, thereby preventing the decomposition of the organic support and the binder, which has been a problem in the conventional photocatalyst. A schematic diagram of the porous composite compound prepared by the preparation method of the present invention is shown in FIG. 1. As shown in FIG. 1, it can be seen that silica airgel (SiO 2 ) is coated around the metal oxide such as titanium dioxide (TiO 2 ).

나아가, 상기 본 발명의 제조방법에 의해 제조된 다공성 복합화합물은 실리카 에어로겔로 피복되어 Si를 더 함유함으로써 고가의 Ti와 같은 성분을 종래 상업용 광촉매 활성을 갖는 복합화합물보다 현저히 적은 양으로 함유할 수 있다. 따라서, 종래 광촉매 활성을 갖는 복합화합물보다 제조비용을 절감시킬 수 있다.
Furthermore, the porous composite compound prepared by the method of the present invention may be coated with silica airgel to further contain Si, thereby containing a component such as expensive Ti in a significantly smaller amount than the composite compound having conventional photocatalytic activity. . Therefore, it is possible to reduce the manufacturing cost than the composite compound having a conventional photocatalytic activity.

상기 제조방법에 의해 제조된 다공성 복합화합물은 3차원 그물구조일 수 있다. 상기 제조방법의 (a) 단계에서 사용되는 금속산화물은 광촉매 활성이 있는 산화물이 바람직하며, 예를 들면 TiO2, ZnO2, ZnO, SrTiO3, CdS, GaP, InP, GaAs, BaTiO3, KNbO3, Fe2O3, Ta2O5, WO3, SnO2, Bi2O3, NiO, Cu2O, SiO, SiO2, MoS2, InPb, RuO2, CeO2 등이 있다. 이 중 이산화티탄(TiO2)이 사용되는 경우, 이산화티탄 자체를 사용할 수도 있고, 이산화티탄에 질소, 황, 불소, 탄소 등의 음이온을 도핑하여 제조되는 가시광 광촉매가 사용될 수도 있다. 이산화티탄은 인체에 무해하고 광촉매 활성이 탁월하며 내광부식성이 우수하고 가격이 저렴하다는 장점을 가진다. The porous composite compound prepared by the method may be a three-dimensional network structure. The metal oxide used in step (a) of the production method is preferably an oxide having photocatalytic activity, for example, TiO 2 , ZnO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , Bi 2 O 3 , NiO, Cu 2 O, SiO, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2, and the like. Among these, when titanium dioxide (TiO 2 ) is used, titanium dioxide itself may be used, or a visible light photocatalyst prepared by doping titanium dioxide with anions such as nitrogen, sulfur, fluorine, and carbon may be used. Titanium dioxide has the advantage of being harmless to the human body, excellent photocatalytic activity, excellent corrosion resistance and low price.

또한, 상기 금속산화물에 Pt, Rh, Ag, Cu, Sn, Ni, Fe 등의 금속을 첨가할 수 있으며, 상기 금속산화물에 또다른 금속산화물을 첨가하여 복합 금속산화물로 사용할 수 있다. 또한, Ti(OH)4, TiO(OH)2와 같은 티타늄 중간체를 사용할 수 있다.In addition, a metal such as Pt, Rh, Ag, Cu, Sn, Ni, Fe, or the like may be added to the metal oxide, and another metal oxide may be added to the metal oxide to be used as a composite metal oxide. In addition, titanium intermediates such as Ti (OH) 4 and TiO (OH) 2 can be used.

또한, 상기 (a) 단계에서 상기 금속 산화물과 상기 물유리, 포타슘실리케이트, 칼슘실리케이트 및 실리카 졸 중 어느 하나는, 상기 금속산화물과 상기 물유리, 포타슘실리케이트, 칼슘실리케이트 및 실리카 졸 중 어느 하나에 함유되는 실리카의 중량비가 0.01~10:1을 가지도록 혼합하는 것이 바람직하며, 상기 금속산화물은 실리카와 금속산화물 간의 -OH 결합력을 높여주기 위하여 개질제로 처리하는 단계를 더 포함할 수 있다. 상기 금속산화물 개질제로는 염산, 질산, 황산, 초산, 다가 카르복실산 등과 같은 산이나 수산화나트륨, 암모니아수와 같은 염기를 물에 희석한 용액이나 과산화수소수를 사용할 수 있고, 이를 0.01~1.00 wt%로 처리하는 것이 바람직하다. 그리고, 금속산화물과 물유리를 혼합한 용액을 강하게 교반하여 혼합 졸을 제조한다. In the step (a), any one of the metal oxide and the water glass, potassium silicate, calcium silicate and silica sol, the silica contained in any one of the metal oxide and the water glass, potassium silicate, calcium silicate and silica sol. It is preferable to mix so that the weight ratio of 0.01 to 10: 1, and the metal oxide may further include a step of treating with a modifier to increase the -OH bonding strength between the silica and the metal oxide. The metal oxide modifier may be a solution obtained by diluting an acid such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, polyhydric carboxylic acid, or a base such as sodium hydroxide, aqueous ammonia, or hydrogen peroxide solution. It is preferable to process. Then, the mixed solution of the metal oxide and water glass is strongly stirred to prepare a mixed sol.

상기 (b)단계의 금속산화물겔은 금속산화물의 혼합물에 산도가 pH 1~10인 산용액을 첨가하여 겔화시켜 형성될 수 있다. 이때, 염산, 황산, 질산 등을 용매에 희석하여 사용할 수 있고, 용매로는 메탄올, 에탄올, 부탄올, 이소프로판올 등을 물과 혼합하여 사용할 수 있다. 또한, 겔화 속도와 균일성을 조절하기 위하여 공정상의 온도나 교반 속도를 조절 가능하다.The metal oxide gel of step (b) may be formed by adding an acid solution having a pH of 1 to 10 to the mixture of the metal oxides and gelling it. At this time, hydrochloric acid, sulfuric acid, nitric acid and the like can be diluted with a solvent, and methanol, ethanol, butanol, isopropanol and the like can be used as a solvent. In addition, the temperature or stirring speed of the process can be adjusted to control the gelation rate and uniformity.

상기 (c)단계의 표면개질은 금속산화물겔을 유기용매에 넣고 유기실란을 첨가하여 이루어질 수 있다. 이때, 유기용매로는 에탄올, 부탄올, 헥산 등을 사용할 수 있다. 유기실란은 트리메틸클로로실란(trimethylchlorosilane, TMCS), 헥사메틸디실라잔(hexamethyldisilazane, HNDS), 메틸트리메톡시실란(methyltrimethoxysilane) 및 트리메틸에톡시실란(trimethylethoxysilane)으로 이루어진 군에서 선택되는 것일 수 있다. 상기 (a) 및 (b) 단계를 거쳐 얻어진 금속산화물 습윤겔을 유기용매에 넣어 일정량의 유기실란을 첨가하여 표면 개질을 하는 것이 바람직하다. 그리고 유기용매나 유기실란의 첨가량을 조절하여 개질속도 및 표면의 소수성을 조절할 수 있다. The surface modification of step (c) may be performed by adding a metal oxide gel to an organic solvent and adding an organosilane. In this case, ethanol, butanol, hexane, or the like may be used as the organic solvent. The organosilane may be selected from the group consisting of trimethylchlorosilane (TMCS), hexamethyldisilazane (HNDS), methyltrimethoxysilane, and trimethylethoxysilane. It is preferable to put the metal oxide wet gel obtained through the steps (a) and (b) in an organic solvent and to modify the surface by adding a predetermined amount of organosilane. And the rate of modification and the hydrophobicity of the surface can be adjusted by adjusting the amount of the organic solvent or organosilane added.

상기 (d) 단계에서 금속산화물겔은 60~200℃ 건조오븐에서 1~24시간 동안 상압 건조되는 것이 바람직하며, 상기 범위 내의 온도와 시간으로 건조됨으로써 금속산화물의 원하는 세공크기를 얻을 수 있다. 상기 온도 범위보다 높은 온도로 급격하게 승온시키거나 상기 범위의 시간보다 장시간으로 높은 온도에서 건조시킬 경우 다공성을 잃을 수 있기 때문이다. The metal oxide gel in the step (d) is preferably dried at atmospheric pressure for 1 to 24 hours in a 60 ~ 200 ℃ drying oven, it is possible to obtain a desired pore size of the metal oxide by drying at a temperature and time within the above range. This is because the porosity may be lost if the temperature is drastically raised to a temperature higher than the temperature range or dried at a temperature higher for a longer time than the range of time.

또한, 건조는 초임계 건조를 사용할 수 있다. 초임계 건조로 건조할 경우 표면장력이 거의 없어 제품에 손상을 주지 않는다. In addition, drying can use supercritical drying. When dried by supercritical drying, it has little surface tension and does not damage the product.

또한, 상기 다공성 복합화합물의 제조방법은 (d)단계 후에 다공성 복합화합물을 소성하는 (e)단계를 더 포함할 수 있다. 다공성 복합화합물을 소성함으로써 화합물의 친수성 및 소수성을 조절할 수 있다. (e)단계의 다공성 복합화합물의 소성은 소성온도는 400~800℃에서 1-24시간 동안 소성하는 것이 바람직하다. 이는 실리카겔 표면에서 소수성을 갖게 하는 유기물을 제거함으로써 세공과 골격을 유지하면서 친수성을 가지게 할 수 있기 때문이다. 상기 온도 범위보다 낮으면 유기물이 제거되지 않아 소수성을 가지며, 상기 온도 범위보다 높으면 골격이 수축되어 제품이 손상될 수 있다.
In addition, the method of manufacturing the porous composite compound may further include the step (e) of firing the porous composite compound after step (d). By firing the porous composite compound, the hydrophilicity and hydrophobicity of the compound can be controlled. The firing of the porous composite compound of step (e) is preferably fired for 1-24 hours at 400 ~ 800 ℃ firing temperature. This is because it is possible to have hydrophilicity while maintaining the pores and the skeleton by removing the organic material having hydrophobicity on the silica gel surface. If it is lower than the temperature range, the organic matter is not removed, so it has hydrophobicity. If the temperature is higher than the temperature range, the skeleton may contract and damage the product.

한편, 상기의 목적을 달성하기 위하여 본 발명은 상기 제조방법에 의하여 제조되는 다공성 복합화합물을 제공한다.On the other hand, the present invention provides a porous composite compound prepared by the above production method in order to achieve the above object.

이때, 상기 다공성 복합화합물은 금속산화물 주위에 실리카 에어로겔이 피복됨으로써 3차원 그물구조의 다공질 실리카 피복체일 수 있다. 상기 다공성 복합화합물은 공기에 대한 충분한 단열성을 갖는 관점에서 기공율이 80~99%인 것이 바람직하다. 또한, 그 결정상은 아나타제(anatase)이며, 입자크기는 10~30nm일 수 있다.In this case, the porous composite compound may be a porous silica coating having a three-dimensional network structure by coating a silica airgel around the metal oxide. The porous composite compound preferably has a porosity of 80 to 99% from the viewpoint of having sufficient heat insulating property against air. In addition, the crystal phase is anatase (anatase), the particle size may be 10 ~ 30nm.

본 발명의 상기 다공성 복합화합물은 비표면적이 300~1000 m2/g 인 것이 바람직하며, 400~800 m2/g인 것이 보다 더 바람직하다. The porous composite compound of the present invention preferably has a specific surface area of 300 to 1000 m 2 / g, more preferably 400 to 800 m 2 / g.

또한, 본 발명의 상기 다공성 복합화합물은 소성에 의해 친수성과 소수성의 조절이 가능하며, 화학적으로 용매의 양이나 표면개질제 종류, 산화티탄과 물유리 혼합비를 조절하고, 건조조건을 달리함으로써 다공성 복합화합물의 기공크기 및 밀도를 조절할 수 있다. In addition, the porous composite compound of the present invention is capable of controlling hydrophilicity and hydrophobicity by sintering, chemically controlling the amount of solvent, the type of surface modifier, the mixing ratio of titanium oxide and water glass, and changing the drying conditions of the porous composite compound. Pore size and density can be controlled.

나아가, 본 발명은 상기 다공성 복합화합물을 함유하는 시멘트 조성물을 제공한다. 상기 다공성 복합화합물은 시멘트 조성물 총 중량에 대하여 0.1 ~ 10 중량%로 함유되는 것이 바람직하다. Furthermore, the present invention provides a cement composition containing the porous composite compound. The porous composite compound is preferably contained in 0.1 to 10% by weight based on the total weight of the cement composition.

본 발명의 다공성 복합화합물은 금속산화물의 높은 광촉매의 활성을 유지하면서도 금속산화물 주위에 3차원 다공성 실리카 에어로겔이 피복됨으로써, 직접적으로 금속산화물과 유기 지지체 및 바인더가 접촉을 하지 못하게 되는 특징 때문에 기존 광촉매에서 문제가 되었던 유기 지지체 및 바인더가 분해되는 현상을 막아준다.The porous composite compound of the present invention is coated with a three-dimensional porous silica airgel around the metal oxide while maintaining the activity of the high photocatalyst of the metal oxide, thereby preventing direct contact between the metal oxide, the organic support, and the binder. It prevents the organic support and the binder from being degraded.

따라서, 시멘트 조성물에 이러한 다공성 복합화합물을 함유시킬 경우 조성물 자체의 변형이 없고 응집이 방지되어 혼합이 잘 이루어진다. 또한, 조성물이 안정하므로 이를 이용하여 콘크리트 구조물, 인터록킹 블록, 관, 슬레이트 등을 제조할 경우에도 구조적 안정성이 뛰어나다. Therefore, when such a porous composite compound is contained in the cement composition, there is no deformation of the composition itself and aggregation is prevented, so that mixing is performed well. In addition, since the composition is stable, even when manufacturing concrete structures, interlocking blocks, pipes, slates, etc., the structural stability is excellent.

한편, 본 발명의 다공성 복합화합물은 금속산화물 주위에 실리카 에어로겔이 3차원 그물구조를 이루며 피복됨으로써 비표면적이 넓어 종래의 광촉매 분말보다 유해물질을 효과적으로 제거할 수 있다. 특히, 대기 중의 질소산화물(NOX)이나 유황 산화물(SOX) 등의 환경오염 물질과 TVOC, 포름알데히드, 암모니아 등의 물질을 효과적으로 분해할 수 있다. 따라서, 이러한 다공성 복합화합물을 시멘트 조성물에 함유시켜 건축 자재를 제조하고 이를 의료기관, 주택, 상하수 처리시설 등에 사용할 경우 인체에 무해하고 오염물질의 분해 및 공기 정화, 냄새 제거기능 등을 갖는 친환경적 기능성 건물 및 시설 건설이 가능하게 한다. On the other hand, the porous composite compound of the present invention is coated with a three-dimensional mesh structure of silica airgel around the metal oxide has a large specific surface area can effectively remove the harmful substances than conventional photocatalyst powder. In particular, it is possible to effectively decompose environmental pollutants such as nitrogen oxides (NO X ) and sulfur oxides (SO X ) in the atmosphere, and substances such as TVOC, formaldehyde and ammonia. Therefore, if the porous composite compound is included in the cement composition to manufacture building materials and used in medical institutions, houses, water and sewage treatment facilities, etc. It allows the construction of facilities.

또한, 본 발명에 따른 다공성 복합화합물은 소성으로 친수성과 소수성의 조절이 용이하므로 이를 시멘트 조성물에 함유시킴으로써 소수성 표면을 갖는 구조물을 제공할 수 있다. 이로써, 구조물의 용도 및 기능에 따라 친수성과 소수성을 조절할 수 있다. 따라서, 소성온도를 조절함으로써 물을 가하여도 물이 스며들지 않는 발수 성질을 갖는 소수성 시멘트 조성물의 제공이 가능하다.In addition, the porous composite compound according to the present invention can easily control the hydrophilicity and hydrophobicity by firing, thereby providing a structure having a hydrophobic surface by containing it in the cement composition. Thus, hydrophilicity and hydrophobicity can be adjusted according to the use and function of the structure. Therefore, by adjusting the firing temperature, it is possible to provide a hydrophobic cement composition having a water repellent property that water does not penetrate even when water is added.

본 발명에 의하면 금속산화물 주위에 실리카 에어로겔이 피복되어 삼차원 그물구조인 다공질의 실리카 피복체가 형성됨으로써 비표면적이 매우 높아 활성이 우수하고, 높은 분산성을 갖는 다공성 복합화합물의 제조방법을 제공한다. 또한, 본 발명에 의한 제조방법에 의해 제조된 상기 다공질 실리카 피복체의 복합화합물은 높은 기공율을 가짐으로써 매우 우수한 단열 성능을 제공할 수 있다.According to the present invention, a silica airgel is coated around a metal oxide to form a porous silica coating having a three-dimensional network structure, thereby providing a method of preparing a porous composite compound having a high specific surface area, excellent activity, and high dispersibility. In addition, the composite compound of the porous silica coating body prepared by the production method according to the present invention can provide a very excellent heat insulating performance by having a high porosity.

또한, 본 발명에 의하면 높은 광촉매 활성과 분산성, 안정성을 갖는 다공질 실리카 피복체로 된 복합화합물을 제공할 수 있다. In addition, according to the present invention, it is possible to provide a composite compound made of a porous silica coating having high photocatalytic activity, dispersibility, and stability.

나아가, 본 발명에 의하면 유해성분 제거효과가 우수한 다공성 복합화합물 및 이를 함유하는 시멘트 조성물을 제공할 수 있다. 본 발명에 따른 다공성 복합화합물은 실리카 에어로겔의 피복에 의해 다른 유기화합물 조성을 분해시키지 않고 응집도 방지되기 때문에 다른 물질과 효과적으로 배합시킬 수 있다. 따라서, 시멘트 조성물에 이러한 다공성 복합화합물을 함유시킴으로써 균일하게 혼합되고 안정성이 우수한 시멘트 조성물을 제공할 수 있으며, 이를 콘크리트, 인터록킹 블록, 관, 슬레이트 등에 사용함으로써 인체에 무해하고 친환경적 건설재료를 제공할 수 있다.Furthermore, according to the present invention, it is possible to provide a porous composite compound and a cement composition containing the same, which are excellent in removing harmful components. The porous composite compound according to the present invention can be effectively blended with other materials because the agglomeration is prevented without decomposing other organic compound compositions by coating the silica airgel. Therefore, by incorporating such a porous composite compound in the cement composition can provide a cement composition that is uniformly mixed and excellent in stability, by using it in concrete, interlocking blocks, pipes, slate, etc. to provide a construction material that is harmless to the human body and environmentally friendly. Can be.

도 1은 본 발명의 일 실시예에 따른 다공성 복합화합물의 모식도를 나타낸 도이다.
도 2는 본 발명의 일 실시예에 따른 다공성 복합화합물을 SEM(Scanning electron microscope, Hitachi S-4700) 및 TEM(Transmission electron microscope, JEM 2000 FXII, JEOL)으로 촬영한 사진이다.
도 3은 본 발명의 일 실시예에 따른 다공성 복합화합물과 비교예의 결정상을 결정상을 X-선 회절패턴으로 분석하여 나타낸 그래프이다.
도 4는 비교예와 본 발명의 일 실시예에 따른 다공성 복합화합물의 기압에 따른 흡착된 질소량을 측정한 결과를 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 따른 다공성 복합화합물과 비교예의 아세트알데히드 분해 활성을 측정한 결과를 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 따른 다공성 복합화합물을 함유한 단열재를 가열한 후 온도 변화를 촬영한 사진이다.
도 7은 NOx 제거 시험 평가 장치를 개략적으로 도시한 도면이다.
도 8은 본 발명의 일 실시예에 따른 다공성 복합화합물이 NOx를 제거한 결과를 나타낸 도이다.
도 9는 비교예가 NOx를 제거한 결과를 나타낸 도이다.
도 10은 본 발명의 일 실시예에 따른 콘크리트가 NOx를 제거한 결과를 나타낸 도이다.
1 is a view showing a schematic diagram of a porous composite compound according to an embodiment of the present invention.
2 is a photograph of a porous composite compound according to an embodiment of the present invention with a scanning electron microscope (SEM), Hitachi S-4700 (TEM) and a transmission electron microscope (JEM 2000 FXII, JEOL).
Figure 3 is a graph showing the crystal phase of the porous composite compound and the comparative example according to an embodiment of the present invention by analyzing the crystal phase in the X-ray diffraction pattern.
Figure 4 is a graph showing the result of measuring the amount of nitrogen adsorbed according to the pressure of the porous composite compound according to a comparative example and an embodiment of the present invention.
5 is a graph showing the results of measuring the acetaldehyde decomposition activity of the porous composite compound and the comparative example according to an embodiment of the present invention.
Figure 6 is a photograph of the temperature change after heating the heat insulating material containing a porous composite compound according to an embodiment of the present invention.
7 is a diagram schematically showing an apparatus for evaluating NOx removal test.
8 is a view showing a result of removing NOx in the porous composite compound according to an embodiment of the present invention.
9 is a view showing a result of removing NOx in the comparative example.
10 is a view showing the result of removing the concrete NOx according to an embodiment of the present invention.

이하, 본 발명을 하기의 실시예를 통하여 설명한다. 실시예는 본 발명을 보다 상세히 설명하기 위한 것으로 본 발명의 범위가 하기의 실시예의 범위로 제한되는 것은 아니다. Hereinafter, the present invention will be described through the following examples. The examples are intended to illustrate the present invention in more detail and the scope of the present invention is not limited to the scope of the following examples.

또한, 이 기술분야의 통상의 지식을 가진 자이면 누구나 이 발명의 기술 사상의 범주를 이탈하지 않고 첨부한 특허청구범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.
In addition, it is obvious that any person skilled in the art can make various modifications and imitations within the scope of the appended claims without departing from the scope of the technical idea of the present invention.

실시예Example 1 One

아래에서 본 발명의 일 실시예에 따른 다공성 복합화합물의 제조 과정에 대해 설명한다.Hereinafter, a process of preparing a porous composite compound according to an embodiment of the present invention will be described.

과산화수소수로 처리한 이산화티탄(TiO2)분말 12g를 상업용 물유리(SiO2 30wt% 함유) 200g에 넣어 교반하여 이산화티탄 혼합졸을 만든 후, 황산 수용액을 조금씩 첨가하여 산도를 pH 7로 맞춘다. 이후 생성된 습윤겔에 남아있는 나트륨을 제거하기 위하여 뜨거운 물로 두세 번 세척하여 탈수, 분리 회수한다. 얻어진 습윤겔에 n-hexane을 습윤겔에 대하여 중량비 4가 되도록, 에탄올을 중량비 1이 되도록, 트리메틸클로로실란(TMCS)을 습윤겔의 중량비 2가 되도록 차례로 첨가하여 상온에서 5시간 동안 표면개질을 한다. 이후 분리 회수하여 대기압 하에서 건조 오븐에 넣어 60℃에서 12시간 동안, 200℃에서 12시간 동안 건조하여 이산화티탄과 실리카의 중량비가 0.2인 다공성 복합화합물을 제조한다.
12 g of titanium dioxide (TiO 2 ) powder treated with hydrogen peroxide solution was added to 200 g of commercial water glass (containing 30 wt% of SiO 2 ) and stirred to form a titanium dioxide mixed sol. Then, a slight amount of sulfuric acid solution was added to adjust the acidity to pH 7. Then, in order to remove the sodium remaining in the resulting wet gel, it is washed two or three times with hot water to be dehydrated and recovered. To the obtained wet gel, n-hexane was added in a weight ratio of 4 to a wet gel, ethanol was added in a weight ratio of 1, trimethylchlorosilane (TMCS) was added in order to be a weight ratio of 2 in a wet gel, and the surface was modified at room temperature for 5 hours. . After separation and recovery, the mixture was put in a drying oven under atmospheric pressure for 12 hours at 60 ° C., and dried at 200 ° C. for 12 hours to prepare a porous composite compound having a weight ratio of titanium dioxide and silica of 0.2.

실시예Example 2 2

다음은, 본 발명의 다른 일 실시예에 따른 다공성 복합화합물의 제조에 관한 설명이다. 앞에서 기술한 실시예 1과 동일한 내용에 대한 설명은 생략하기로 한다. Next, a description will be given of the preparation of a porous composite compound according to another embodiment of the present invention. Description of the same contents as those of the first embodiment described above will be omitted.

과산화수소수로 처리한 이산화티탄(TiO2) 24g을 상업용 물유리(SiO2 30wt% 함유) 200g에 넣은 것을 제외하고는 상기 실시예 1과 동일한 방법을 거쳐 이산화티탄과 실리카의 중량비가 0.4인 다공성 복합화합물을 제조한다.
A porous composite compound having a weight ratio of titanium dioxide and silica of 0.4 by the same method as Example 1 except that 24 g of titanium dioxide (TiO 2 ) treated with hydrogen peroxide was added to 200 g of commercial water glass (containing 30 wt% of SiO 2 ). To prepare.

실시예Example 3 3

다음은, 본 발명의 다른 일 실시예에 따른 다공성 복합화합물의 제조에 관한 설명이다. 앞에서 기술한 실시예 1과 동일한 내용에 대한 설명은 생략하기로 한다.Next, a description will be given of the preparation of a porous composite compound according to another embodiment of the present invention. Description of the same contents as those of the first embodiment described above will be omitted.

과산화수소수로 처리한 이산화티탄(TiO2) 48g을 상업용 물유리(SiO2 30wt%) 200g에 넣은 것을 제외하고는 상기 실시예 1과 동일한 방법을 거쳐 이산화티탄과 실리카의 중량비가 0.8인 다공성 복합화합물을 제조한다.
A porous composite compound having a weight ratio of titanium dioxide and silica of 0.8 was subjected to the same method as Example 1, except that 48 g of titanium dioxide (TiO 2 ) treated with hydrogen peroxide was added to 200 g of commercial water glass (SiO 2 30 wt%). Manufacture.

실시예Example 4 4

다음은, 본 발명의 다른 일 실시예에 따른 다공성 복합화합물의 제조에 관한 설명이다. 앞에서 기술한 실시예 1과 동일한 내용에 대한 설명은 생략하기로 한다.Next, a description will be given of the preparation of a porous composite compound according to another embodiment of the present invention. Description of the same contents as those of the first embodiment described above will be omitted.

과산화수소수로 처리한 이산화티탄(TiO2) 72g을 상업용 물유리(SiO2 30wt%) 200g에 넣은 것을 제외하고는 상기 실시예 1과 동일한 방법을 거쳐 이산화티탄과 실리카의 중량비가 1.2인 다공성 복합화합물을 제조하였다.
A porous composite compound having a weight ratio of titanium dioxide and silica of 1.2 was subjected to the same method as Example 1 except that 72 g of titanium dioxide (TiO 2 ) treated with hydrogen peroxide was added to 200 g of commercial water glass (SiO 2 30 wt%). Prepared.

비교예Comparative example

이하에서는 앞서 기술한 본 발명의 실시예들의 특성을 보다 명확하게 설명하기 위해, 종래 사용되고 있는 광촉매 물질을 비교예로 하여 본 발명의 실시예들과 비교 설명하기로 한다.Hereinafter, in order to more clearly describe the characteristics of the above-described embodiments of the present invention, a photocatalytic material that is conventionally used will be described in comparison with the embodiments of the present invention.

비교예로는, 실리카 에어로겔로 피복되어 있지 않은 이산화티탄(TiO2) 분말로서 독일 에보닉사(EVONIK Industries)의 P-25 분말을 사용한다.
As a comparative example, P-25 powder from EVONIK Industries, Germany is used as titanium dioxide (TiO 2 ) powder not coated with silica airgel.

하기의 표 1은 상기 본 발명에 따른 실시예 1과 비교예의 조성을 비교하여 나타낸 것이다. 각 화합물의 함량은 EDX(Energy dispersive X-ray spectroscope; Horiba사, EX-250)로 분석하였다.Table 1 below shows a comparison of the composition of Example 1 and Comparative Example according to the present invention. The content of each compound was analyzed by EDX (Energy dispersive X-ray spectroscope; Horiba, EX-250).

성분ingredient 비교예Comparative example 실시예1Example 1 중량%weight% 원자%atom% 중량%weight% 원자%atom% C K C K 16.016.0 25.525.5 17.717.7 25.725.7 O KO K 52.0 52.0 61.861.8 47.747.7 52.552.5 Na KNa K -- -- 0.20.2 0.10.1 Si KSi K -- -- 34.234.2 21.621.6 S KS K -- -- -- -- Ti KTi K 32.032.0 12.712.7 0.20.2 0.10.1 총 합계total 100.0100.0 100.0100.0 100.0100.0 100.0100.0

또한, 본 발명의 실시예 1을 SEM(Scanning electron microscope, Hitachi S-4700) 및 TEM(Transmission electron microscope, JEM 2000 FXII, JEOL)으로 촬영한 사진을 도 2a 및 도 2b에 나타내었다. 도 2a에 나타난 바와 같이 다공성 광촉매 분말입자는 10~30nm로 입자들이 뒤엉켜 있으며(가), 150만배로 키워서 관찰해 보면 입자들이 10~50nm 정도의 구멍을 형성하면서 밀집되어 있어 자체의 세공을 가지고 있을 뿐만 아니라 이들이 엉켜 큰 세공을 만들고 있음을 알 수 있다(나).
In addition, the photograph of Example 1 of the present invention with a scanning electron microscope (SEM), Hitachi S-4700 (SEM) and a transmission electron microscope (JEM 2000 FXII, JEOL) is shown in FIGS. 2A and 2B. As shown in FIG. 2a, the porous photocatalyst powder particles are entangled with 10-30 nm, and grow by 1.5 million times, and the particles are densely formed with holes of about 10-50 nm and have their own pores. In addition, it can be seen that they are entangled in making large pores (I).

결정상 및 열적 안정성 분석Crystal phase and thermal stability analysis

복합화합물의 결정상을 비교하기 위하여 실시예 4와 비교예의 결정상을 X-선 회절패턴(XRD)으로 분석하고, 이를 도 3에 나타내었다. 또한, 열적 안정성을 확인하기 위하여 200~1000℃까지 산소 분위기에서 열처리한 결과를 함께 나타내었다. In order to compare the crystal phases of the composite compound, the crystal phases of Example 4 and Comparative Example were analyzed by X-ray diffraction pattern (XRD), which is shown in FIG. 3. In addition, the results of the heat treatment in an oxygen atmosphere to 200 ~ 1000 ℃ to confirm the thermal stability together.

비교예의 경우 아나타제(anatase) 회절피크가 크고 뾰족하게 나타난데 반해, 실시예 4의 경우 비교예보다 실시예 4의 회절피크가 작고 넓게 나타난다. 따라서, 본 발명의 이산화티탄의 입자가 더 작다는 것을 알 수 있다. 또한, 기존 이산화티탄을 800℃에서 소성하면 아나타제에서 루타일 결정구조로 전환되는 사실은 널리 알려져 있다. 그러나, 본 발명의 경우 800℃까지 열처리를 하여도 아나타제의 피크만이 나타난 것으로 보아, 본 발명은 이산화티탄을 실리카 에어로겔로 피복함으로써 높은 기공율을 갖게 되어 열적 안정성이 우수함을 확인할 수 있다.
In the comparative example, the anatase diffraction peak is large and sharp, whereas in Example 4, the diffraction peak of Example 4 is smaller and wider than that of the comparative example. Thus, it can be seen that the particles of the titanium dioxide of the present invention are smaller. In addition, it is well known that the existing titanium dioxide is converted to a rutile crystal structure from anatase when fired at 800 ° C. However, in the case of the present invention, only the peak of the anatase appeared even after heat treatment to 800 ℃, the present invention can be confirmed that the excellent thermal stability by having a high porosity by coating titanium dioxide with silica airgel.

광촉매Photocatalyst 활성 1 Active 1

광촉매 활성의 측정에 앞서, 본 발명의 실시예 1~4와 비교예의 비표면적(m2/g)과 평균 세공크기를 비교하기 위하여 하기의 표 2에 나타내었다. Prior to the measurement of the photocatalytic activity, the specific surface area (m 2 / g) of Examples 1 to 4 and Comparative Example of the present invention and the average pore size are shown in Table 2 below.

표면적m2/gSurface area m 2 / g 평균 세공크기(nm)Average pore size (nm) 비교예Comparative example 5555 88 실시예 1Example 1 408408 44 실시예 2Example 2 406406 44 실시예 3Example 3 350350 44 실시예 4Example 4 141141 44

상기 표 2에 나타난 바와 같이 비교예의 경우 비표면적이 55 m2/g로 상당히 작다. 그러나 본 발명의 실시예 1~4의 경우 비교예에 비하여 3~8배 정도 매우 넓다. 또한, 실시예 1에서 실시예 4로 가면서 이산화티탄의 첨가량이 많아질수록 비표면적은 감소한다. 평균세공크기는 비교예의 경우 입자내의 세공은 존재하지 않은 것으로 널리 알려져 있다. 다만, 입자간 사이의 세공이 8nm이다. 하지만, 본 발명의 실시예 1~4는 이산화티탄의 첨가량의 변화와 무관하게 4nm로 일정한 값을 나타낸다. As shown in Table 2, the specific surface area of the comparative example is considerably small, 55 m 2 / g. However, in the case of Examples 1 to 4 of the present invention, it is about 3 to 8 times wider than the comparative example. In addition, the specific surface area decreases as the amount of titanium dioxide added increases from Example 1 to Example 4. The average pore size is widely known to be free of pores in the particles in the comparative example. However, the pores between the particles are 8 nm. However, Examples 1-4 of this invention show a constant value at 4 nm regardless of the change of the addition amount of titanium dioxide.

한편, 비표면적과 세공크기에 따른 효과를 비교하기 위하여 비교예와 본 발명의 실시예 1의 기압에 따른 흡착된 질소량을 측정하여 도 4에 나타내었다. 도 4의 그래프에 나타난 바와 같이, 비교예의 경우 기압의 증가에 따라 흡착된 질소량이 P/P0이 약 0.8 이상인 때부터 급격히 증가하며 최대 흡착된 질소량이 약 300m3/g에 불과하다. 그러나, 본 발명의 실시예 1은 기압의 증가와 함께 흡착된 질소량도 증가하고 최대 흡착된 질소량도 약 600m3/g으로 나타난다. 이는 본 발명의 경우 이산화티탄이 실리카 에어로겔로 피복되어 다공질의 실리카 피복체를 형성함으로써 비교예보다 비표면적이 6배 가량 더 크고 평균 세공 지름은 1/2로 작기 때문에, 광촉매 활성이 보다 우수하여 더 많은 양의 질소를 흡수할 수 있기 때문이다.
On the other hand, in order to compare the effect according to the specific surface area and pore size, the amount of adsorbed nitrogen according to the air pressure of the comparative example and Example 1 of the present invention was measured and shown in FIG. As shown in the graph of FIG. 4, in the comparative example, the amount of nitrogen adsorbed rapidly increases when the P / P 0 is about 0.8 or more, and the maximum amount of nitrogen adsorbed is only about 300 m 3 / g as the pressure increases. However, in Example 1 of the present invention, the amount of nitrogen adsorbed increases with increasing atmospheric pressure, and the maximum amount of nitrogen adsorbed is also about 600 m 3 / g. In the case of the present invention, since titanium dioxide is coated with silica airgel to form a porous silica coating, the specific surface area is about 6 times larger and the average pore diameter is 1/2 smaller than that of the comparative example. This is because it can absorb large amounts of nitrogen.

광촉매Photocatalyst 활성 2 Active 2

광촉매의 활성으로서 복합화합물의 아세트알데히드 분해 활성을 측정하기 위한 실험을 수행한다. Experiments are conducted to determine the acetaldehyde degradation activity of the composite compound as the activity of the photocatalyst.

먼저, 2 L의 반응기에 촉매로서 본 발명의 실시예 1~4와 비교예를 각각 0.5g씩 충전한 후, 아세트알데히드 2000ppm을 주입하여 흡착 평형시킨다. 그 다음, UV(10W x 3ea)(Sankyodenki) 램프를 2시간 동안 조사하여 기체 크로마토그래프(HP 6890), FID detector로 비교 분석한다. 그 결과를 도 5에 나타내었다. First, 0.5 g of each of Examples 1 to 4 and Comparative Example of the present invention is charged into a 2 L reactor, and then 2000 ppm of acetaldehyde is injected to equilibrate adsorption equilibrium. Then, UV (10W x 3ea) (Sankyodenki) lamp is irradiated for 2 hours and compared with a gas chromatograph (HP 6890), FID detector. The results are shown in Fig.

도 5에 나타난 바와 같이 비교예는 초기 활성이 낮으나 시간이 경과함에 따라 활성이 높아져 2 시간 후에는 약 98%의 분해 성능을 보인다. 그리고 본 발명의 경우 실시예 4를 제외하고는 초기 활성이 약 70%로 상당히 높다. 시간이 경과함에 따라서는 실시예 1>실시예 2>실시예 3 순으로 96, 92, 88, 85%의 활성을 보인다. As shown in FIG. 5, the comparative example had a low initial activity but increased in activity over time, and exhibited degradation performance of about 98% after 2 hours. And for the present invention, except for Example 4, the initial activity is quite high, about 70%. As time went by, the activity of 96, 92, 88, 85% was observed in the order of Example 1> Example 2> Example 3.

비교예는 상기 표 1의 조성표에 나타난 바와 같이 Ti가 조성 총 중량에 대하여 32.0wt%로 본 발명의 실시예 1~4보다 월등히 많은 양 함유되어 있다. 따라서 단위 g당 함유된 이산화티탄의 함량으로 비교할 경우, 도 5의 결과는 실시예 1이 비교예에 비하여 초기 활성이 더 빠를 뿐만 아니라 평균 광촉매 활성도 약 5배 정도 활성이 높다는 것을 의미한다.In the comparative example, as shown in the composition table of Table 1, Ti contained 32.0 wt% based on the total weight of the composition, which is much higher than Examples 1 to 4 of the present invention. Therefore, when compared with the amount of titanium dioxide contained per unit, the results of FIG. 5 means that the initial activity is faster than Example 1, and the average photocatalytic activity is about five times higher than that of the comparative example.

단열성능Insulation performance

본 발명의 실시예 1에서 제조한 다공성 복합화합물을 일반 산업용 단열재에 코팅하여 제조한 단열재와 일반 산업용 단열재에 열풍기(Hot air gun)로 300℃의 온도로 1분 동안 열을 가한 후 반대편의 온도변화를 관찰한다.Temperature change of the opposite side after applying the porous composite compound prepared in Example 1 to a general industrial heat insulator and heat it for 1 minute with a hot air gun at a temperature of 300 ° C. with a hot air gun Observe.

그 결과, 도 6에 나타난 바와 같이 본 발명의 다공성 복합화합물 광촉매 분말을 사용한 단열재는 표면온도가 36℃로 온도변화가 거의 없지만, 일반 산업용 단열재의 경우 표면온도가 237℃로 본 발명에 비하여 단열성이 현저히 떨어짐을 알 수 있다. 이는 본 발명의 다공성 복합화합물의 경우 이산화티탄이 실리카 에어로겔로 피복되어 다공질의 실리카 피복체를 형성함으로써 보다 우수한 열적 안정성을 갖기 때문이다.
As a result, as shown in Figure 6, the heat insulating material using the porous composite compound photocatalyst powder of the present invention has a surface temperature of 36 ℃ almost no change in temperature, in the case of a general industrial heat insulating material surface temperature of 237 ℃ as compared to the present invention It can be seen that the fall significantly. This is because in the porous composite compound of the present invention, titanium dioxide is coated with silica airgel to form a porous silica coating, thereby having better thermal stability.

다공성 복합화합물의 유해물질 제거효과 측정Determination of Harmful Substance Removal Effect of Porous Composites

본 발명의 일 실시예에 따른 다공성 복합화합물의 유해물질 중 질소산화물(NOx)의 제거효과를 측정하기 위하여 KS L ISO 22197-1 질소 산화물 제거 시험 평가 장치(도 7)를 이용한다. KS L ISO 22197-1 nitrogen oxide removal test evaluation apparatus (FIG. 7) is used to measure the effect of removing nitrogen oxides (NOx) among the harmful substances of the porous composite compound according to an embodiment of the present invention.

본 발명의 일 실시예에 따른 다공성 복합화합물(실시예 1) 및 비교예를 사용할 경우 질소 산화물의 농도변화를 0.5시간(빛 차단)-6시간(UV조사)-0.5시간(빛 차단)의 방법으로 측정한다. In the case of using the porous composite compound according to an embodiment of the present invention (Example 1) and the comparative example, the method of 0.5 hours (light blocking)-6 hours (UV irradiation)-0.5 hours (light blocking) to change the concentration of nitrogen oxides Measure with

상기 시험결과를 하기의 표 3에 나타내었다.The test results are shown in Table 3 below.

전환율Conversion Rate 광효율Light efficiency 분말(ISO 22197-1, 10W/m2)Powder (ISO 22197-1, 10W / m 2 ) NONO NOxNOx NONO NOxNOx 비교예Comparative example -41.43-41.43 -14.02-14.02 0.5930.593 0.2000.200 실시예 1Example 1 -51.22-51.22 -21.55-21.55 0.7320.732 0.3080.308

그리고, 실시예 1 및 비교예 분말의 질소 산화물 제거정도를 측정한 결과를 도 8 및 도 9에 나타내었다. 표 3 및 도 8에 나타난 바와 같이, 광촉매 활성을 갖는 일반 화합물인 비교예 분말은 UV를 조사한 3시경부터 NO의 농도가 40%, NOx의 농도는 약 10% 감소하는데 불과하다. 그러나, 도 9에 나타난 바와 같이 광촉매 활성을 갖는 다공성 복합화합물인 실시예 1 분말은 UV를 조사하기 시작한 2시 45분경부터 NO의 농도가 50% 이하로 크게 감소하고, NOx의 농도도 20%가량 감소한다. 이는 본 발명의 일 실시예에 따른 다공성 복합화합물은 실리카 에어로겔로 피복되어 있어 3차원 그물구조를 형성함으로써 비표면적이 넓어 광촉매 활성이 보다 뛰어나기 때문이다. 따라서, 본 발명에 따른 다공성 복합화합물은 우수한 질소산화물의 제거 효과를 갖는다.
In addition, the results of measuring the degree of nitrogen oxide removal of Example 1 and Comparative Example powder are shown in Figs. As shown in Table 3 and Figure 8, the comparative powder, which is a general compound having a photocatalytic activity, only decreases the concentration of NO by 40% and the concentration of NOx by about 10% from 3 o'clock when irradiated with UV. However, as shown in FIG. 9, Example 1 powder, which is a porous composite compound having photocatalytic activity, significantly reduces NO concentration to 50% or less from about 2:45 when UV irradiation is started, and NOx concentration is about 20%. Decreases. This is because the porous composite compound according to one embodiment of the present invention is coated with silica airgel to form a three-dimensional network structure, thereby having a wide specific surface area and thus having excellent photocatalytic activity. Therefore, the porous composite compound according to the present invention has excellent removal effect of nitrogen oxides.

다공성 복합화합물을 함유하는 시멘트 조성물Cement Compositions Containing Porous Composite Compounds

이하에서는 본 발명의 일 실시예에 따른 다공성 복합화합물을 함유하는 시멘트 조성물의 제조과정에 대한 설명한다.Hereinafter will be described the manufacturing process of the cement composition containing the porous composite compound according to an embodiment of the present invention.

먼저, KS L ISO679(시멘트 강도 시험방법)에 의거하여 표준 모르타르에 본 발명의 다공성 복합화합물을 상기 시멘트 조성물 총 중량에 대하여 3중량%로 섞어 광촉매 활성을 갖는 시멘트 조성물을 제조한다. 그 후, 50 × 100 × 10 mm3의 주형틀에 부어 20℃/상대습도 65% 조건으로 설정된 항온항습기에서 1일간 양생(curing)한 후 탈형하고, 28일간 양생하여 본 발명의 일 실시예에 따른 다공성 복합화합물을 함유하는 시멘트 조성물을 제조한다.
First, a cement composite having a photocatalytic activity is prepared by mixing the porous composite compound of the present invention with standard mortar based on KS L ISO679 (cement strength test method) at 3% by weight based on the total weight of the cement composition. Thereafter, it was poured into a mold of 50 × 100 × 10 mm 3 and cured in a constant temperature and humidity chamber set at a condition of 20 ° C./65% relative humidity for 1 day, then demolded, and cured for 28 days to one embodiment of the present invention. A cement composition containing the porous composite compound according to the present invention is prepared.

시멘트 조성물의 유해물질 제거효과 측정Determination of harmful substances removal effect of cement composition

본 발명의 일 실시예에 따른 시멘트 조성물의 유해물질 중 질소산화물(NOx)의 제거효과를 측정하기 위하여 KS L ISO 22197-1 질소산화물 제거 시험 평가 장치(도 7)를 이용한다. KS L ISO 22197-1 nitrogen oxide removal test evaluation apparatus (FIG. 7) is used to measure the removal effect of nitrogen oxides (NOx) in the harmful substances of the cement composition according to an embodiment of the present invention.

시험을 위하여 본 발명의 일 실시예에 따른 이산화티탄과 실리카의 중량비가 0.2인 다공성 복합화합물을 조성물 총 중량에 대하여 3 중량%로 함유하는 시멘트 조성물을 상기의 제조과정에 따라 제조한다. 그 후 질소 산화물의 농도변화를 0.5시간(빛 차단)-2시간(UV조사)-2시간(빛 차단)-2시간(UV조사)-0.5시간(빛 차단)방법으로 측정한다. For the test, a cement composition containing a porous composite compound having a weight ratio of titanium dioxide and silica of 0.2 according to the total weight of the composition in an amount of 3 wt% based on the total weight of the composition was prepared according to the above-described manufacturing process. Thereafter, the concentration change of nitrogen oxide is measured by 0.5 hour (light blocking)-2 hours (UV irradiation)-2 hours (light blocking)-2 hours (UV irradiation)-0.5 hour (light blocking).

상기 시험결과를 하기의 표 4에 나타내었다.The test results are shown in Table 4 below.

전환율Conversion Rate 광효율Light efficiency NONO NOxNOx NONO NOxNOx 시멘트 조성물(4.2W/m2)Cement Composition (4.2W / m 2 ) 1사이클1 cycle -12.18-12.18 -1.29-1.29 0.4280.428 0.0460.046 2사이클2 cycles -11.22-11.22 -3.27-3.27 0.3930.393 0.1160.116

그 다음, 도 10에 다공성 복합화합물을 함유하는 시멘트 조성물의 질소산화물 제거정도를 측정한 결과를 나타내었다. 표 4 및 도 10에 나타난 바와 같이, 시멘트 조성물에 다공성 복합화합물을 함유시킴으로써 UV 조사시 NO의 농도가 약 12%, NOx의 농도도 약 3%가량 감소한다. 따라서, 본 발명에 따른 다공성 복합화합물은 실리카 에어로겔로 피복되어 있어 광촉매 활성이 높으므로 시멘트 조성물에 소량 함유시켜 사용할 경우에도 유해성분 제거에 있어서 효율이 뛰어나다.Next, the result of measuring the nitrogen oxide removal of the cement composition containing the porous composite compound in Figure 10 is shown. As shown in Table 4 and Figure 10, by containing a porous composite compound in the cement composition, the concentration of NO is reduced about 12%, the concentration of NOx about 3% during UV irradiation. Therefore, since the porous composite compound according to the present invention is coated with silica airgel and has high photocatalytic activity, the porous composite compound has excellent efficiency in removing harmful components even when used in a small amount in the cement composition.

Claims (20)

(a)금속산화물에 물유리(Na2SiO3), 포타슘실리케이트, 칼슘실리케이트 및 실리카 졸 중 어느 하나를 혼합하여 졸상의 금속산화물의 혼합물을 제조하는 단계;
(b)상기 금속산화물의 혼합물을 겔화시켜 금속산화물겔을 형성하는 단계;
(c)상기 금속산화물겔을 표면 개질시키는 단계;
(d)상기 금속산화물겔을 건조시켜 상기 금속산화물 주위에 실리카 에어로겔이 피복된 다공성 복합화합물을 형성하는 단계; 및
(e)상기 다공성 복합화합물을 소성하는 단계;를 포함하는 다공성 복합화합물의 제조방법.
(a) mixing a metal oxide with any one of water glass (Na 2 SiO 3 ), potassium silicate, calcium silicate and silica sol to prepare a mixture of sol-like metal oxides;
(b) gelling the mixture of metal oxides to form a metal oxide gel;
(c) surface modifying the metal oxide gel;
(d) drying the metal oxide gel to form a porous composite compound coated with silica airgel around the metal oxide; And
(e) calcining the porous composite compound.
제 1항에 있어서, 상기 (d) 단계에서 형성되는 다공성 복합화합물은 3차원 그물구조를 갖는 것을 특징으로 하는 다공성 복합화합물의 제조방법.The method of claim 1, wherein the porous composite compound formed in the step (d) has a three-dimensional network structure. 제 1항에 있어서, 상기 금속산화물은 광촉매 활성을 갖는 산화물인 것을 특징으로 하는 다공성 복합화합물의 제조방법.The method of claim 1, wherein the metal oxide is an oxide having photocatalytic activity. 제 3항에 있어서, 상기 금속산화물은 이산화티탄(TiO2)인 것을 특징으로 하는 다공성 복합화합물의 제조방법.The method of claim 3, wherein the metal oxide is titanium dioxide (TiO 2 ). 제 1항에 있어서, 상기 (a)단계에서 상기 금속 산화물과 상기 물유리, 포타슘실리케이트, 칼슘실리케이트 및 실리카 졸 중 어느 하나는, 상기 금속산화물과 상기 물유리, 포타슘실리케이트, 칼슘실리케이트 및 실리카 졸 중 어느 하나에 함유되는 실리카의 중량비가 0.01~10:1을 가지도록 혼합되는 것을 특징으로 하는 다공성 복합화합물의 제조방법.According to claim 1, wherein the metal oxide and any one of the water glass, potassium silicate, calcium silicate and silica sol in step (a), any one of the metal oxide and the water glass, potassium silicate, calcium silicate and silica sol Method for producing a porous composite compound, characterized in that the weight ratio of silica contained in is mixed so as to have 0.01 to 10: 1. 제 1항에 있어서, 상기 (a)단계에서 상기 금속산화물를 개질제로 처리하는 단계를 더 포함하는 다공성 복합화합물의 제조방법.The method of claim 1, further comprising the step of treating the metal oxide with a modifier in the step (a). 제 1항에 있어서, 상기 (b)단계에서, 상기 금속산화물겔은 상기 금속산화물의 혼합물에 산도가 pH 1~10인 산용액을 첨가하여 겔화시켜 형성되는 것을 특징으로 하는 다공성 복합화합물의 제조방법.The method of claim 1, wherein in the step (b), the metal oxide gel is formed by adding an acid solution having an acidity of pH 1 to 10 to the mixture of the metal oxides and gelling the same. . 제 1항에 있어서, 상기 (c)단계의 표면개질은 상기 금속산화물겔을 유기용매에 넣고 유기실란을 첨가하여 이루어지는 것인 다공성 복합화합물의 제조방법.The method of claim 1, wherein the surface modification of step (c) is performed by adding the metal oxide gel to an organic solvent and adding an organosilane. 제 8항에 있어서, 상기 유기실란은 트리메틸클로로실란, 헥사메틸디실라잔, 메틸트리메톡시실란 및 트리메틸에톡시실란으로 이루어진 군에서 선택되는 것인 다공성 복합화합물의 제조방법.The method of claim 8, wherein the organosilane is selected from the group consisting of trimethylchlorosilane, hexamethyldisilazane, methyltrimethoxysilane, and trimethylethoxysilane. 제 1항에 있어서, 상기 (d)단계의 금속산화물겔의 건조는 60~200℃에서 행하여지는 것인 다공성 복합화합물의 제조방법.The method of claim 1, wherein the drying of the metal oxide gel of step (d) is carried out at 60 ~ 200 ℃. 제 1항에 있어서, 상기 (e) 단계는, 소성 온도를 조절하여 상기 다공성 복합화합물의 친수성과 소수성을 조절하는 단계를 더 포함하는 것을 특징으로 하는 다공성 복합화합물 제조 방법.The method of claim 1, wherein step (e) further comprises controlling the hydrophilicity and hydrophobicity of the porous composite compound by controlling the firing temperature. 제11항에 있어서, 상기 다공성 화합물은 소수성을 갖는 것을 특징으로 하는 다공성 복합화합물.12. The porous composite compound of claim 11, wherein the porous compound has hydrophobicity. 제 1항 내지 제12항 중 어느 한 항에 기재된 제조방법으로 제조되는 다공성 복합화합물.A porous composite compound prepared by the method according to any one of claims 1 to 12. 제 13항에 있어서, 상기 다공성 복합화합물은 기공율이 80~99%인 다공성 복합화합물.The porous composite compound of claim 13, wherein the porous composite compound has a porosity of 80 to 99%. 제 13항에 있어서, 상기 다공성 화합물은 비표면적이 300~1,000m2/g인 다공성 복합화합물.The porous composite compound of claim 13, wherein the porous compound has a specific surface area of 300 to 1,000 m 2 / g. 다공성 복합화합물을 함유하는 시멘트 조성물로서,
상기 다공성 복합화합물은 제13항에 기재된 다공성 복합화합물인 것을 특징으로 하는 시멘트 조성물.
As a cement composition containing a porous composite compound,
The porous composite compound is a cement composition, characterized in that the porous composite compound according to claim 13.
제 16항에 있어서, 상기 다공성 복합화합물은 상기 시멘트 조성물 총 중량에 대해 0.1~10중량%로 함유되는 것을 특징으로 하는 시멘트 조성물.The cement composition of claim 16, wherein the porous composite compound is contained in an amount of 0.1 to 10% by weight based on the total weight of the cement composition. 제 16항에 있어서, 상기 다공성 복합화합물은 표면 소수성을 갖는 것을 특징으로 하는 시멘트 조성물.The cement composition of claim 16, wherein the porous composite compound has surface hydrophobicity. 다공성 복합 화합물을 함유하는 시멘트 조성물을 사용하여 제조되는 콘크리트 구조물로,
상기 다공성 복합 화합물은 제 13항에 기재된 다공성 복합 화합물인 것을 특징으로 하는 콘크리트 구조물.
A concrete structure manufactured using a cement composition containing a porous composite compound,
The porous composite compound is a concrete structure, characterized in that the porous composite compound according to claim 13.
다공성 복합 화합물을 함유하는 시멘트 조성물을 사용하여 제조되는 인터록킹 블록으로,
상기 다공성 복합 화합물은 제 13항에 기재된 다공성 복합 화합물인 것을 특징으로 하는 인터록킹 블록.
An interlocking block manufactured using a cement composition containing a porous composite compound,
The porous composite compound is an interlocking block, characterized in that the porous composite compound according to claim 13.
KR1020120012796A 2012-02-08 2012-02-08 Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound KR101323303B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120012796A KR101323303B1 (en) 2012-02-08 2012-02-08 Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound
PCT/KR2012/002462 WO2013118940A1 (en) 2012-02-08 2012-04-02 Porous composite, preparation method thereof, and cement composition containing porous composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120012796A KR101323303B1 (en) 2012-02-08 2012-02-08 Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound

Publications (2)

Publication Number Publication Date
KR20130091482A true KR20130091482A (en) 2013-08-19
KR101323303B1 KR101323303B1 (en) 2013-10-30

Family

ID=48947683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120012796A KR101323303B1 (en) 2012-02-08 2012-02-08 Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound

Country Status (2)

Country Link
KR (1) KR101323303B1 (en)
WO (1) WO2013118940A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404333A (en) * 2018-03-13 2018-08-17 广州绿阳环保科技有限公司 A kind of nano-photo catalytic Formaldehyde decomposition technology
CN111320932A (en) * 2020-03-23 2020-06-23 苏州鼎奕通材料科技有限公司 Preparation method of anti-glare film layer modified by nano composite particles
KR20210132551A (en) * 2020-04-27 2021-11-04 주식회사 큐디앤 Method of manufacturing photocatalyst device, and photocatalyst device using the method
CN113683343A (en) * 2021-09-03 2021-11-23 巩义市泛锐熠辉复合材料有限公司 High-flexibility aerogel felt and preparation method thereof
CN115583839A (en) * 2022-11-09 2023-01-10 山东科技大学 Three-dimensional integrated double-layer porous ceramic material and preparation method and application thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702724A (en) 2014-09-25 2022-07-05 昭和电工材料株式会社 Aerogel composite, method for producing same, support member with aerogel composite, and thermal insulation material
EP3257088B1 (en) * 2015-02-13 2020-10-07 Pen, The Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material
KR101868682B1 (en) * 2015-06-01 2018-06-19 주식회사 엘지화학 Method for preparing metal oxide-silica complex aerogel and metal oxide-silica complex aerogel prepared by using the same
CN107666954B (en) 2015-06-01 2021-05-07 株式会社Lg化学 Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel
WO2016195379A1 (en) * 2015-06-01 2016-12-08 주식회사 엘지화학 Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same
CN107735169B (en) 2015-06-01 2021-11-05 株式会社Lg化学 Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel
CN105523776A (en) * 2015-12-31 2016-04-27 卓达新材料科技集团有限公司 Aluminum oxide and titanium oxide aerogel foamed cement
CN105777048A (en) * 2016-01-25 2016-07-20 南通蛇类治疗研究所 Low-carbon environment-friendly functional ceramic tile
KR102152214B1 (en) 2017-03-16 2020-09-04 주식회사 엘지화학 Preparation method of plate type metal-silica complex aerogel and plate type metal-silica complex aerogel prepared by the same
CN107260560B (en) * 2017-07-17 2020-06-30 西藏亚吐克工贸有限公司 Preparation method of titanium dioxide special for cosmetics
CN107955187A (en) * 2017-12-03 2018-04-24 凯思普科技有限责任公司 A kind of sustained-release gel composition of containing mesopore silicon
CN108940143B (en) * 2018-09-29 2020-10-02 云南大学 Preparation method and application of titanium-silicon aerogel taking pigment as template
CN109201012B (en) * 2018-10-12 2021-05-04 新疆天物生态科技股份有限公司 Inclusion adsorbate for treating ammonia nitrogen wastewater and preparation method thereof
CN109289254A (en) * 2018-10-31 2019-02-01 华南理工大学 A kind of super-hydrophobic sterculia seed and preparation method thereof
DE102019122616A1 (en) * 2019-08-22 2021-02-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Photocatalytically active airgel concrete
KR102137840B1 (en) 2019-11-29 2020-07-28 한국건설기술연구원 Nano porous silica-based and cementitious materials-based external thermal insulation composite system with improved fire resistance, and manufacturing method for the same
CN110841589A (en) * 2019-12-16 2020-02-28 北京工商大学 Adsorbent with photocatalytic activity and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786618A (en) * 1987-05-29 1988-11-22 Corning Glass Works Sol-gel method for making ultra-low expansion glass
US5565142A (en) * 1992-04-01 1996-10-15 Deshpande; Ravindra Preparation of high porosity xerogels by chemical surface modification.
JP2002137912A (en) * 2000-10-27 2002-05-14 Matsushita Electric Ind Co Ltd Porous gel
WO2004080916A1 (en) * 2003-03-10 2004-09-23 Ngk Insulators, Ltd. Inorganic porous body and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404333A (en) * 2018-03-13 2018-08-17 广州绿阳环保科技有限公司 A kind of nano-photo catalytic Formaldehyde decomposition technology
CN111320932A (en) * 2020-03-23 2020-06-23 苏州鼎奕通材料科技有限公司 Preparation method of anti-glare film layer modified by nano composite particles
KR20210132551A (en) * 2020-04-27 2021-11-04 주식회사 큐디앤 Method of manufacturing photocatalyst device, and photocatalyst device using the method
CN113683343A (en) * 2021-09-03 2021-11-23 巩义市泛锐熠辉复合材料有限公司 High-flexibility aerogel felt and preparation method thereof
CN113683343B (en) * 2021-09-03 2023-01-17 巩义市泛锐熠辉复合材料有限公司 High-flexibility aerogel felt and preparation method thereof
CN115583839A (en) * 2022-11-09 2023-01-10 山东科技大学 Three-dimensional integrated double-layer porous ceramic material and preparation method and application thereof

Also Published As

Publication number Publication date
WO2013118940A1 (en) 2013-08-15
KR101323303B1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
KR101323303B1 (en) Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound
JP6753781B2 (en) Titania particles and their manufacturing method
Folli et al. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry
Wu et al. Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature
Pan et al. Enhancement of visible-light-induced photodegradation over hierarchical porous TiO2 by nonmetal doping and water-mediated dye sensitization
EP3305726B1 (en) Method for preparing metal oxide-silica composite aerogel
An et al. Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2
Wei et al. Preparation, characterization and photocatalytic activities of boron-and cerium-codoped TiO2
Nguyen-Phan et al. The role of rare earth metals in lanthanide-incorporated mesoporous titania
JP2008284411A (en) Photocatalyst included in hollow porous shell layer and its manufacturing method
KR101265781B1 (en) Titanium dioxide photocatalyst having crystalline titanium dioxide core-amorphous titanium dioxide shell structure, preparation method thereof and hydrophilic coating material comprising said titanium dioxide photocatalyst
Jiang et al. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO 2− x N x derived from the ethylenediamine-based complex
Ruzimuradov et al. Fabrication of nitrogen-doped TiO2 monolith with well-defined macroporous and bicrystalline framework and its photocatalytic performance under visible light
Luévano-Hipólito et al. Precipitation synthesis of WO3 for NOx removal using PEG as template
Ahmadi et al. Synthesis of silver nano catalyst by gel-casting using response surface methodology
Rawal et al. Enhanced visible-light photocatalytic properties of Fe3+-grafted N-doped TiO2 nanoporous spheres
Huang et al. Synthesis of three‐dimensionally ordered macroporous TiO2 and TiO2/WO3 composites and their photocatalytic performance
CN106984318B (en) Bimetal cobalt-based catalyst, preparation method and application
KR101467836B1 (en) Paint composition containing porous composite compound
Bernardes et al. Microchanneled biomorphous Al2O3 coated with TiO2 aerogel for photocatalytic reduction of 4-nitrophenol
Tijani et al. Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method
Huang et al. Synthesis of functionalized mesoporous TiO2 molecular sieves and their application in photocatalysis
KR101677842B1 (en) Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof
KR100670944B1 (en) Process for preparing titanate and titanium oxynitride
US10029236B2 (en) Catalytic substrate surface

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171023

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190827

Year of fee payment: 7