WO2016195379A1 - Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same - Google Patents
Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same Download PDFInfo
- Publication number
- WO2016195379A1 WO2016195379A1 PCT/KR2016/005814 KR2016005814W WO2016195379A1 WO 2016195379 A1 WO2016195379 A1 WO 2016195379A1 KR 2016005814 W KR2016005814 W KR 2016005814W WO 2016195379 A1 WO2016195379 A1 WO 2016195379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal oxide
- silica composite
- metal
- metal salt
- airgel
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D1/00—Oxides or hydroxides of sodium, potassium or alkali metals in general
- C01D1/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/02—Magnesia
- C01F5/06—Magnesia by thermal decomposition of magnesium compounds
Definitions
- the present invention provides a method for producing a metal oxide-silica composite airgel having a low tap density and a high specific surface area by a simple manufacturing process without a separate aging, solvent replacement and surface modification step, and to the metal oxide-silica composite airgel prepared using the same. It is about.
- aerogels having excellent thermal insulation properties.
- the aerogels developed so far include organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2). Or inorganic aerogels containing metal oxides such as carbon (C) aerogels.
- organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2).
- inorganic aerogels containing metal oxides such as carbon (C) aerogels.
- silica airgel is a highly porous material, and has high porosity, specific surface area, and low thermal conductivity, and thus can exhibit excellent thermal insulation effect. Therefore, silica aerogel has high porosity, specific surface area, and low thermal conductivity. Applications are expected.
- silica airgel Since silica airgel has a low mechanical strength due to its porous structure, the silica airgel is usually combined with a substrate such as glass fiber, ceramic fiber, or polymer fiber to produce a product such as an airgel blanket or airgel sheet.
- a substrate such as glass fiber, ceramic fiber, or polymer fiber
- the silica airgel structurally contains 90% by volume or more of air in the internal pores, the density is too low, there is a severe scattering during processing, difficult to impregnate the substrate.
- the difference in density from the substrate is too large and does not mix well, causing problems such as poor appearance and deterioration of physical properties.
- a method of mixing an additive with an airgel has been proposed to enhance the processability of the silica airgel, and to enhance the properties of the airgel such as heat insulating property, suction ability, catalytic activity, or to impart additionally required properties.
- the additives are added to the sol before the silica airgel is polymerized, or the prepared silica airgel is contacted with a liquid or gaseous stream containing the additive.
- the method of introducing the elements to strengthen the structure and increase the density, and the method of forming a composite with the plate-like inorganic material has been proposed.
- the conventional methods are not easy to control the size, particle size distribution, etc. of the additive materials, and there is a problem such as deformation and reduction of the pore structure in the manufacturing process of the silica airgel.
- An object of the present invention is to prepare a metal oxide-silica composite airgel with excellent physical properties such as low tap density and high specific surface area by a simple manufacturing process without additional aging, solvent replacement and surface modification steps. To provide a way.
- Still another object of the present invention is to provide a metal oxide-silica composite airgel prepared by the above production method.
- a metal salt solution having a metal ion concentration of 0.125M to 3.0M is added and mixed, and then, an acid catalyst is added to adjust the pH of the resulting mixture to 3 to 9, thereby preparing a metal oxide-silica composite precipitate.
- the metal salt solution comprises magnesium (Mg) in an amount such that the content of magnesium ions exceeds 50 mol% with respect to the total moles of metal ions in the metal salt solution.
- the method for preparing a metal oxide-silica composite airgel according to the present invention has excellent physical properties such as low tap density and high specific surface area with excellent pore characteristics through a simple manufacturing process, without a separate aging, solvent replacement and surface modification step.
- Metal oxide-silica composite aerogels can be prepared. Accordingly, the metal oxide-silica composite aerogel prepared by the above manufacturing method is applicable to various industrial fields such as catalysts or heat insulating materials due to the pore and physical properties described above.
- 1 is a process chart sequentially showing a manufacturing process of a conventional metal oxide-silica composite airgel.
- FIG. 2 is a process chart sequentially showing a manufacturing process of a metal oxide-silica composite airgel according to an embodiment of the present invention.
- FIG. 1 is a process chart sequentially showing a manufacturing process of a conventional metal oxide-silica composite airgel.
- an acid catalyst was added to the silicate solution prepared by mixing water glass with water, followed by solving, and then gelled again, followed by aging, solvent replacement, surface modification, washing, and drying.
- a metal oxide-silica composite airgel was prepared.
- the conventional method for preparing silica airgel has complicated manufacturing processes, generation of a large amount of wastewater due to the use of an organic solvent, and excessive consumption of the surface modifier in the surface modification step.
- a metal salt solution having a controlled magnesium ion content is added to a silicate solution having a controlled concentration of reactants, and together with a silicate solution and a metal salt using an acid catalyst.
- a simple method of synthesizing a metal oxide-silica composite precipitate by controlling the pH of a mixed solution of a solution and drying it, a metal oxide having a low tap density, high specific surface area and pore volume ratio without aging, solvent replacement, and surface modification steps.
- Silica aerogels can be prepared.
- a metal oxide-silica composite airgel (hereinafter, simply referred to as a 'composite airgel') according to an embodiment of the present invention, preparing a silicate solution by dissolving water glass at a concentration of 0.125M to 3.0M. (Step 1); To the silicate solution, a metal salt solution having a metal ion concentration of 0.125M to 3.0M is added and mixed, and then, an acid catalyst is added to adjust the pH of the resulting mixture to 3 to 9, thereby preparing a metal oxide-silica composite precipitate.
- Precipitating step 2
- separating and drying the metal oxide-silica composite precipitate step 3
- the metal salt solution is such that the content of magnesium ions is greater than 50 mol% relative to the total moles of metal ions in the metal salt solution.
- FIG. 2 is a process chart sequentially showing a manufacturing process of the composite airgel according to an embodiment of the present invention. 2 is only an example for describing the present invention and the present invention is not limited thereto. Hereinafter, each step will be described in detail with reference to FIG. 2.
- step 1 is a step of preparing a silicate solution containing water glass (Na 2 SiO 3 ) at a concentration of 0.125M to 3.0M.
- the silicate solution may be prepared by dissolving water glass (Na 2 SiO 3 ) in a solvent, specifically water, at a concentration of 0.125M to 3.0M.
- a solvent specifically water
- the preparation of metal oxide-silica composite aerogels having reduced tap density and increased specific surface area, specifically tap density of 0.41 g / ml or less and specific surface area of 200 m 2 / g or more It is possible. If the concentration of the water glass is less than 0.125M, the silica content in the final composite aerogel is low, and if it exceeds 3.0M, the tap density increases and the specific surface area is increased as the composite airgel is formed in a more compact structure in the reaction solution. There is a fear of reduction.
- the silicate solution is more specifically at a concentration of 1.5M to 2.5M, even more specifically at less than 0.1 g / ml tap density and further increased specific surface area and more than 450m 2 / g and 0.8 cm 3 / g
- water glass may be included at a concentration of 2M. At this time, the water glass is not particularly limited, but may contain 28 wt% to 35 wt%, more specifically 28 wt% to 30 wt% silica (SiO 2 ) based on the total weight of the water glass.
- the silicate solution may include the water glass (Na 2 SiO 3 ) in an amount to include 0.04M to 6.0M silica when based on silica (SiO 2 ) included in the water glass.
- step 2 is a step of forming a metal oxide-silica composite precipitate by reacting the silicate solution prepared in step 1 with a metal salt solution.
- the metal oxide-silica composite precipitate is mixed with the silicate solution prepared in step 1 by adding a metal salt solution having a metal ion concentration of 0.125M to 3.0M, and then acid-catalyzing the pH of the resulting mixture. It can be formed by adjusting to the conditions of 3 to 9 by adding.
- the metal salt solution is prepared by dissolving a metal salt, which is a raw material for forming a metal oxide, in a solvent in a composite aerogel to be finally prepared, specifically, a magnesium (Mg) -containing metal salt in total moles of metal ions in the metal salt solution. It is included in an amount such that the content of magnesium ions to more than 50 mol%. If the content of magnesium ions in the metal salt solution is 50 mol% or less, the thermal conductivity may decrease due to an increase in the tap density and a sharp decrease in the specific surface area and the pore volume.
- a metal salt which is a raw material for forming a metal oxide
- the metal salt includes a magnesium-containing metal salt alone, or together with the magnesium-containing metal salt, in the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals and metals of Group 13 (IIIA)
- a salt containing a metal more specifically calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr), Silver (Ag), Titanium (Ti), Vanadium (V), Cobalt (Co), Molybdenum (Mo), Tin (Sn), Antimony (Sb) , Halide containing one or two or more metal elements selected from the group consisting of strontium (Sr), barium (Ba), and tungsten (W), more specifically chloride.
- the metal salt includes magnesium, calcium or mixed metals thereof
- the metal salt may be magnesium chloride alone, considering the reduced tap density, increased specific surface area and pore volume, and thus reduced thermal conductivity of the composite aerogel prepared. Or a mixture of magnesium chloride and calcium chloride.
- the metal salt when the metal salt includes two metal salts, it is preferable to adjust the concentration ratio of each metal ion so as to satisfy the ratio of the metal element in the metal oxide in the composite aerogel to be finally prepared.
- the metal salt in the case of composite airgel it is required for example, to have an excellent heat insulation performance, may include a MgO and CaO as the metal oxide, in which case the metal salt is Mg-containing metal salt under conditions which satisfy the concentration range in the Mg 2 + ion metal salt solution and Ca respectively contained in the content of metal ion ratio of metal salt may include an amount such that the molar ratio of 1: (2 + Mg: Ca 2 +) is 2.5: 1 to 1.5.
- a metal oxide-silica composite aerogel having a tap density of 0.41 g / ml or less and a specific surface area of 200 m 2 / g or more.
- Mg in metal salt solutions can be considered when the tap density is further reduced below 0.15 g / ml and the specific surface area increased above 300 m 2 / g, as well as the pore volume increase above 0.5 cm 3 / g and the resulting thermal conductivity reduction effect. may be included in an amount such that the molar ratio of 1: 2 + ions under the conditions to meet the range of concentrations of the metal salt containing Mg and Ca-containing metal salt Mg 2+: Ca 2+ of 2.1: 1 to 1.95.
- Mg considering the further reduced tap density below 0.1 g / ml and further increased specific surface area above 450 m 2 / g and pore volume increase above 0.8 cm 3 / g and consequently a significant reduction in thermal conductivity Containing metal salt, specifically MgCl 2 and Ca-containing metal salt, specifically CaCl 2 may be included in an amount such that Mg 2 + : Ca 2 + is in a molar ratio of 2: 1.
- the metal salt may be used in an amount such that the concentration of metal ions derived from the metal salt in the metal salt solution is 0.125M to 3.0M.
- the concentration of metal ions derived from the metal salt in the metal salt solution is 0.125M to 3.0M.
- silicate solutions in the above concentration range, the preparation of metal oxide-silica composite aerogels having reduced tap density and increased specific surface area, specifically tap density of 0.41 g / ml or less and specific surface area of 200 m 2 / g or more, It is possible. If the concentration of metal ions is less than 0.125M, the amount of metal oxides formed in the composite aerogel is small, and the improvement effect due to the formation of metal oxides is insignificant. There is a possibility that the physical properties of the rather deteriorated.
- the metal salt is The concentration of metal ions in the metal salt solution is 0.4 M to 2.0 M, more specifically even more specifically 0.1 g / ml or less, the tap density is further reduced and the specific surface area more than 450 m 2 / g and 0.8 cm In consideration of the increase in pore volume of 3 / g or more and a significant decrease in thermal conductivity, it may be used at 0.5M to 0.8M.
- the metal salt may be used in an amount such that the molar ratio of water glass to metal ions is 1: 1 to 5: 1, compared to the concentration of water glass in the silicate solution within the above concentration range.
- silicate solutions in the above concentration range the preparation of metal oxide-silica composite aerogels having reduced tap density and increased specific surface area, specifically tap density of 0.41 g / ml or less and specific surface area of 200 m 2 / g or more, It is possible. If out of the molar ratio range, there is a fear that the tap density of the composite airgel to be produced is increased.
- the solvent used for forming the metal salt solution can be used without particular limitation as long as it can dissolve the metal salt.
- Specific examples thereof include water or a hydrophilic polar organic solvent, and any one or a mixture of two or more thereof may be used.
- the hydrophilic polar organic solvent is excellent in miscibility with the above-described silicate solution, and may then be uniformly present in the gel during gelation. As a result, the solvent substitution step may be omitted in the preparation of the composite silica gel.
- the hydrophilic polar organic solvent may be specifically an alcohol solvent.
- the alcohol solvent is specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol and the like; Or polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, sorbitol, and the like, and any one or a mixture of two or more thereof may be used.
- the alcohol-based compound may be an alcohol having 1 to 8 carbon atoms.
- the alcohol-based compound may be a linear alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, propanol, or n-butanol, One kind alone or a mixture of two or more kinds may be used. More specifically, the alcohol-based compound may be methanol, ethanol or a mixture thereof.
- Addition and mixing of the metal salt solution to the silicate solution may be performed according to conventional methods.
- the pH of the mixture obtained as a result of the mixing process is adjusted to 3 to 9 using an acid catalyst.
- the pH of the mixed solution is within the above range, it is possible to prepare a metal oxide-silica composite airgel having a reduced tap density and an increased specific surface area, specifically, a tap density of 0.41 g / ml or less and a specific surface area of 200 m 2 / g or more. Do. If the pH of the mixed solution is out of the above range, the tap density may increase, and the specific surface area and pore volume may be greatly reduced.
- the pH of the mixture is neutral or basic conditions of 7 or more, condensation may occur during hydrolysis and condensation of silica.
- the reaction is generated, the content of the metal oxide, which serves as a structural support of the particles in the structure is reduced and the shrinkage phenomenon during drying is deep, as a result there is a fear that the increase in the tap density and decrease in the specific surface area.
- the tap density of the final composite aerogel may increase, and the specific surface area and pore characteristics may decrease.
- the pH of the mixed solution can be adjusted to a weakly acidic condition of more than 5 and less than 7, and more specifically, to 5 to 6 by adding an acid catalyst. have.
- the acid catalyst serves to increase the production rate of the composite precipitate by promoting the reaction of the silicate solution and the metal salt solution in the formation of the composite precipitate, specifically, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid ; Or organic acids such as acetic acid or citric acid, and any one or a mixture of two or more thereof may be used.
- the acid catalyst may be an inorganic acid, more specifically hydrochloric acid.
- Hydrochloric acid using, Cl, with H + ions mainly involved in the gelling reaction of the silica-to occur, wherein the metal salt generated in the ion (Cl -) and side reactions due to salt by using an acid catalyst include the same salts as reactants
- the physical properties of the composite airgel can be further improved, and wastewater treatment may be advantageous by unifying salt in wastewater after completion of manufacture.
- step 3 is a step of preparing a metal oxide-silica composite airgel by separating and drying the metal oxide-silica composite precipitate precipitated in step 2.
- step 3 the separation process of the precipitated metal oxide-silica composite precipitate may be performed according to a conventional method, and specifically, may be performed by separating from a solvent using a vacuum filter or the like.
- the manufacturing method of the composite airgel according to an embodiment of the present invention may further include a washing step after the formation of the metal oxide-silica composite precipitate.
- the washing process may be performed according to a conventional method.
- due to the excellent miscibility with the aqueous phase of the reaction solvent during the washing process it is easy to penetrate into the pores inside the silica gel particles, and when combined with the subsequent drying process, the drying effect and the possibility of shrinkage and deformation of the pores are low. It may be desirable to use a cleaning solvent.
- Alcohol compounds such as methanol, ethanol, isopropanol or propanol
- Hydrocarbon-based compounds such as hexane, octane, n-decane, n-heptane, n-undodecane, cyclohexane or toluene
- ketone compounds such as methyl ethyl ketone or acetone, and any one or a mixture of two or more thereof may be used.
- alcohol-based compounds more specifically ethanol, may be used in consideration of better affinity with water and minimizing the shrinkage and deformation of pores during the drying process.
- the washing process may be performed once or twice or more, specifically, 3 to 5 times.
- the washing process may be performed two or more times, it may be performed using the same washing solvent, it may be carried out using a different heterogeneous washing solvent.
- the drying process may be performed by a method such as heat treatment or hot air injection.
- specific temperature conditions during the drying process may be appropriately adjusted according to the washing solvent, specifically, may be carried out at a temperature of 90 °C to 200 °C.
- the metal oxide-silica composite airgel finally obtained after the drying process has an average particle diameter (D 50 ) of 7 ⁇ m to 15 ⁇ m, but when the particle size is excessively large beyond such a range, a pulverizing process to have an appropriate particle size is performed. May optionally be further performed.
- the pulverization process may be performed according to a conventional method, and may be performed under conditions such that the average particle diameter (D 50 ) of the metal oxide-silica composite airgel is 7 ⁇ m to 15 ⁇ m.
- the average particle diameter (D 50 ) of the metal oxide-silica composite airgel may be defined as the particle size based on 50% of the particle size distribution, wherein the average particle diameter of the metal oxide-silica composite airgel is laser diffraction method (laser) diffraction method) or as a dry analysis model, a particle size analyzer (Macrotrac Particle Size Analyzer S3500) was used to calculate the average particle diameter (D 50 ) at 50% of the particle size distribution in the measuring device. can do.
- laser laser diffraction method
- Macrotrac Particle Size Analyzer S3500 was used to calculate the average particle diameter (D 50 ) at 50% of the particle size distribution in the measuring device. can do.
- the metal oxide-silica composite aerogel having low tap density, high specific surface area and porosity, and low thermal conductivity as described above can be prepared.
- the metal oxide-silica composite airgel prepared by the above-described manufacturing method has an average particle diameter (D 50 ) of 7 ⁇ m to 15 ⁇ m, a tap density of 0.41 g / ml or less, and a BET specific surface area of 200 m 2 / g or more.
- the average particle diameter (D 50 ) is 7 ⁇ m to 15 ⁇ m
- the tap density is 0.038g / ml to 0.2g / ml
- BET specific surface area is 300m 2 / g to 600m 2 / g Can be.
- the method for preparing the metal oxide-silica composite aerogel according to an embodiment of the present invention the concentration of water glass in the silicate solution, the concentration of metal ions, the pH range of the mixture, the molar ratio of water glass and metal ions, and magnesium ions in the metal salt.
- the method for producing a metal oxide-silica composite airgel the step of preparing a silicate solution by dissolving the water glass in a concentration of 0.125M to 3.0M, more specifically 1.25M to 3.0M; To the silicate solution, a metal salt solution having a metal ion concentration of 0.125M to 3.0M, more specifically 0.4M to 2.0M is added and mixed, and then an acid catalyst is added to adjust the pH of the resulting mixture to 3-9.
- the silicate solution and the metal salt solution include a water glass: metal ion molar ratio of 5: 1 to 1: 1, more specifically 5: 1.
- MgCl 2 and CaCl 2 are used in an amount such that the molar ratio of magnesium to calcium is 2.5: 1 to 1.5: 1, more specifically, 2.1: 1 to 1.95: 1.
- Including, but the molar ratio of magnesium ions in the total moles of metal ions contained in the metal salt solution may be 50 mol% or more.
- a metal oxide-silica composite aerogel having low tap density, high specific surface area and porosity, and low thermal conductivity as described above can be prepared.
- the metal oxide-silica composite airgel is a composite in which a silica airgel and a metal oxide are mixed in the composite airgel structure.
- the metal oxide-silica composite airgel has a low tap density, a high specific surface area and a porosity, and a low thermal conductivity through controlling conditions in the manufacturing process.
- the metal oxide-silica composite airgel is 0.41 g / ml or less, or 0.038 g / ml to 0.41 g / ml, more specifically 0.038 g / ml to 0.15 g / ml, even more specifically 0.038 g / ml to It has a tap density of 0.1 g / ml.
- the tap density of the metal oxide-silica composite airgel may be measured using a tap density meter (TAP-2S, Logan Instruments co.).
- the metal oxide-silica composite airgel has a BET specific surface area of 200 m 2 / g or more, or 200 m 2 / g to 600 m 2 / g, more specifically 300 m 2 / g to 600 m 2 / g, may be more specifically 450m 2 / g to 600m 2 / g.
- the specific surface area of the metal oxide-silica composite airgel can be measured by the adsorption / desorption amount of nitrogen according to the partial pressure (0.11 ⁇ p / p o ⁇ 1) using the ASAP 2010 device of Micrometrics.
- the metal oxide-silica composite airgel may have an average particle diameter (D 50 ) of 7 ⁇ m to 15 ⁇ m, more specifically 8 ⁇ m to 15 ⁇ m.
- the average particle diameter (D 50 ) of the metal oxide-silica composite airgel may be defined as the particle size based on 50% of the particle size distribution, wherein the average particle diameter of the metal oxide-silica composite airgel is laser diffraction method (laser) diffraction method) or as a dry analysis model, a particle size analyzer (Macrotrac Particle Size Analyzer S3500) was used to calculate the average particle diameter (D 50 ) at 50% of the particle size distribution in the measuring device. can do.
- the metal oxide-silica composite airgel has a pore volume of 0.4 cm 3 / g to 1.0 cm 3 / g, more specifically 0.5 cm 3 / g to 1.0 cm 3 / g, and more specifically 0.8 cm 3 / g To 1.0 cm 3 / g.
- the pore volume in the metal oxide-silica composite airgel can be determined from the amount of mercury intrusion into the pores measured by mercury porosimeter analysis.
- the metal oxide-silica composite airgel may include micropores having a porosity of 80% by volume or more, or 90% by volume to 98% by volume, and an average pore diameter of 20nm or less, or 5nm to 15nm.
- the average pore diameter and porosity of the metal oxide-silica composite aerogel can be measured by the adsorption / desorption amount of nitrogen according to the partial pressure (0.11 ⁇ p / p o ⁇ 1) using an ASAP 2010 device of Micrometrics. .
- the volume occupied by the pores may exhibit low thermal conductivity and improved thermal insulation effect.
- the metal oxide-silica composite airgel may exhibit a thermal conductivity of 30 mW / mK or less.
- the thermal conductivity may be measured at 25 using a thermal conductivity meter (NETZSCH, HFM436 Lambda).
- the silica airgel is a particulate porous structure containing a plurality of micropores, the nano-sized primary particles, specifically, the average particle diameter (D 50 ) is 100nm or less, or Primary particles of 1 nm to 50 nm may be combined to include a microstructure, that is, a three-dimensional network structure, to form a network-shaped cluster.
- the metal oxide is fixed by the silanol groups present on the surface of the silica airgel, in order to increase the immobilization efficiency between the negative charge on the surface of the silica airgel and the positive charge of the metal oxide, It is desirable to control the density appropriately.
- the density of silanol groups present on the surface of the silica may be 10 / nm 2 or less, or 5 / nm 2 to 7 / nm 2 .
- the silica airgel has a BET (Brunauer-Emmett-Teller) surface area of 50 m 2 / g to 700 m 2 / g, an average particle diameter (D 50 ) of 10 ⁇ m to 150 ⁇ m, and a porosity of 0.5 cm 3 / g to 2.4 Cm 3 / g, and the average pore diameter of pores included in the silica airgel may be 0.5nm to 40nm.
- BET Brunauer-Emmett-Teller
- the BET specific surface area, average particle diameter, porosity or average pore diameter of the silica airgel is outside the above-mentioned ranges, for example, if the average pore diameter is less than 0.5 nm, the density of silanol groups is relatively increased and the absolute value of negative charge is greatly increased. As a result, the immobilization efficiency with the positively charged metal oxide is increased, but the hydrophilicity is also increased, thereby reducing the dispersibility of the metal oxide-silica composite aerogel.
- the silanol group density is relatively low, so that there is no fear of lowering the dispersibility of the metal oxide-silica composite aerogel, but the absolute value of the negative charge is low, so that the immobilization efficiency may be lowered.
- the metal oxide may be used without particular limitation as long as it is fixed by silanol groups on the surface of the silica airgel and used to form the composite airgel.
- the metal oxide may be an oxide containing any one or two or more metals selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals, and metals of Group 13 (IIIA), More specifically, calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), silver (Ag), titanium (Ti), vanadium (V), cobalt (Co), molybdenum (Mo), tin (Sn), antimony (Sb), strontium (Sr), barium (Ba), and tungsten (W) It may be an oxide containing any one or two or more metal elements selected from the group consisting of
- the metal oxides are discontinuously physically immobilized on the surface of the silica by electrical attraction occurring between the negatively charged and relatively positively charged metal oxides resulting from the silanol groups present on the surface of the silica airgel. Accordingly, in order to be easily and efficiently fixed on the silica surface and to exhibit a sufficient effect by the metal oxide, the metal oxide preferably has an appropriate particle size and specific surface area. Specifically, the metal oxide may have a specific surface area of 20 m 2 / g to 100 m 2 / g and an average particle diameter of 5 nm to 300 nm.
- the metal oxide may be adjusted in the content of the metal oxide contained in the composite airgel according to the use of the metal oxide-silica composite airgel, specifically, the metal oxide is 5 to 80% by weight based on the total weight of the composite airgel May be included as a%.
- the metal oxide is a silicon oxide (Si) contained in the metal oxide-silica composite aerogel and a metal (Me) contained in the metal oxide (mole ratio of 1: 1 to 3: 1 (molar ratio of Si / Me)), more specifically May be included in an amount such that 1.5: 1 to 3: 1, and more specifically 3: 1.
- the tap density is 0.41 g / ml or less, more specifically, 0.038 g / ml to 0.15 g / ml, and the specific surface area is 200 m 2 / g or more, more specifically As a metal oxide-silica composite airgel of 300m 2 / g to 600m 2 / g is provided.
- the concentration of water glass in the silicate solution, the concentration of metal ions, the pH range of the mixture, the mole ratio of water glass and metal ions, and the molar ratio of magnesium and calcium ions in the metal salt Through a manufacturing process configured in a more optimal combination, comprising a silica aerogel and a metal oxide, the metal oxide comprises magnesium oxide and calcium oxide in a content such that the molar ratio of magnesium and calcium is 2.5: 1 to 1.5: 1,
- the average particle diameter (D 50 ) is 7 ⁇ m to 15 ⁇ m
- the tap density is 0.038 g / ml to 0.1 g / ml
- the specific surface area is 450 m 2 / g to 600 m 2 / g
- the pore volume is 0.8 cm 3 /
- a metal oxide-silica composite airgel having a g to 1.0 cm 3 / g.
- the metal oxide-silica composite aerogel prepared by the manufacturing method according to the present invention has excellent physical properties such as low tap density and high specific surface area, and thus, catalysts or industrial furnace pipes or industrial furnaces.
- Insulation facilities such as thermal insulation, such as aircraft, ships, automobiles, building structures, such as insulation, insulation, or non-combustible materials are useful.
- Distilled water was added to the water glass (Na 2 SiO 3 ) and mixed to prepare a silicate solution.
- MgCl 2 and CaCl 2 were dissolved in distilled water to prepare a metal salt solution, which was then added to the silicate solution and mixed.
- HCl acid catalyst was added to the resulting mixture until the pH of the mixture became as shown in Table 1 below.
- a white precipitate formed immediately upon reaction of the metal salt solution with the silicate solution. The precipitate was spontaneously precipitated and then the transparent solvent was removed.
- the precipitate was repeatedly washed three times with deionized water, vacuum filtered, the resulting cake was placed in an oven, and dried at a temperature of 105 ° C. to prepare a metal oxide-silica composite airgel.
- the amount of each compound was used as described in Table 1 below.
- a metal oxide-silica composite airgel was prepared in the same manner as in Example 1-1, except that each reactant was used in the amount shown in Table 1 below.
- the tap density change of the metal oxide-silica composite airgel according to the addition of the acid catalyst was measured using a tap density measuring instrument (TAP-2S, Logan Istruments). co.) and measured and evaluated.
- the BET specific surface area was measured by the BET 6 point method by nitrogen gas adsorption
- the pore volume was measured by the mercury porosimeter (Mercury porosimeter) analysis to determine the amount of mercury penetration into the pores, from which pore volume was determined.
- the composite airgel prepared in the range of pH 3-9 of the mixed solution has a tap density of 0.16 g / ml or less, a specific surface area of 250 m 2 / g or more, and a pore volume of 0.5 cm 3 / g or more, and 30 mW / mK or less
- the thermal conductivity of the composite airgel of Example 1-3 which is prepared in a range of about 5 or more and less than 7, in particular, showed a low tap density of 0.1200 g / ml or less.
- Comparative Example 1-1 having a pH above 9 showed increased thermal conductivity due to higher tap density, lower specific surface area, and pore volume.
- the tap density and specific surface area of the metal oxide-silica composite airgel according to the metal ion concentration ratio were measured and evaluated.
- the metal oxide-silica composite airgel was prepared in the same manner as in Example 1-1, except that the concentration and pH of Table 2 were performed. Tap density was measured in the same manner as in Experimental Example 1 for the prepared composite airgel.
- the BET specific surface area of the airgel composite measure the absorption / desorption amount of nitrogen, and therefrom according to the partial pressure (0.11 ⁇ p / p o ⁇ 1) was measured using a Micrometrics ASAP 2010 equipment. The results are shown in Table 2 below.
- the Mg 2+ ions in the metal salt was more than 50 mol% based on the total moles of the total metal ions.
- Example 2-2 when the molar ratio of the metal ion concentration in the metal salt solution and the water glass in the silicate solution satisfies the conditions of 1: 3, the effect is more improved than in the case of 1: 1 or 1: 5. Indicated.
- the metal oxide-silica composite airgel was prepared in the same manner as in Example 1-1, except that the concentration and pH of Table 3 were performed.
- the tap density was measured for the prepared composite airgel, and the results are shown in Table 3 below.
- the concentration ratio of metal salt and water glass is about 1: 3, the mixed liquid
- the composite airgel is prepared at a pH of 5 or more and less than 7, a low tap density of 0.41 g / ml or less and a ratio of 200 m 2 / g or more even if the concentration of water glass in the silicate solution varies from 1.0 M to 3.0 M
- Composite airgels having a surface area and pore volume of about 0.5 cm 3 / g or more were prepared.
- the composite when the concentration of water glass contained in the silicate solution is 1.5M to 2.5M, the composite has lower tap density of 0.15g / ml or less, specific surface area of 350m 2 / g or more, and pore volume of about 0.5cm 3 / g or more Airgels have been prepared, especially composite airgels having a specific surface area of at least 450 m 2 / g and pore volume of at least about 0.8 cm 3 / g, with the lowest tap density of 0.10 g / ml or less, especially when the concentration of water glass is 2.0M Was prepared. From these results, it can be seen that the concentration of the water glass contained in the silicate solution is 1.5M to 2.5M, more specifically 2.0M, for producing a composite airgel having a lower tap density.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Silicon Compounds (AREA)
Abstract
The present invention provides a method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel which is prepared by means of same and has a low tap density and a high specific surface area, the method comprising the steps of: preparing a silicate solution by dissolving water glass so as to have a concentration from 0.125M to 3.0M; adding a metal salt solution, of which the metal ion concentration is from 0.125M to 3.0M, to the silicate solution, mixing same, then adjusting the pH of a mixture obtained as a result thereof to be from 3 to 9, thereby precipitating a metal oxide-silica composite precipitate; and separating the metal oxide-silica composite precipitate and drying same, wherein the metal salt solution comprises magnesium (Mg)-containing metal salts in an amount which enables a magnesium ion content to exceed 50 mol% with respect to the total mol of the metal ions in the metal salt solution.
Description
관련출원과의 상호인용Citation with Related Applications
본 출원은 2015년 6월 1일자 한국특허출원 제2015-0077278호 및 2016년 6월 1일자 한국특허출원 제2016-0067869호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2015-0077278 dated June 1, 2015 and Korean Patent Application No. 2016-0067869 dated June 1, 2016. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 별도의 에이징, 용매치환 및 표면개질 단계 없이 간단한 제조공정으로 낮은 탭밀도와 높은 비표면적을 갖는 금속산화물-실리카 복합 에어로겔을 제조하는 방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔에 관한 것이다.The present invention provides a method for producing a metal oxide-silica composite airgel having a low tap density and a high specific surface area by a simple manufacturing process without a separate aging, solvent replacement and surface modification step, and to the metal oxide-silica composite airgel prepared using the same. It is about.
최근들어 산업기술이 첨단화되면서 단열특성이 뛰어난 에어로겔(aerogel)에 대한 관심이 증대되고 있다. 지금까지 개발된 에어로겔로는 레졸시놀-포름알데하이드 또는 멜라민-포름알데하이드 에어로겔 입자 등의 유기 에어로겔과, 실리카(Silica, SiO2), 알루미나(Alumina, Al2O3), 티타니아(Titania, TiO2) 또는 탄소(Carbon, C) 에어로겔 등의 금속 산화물을 포함하는 무기 에어로겔이 있다.Recently, as industrial technologies are advanced, interest in aerogels having excellent thermal insulation properties is increasing. The aerogels developed so far include organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2). Or inorganic aerogels containing metal oxides such as carbon (C) aerogels.
이중에서도 실리카 에어로겔은 고다공성 물질로서, 높은 기공률(porosity)과 비표면적, 그리고 낮은 열전도도를 가져 우수한 단열효과를 나타낼 수 있기 때문에 단열재, 촉매, 흡음재, 반도체 회로의 층간 절연물질 등 다양한 분야에서의 응용이 기대되고 있다. Among these, silica airgel is a highly porous material, and has high porosity, specific surface area, and low thermal conductivity, and thus can exhibit excellent thermal insulation effect. Therefore, silica aerogel has high porosity, specific surface area, and low thermal conductivity. Applications are expected.
실리카 에어로겔은 다공성 구조로 인해 낮은 기계적 강도를 갖기 때문에, 통상 유리섬유, 세라믹 섬유, 또는 고분자 섬유 등의 기재와 함께 복합화하여 에어로겔 블랑켓 또는 에어로겔 시트 등과 같은 형태로 제품화되고 있다. 그러나, 실리카 에어로겔은 구조적으로 내부 기공에 공기를 90부피% 이상 함유하기 때문에, 밀도가 너무 낮아 가공시 비산이 심하고, 기재에 함침시키기 어려운 문제가 있다. 또, 일부 함침되더라도 기재와의 밀도 차이가 너무 커서 잘 섞이지 않기 때문에 외관 불량 및 물성 저하 등의 문제를 발생시킨다. 또, 부피 분율로 5 부피% 이상 섞여야 열전달을 효율적으로 차단하여 충진에 의한 단열 효과를 발휘하게 되지만, 분말 자체로는 이러한 높은 수준의 혼합 비율로 가공하는 것이 용이하지 않다.Since silica airgel has a low mechanical strength due to its porous structure, the silica airgel is usually combined with a substrate such as glass fiber, ceramic fiber, or polymer fiber to produce a product such as an airgel blanket or airgel sheet. However, since the silica airgel structurally contains 90% by volume or more of air in the internal pores, the density is too low, there is a severe scattering during processing, difficult to impregnate the substrate. In addition, even if impregnated in part, the difference in density from the substrate is too large and does not mix well, causing problems such as poor appearance and deterioration of physical properties. In addition, it is necessary to mix at least 5% by volume in a volume fraction to effectively block heat transfer to exert an insulating effect by filling, but the powder itself is not easy to process at such a high level of mixing ratio.
이에 따라, 실리카 에어로겔의 가공성을 높이는 동시에, 단열성, 흡읍성, 촉매활성 등의 에어로겔의 특성을 증진시키거나 또는 부가적으로 요구되는 성질을 부여하기 위해 첨가제를 에어로겔에 혼합시키는 방법이 제안되었다. 구체적으로는 실리카 에어로겔의 중합 전에 첨가제를 졸에 첨가하거나 또는 제조된 실리카 에어로겔을 첨가제를 함유하는 액상 또는 기상의 스트림과 접촉시키는 방법 등을 통해, 실리카 에어로겔 골격에 Ti, Fe 등과 같이 Si에 비해 무거운 원소들을 도입하여 구조 강화 및 밀도 증진하는 방법, 판상 구조의 무기물과 함께 복합체를 형성하는 방법 등이 제안되었다.Accordingly, a method of mixing an additive with an airgel has been proposed to enhance the processability of the silica airgel, and to enhance the properties of the airgel such as heat insulating property, suction ability, catalytic activity, or to impart additionally required properties. Specifically, the additives are added to the sol before the silica airgel is polymerized, or the prepared silica airgel is contacted with a liquid or gaseous stream containing the additive. The method of introducing the elements to strengthen the structure and increase the density, and the method of forming a composite with the plate-like inorganic material has been proposed.
그러나, 종래 방법들은 첨가제 물질들의 크기, 입자크기 분포 등의 제어가 용이하지 않고, 또 실리카 에어로겔의 제조과정에서 기공 구조의 변형 및 감소가 초래 되는 등의 문제가 있었다.However, the conventional methods are not easy to control the size, particle size distribution, etc. of the additive materials, and there is a problem such as deformation and reduction of the pore structure in the manufacturing process of the silica airgel.
본 발명의 목적은, 별도의 에이징, 용매치환 및 표면개질 단계 없이 간단한 제조공정으로 낮은 탭밀도와 높은 비표면적 등의 우수한 물성적 특징을 갖는 금속산화물-실리카 복합 에어로겔을 용이하게 제조할 수 있는 제조방법을 제공하는 것이다.An object of the present invention is to prepare a metal oxide-silica composite airgel with excellent physical properties such as low tap density and high specific surface area by a simple manufacturing process without additional aging, solvent replacement and surface modification steps. To provide a way.
본 발명의 또 다른 목적은, 상기 제조방법에 의해 제조된 금속산화물-실리카 복합 에어로겔을 제공하는 것이다.Still another object of the present invention is to provide a metal oxide-silica composite airgel prepared by the above production method.
상기의 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 물유리를 0.125M 내지 3.0M의 농도로 용해시켜 실리케이트 용액을 준비하는 단계; 상기 실리케이트 용액에, 금속이온의 농도가 0.125M 내지 3.0M인 금속염 용액을 첨가하여 혼합한 후, 산촉매를 첨가하여 결과로 수득되는 혼합물의 pH를 3 내지 9로 조절하여 금속산화물-실리카 복합 침전물을 침전시키는 단계; 및 상기 금속산화물-실리카 복합 침전물을 분리하고, 건조하는 단계를 포함하며, 상기 금속염 용액은 금속염 용액내 금속이온의 총 몰에 대하여 마그네슘 이온의 함량이 50몰% 초과가 되도록 하는 양으로 마그네슘(Mg) 포함 금속염을 포함하는 것인 금속산화물-실리카 복합 에어로겔의 제조방법을 제공한다.In order to solve the above problems, according to an embodiment of the present invention, dissolving a water glass to a concentration of 0.125M to 3.0M to prepare a silicate solution; To the silicate solution, a metal salt solution having a metal ion concentration of 0.125M to 3.0M is added and mixed, and then, an acid catalyst is added to adjust the pH of the resulting mixture to 3 to 9, thereby preparing a metal oxide-silica composite precipitate. Precipitating; And separating and drying the metal oxide-silica composite precipitate, wherein the metal salt solution comprises magnesium (Mg) in an amount such that the content of magnesium ions exceeds 50 mol% with respect to the total moles of metal ions in the metal salt solution. It provides a method for producing a metal oxide-silica composite airgel comprising a metal salt).
본 발명의 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 금속산화물-실리카 복합 에어로겔을 제공한다.According to another embodiment of the present invention, there is provided a metal oxide-silica composite aerogel prepared by the above production method.
본 발명에 따른 금속산화물-실리카 복합 에어로겔의 제조방법은 별도의 에이징, 용매치환 및 표면개질 단계 없이, 간단한 제조공정을 통해, 우수한 기공 특성과 함께 낮은 탭밀도와 높은 비표면적 등의 우수한 물성적 특성을 갖는 금속산화물-실리카 복합 에어로겔을 제조할 수 있다. 이에 따라 상기 제조방법에 의해 제조된 금속산화물-실리카 복합 에어로겔은 상기한 기공적, 물성적 특성으로 인해 촉매 또는 단열재 등의 다양한 산업 분야에 적용 가능하다.The method for preparing a metal oxide-silica composite airgel according to the present invention has excellent physical properties such as low tap density and high specific surface area with excellent pore characteristics through a simple manufacturing process, without a separate aging, solvent replacement and surface modification step. Metal oxide-silica composite aerogels can be prepared. Accordingly, the metal oxide-silica composite aerogel prepared by the above manufacturing method is applicable to various industrial fields such as catalysts or heat insulating materials due to the pore and physical properties described above.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 종래 금속산화물-실리카 복합 에어로겔의 제조공정을 순서대로 나타낸 공정도이다.1 is a process chart sequentially showing a manufacturing process of a conventional metal oxide-silica composite airgel.
도 2는 본 발명의 일 실시예에 따른 금속산화물-실리카 복합 에어로겔의 제조공정을 순서대로 나타낸 공정도이다.2 is a process chart sequentially showing a manufacturing process of a metal oxide-silica composite airgel according to an embodiment of the present invention.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
도 1은 종래 금속산화물-실리카 복합 에어로겔의 제조공정을 순서대로 나타낸 공정도이다. 도 1에 나타난 바와 같이, 종래의 경우 물유리를 물과 혼합하여 제조한 실리케이트 용액에 산촉매를 첨가하여 졸화하고, 이후 다시 겔화시키고, 이에 대해 에이징, 용매치환, 표면개질, 세척 및 건조 공정을 수행하여 금속산화물-실리카 복합 에어로겔을 제조하였다. 이와 같이 종래의 실리카 에어로겔의 제조방법은 제조공정이 복잡하고, 용매치환 시 유기용매 사용에 따른 다량의 폐수 발생, 그리고 표면개질단계에서의 표면개질제의 과량 소비의 문제점이 있었다. 1 is a process chart sequentially showing a manufacturing process of a conventional metal oxide-silica composite airgel. As shown in FIG. 1, in the conventional case, an acid catalyst was added to the silicate solution prepared by mixing water glass with water, followed by solving, and then gelled again, followed by aging, solvent replacement, surface modification, washing, and drying. A metal oxide-silica composite airgel was prepared. As described above, the conventional method for preparing silica airgel has complicated manufacturing processes, generation of a large amount of wastewater due to the use of an organic solvent, and excessive consumption of the surface modifier in the surface modification step.
이에 대해 본 발명은 물유리를 이용한 금속산화물-실리카 복합 에어로겔의 제조시, 반응물의 농도가 제어된 실리케이트 용액에 마그네슘 이온의 함량이 제어된 금속염 용액을 첨가하고, 이와 함께 산촉매를 이용하여 실리케이트 용액과 금속염 용액의 혼합액의 pH를 제어함으로써 금속산화물-실리카 복합 침전물을 합성하고, 이를 건조하는 간단한 방법으로, 에이징, 용매치환, 및 표면개질 단계없이도 낮은 탭밀도 및 높은 비표면적과 기공부비를 갖는 금속산화물-실리카 에어로겔을 제조할 수 있다. In the present invention, in the preparation of the metal oxide-silica composite airgel using water glass, a metal salt solution having a controlled magnesium ion content is added to a silicate solution having a controlled concentration of reactants, and together with a silicate solution and a metal salt using an acid catalyst. A simple method of synthesizing a metal oxide-silica composite precipitate by controlling the pH of a mixed solution of a solution and drying it, a metal oxide having a low tap density, high specific surface area and pore volume ratio without aging, solvent replacement, and surface modification steps. Silica aerogels can be prepared.
구체적으로, 본 발명의 일 실시예에 따른 금속산화물-실리카 복합 에어로겔(이하 간단히 '복합 에어로겔'이라 함)의 제조방법은, 물유리를 0.125M 내지 3.0M의 농도로 용해시켜 실리케이트 용액을 준비하는 단계(단계 1); 상기 실리케이트 용액에, 금속이온의 농도가 0.125M 내지 3.0M인 금속염 용액을 첨가하여 혼합한 후, 산촉매를 첨가하여 결과로 수득되는 혼합물의 pH를 3 내지 9로 조절하여 금속산화물-실리카 복합 침전물을 침전시키는 단계(단계 2); 및 상기 금속산화물-실리카 복합 침전물을 분리하고, 건조하는 단계(단계 3)를 포함하며, 이때 상기 금속염 용액은 금속염 용액내 금속이온의 총 몰에 대하여 마그네슘 이온의 함량이 50몰% 초과가 되도록 하는 양으로 마그네슘(Mg) 포함 금속염을 포함한다.Specifically, in the method for preparing a metal oxide-silica composite airgel (hereinafter, simply referred to as a 'composite airgel') according to an embodiment of the present invention, preparing a silicate solution by dissolving water glass at a concentration of 0.125M to 3.0M. (Step 1); To the silicate solution, a metal salt solution having a metal ion concentration of 0.125M to 3.0M is added and mixed, and then, an acid catalyst is added to adjust the pH of the resulting mixture to 3 to 9, thereby preparing a metal oxide-silica composite precipitate. Precipitating (step 2); And separating and drying the metal oxide-silica composite precipitate (step 3), wherein the metal salt solution is such that the content of magnesium ions is greater than 50 mol% relative to the total moles of metal ions in the metal salt solution. Metal salts containing magnesium (Mg) in amounts.
도 2는 본 발명의 일 실시예에 따른 복합 에어로겔의 제조공정을 순서대로 나타낸 공정도이다. 도 2는 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다. 이하 도 2를 참조하여 각 단계별로 상세히 설명한다.2 is a process chart sequentially showing a manufacturing process of the composite airgel according to an embodiment of the present invention. 2 is only an example for describing the present invention and the present invention is not limited thereto. Hereinafter, each step will be described in detail with reference to FIG. 2.
단계 1Step 1
본 발명의 일 실시예에 따른 복합 에어로겔의 제조방법에 있어서, 단계 1은 물유리(Na2SiO3)를 0.125M 내지 3.0M의 농도로 포함하는 실리케이트 용액을 준비하는 단계이다. In the method of manufacturing a composite airgel according to an embodiment of the present invention, step 1 is a step of preparing a silicate solution containing water glass (Na 2 SiO 3 ) at a concentration of 0.125M to 3.0M.
상기 실리케이트 용액은 물유리(Na2SiO3)를 0.125M 내지 3.0M의 농도로 용매, 구체적으로는 물 중에 용해시킴으로써 제조될 수 있다. 상기 농도 범위의 실리케이트 용액을 사용할 경우, 감소된 탭밀도 및 증가된 비표면적, 구체적으로는 0.41g/ml 이하의 탭밀도와 200m2/g 이상의 비표면적을 갖는 금속산화물-실리카 복합 에어로겔의 제조가 가능하다. 만약 상기 물유리의 농도가 0.125M 미만이면 최종 제조되는 복합 에어로겔에서의 실리카 함량이 낮고, 또 3.0M을 초과할 경우, 반응용액 내에서 보다 치밀한 구조로 복합 에어로겔이 형성됨에 따라 탭밀도 증가 및 비표면적 감소의 우려가 있다. 보다 구체적으로, 0.15g/ml 이하로 더욱 감소된 탭 밀도 및 300m2/g 이상으로 더욱 증가된 비표면적과 더불어 0.5cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 감소 효과를 고려할 때, 상기 실리케이트 용액은 보다 구체적으로는 1.5M 내지 2.5M의 농도로, 보다 더 구체적으로는 0.1g/ml 이하로 더욱 감소된 탭 밀도 및 450m2/g 이상으로 더욱 증가된 비표면적과 0.8cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 현저한 감소 효과를 고려할 때 2M의 농도로 물유리를 포함할 수 있다. 이때, 상기 물유리는 특별히 한정되는 것은 아니나, 물유리 총 중량에 대하여 28중량% 내지 35중량%, 보다 구체적으로는 28중량% 내지 30중량%의 실리카(SiO2)를 함유하는 것일 수 있다.The silicate solution may be prepared by dissolving water glass (Na 2 SiO 3 ) in a solvent, specifically water, at a concentration of 0.125M to 3.0M. When using silicate solutions in the above concentration range, the preparation of metal oxide-silica composite aerogels having reduced tap density and increased specific surface area, specifically tap density of 0.41 g / ml or less and specific surface area of 200 m 2 / g or more, It is possible. If the concentration of the water glass is less than 0.125M, the silica content in the final composite aerogel is low, and if it exceeds 3.0M, the tap density increases and the specific surface area is increased as the composite airgel is formed in a more compact structure in the reaction solution. There is a fear of reduction. More specifically, considering the tap density further reduced below 0.15 g / ml and the specific surface area further increased above 300 m 2 / g, the pore volume increase above 0.5 cm 3 / g and thus the thermal conductivity reduction effect, The silicate solution is more specifically at a concentration of 1.5M to 2.5M, even more specifically at less than 0.1 g / ml tap density and further increased specific surface area and more than 450m 2 / g and 0.8 cm 3 / g Considering the above pore volume increase and a significant decrease in thermal conductivity, water glass may be included at a concentration of 2M. At this time, the water glass is not particularly limited, but may contain 28 wt% to 35 wt%, more specifically 28 wt% to 30 wt% silica (SiO 2 ) based on the total weight of the water glass.
또, 상기 실리케이트 용액은 물유리내 포함된 실리카(SiO2)를 기준으로 할 때, 실리카 0.04M 내지 6.0M을 포함하도록 하는 양으로 상기 물유리(Na2SiO3)를 포함하는 것일 수 있다.
In addition, the silicate solution may include the water glass (Na 2 SiO 3 ) in an amount to include 0.04M to 6.0M silica when based on silica (SiO 2 ) included in the water glass.
단계 2Step 2
본 발명의 일 실시예에 따른 복합 에어로겔의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조한 실리케이트 용액을 금속염 용액과 반응시켜 금속산화물-실리카 복합 침전물을 형성하는 단계이다.In the method of manufacturing a composite airgel according to an embodiment of the present invention, step 2 is a step of forming a metal oxide-silica composite precipitate by reacting the silicate solution prepared in step 1 with a metal salt solution.
구체적으로, 상기 금속산화물-실리카 복합 침전물은 상기 단계 1에서 제조한 실리케이트 용액에, 금속이온의 농도가 0.125M 내지 3.0M인 금속염 용액을 첨가하여 혼합한 후, 결과로 수득되는 혼합물의 pH를 산촉매를 첨가하여 3 내지 9의 조건으로 조절함으로써 형성될 수 있다. Specifically, the metal oxide-silica composite precipitate is mixed with the silicate solution prepared in step 1 by adding a metal salt solution having a metal ion concentration of 0.125M to 3.0M, and then acid-catalyzing the pH of the resulting mixture. It can be formed by adjusting to the conditions of 3 to 9 by adding.
상기 금속염 용액은, 최종 제조되는 복합 에어로겔에 있어서 금속산화물을 형성하도록 하는 원료물질인 금속염을, 용매 중에 용해시켜 제조된 것으로, 구체적으로는 마그네슘(Mg) 포함 금속염을 금속염 용액 내 금속이온의 총 몰에 대하여 마그네슘 이온의 함량이 50몰% 초과가 되도록 하는 양으로 포함하는 것이다. 금속염 용액중 마그네슘 이온의 함량이 50몰% 이하이면, 탭밀도의 증가 및 비표면적과 기공부피의 급격한 저하로 열전도도가 저하될 우려가 있다. The metal salt solution is prepared by dissolving a metal salt, which is a raw material for forming a metal oxide, in a solvent in a composite aerogel to be finally prepared, specifically, a magnesium (Mg) -containing metal salt in total moles of metal ions in the metal salt solution. It is included in an amount such that the content of magnesium ions to more than 50 mol%. If the content of magnesium ions in the metal salt solution is 50 mol% or less, the thermal conductivity may decrease due to an increase in the tap density and a sharp decrease in the specific surface area and the pore volume.
보다 구체적으로, 상기 금속염은 마그네슘 포함 금속염 단독으로 포함하거나, 또는 상기 마그네슘 포함 금속염과 함께, 알칼리 금속, 알칼리 토금속, 란탄족, 악티늄족, 전이 금속 및 제13족(IIIA)의 금속으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 금속을 포함하는 염일 수 있으며, 보다 구체적으로는 칼슘(Ca), 마그네슘(Mg), 구리(Cu), 아연(Zn), 망간(Mn), 카드뮴(Cd), 납(Pb), 니켈(Ni), 크롬(Cr), 은(Ag), 티타늄(Ti), 바나듐(V), 코발트(Co), 몰리브덴(Mo), 주석(Sn), 안티모니(Sb), 스트로튬(Sr), 바륨(Ba), 및 텅스텐(W)로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하는 할로겐화물, 보다 구체적으로는 염화물일 수 있다. 또 상기한 금속들 중에서도 복합 에어로겔의 용도에 따라 적절히 선택될 수 있는데, 일례로 복합 에어로겔에 대해 단열 효과가 요구되는 용도로의 적용을 고려할 경우, 상기 금속염은 마그네슘, 칼슘 또는 이들의 혼합 금속을 포함하는 염화물일 수 있으며, 제조되는 복합 에어로겔의 탭밀도 감소, 비표면적 및 기공 부피 증가, 그리고 이에 따른 열전도도 감소 효과를 고려할 때, 상기 금속염은 염화마그네슘 단독이거나; 또는 염화마그네슘과 염화칼슘의 혼합물일 수 있다. More specifically, the metal salt includes a magnesium-containing metal salt alone, or together with the magnesium-containing metal salt, in the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals and metals of Group 13 (IIIA) Any one or two or more selected may be a salt containing a metal, more specifically calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr), Silver (Ag), Titanium (Ti), Vanadium (V), Cobalt (Co), Molybdenum (Mo), Tin (Sn), Antimony (Sb) , Halide containing one or two or more metal elements selected from the group consisting of strontium (Sr), barium (Ba), and tungsten (W), more specifically chloride. In addition, among the above metals may be appropriately selected according to the use of the composite aerogel, for example, when considering the application to the application that requires a thermal insulation effect on the composite aerogel, the metal salt includes magnesium, calcium or mixed metals thereof The metal salt may be magnesium chloride alone, considering the reduced tap density, increased specific surface area and pore volume, and thus reduced thermal conductivity of the composite aerogel prepared. Or a mixture of magnesium chloride and calcium chloride.
또, 상기 금속염이 2종의 금속염을 포함하는 경우, 최종 제조되는 복합 에어로겔내 금속산화물에서의 금속 원소의 비를 충족하도록 각각의 금속이온의 농도비를 조절하여 첨가하는 것이 바람직하다. 일례로, 우수한 단열 성능을 갖도록 요구되는 복합 에어로겔의 경우, 금속산화물로서 MgO 및 CaO를 포함할 수 있으며, 이 경우 상기 금속염은 금속염 용액내 Mg2
+ 이온의 농도 범위를 충족하는 조건하에서 Mg 함유 금속염과 Ca 함유 금속염을 각각의 금속 이온의 함량비(Mg2
+:Ca2
+)가 2.5:1 내지 1.5:1의 몰비가 되도록 하는 함량으로 포함할 수 있다. 이 같은 혼합비로 포함할 경우, 0.41g/ml 이하의 탭밀도와 200m2/g 이상의 비표면적을 갖는 금속산화물-실리카 복합 에어로겔의 제조가 가능하다. 더 나아가 0.15g/ml 이하로 더욱 감소된 탭 밀도 및 300m2/g 이상으로 더욱 증가된 비표면적과 더불어 0.5cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 감소 효과를 고려할 때 금속염 용액내 Mg2
+ 이온의 농도 범위를 충족하는 조건하에서 Mg 함유 금속염과 Ca 함유 금속염이 Mg2
+:Ca2
+가 2.1:1 내지 1.95:1의 몰비가 되도록 하는 함량으로 포함될 수 있다. 보다 더 구체적으로는 0.1g/ml 이하로 더욱 감소된 탭 밀도 및 450m2/g 이상으로 더욱 증가된 비표면적과 0.8cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 현저한 감소 효과를 고려할 때 Mg 함유 금속염, 구체적으로 MgCl2와 Ca 함유 금속염, 구체적으로 CaCl2가 Mg2
+:Ca2
+가 2:1의 몰비가 되도록 하는 함량으로 포함될 수 있다.In addition, when the metal salt includes two metal salts, it is preferable to adjust the concentration ratio of each metal ion so as to satisfy the ratio of the metal element in the metal oxide in the composite aerogel to be finally prepared. In the case of composite airgel it is required for example, to have an excellent heat insulation performance, may include a MgO and CaO as the metal oxide, in which case the metal salt is Mg-containing metal salt under conditions which satisfy the concentration range in the Mg 2 + ion metal salt solution and Ca respectively contained in the content of metal ion ratio of metal salt may include an amount such that the molar ratio of 1: (2 + Mg: Ca 2 +) is 2.5: 1 to 1.5. When included in such a mixing ratio, it is possible to prepare a metal oxide-silica composite aerogel having a tap density of 0.41 g / ml or less and a specific surface area of 200 m 2 / g or more. Furthermore, Mg in metal salt solutions can be considered when the tap density is further reduced below 0.15 g / ml and the specific surface area increased above 300 m 2 / g, as well as the pore volume increase above 0.5 cm 3 / g and the resulting thermal conductivity reduction effect. may be included in an amount such that the molar ratio of 1: 2 + ions under the conditions to meet the range of concentrations of the metal salt containing Mg and Ca-containing metal salt Mg 2+: Ca 2+ of 2.1: 1 to 1.95. More specifically, Mg considering the further reduced tap density below 0.1 g / ml and further increased specific surface area above 450 m 2 / g and pore volume increase above 0.8 cm 3 / g and consequently a significant reduction in thermal conductivity Containing metal salt, specifically MgCl 2 and Ca-containing metal salt, specifically CaCl 2 may be included in an amount such that Mg 2 + : Ca 2 + is in a molar ratio of 2: 1.
또, 상기 금속염은 금속염 용액 중 금속염으로부터 유래되는 금속 이온의 농도가 0.125M 내지 3.0M이 되도록 하는 양으로 사용될 수 있다. 상기 농도 범위의 실리케이트 용액을 사용할 경우, 감소된 탭밀도 및 증가된 비표면적, 구체적으로는 0.41g/ml 이하의 탭밀도와 200m2/g 이상의 비표면적을 갖는 금속산화물-실리카 복합 에어로겔의 제조가 가능하다. 만약 금속 이온의 농도가 0.125M 미만이면 복합 에어로겔에 형성되는 금속산화물의 양이 적어, 금속산화물 형성에 따른 개선효과가 미미하고, 3.0M을 초과하면 과량의 금속산화물 형성으로 탭밀도를 비롯한 복합 에어로겔의 물성적 특성이 오히려 저하될 우려가 있다. 구체적으로 0.15g/ml 이하로 더욱 감소된 탭 밀도 및 300m2/g 이상으로 더욱 증가된 비표면적과 더불어 0.5cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 감소 효과를 고려할 때, 상기 금속염은 금속염 용액 중 금속이온의 농도가 0.4M 내지 2.0M, 보다 더 구체적으로는 보다 더 구체적으로는 0.1g/ml 이하로 더욱 감소된 탭 밀도 및 450m2/g 이상으로 더욱 증가된 비표면적과 0.8cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 현저한 감소 효과를 고려할 때 0.5M 내지 0.8M로 사용될 수 있다. In addition, the metal salt may be used in an amount such that the concentration of metal ions derived from the metal salt in the metal salt solution is 0.125M to 3.0M. When using silicate solutions in the above concentration range, the preparation of metal oxide-silica composite aerogels having reduced tap density and increased specific surface area, specifically tap density of 0.41 g / ml or less and specific surface area of 200 m 2 / g or more, It is possible. If the concentration of metal ions is less than 0.125M, the amount of metal oxides formed in the composite aerogel is small, and the improvement effect due to the formation of metal oxides is insignificant. There is a possibility that the physical properties of the rather deteriorated. Specifically, considering the tap density further reduced below 0.15 g / ml and the specific surface area further increased above 300 m 2 / g, the pore volume of 0.5 cm 3 / g or more and the resulting thermal conductivity reduction effect, the metal salt is The concentration of metal ions in the metal salt solution is 0.4 M to 2.0 M, more specifically even more specifically 0.1 g / ml or less, the tap density is further reduced and the specific surface area more than 450 m 2 / g and 0.8 cm In consideration of the increase in pore volume of 3 / g or more and a significant decrease in thermal conductivity, it may be used at 0.5M to 0.8M.
또, 상기 금속염은 상기한 농도 범위내에서 실리케이트 용액 중의 물유리의 농도와 비교하여, 물유리:금속이온의 몰비가 1:1 내지 5:1이 되도록 하는 양으로 사용될 수 있다. 상기 농도 범위의 실리케이트 용액을 사용할 경우, 감소된 탭밀도 및 증가된 비표면적, 구체적으로는 0.41g/ml 이하의 탭밀도와 200m2/g 이상의 비표면적을 갖는 금속산화물-실리카 복합 에어로겔의 제조가 가능하다. 만약 상기 몰비 범위를 벗어날 경우, 최종 제조되는 복합 에어로겔의 탭밀도가 증가할 우려가 있다. 보다 구체적으로는 0.15g/ml 이하로 더욱 감소된 탭 밀도 및 300m2/g 이상으로 더욱 증가된 비표면적과 더불어 0.5cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 감소 효과를 고려할 때, 물유리: 금속이온의 몰비가 3:1 내지 5:1, 보다 더 구체적으로는 0.1g/ml 이하로 더욱 감소된 탭 밀도 및 450m2/g 이상으로 더욱 증가된 비표면적과 0.8cm3/g 이상의 기공부피 증가 및 그에 따른 열전도도 현저한 감소 효과를 고려할 때 3:1의 몰비로 사용될 수 있다.In addition, the metal salt may be used in an amount such that the molar ratio of water glass to metal ions is 1: 1 to 5: 1, compared to the concentration of water glass in the silicate solution within the above concentration range. When using silicate solutions in the above concentration range, the preparation of metal oxide-silica composite aerogels having reduced tap density and increased specific surface area, specifically tap density of 0.41 g / ml or less and specific surface area of 200 m 2 / g or more, It is possible. If out of the molar ratio range, there is a fear that the tap density of the composite airgel to be produced is increased. More specifically, water glass considering the tap density further reduced below 0.15 g / ml and the specific surface area further increased above 300 m 2 / g, as well as the pore volume increase above 0.5 cm 3 / g and the resulting thermal conductivity reduction effect : Molar ratio of metal ions 3: 3 to 5: 1, more specifically 0.1 g / ml or less, further reduced tap density and more specific surface area above 450 m 2 / g and pores of 0.8 cm 3 / g or more The volume increase and hence thermal conductivity can also be used in a molar ratio of 3: 1 given the significant reduction effect.
또, 상기 금속염 용액의 형성을 위해 사용되는 용매는 상기한 금속염을 용해시킬 수 있는 것이라면 특별한 제한없이 사용가능하다. 구체적으로는 물 또는 친수성의 극성 유기용매를 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 친수성의 극성 유기용매는, 상기한 실리케이트 용액과의 혼화성이 우수하여, 이후 겔화시 겔 내에 균일하게 존재할 수 있다. 그 결과, 이후 복합 실리카겔의 제조시 용매 치환 단계를 생략할 수 있다.Further, the solvent used for forming the metal salt solution can be used without particular limitation as long as it can dissolve the metal salt. Specific examples thereof include water or a hydrophilic polar organic solvent, and any one or a mixture of two or more thereof may be used. Of these, the hydrophilic polar organic solvent is excellent in miscibility with the above-described silicate solution, and may then be uniformly present in the gel during gelation. As a result, the solvent substitution step may be omitted in the preparation of the composite silica gel.
상기 친수성의 극성 유기용매는 구체적으로 알코올계 용매일 수 있다. 또, 상기 알코올계 용매는 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 물과의 혼화성 및 실리카겔내 균일 분산성을 고려할 때, 상기 알코올계 화합물은 탄소수 1 내지 8의 알코올일 수 있다. 또 상기한 효과와 더불어 이후 실리카 표면에 대한 개질 반응의 효율을 고려할 때, 상기 알코올계 화합물은 메탄올, 에탄올, 프로판올, 또는 n-부탄올과 같은 탄소수 1 내지 4의 직쇄상 알코올일 수 있으며, 이들 중 1종 단독으로 또는 2종 이상의 혼합물이 사용될 수 있다. 보다 더 구체적으로 상기 알코올계 화합물은 메탄올, 에탄올 또는 이의 혼합물일 수 있다.The hydrophilic polar organic solvent may be specifically an alcohol solvent. In addition, the alcohol solvent is specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol and the like; Or polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, sorbitol, and the like, and any one or a mixture of two or more thereof may be used. In consideration of the miscibility with water and the uniform dispersibility in silica gel, the alcohol-based compound may be an alcohol having 1 to 8 carbon atoms. In addition to the above effects, when considering the efficiency of the modification reaction on the surface of the silica later, the alcohol-based compound may be a linear alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, propanol, or n-butanol, One kind alone or a mixture of two or more kinds may be used. More specifically, the alcohol-based compound may be methanol, ethanol or a mixture thereof.
상기 실리케이트 용액에 대한 금속염 용액의 첨가 및 혼합은 통상의 방법에 따라 수행될 수 있다.Addition and mixing of the metal salt solution to the silicate solution may be performed according to conventional methods.
이후 상기 혼합 공정의 결과로 수득되는 혼합물에 대해 산촉매를 이용하여 pH를 3 내지 9로 조절한다. 혼합액의 pH가 상기 범위 내일 때, 감소된 탭밀도 및 증가된 비표면적, 구체적으로는 0.41g/ml 이하의 탭밀도와 200m2/g 이상의 비표면적을 갖는 금속산화물-실리카 복합 에어로겔의 제조가 가능하다. 만약 혼합액의 pH가 상기 범위를 벗어날 경우, 탭밀도가 증가하고, 비표면적 및 기공부피가 크게 감소할 우려가 있다. 상기 혼합물의 pH가 7 이상의 중성 또는 염기성 조건일 경우, 실리카의 가수분해 및 축합반응 중 축합반응이 발생할 수 있는데, pH가 9를 초과할 경우 금속이온의 산화금속으로의 환원반응에서 과도한 OH- 농도에 의해 금속 수산화물 형태로 이루어지게 된다, 그 결과 입자 내 산화금속-실리카의 복합 에어로겔 형성 외의 실리카의 축합반응 및 금속 수산화물의 형성이 발생하여 입자 내의 불균일성이 증가하고, 탭밀도 증가 및 비표면적의 감소가 초래될 우려가 있다. 또 pH가 5 미만의 산성 조건이면 금속이온의 환원반응에 필요한 OH-의 농도가 낮아져 환원반응이 감소될 수 있는데, pH가 3 미만일 경우, OH-의 농도가 지나치게 낮아 환원반응이 억제되어 실리카 형성 반응이 발생하게 되고, 구조체 내부에서 입자의 구조 지지 역할을 하는 산화금속의 함량이 감소하여 건조시 수축현상이 심화되고, 그 결과 탭밀도의 증가 및 비표면적의 감소가 발생할 우려가 있다. 그 결과 최종 제조되는 복합 에어로겔의 탭밀도가 증가하고, 비표면적 및 기공특성이 저하될 수 있다.Thereafter, the pH of the mixture obtained as a result of the mixing process is adjusted to 3 to 9 using an acid catalyst. When the pH of the mixed solution is within the above range, it is possible to prepare a metal oxide-silica composite airgel having a reduced tap density and an increased specific surface area, specifically, a tap density of 0.41 g / ml or less and a specific surface area of 200 m 2 / g or more. Do. If the pH of the mixed solution is out of the above range, the tap density may increase, and the specific surface area and pore volume may be greatly reduced. When the pH of the mixture is neutral or basic conditions of 7 or more, condensation may occur during hydrolysis and condensation of silica. When the pH exceeds 9, excessive OH − concentration in the reduction of metal ions to metal oxides is observed. This results in the formation of metal hydroxides, resulting in condensation of silica and formation of metal hydroxides in addition to the formation of complex aerogels of metal oxide-silica in the particles, resulting in increased non-uniformity in the particles, increased tap density and reduced specific surface area. There is a fear of causing. In addition, if the pH is less than 5, the concentration of OH- required for the reduction of metal ions may be reduced, thereby reducing the reduction reaction. If the pH is less than 3, the concentration of OH − is too low to inhibit the reduction reaction to form silica. The reaction is generated, the content of the metal oxide, which serves as a structural support of the particles in the structure is reduced and the shrinkage phenomenon during drying is deep, as a result there is a fear that the increase in the tap density and decrease in the specific surface area. As a result, the tap density of the final composite aerogel may increase, and the specific surface area and pore characteristics may decrease.
pH 조절에 따른 탭밀도 및 비표면적과 기공특성의 발란스 좋은 개선 효과를 얻기 위해서는 산촉매 투입을 통해 혼합액의 pH를 5 이상 7 미만의 약산성 조건으로, 보다 더 구체적으로는 pH를 5 내지 6으로 조절할 수 있다.Balance of tap density, specific surface area and pore characteristics according to pH adjustment In order to obtain a good improvement effect, the pH of the mixed solution can be adjusted to a weakly acidic condition of more than 5 and less than 7, and more specifically, to 5 to 6 by adding an acid catalyst. have.
한편, 상기 산촉매는 복합 침전물의 형성시, 실리케이트 용액과 금속염 용액의 반응을 촉진시켜 복합 침전물의 생성율을 높이는 역할을 한을 하는 것으로, 상기 산촉매로는 구체적으로 염산, 황산, 인산 또는 질산과 같은 무기산; 또는 아세트산 또는 구연산과 같은 유기산을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 상기 산촉매는 무기산, 보다 구체적으로는 염산일 수 있다. 염산 사용시, 실리카의 겔화 반응에 주로 참여하는 H+ 이온과 더불어 Cl-가 발생하는데, 이때 금속이온에서 발생하는 염(Cl-)과 동일 염이 포함된 산촉매를 반응물질로 사용함으로써 염에 의한 부반응을 최소화하여 복합 에어로겔의 물성을 더욱 향상시킬 수 있고, 또 제조완료 후 페수 내 염을 통일함으로써 폐수 처리가 유리할 수 있다. On the other hand, the acid catalyst serves to increase the production rate of the composite precipitate by promoting the reaction of the silicate solution and the metal salt solution in the formation of the composite precipitate, specifically, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid ; Or organic acids such as acetic acid or citric acid, and any one or a mixture of two or more thereof may be used. Among these, the acid catalyst may be an inorganic acid, more specifically hydrochloric acid. Hydrochloric acid using, Cl, with H + ions, mainly involved in the gelling reaction of the silica-to occur, wherein the metal salt generated in the ion (Cl -) and side reactions due to salt by using an acid catalyst include the same salts as reactants By minimizing this, the physical properties of the composite airgel can be further improved, and wastewater treatment may be advantageous by unifying salt in wastewater after completion of manufacture.
상기 실리케이트 용액과 금속염 용액의 혼합물에 대해 산촉매를 투입하여 pH를 5 이상 7 미만으로 조절하면, 금속산화물-실리카 복합 침전물이 형성, 침전된다. 일례로, 상기 금속염으로서 MgCl2 및 CaCl2를 사용한 경우, 하기 반응식 1에서와 같은 반응에 의해 MgO-CaO-SiO2의 복합 침전물이 침전된다. When the acid catalyst is added to the mixture of the silicate solution and the metal salt solution to adjust the pH to 5 or more and less than 7, a metal oxide-silica composite precipitate is formed and precipitated. For example, when MgCl 2 and CaCl 2 are used as the metal salt, a composite precipitate of MgO—CaO—SiO 2 is precipitated by the same reaction as in Scheme 1 below.
[반응식 1]Scheme 1
Na2O·nSiO2(I) + 1/2Mg2
+ + 1/2Ca2
+ -> (Mg, Ca)O·nSiO2(s) + 2Na+
Na 2 O.nSiO 2 (I) + 1 / 2Mg 2 + + 1 / 2Ca 2 + -> (Mg, Ca) O.nSiO 2 (s) + 2Na +
단계 3Step 3
본 발명의 일 실시예에 따른 복합 에어로겔의 제조방법에 있어서, 단계 3은 상기 단계 2에서 침전된 금속산화물-실리카 복합 침전물을 분리한 후 건조하여 금속산화물-실리카 복합 에어로겔을 제조하는 단계이다.In the method of manufacturing a composite airgel according to an embodiment of the present invention, step 3 is a step of preparing a metal oxide-silica composite airgel by separating and drying the metal oxide-silica composite precipitate precipitated in step 2.
단계 3에 있어서, 침전된 금속산화물-실리카 복합 침전물의 분리 공정은 통상의 방법에 따라 수행될 수 있으며, 구체적으로는 진공 필터 등을 이용하여 용매와 분리함으로써 수행될 수 있다.In step 3, the separation process of the precipitated metal oxide-silica composite precipitate may be performed according to a conventional method, and specifically, may be performed by separating from a solvent using a vacuum filter or the like.
상기 금속산화물-실리카 복합 침전물의 분리 후 건조 공정의 실시에 앞서, 침전물에 잔류하는 미반응된 반응물(예를 들면 Si4
+, Mg2
+ 또는 Ca2
+)과 부가 이온(Na+ 또는 Cl- 등)의 제거를 위한 세척 공정이 선택적으로 더 수행될 수 있다. 이 경우, 본 발명의 일 실시예에 따른 복합 에어로겔의 제조방법은 금속산화물-실리카 복합 침전물의 형성 후, 세척공정을 더 포함할 수 있다. After separation of the metal oxide-silica composite precipitate, prior to the drying process, unreacted reactants (eg, Si 4 + , Mg 2 + or Ca 2 + ) remaining in the precipitate and additional ions (Na + or Cl − May be optionally further performed for removal. In this case, the manufacturing method of the composite airgel according to an embodiment of the present invention may further include a washing step after the formation of the metal oxide-silica composite precipitate.
상기 세척 공정은 통상의 방법에 따라 수행될 수 있다. 다만, 상기 세척 공정시 반응용매인 수용액상과의 혼화성이 우수하여 실리카겔 입자 내부의 기공까지 침투가 용이하고, 후속의 건조 공정과의 조합시 건조 효과 및 그에 따른 기공의 수축 및 변형 우려가 낮은 세척용매를 사용하는 것이 바람직할 수 있다. 구체적으로는 물; 메탄올, 에탄올, 이소프로판올 또는 프로판올 등의 알코올계 화합물; 헥산, 옥탄, n-데칸, n-헵탄, n-운도데칸, 사이클로헥산 또는 톨루엔 등의 탄화수소계 화합물; 또는 메틸에틸케톤 또는 아세톤 등의 케톤계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 물과의 보다 우수한 친화성, 그리고 건조 공정시 기공의 수축 및 변형 최소화 효과를 고려할 때 알코올계 화합물, 보다 구체적으로는 에탄올이 사용될 수 있다.The washing process may be performed according to a conventional method. However, due to the excellent miscibility with the aqueous phase of the reaction solvent during the washing process, it is easy to penetrate into the pores inside the silica gel particles, and when combined with the subsequent drying process, the drying effect and the possibility of shrinkage and deformation of the pores are low. It may be desirable to use a cleaning solvent. Specifically water; Alcohol compounds such as methanol, ethanol, isopropanol or propanol; Hydrocarbon-based compounds such as hexane, octane, n-decane, n-heptane, n-undodecane, cyclohexane or toluene; Or ketone compounds such as methyl ethyl ketone or acetone, and any one or a mixture of two or more thereof may be used. Among these, alcohol-based compounds, more specifically ethanol, may be used in consideration of better affinity with water and minimizing the shrinkage and deformation of pores during the drying process.
상기 세척 공정은 1회 또는 2회 이상, 구체적으로는 3회 내지 5회 반복 수행될 수 있다. 또, 상기 세척 공정이 2회 이상 수행될 경우, 동일한 세척용매를 이용하여 수행될 수도 있고, 서로 다른 이종의 세척용매를 이용하여 수행될 수도 있다. The washing process may be performed once or twice or more, specifically, 3 to 5 times. In addition, when the washing process is performed two or more times, it may be performed using the same washing solvent, it may be carried out using a different heterogeneous washing solvent.
상기 금속산화물-실리카 복합 침전물의 분리 또는 세척 공정 후에는, 건조 공정이 수행된다.After the separation or washing process of the metal oxide-silica composite precipitate, a drying process is performed.
상기 건조 공정은 가열처리 또는 열풍 주입 등의 방법으로 수행될 수 있다. 또 상기 건조 공정시 구체적인 온도 조건은 세척 용매에 따라 적절히 조절될 수 있으며, 구체적으로는 90℃ 내지 200℃의 온도에서 수행될 수 있다.The drying process may be performed by a method such as heat treatment or hot air injection. In addition, specific temperature conditions during the drying process may be appropriately adjusted according to the washing solvent, specifically, may be carried out at a temperature of 90 ℃ to 200 ℃.
상기 건조 공정 후 최종 수득되는 금속산화물-실리카 복합 에어로겔은 평균입경(D50)이 7㎛ 내지 15㎛이나, 이 같은 범위를 벗어나 입자 크기가 지나치게 클 경우, 적절한 입자 크기를 갖도록 하기 위한 분쇄공정이 선택적으로 더 수행될 수 있다. The metal oxide-silica composite airgel finally obtained after the drying process has an average particle diameter (D 50 ) of 7 μm to 15 μm, but when the particle size is excessively large beyond such a range, a pulverizing process to have an appropriate particle size is performed. May optionally be further performed.
상기 분쇄 공정은 통상의 방법에 따라 수행될 수 있으며, 금속산화물-실리카 복합 에어로겔의 평균입경(D50)이 7㎛ 내지 15㎛이 되도록 하는 조건 하에서 수행될 수 있다. The pulverization process may be performed according to a conventional method, and may be performed under conditions such that the average particle diameter (D 50 ) of the metal oxide-silica composite airgel is 7 μm to 15 μm.
본 발명에 있어서, 금속산화물-실리카 복합 에어로겔의 평균입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 이때 금속산화물-실리카 복합 에어로겔의 평균입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수도 있고, 또는 건식분석 모델로서, 입도측정기(Macrotrac Particle Size Analyzer S3500)를 이용하여 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.In the present invention, the average particle diameter (D 50 ) of the metal oxide-silica composite airgel may be defined as the particle size based on 50% of the particle size distribution, wherein the average particle diameter of the metal oxide-silica composite airgel is laser diffraction method (laser) diffraction method) or as a dry analysis model, a particle size analyzer (Macrotrac Particle Size Analyzer S3500) was used to calculate the average particle diameter (D 50 ) at 50% of the particle size distribution in the measuring device. can do.
상기와 같이 실리케이트 용액과 금속염 용액의 반응에 의한 복합 에어로겔의 제조시 반응물질의 농도 및 pH 제어를 통해, 종래 금속산화물-실리카 복합 에어로겔의 제조시 필수적으로 요구되는 에이징, 용매치환 및 표면개질 단계를 수행하지 않고도, 앞서 설명한 바와 같은 낮은 탭밀도, 높은 비표면적과 기공율, 그리고 낮은 열전도도를 갖는 금속산화물-실리카 복합 에어로겔을 제조할 수 있다. 구체적으로, 상기한 제조방법에 의해 제조되는 금속산화물-실리카 복합 에어로겔은 평균입경(D50)이 7㎛ 내지 15㎛이고, 탭 밀도가 0.41g/ml 이하, BET 비표면적이 200m2/g 이상인 것일 수 있으며, 보다 구체적으로는 평균입경(D50)이 7㎛ 내지 15㎛이고, 탭 밀도가 0.038g/ml 내지 0.2g/ml, BET 비표면적이 300m2/g 내지 600m2/g인 것일 수 있다.Through the control of the concentration and pH of the reactant in the preparation of the composite aerogel by the reaction of the silicate solution and the metal salt solution as described above, the aging, solvent replacement and surface modification step that is essential for the preparation of the conventional metal oxide-silica composite airgel Without performing it, a metal oxide-silica composite aerogel having low tap density, high specific surface area and porosity, and low thermal conductivity as described above can be prepared. Specifically, the metal oxide-silica composite airgel prepared by the above-described manufacturing method has an average particle diameter (D 50 ) of 7 μm to 15 μm, a tap density of 0.41 g / ml or less, and a BET specific surface area of 200 m 2 / g or more. More specifically, the average particle diameter (D 50 ) is 7㎛ to 15㎛, the tap density is 0.038g / ml to 0.2g / ml, BET specific surface area is 300m 2 / g to 600m 2 / g Can be.
본 발명의 일 실시예에 따른 상기 금속산화물-실리카 복합 에어로겔의 제조방법은, 실리케이트 용액 내 물유리의 농도, 금속이온의 농도, 혼합물의 pH 범위, 물유리와 금속이온의 몰비, 그리고 금속염 중 마그네슘 이온과 칼슘이온의 몰비를 조합하여 보다 최적화함으로써 최종 제조되는 금속산화물-실리카 복합 에어로겔의 탭밀도 및 BET 비표면적과 함께 기공부피를 제어함으로써 보다 우수한 열전도도를 나타낼 수 있다. 구체적으로, 상기 금속산화물-실리카 복합 에어로겔의 제조방법은, 물유리를 0.125M 내지 3.0M, 보다 구체적으로는 1.25M 내지 3.0M의 농도로 용해시켜 실리케이트 용액을 준비하는 단계; 상기 실리케이트 용액에, 금속이온의 농도가 0.125M 내지 3.0M , 보다 구체적으로는 0.4M 내지 2.0M인 금속염 용액을 첨가하여 혼합한 후, 산촉매를 첨가하여 결과로 수득되는 혼합물의 pH를 3 내지 9, 보다 구체적으로는 5 이상 7 미만의 약산성 조건으로 조절하여 금속산화물-실리카 복합 침전물을 침전시키는 단계; 상기 금속산화물-실리카 복합 침전물을 분리한 후, 세척하고 건조하는 단계를 포함하고, 상기 실리케이트 용액과 금속염 용액은 물유리:금속이온의 몰비가 5:1 내지 1:1, 보다 구체적으로는 5:1 내지 3:1이 되도록 하는 양으로 사용되고, 상기 금속염은 마그네슘과 칼슘의 몰비가 2.5:1 내지 1.5:1, 보다 구체적으로는 2.1:1 내지 1.95:1이 되도록 하는 함량으로 MgCl2 및 CaCl2을 포함하되, 금속염 용액중에 포함된 금속이온의 총 몰 중 마그네슘 이온의 몰비가 50몰%이상인 것일 수 있다. 상기와 같은 최적 조합 단계에 의해 수행시 0.038g/ml 내지 0.15g/ml, 보다 구체적으로는 0.038g/ml 내지 0.1g/ml로 더욱 감소된 탭 밀도, 300m2/g 이상, 보다 구체적으로는 450m2/g 내지 600m2/g으로 더욱 증가된 비표면적, 그리고 0.5cm3/g 이상, 보다 구체적으로는 0.8 cm3/g 내지 1.0 cm3/g 의 기공부피를 갖는 금속산화물-실리카 복합 에어로겔을 제조할 수 있다. The method for preparing the metal oxide-silica composite aerogel according to an embodiment of the present invention, the concentration of water glass in the silicate solution, the concentration of metal ions, the pH range of the mixture, the molar ratio of water glass and metal ions, and magnesium ions in the metal salt By further optimizing the molar ratio of calcium ions, it is possible to exhibit better thermal conductivity by controlling the pore volume along with the tap density and BET specific surface area of the metal oxide-silica composite aerogel to be produced. Specifically, the method for producing a metal oxide-silica composite airgel, the step of preparing a silicate solution by dissolving the water glass in a concentration of 0.125M to 3.0M, more specifically 1.25M to 3.0M; To the silicate solution, a metal salt solution having a metal ion concentration of 0.125M to 3.0M, more specifically 0.4M to 2.0M is added and mixed, and then an acid catalyst is added to adjust the pH of the resulting mixture to 3-9. , More specifically, adjusting to weakly acidic conditions of less than 5 and less than 7 to precipitate the metal oxide-silica composite precipitate; Separating the metal oxide-silica composite precipitate, and then washing and drying the silicate solution, wherein the silicate solution and the metal salt solution include a water glass: metal ion molar ratio of 5: 1 to 1: 1, more specifically 5: 1. MgCl 2 and CaCl 2 are used in an amount such that the molar ratio of magnesium to calcium is 2.5: 1 to 1.5: 1, more specifically, 2.1: 1 to 1.95: 1. Including, but the molar ratio of magnesium ions in the total moles of metal ions contained in the metal salt solution may be 50 mol% or more. Tap density further reduced to 0.038 g / ml to 0.15 g / ml, more specifically 0.038 g / ml to 0.1 g / ml when performed by such an optimal combination step, more specifically at least 300 m 2 / g, more specifically Metal oxide-silica composite aerogels having a specific surface area which is further increased from 450 m 2 / g to 600 m 2 / g and pore volume of at least 0.5 cm 3 / g, more specifically from 0.8 cm 3 / g to 1.0 cm 3 / g Can be prepared.
상기와 같이 실리케이트 용액과 금속염 용액의 반응에 의한 복합 에어로겔의 제조시 반응물질의 농도 및 pH 제어를 통해, 종래 금속산화물-실리카 복합 에어로겔의 제조시 필수적으로 요구되는 에이징, 용매치환 및 표면개질 단계를 수행하지 않고도, 앞서 설명한 바와 같은 낮은 탭밀도, 높은 비표면적과 기공율, 그리고 낮은 열전도도를 갖는 금속산화물-실리카 복합 에어로겔을 제조할 수 있다. Through the control of the concentration and pH of the reactant in the preparation of the composite aerogel by the reaction of the silicate solution and the metal salt solution as described above, the aging, solvent replacement and surface modification step that is essential for the preparation of the conventional metal oxide-silica composite airgel Without performing it, a metal oxide-silica composite aerogel having low tap density, high specific surface area and porosity, and low thermal conductivity as described above can be prepared.
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 제조방법에 의해 제조된 금속산화물-실리카 복합 에어로겔이 제공된다.Accordingly, according to another embodiment of the present invention there is provided a metal oxide-silica composite aerogel prepared by the above-described manufacturing method.
상기 금속산화물-실리카 복합 에어로겔은 복합 에어로겔 구조체 내에 실리카 에어로겔과 금속산화물이 혼재되어 있는 복합체로서, 그 제조과정에서의 조건 제어를 통해 낮은 탭밀도, 높은 비표면적과 기공율, 그리고 낮은 열전도도를 갖는다.The metal oxide-silica composite airgel is a composite in which a silica airgel and a metal oxide are mixed in the composite airgel structure. The metal oxide-silica composite airgel has a low tap density, a high specific surface area and a porosity, and a low thermal conductivity through controlling conditions in the manufacturing process.
구체적으로 상기 금속산화물-실리카 복합 에어로겔은 0.41g/ml 이하 혹은 0.038g/ml 내지 0.41g/ml, 보다 구체적으로는 0.038g/ml 내지 0.15g/ml, 보다 더 구체적으로는 0.038g/ml 내지 0.1g/ml의 탭밀도를 갖는다. 이때 상기 금속산화물-실리카 복합 에어로겔의 탭 밀도는 탭 밀도 측정기(TAP-2S, Logan Istruments co.)를 이용하여 측정할 수 있다.Specifically, the metal oxide-silica composite airgel is 0.41 g / ml or less, or 0.038 g / ml to 0.41 g / ml, more specifically 0.038 g / ml to 0.15 g / ml, even more specifically 0.038 g / ml to It has a tap density of 0.1 g / ml. In this case, the tap density of the metal oxide-silica composite airgel may be measured using a tap density meter (TAP-2S, Logan Instruments co.).
또, 상기 금속산화물-실리카 복합 에어로겔은 상기한 탭밀도와 함께, BET 비표면적(specific surface area)이 200m2/g 이상, 혹은 200m2/g 내지 600m2/g, 보다 구체적으로는 300m2/g 내지 600 m2/g, 보다 더 구체적으로 450m2/g 내지 600m2/g인 것일 수 있다. 본 발명에 있어서, 금속산화물-실리카 복합 에어로겔의 비표면적은 Micrometrics의 ASAP 2010 기기를 이용하여 부분압(0.11<p/po<1)에 따른 질소의 흡/탈착량으로 측정할 수 있다. In addition, the metal oxide-silica composite airgel has a BET specific surface area of 200 m 2 / g or more, or 200 m 2 / g to 600 m 2 / g, more specifically 300 m 2 / g to 600 m 2 / g, may be more specifically 450m 2 / g to 600m 2 / g. In the present invention, the specific surface area of the metal oxide-silica composite airgel can be measured by the adsorption / desorption amount of nitrogen according to the partial pressure (0.11 <p / p o <1) using the ASAP 2010 device of Micrometrics.
또, 상기 금속산화물-실리카 복합 에어로겔은 평균입경(D50)이 7㎛ 내지 15㎛, 보다 구체적으로는 8㎛ 내지 15㎛인 것일 수 있다. 본 발명에 있어서, 금속산화물-실리카 복합 에어로겔의 평균입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 이때 금속산화물-실리카 복합 에어로겔의 평균입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수도 있고, 또는 건식분석 모델로서, 입도측정기(Macrotrac Particle Size Analyzer S3500)를 이용하여 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.In addition, the metal oxide-silica composite airgel may have an average particle diameter (D 50 ) of 7 μm to 15 μm, more specifically 8 μm to 15 μm. In the present invention, the average particle diameter (D 50 ) of the metal oxide-silica composite airgel may be defined as the particle size based on 50% of the particle size distribution, wherein the average particle diameter of the metal oxide-silica composite airgel is laser diffraction method (laser) diffraction method) or as a dry analysis model, a particle size analyzer (Macrotrac Particle Size Analyzer S3500) was used to calculate the average particle diameter (D 50 ) at 50% of the particle size distribution in the measuring device. can do.
또, 상기 금속산화물-실리카 복합 에어로겔은 기공부피 0.4cm3/g 내지 1.0cm3/g, 보다 구체적으로는 0.5cm3/g 내지 1.0cm3/g, 보다 더 구체적으로는 0.8cm3/g 내지 1.0cm3/g를 갖는 것일 수 있다. 이때, 상기 금속산화물-실리카 복합 에어로겔에 있어서의 기공부피는 수은 침투법(Mercury porosimeter) 분석을 통해 측정한 기공으로의 수은의 침입량으로부터 결정할 수 있다. In addition, the metal oxide-silica composite airgel has a pore volume of 0.4 cm 3 / g to 1.0 cm 3 / g, more specifically 0.5 cm 3 / g to 1.0 cm 3 / g, and more specifically 0.8 cm 3 / g To 1.0 cm 3 / g. At this time, the pore volume in the metal oxide-silica composite airgel can be determined from the amount of mercury intrusion into the pores measured by mercury porosimeter analysis.
또, 상기 금속산화물-실리카 복합 에어로겔은 기공률이 80부피% 이상, 혹은 90부피% 내지 98부피%이고, 평균기공직경이 20nm 이하, 혹은 5nm 내지 15nm인 미세기공을 포함할 수 있다. 이때, 상기 금속산화물-실리카 복합 에어로겔에 있어서의 평균기공직경 및 기공률은 Micrometrics의 ASAP 2010 기기를 이용하여 부분압(0.11<p/po<1)에 따른 질소의 흡/탈착량으로 측정할 수 있다.In addition, the metal oxide-silica composite airgel may include micropores having a porosity of 80% by volume or more, or 90% by volume to 98% by volume, and an average pore diameter of 20nm or less, or 5nm to 15nm. In this case, the average pore diameter and porosity of the metal oxide-silica composite aerogel can be measured by the adsorption / desorption amount of nitrogen according to the partial pressure (0.11 <p / p o <1) using an ASAP 2010 device of Micrometrics. .
또, 상기한 탭밀도, 비표면적, 입자크기 및 기공크기 범위 내에서는 기공이 차지하는 부피로 인하여 낮은 열전도도 및 향상된 단열효과를 나타낼 수 있다. 구체적으로 상기 금속산화물-실리카 복합 에어로겔은 30mW/mK 이하의 열전도도를 나타낼 수 있다. 이때 상기 열전도도는 열전도도 측정기(NETZSCH, HFM436 Lambda)를 이용하여 25에서 측정할 수 있다. In addition, within the tap density, specific surface area, particle size, and pore size, the volume occupied by the pores may exhibit low thermal conductivity and improved thermal insulation effect. Specifically, the metal oxide-silica composite airgel may exhibit a thermal conductivity of 30 mW / mK or less. In this case, the thermal conductivity may be measured at 25 using a thermal conductivity meter (NETZSCH, HFM436 Lambda).
한편, 상기 금속산화물-실리카 복합 에어로겔에 있어서, 상기 실리카 에어로겔는 복수개의 미세기공을 포함하는 입자상의 다공성 구조체로서, 나노사이즈의 1차 입자들, 구체적으로는 평균입경(D50)이 100nm 이하, 혹은 1nm 내지 50nm의 1차 입자들이 결합되어 그물망 형태의 클러스터(cluster)를 형성하는 미세구조, 즉 3차원 망목 구조를 포함할 수 있다.On the other hand, in the metal oxide-silica composite airgel, the silica airgel is a particulate porous structure containing a plurality of micropores, the nano-sized primary particles, specifically, the average particle diameter (D 50 ) is 100nm or less, or Primary particles of 1 nm to 50 nm may be combined to include a microstructure, that is, a three-dimensional network structure, to form a network-shaped cluster.
또, 상기 실리카 에어로겔 표면에 존재하는 실라놀기에 의해 금속산화물이 고정되기 때문에, 실리카 에어로겔 표면의 음의 하전과 금속산화물의 양의 하전 사이에서 고정화 효율을 높게 하기 위해서는 실리카 표면에 존재하는 실라놀기의 밀도를 적절히 제어하는 것이 바람직하다. 구체적으로, 상기 실리카의 표면에 존재하는 실라놀기의 밀도가 10개/nm2 이하, 혹은 5개/nm2 내지 7개/nm2일 수 있다.In addition, since the metal oxide is fixed by the silanol groups present on the surface of the silica airgel, in order to increase the immobilization efficiency between the negative charge on the surface of the silica airgel and the positive charge of the metal oxide, It is desirable to control the density appropriately. Specifically, the density of silanol groups present on the surface of the silica may be 10 / nm 2 or less, or 5 / nm 2 to 7 / nm 2 .
이에 따라, 상기 실리카 에어로겔은 BET(Brunauer-Emmett-Teller) 표면적이 50m2/g 내지 700m2/g이고, 평균입경(D50)이 10㎛ 내지 150㎛이며, 기공율이 0.5㎤/g 내지 2.4㎤/g이고, 상기 실리카 에어로겔 내 포함되는 기공의 평균기공직경이 0.5nm 내지 40nm인 것일 수 있다. 실리카 에어로겔의 BET 비표면적, 평균입경, 기공율 또는 평균기공직경이 상기한 범위를 벗어날 경우, 일례로 평균기공직경이 0.5nm 미만이면 실라놀기의 밀도가 상대적으로 증가하여 음의 하전의 절대값이 크게 되고 그 결과 양의 하전을 띤 금속산화물과의 고정화 효율은 높아지지만 친수성 또한 높아지게 되어 금속산화물-실리카 복합 에어로겔의 분산성이 저하되게 된다. 또, 평균기공직경이 40nm를 초과하면 실라놀기 밀도가 상대적으로 낮아져 금속산화물-실리카 복합 에어로겔의 분산성 저하 우려는 없지만, 음의 하전의 절대값이 낮아서 고정화 효율이 낮아질 수 있다. Accordingly, the silica airgel has a BET (Brunauer-Emmett-Teller) surface area of 50 m 2 / g to 700 m 2 / g, an average particle diameter (D 50 ) of 10 μm to 150 μm, and a porosity of 0.5 cm 3 / g to 2.4 Cm 3 / g, and the average pore diameter of pores included in the silica airgel may be 0.5nm to 40nm. If the BET specific surface area, average particle diameter, porosity or average pore diameter of the silica airgel is outside the above-mentioned ranges, for example, if the average pore diameter is less than 0.5 nm, the density of silanol groups is relatively increased and the absolute value of negative charge is greatly increased. As a result, the immobilization efficiency with the positively charged metal oxide is increased, but the hydrophilicity is also increased, thereby reducing the dispersibility of the metal oxide-silica composite aerogel. In addition, when the average pore diameter exceeds 40 nm, the silanol group density is relatively low, so that there is no fear of lowering the dispersibility of the metal oxide-silica composite aerogel, but the absolute value of the negative charge is low, so that the immobilization efficiency may be lowered.
상기 금속산화물-실리카 복합 에어로겔에 있어서, 금속산화물은 실리카 에어로겔 표면의 실라놀기에 의해 고정되어 복합 에어로겔을 형성하는데 사용되는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 금속산화물은 알칼리 금속, 알칼리 토금속, 란탄족, 악티늄족, 전이 금속 및 제13족(IIIA)의 금속으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 금속을 포함하는 산화물일 수 있으며, 보다 구체적으로는 칼슘(Ca), 마그네슘(Mg), 구리(Cu), 아연(Zn), 망간(Mn), 카드뮴(Cd), 납(Pb), 니켈(Ni), 크롬(Cr), 은(Ag), 티타늄(Ti), 바나듐(V), 코발트(Co), 몰리브덴(Mo), 주석(Sn), 안티모니(Sb), 스트로튬(Sr), 바륨(Ba), 및 텅스텐(W)로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하는 산화물일 수 있고, 보다 더 구체적으로는 산화마그네슘, 산화칼슘 또는 이들의 혼합물일 수 있다. In the metal oxide-silica composite airgel, the metal oxide may be used without particular limitation as long as it is fixed by silanol groups on the surface of the silica airgel and used to form the composite airgel. Specifically, the metal oxide may be an oxide containing any one or two or more metals selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals, and metals of Group 13 (IIIA), More specifically, calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), silver (Ag), titanium (Ti), vanadium (V), cobalt (Co), molybdenum (Mo), tin (Sn), antimony (Sb), strontium (Sr), barium (Ba), and tungsten (W) It may be an oxide containing any one or two or more metal elements selected from the group consisting of), and more specifically may be magnesium oxide, calcium oxide or a mixture thereof.
상기 금속산화물은 실리카 에어로겔의 표면에 존재하는 실라놀기에 기인되는 음의 하전과 상대적으로 양의 하전을 띤 금속산화물 사이에서 일어나는 전기적 인력에 의해 실리카의 표면에 불연속적으로 물리적으로 고정화된다. 이에 따라 실리카 표면에 용이하게 그리고 우수한 효율로 고정되는 동시에 금속산화물에 의한 충분한 효과를 나타내기 위해서는, 상기 금속산화물은 적절한 입자크기 및 비표면적을 갖는 것이 바람직하다. 구체적으로 상기 금속산화물은 비표면적이 20m2/g 내지 100m2/g이고, 평균입경이 5nm 내지 300nm일 수 있다. The metal oxides are discontinuously physically immobilized on the surface of the silica by electrical attraction occurring between the negatively charged and relatively positively charged metal oxides resulting from the silanol groups present on the surface of the silica airgel. Accordingly, in order to be easily and efficiently fixed on the silica surface and to exhibit a sufficient effect by the metal oxide, the metal oxide preferably has an appropriate particle size and specific surface area. Specifically, the metal oxide may have a specific surface area of 20 m 2 / g to 100 m 2 / g and an average particle diameter of 5 nm to 300 nm.
또, 상기 금속산화물은 금속산화물-실리카 복합 에어로겔의 용도에 따라 복합 에어로겔내 포함되는 금속산화물의 함량이 조절될 수 있으나, 구체적으로, 상기 금속산화물은 복합 에어로겔 총 중량에 대하여 5중량% 내지 80중량%로 포함될 수 있다. 또, 상기 금속산화물은 금속산화물-실리카 복합 에어로겔 내에 포함된 실리콘(Si)과 금속산화물내 포함된 금속(Me)이 1:1 내지 3:1의 몰비(Si/Me의 몰비), 보다 구체적으로는 1.5:1 내지 3:1, 보다 더 구체적으로는 3:1을 충족하도록 하는 양으로 포함될 수 있다. In addition, the metal oxide may be adjusted in the content of the metal oxide contained in the composite airgel according to the use of the metal oxide-silica composite airgel, specifically, the metal oxide is 5 to 80% by weight based on the total weight of the composite airgel May be included as a%. In addition, the metal oxide is a silicon oxide (Si) contained in the metal oxide-silica composite aerogel and a metal (Me) contained in the metal oxide (mole ratio of 1: 1 to 3: 1 (molar ratio of Si / Me)), more specifically May be included in an amount such that 1.5: 1 to 3: 1, and more specifically 3: 1.
보다 구체적으로, 본 발명의 또 다른 일 실시예에 따르면, 탭 밀도가 0.41g/ml 이하, 보다 구체적으로는 0.038g/ml 내지 0.15g/ml이고, 비표면적이 200m2/g 이상, 보다 구체적으로는 300m2/g 내지 600m2/g인 금속산화물-실리카 복합 에어로겔이 제공된다.More specifically, according to another embodiment of the present invention, the tap density is 0.41 g / ml or less, more specifically, 0.038 g / ml to 0.15 g / ml, and the specific surface area is 200 m 2 / g or more, more specifically As a metal oxide-silica composite airgel of 300m 2 / g to 600m 2 / g is provided.
또 보다 구체적으로, 본 발명의 또 다른 일 실시예에 따르면, 실리케이트 용액내 물유리의 농도, 금속이온의 농도, 혼합물의 pH 범위, 물유리와 금속이온의 몰비, 그리고 금속염 중 마그네슘 이온과 칼슘이온의 몰비를 보다 최적 조합하여 구성한 제조 공정을 통해, 실리카 에어로겔 및 금속산화물을 포함하고, 상기 금속산화물은 마그네슘과 칼슘의 몰비가 2.5:1 내지 1.5:1이 되도록 하는 함량으로 산화마그네슘과 산화칼슘을 포함하며, 평균입경(D50)이 7㎛ 내지 15㎛이고, 탭 밀도가 0.038g/ml 내지 0.1g/ml이고, 비표면적이 450m2/g 내지 600m2/g이며, 기공부피가 0.8cm3/g 내지 1.0cm3/g인 금속산화물-실리카 복합 에어로겔이 제공된다.More specifically, according to another embodiment of the present invention, the concentration of water glass in the silicate solution, the concentration of metal ions, the pH range of the mixture, the mole ratio of water glass and metal ions, and the molar ratio of magnesium and calcium ions in the metal salt Through a manufacturing process configured in a more optimal combination, comprising a silica aerogel and a metal oxide, the metal oxide comprises magnesium oxide and calcium oxide in a content such that the molar ratio of magnesium and calcium is 2.5: 1 to 1.5: 1, The average particle diameter (D 50 ) is 7 μm to 15 μm, the tap density is 0.038 g / ml to 0.1 g / ml, the specific surface area is 450 m 2 / g to 600 m 2 / g, and the pore volume is 0.8 cm 3 / Provided is a metal oxide-silica composite airgel having a g to 1.0 cm 3 / g.
상기한 바와 같이, 본 발명에 따른 제조방법에 의해 제조된 금속산화물-실리카 복합 에어로겔은 낮은 탭밀도와 높은 비표면적 등의 우수한 물성적 특성을 가짐으로써, 촉매, 또는 각종 산업용 설비의 배관이나 공업용 로와 같은 보온보냉용 플랜트 시설은 물론, 항공기, 선박, 자동차, 건축 구조물 등의 단열재, 보온재, 또는 불연재로서 유용하다. As described above, the metal oxide-silica composite aerogel prepared by the manufacturing method according to the present invention has excellent physical properties such as low tap density and high specific surface area, and thus, catalysts or industrial furnace pipes or industrial furnaces. Insulation facilities such as thermal insulation, such as aircraft, ships, automobiles, building structures, such as insulation, insulation, or non-combustible materials are useful.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 보다 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples and Experimental Examples. However, the following Examples and Experimental Examples are for illustrating the present invention and the scope of the present invention is not limited by these Examples and Experimental Examples.
실시예Example
1-1 1-1
물유리(Na2SiO3)에 증류수를 첨가하고 혼합하여 실리케이트 용액을 제조하였다. 별도로 MgCl2 및 CaCl2를 증류수에 용해시켜 금속염 용액을 제조한 후, 상기 실리케이트 용액에 첨가하고, 혼합하였다. 결과의 혼합물에 HCl 산촉매를 혼합물의 pH가 하기 표 1에 기재된 것과 같이 될 때까지 첨가하였다. 상기 금속염 용액과 실리케이트 용액의 반응 즉시 백색의 침전물이 발생하였다. 침전물을 자연 침전시킨 후 상층에 뜬 투명한 용매를 분리 제거하였다. 탈이온수로 침전물을 3회 반복 세척한 후, 진공필터하고, 생성된 케잌(cake)을 오븐 내에 위치시킨 후 105℃의 온도에서 건조하여 금속산화물-실리카 복합 에어로겔을 제조하였다. 이때 각 화합물의 사용량은 하기 표 1에 기재된 대로 사용하였다.Distilled water was added to the water glass (Na 2 SiO 3 ) and mixed to prepare a silicate solution. Separately, MgCl 2 and CaCl 2 were dissolved in distilled water to prepare a metal salt solution, which was then added to the silicate solution and mixed. HCl acid catalyst was added to the resulting mixture until the pH of the mixture became as shown in Table 1 below. A white precipitate formed immediately upon reaction of the metal salt solution with the silicate solution. The precipitate was spontaneously precipitated and then the transparent solvent was removed. The precipitate was repeatedly washed three times with deionized water, vacuum filtered, the resulting cake was placed in an oven, and dried at a temperature of 105 ° C. to prepare a metal oxide-silica composite airgel. The amount of each compound was used as described in Table 1 below.
실시예Example
1-2 내지 1- 1-2 to 1-
5 ,및5, and
비교예Comparative example
1-1 1-1
하기 표 1에 기재된 함량으로 각 반응물질을 사용하는 것을 제외하고는, 상기 실시예 1-1에서와 동일한 방법으로 수행하여 금속산화물-실리카 복합 에어로겔을 제조하였다.A metal oxide-silica composite airgel was prepared in the same manner as in Example 1-1, except that each reactant was used in the amount shown in Table 1 below.
실험예Experimental Example
1 One
상기 실시예 1-1 내지 1-5 및 비교예 1-1에서 제조한 복합 에어로겔을 이용하여, 산촉매 첨가에 따른 금속산화물-실리카 복합 에어로겔의 탭밀도 변화를 탭 밀도 측정기(TAP-2S, Logan Istruments co.)를 이용하여 측정 및 평가하였다. Using the composite airgel prepared in Examples 1-1 to 1-5 and Comparative Example 1-1, the tap density change of the metal oxide-silica composite airgel according to the addition of the acid catalyst was measured using a tap density measuring instrument (TAP-2S, Logan Istruments). co.) and measured and evaluated.
또, BET 비표면적은 기공분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정하였다.In addition, the BET specific surface area was measured by the BET 6 point method by nitrogen gas adsorption | suction distribution method using the porosimetry analyzer (Bell Japan Inc, Belsorp-II mini).
또, 기공부피는 수은 침투법(Mercury porosimeter) 분석을 통해 기공으로의 수은의 침입량을 측정하고, 이로부터 기공부피를 결정하였다. In addition, the pore volume was measured by the mercury porosimeter (Mercury porosimeter) analysis to determine the amount of mercury penetration into the pores, from which pore volume was determined.
그 결과를 하기 표 1에 나타내었다.The results are shown in Table 1 below.
금속염 용액Metal salt solution | 실리케이트 용액Silicate solution | 혼합액 pHMixed solution pH | 탭밀도 (g/ml)Tap Density (g / ml) | 비표면적(m2/g) Specific surface area (m 2 / g) | 기공부피(cm3/g)Pore volume (cm 3 / g) | 열전도도(mW/mK)Thermal Conductivity (mW / mK) | ||
MgCl2 농도 (M)MgCl 2 Concentration (M) | CaCl2 농도 (M)CaCl 2 concentration (M) | Na2SiO3 농도 (M)Na 2 SiO 3 Concentration (M) | ||||||
비교예 1-1Comparative Example 1-1 | 0.440.44 | 0.220.22 | 22 | 9.59.5 | 0.1750.175 | 150150 | 0.310.31 | 30.430.4 |
실시예 1-1Example 1-1 | 0.440.44 | 0.220.22 | 22 | 8.28.2 | 0.1530.153 | 260260 | 0.550.55 | 29.429.4 |
실시예 1-2Example 1-2 | 0.440.44 | 0.220.22 | 22 | 7.17.1 | 0.1310.131 | 330330 | 0.680.68 | 28.828.8 |
실시예 1-3Example 1-3 | 0.440.44 | 0.220.22 | 22 | 5.95.9 | 0.0980.098 | 450450 | 0.880.88 | 28.028.0 |
실시예 1-4Example 1-4 | 0.440.44 | 0.220.22 | 22 | 4.54.5 | 0.1120.112 | 380380 | 0.750.75 | 28.428.4 |
실시예 1-5Example 1-5 | 0.440.44 | 0.220.22 | 22 | 3.03.0 | 0.1480.148 | 280280 | 0.530.53 | 29.629.6 |
실험결과, 혼합액의 pH 3 내지 9의 범위에서 제조되는 복합 에어로겔은 0.16 g/ml이하의 탭밀도, 250m2/g 이상의 비표면적, 그리고 0.5 cm3/g 이상의 기공부피를 가져, 30mW/mK 이하의 열전도도를 나타내었으며, 특히 pH 약 5 이상 7 미만의 범위내에서 제조되는 실시예 1-3의 복합 에어로겔은 0.1200 g/ml 이하의 낮은 탭밀도를 나타내었다. 이에 반해 pH가 9를 초과하는 비교예 1-1의 경우, 보다 높은 탭밀도와 낮은 비표면적 및 기공부피로 인해 증가된 열전도도를 나타내었다.As a result, the composite airgel prepared in the range of pH 3-9 of the mixed solution has a tap density of 0.16 g / ml or less, a specific surface area of 250 m 2 / g or more, and a pore volume of 0.5 cm 3 / g or more, and 30 mW / mK or less The thermal conductivity of the composite airgel of Example 1-3, which is prepared in a range of about 5 or more and less than 7, in particular, showed a low tap density of 0.1200 g / ml or less. In contrast, Comparative Example 1-1 having a pH above 9 showed increased thermal conductivity due to higher tap density, lower specific surface area, and pore volume.
또, pH가 3에서 5.9로 증가함에 따라 복합 에어로겔의 탭밀도가 감소하였으나, pH 5.9를 초과하여 증가함에 따라서는 오히려 탭밀도가 증가하였다. 이로부터 복합 에어로겔의 탭밀도를 최소화할 수 있는 pH 최적 범위가 존재함을 확인할 수 있다. 구체적으로 상기 표 1로부터 판단했을 때, 금속염 용액 내 MgCl2 및 CaCl2의 농도비가 2:1이고, 또 상기 금속염과 물유리의 농도비가 1:3일 때, 0.15 g/ml 이하의 보다 낮은 탭밀도를 갖는 복합 에어로겔 제조를 위해서는 금속염 용액과 실리케이트 용액의 혼합액의 pH가 3 내지 9이고, 0.100 g/ml 이하의 보다 더 낮은 탭밀도를 갖는 복합 에어로겔 제조를 위해서는 혼합액의 pH가 5 이상 7 미만의 약산성 조건, 구체적으로는 pH가 5 내지 6임을 알 수 있다. In addition, as the pH increased from 3 to 5.9, the tap density of the composite airgel decreased, but as the pH increased above 5.9, the tap density increased. From this it can be seen that there exists a pH optimum range that can minimize the tap density of the composite airgel. Specifically, as determined from Table 1, when the concentration ratio of MgCl 2 and CaCl 2 in the metal salt solution is 2: 1, and the concentration ratio of the metal salt and water glass is 1: 3, lower tap density of 0.15 g / ml or less PH of the mixed solution of the metal salt solution and the silicate solution is 3 to 9 for the production of a composite airgel having a weak acidity of 5 to less than 7 for the preparation of the composite airgel having a lower tap density of 0.100 g / ml or less. It can be seen that the conditions, specifically, the pH is 5-6.
실험예 2Experimental Example 2
금속이온의 농도비에 따른 금속산화물-실리카 복합 에어로겔의 탭밀도 및 비표면적을 측정, 평가하였다.The tap density and specific surface area of the metal oxide-silica composite airgel according to the metal ion concentration ratio were measured and evaluated.
상세하게는 하기 표 2에 기재된 농도 및 pH로 수행하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 금속산화물-실리카 복합 에어로겔을 제조하였다. 제조한 복합 에어로겔에 대해 상기 실험예 1에서와 동일한 방법으로 탭밀도를 측정하였다. 또, Micrometrics의 ASAP 2010 기기를 이용하여 부분압(0.11<p/po<1)에 따른 질소의 흡/탈착량을 측정하고, 이로부터 복합 에어로겔의 BET 비표면적을 측정하였다. 그 결과를 하기 표 2에 나타내었다.In detail, the metal oxide-silica composite airgel was prepared in the same manner as in Example 1-1, except that the concentration and pH of Table 2 were performed. Tap density was measured in the same manner as in Experimental Example 1 for the prepared composite airgel. In addition, the BET specific surface area of the airgel composite measure the absorption / desorption amount of nitrogen, and therefrom according to the partial pressure (0.11 <p / p o < 1) was measured using a Micrometrics ASAP 2010 equipment. The results are shown in Table 2 below.
금속염 용액Metal salt solution | 실리케이트 용액Silicate solution | 혼합액 pHMixed solution pH | 탭밀도 (g/ml)Tap Density (g / ml) | 비표면적(m2/g)Specific surface area (m 2 / g) | 기공부피(cm3/g)Pore volume (cm 3 / g) | 열전도도(mW/mK)Thermal Conductivity (mW / mK) | ||
MgCl2 농도 (M)MgCl 2 Concentration (M) | CaCl2 농도 (M)CaCl 2 concentration (M) | Na2SiO3 농도 (M)Na 2 SiO 3 Concentration (M) | ||||||
실시예 2-1Example 2-1 | 1.331.33 | 0.670.67 | 22 | 6.26.2 | 0.1130.113 | 340340 | 0.550.55 | 29.429.4 |
실시예 2-2Example 2-2 | 0.440.44 | 0.220.22 | 22 | 5.95.9 | 0.0980.098 | 450450 | 0.880.88 | 28.028.0 |
비교예 2-1Comparative Example 2-1 | 0.220.22 | 0.440.44 | 22 | 6.46.4 | 0.1510.151 | 120120 | 0.380.38 | 30.130.1 |
실시예 2-3Example 2-3 | 0.670.67 | 0.000.00 | 22 | 5.85.8 | 0.1460.146 | 440440 | 0.670.67 | 29.829.8 |
비교예 2-2Comparative Example 2-2 | 0.000.00 | 0.670.67 | 22 | 6.16.1 | 0.1840.184 | 3030 | 0.130.13 | 30.530.5 |
실시예 2-4Example 2-4 | 0.270.27 | 0.130.13 | 22 | 66 | 0.1180.118 | 360360 | 0.610.61 | 29.929.9 |
pH 5 이상 7 미만의 조건에서, 금속염의 종류 및 혼합비에 따른 복합 에어로겔의 탭밀도, 비표면적 및 기공부피를 확인한 결과, 금속염 내에 Mg 2+이온을 전체 금속 이온 총 몰에 대하여 50몰% 초과로 포함하는 실시예 2-1 내지 2-4는, Mg2
+ 이온을 포함하지 않는 비교예 2-2 및 Mg2
+ 이온을 포함하되 그 함량이 50몰% 이하인 비교예 2-1에 비해 더욱 감소된 탭밀도와 증가된 비표면적 및 기공부피를 나타내었으며, 특히 MgCl2 단독으로 사용하는 것에 비해, 상기 Mg2
+ 이온의 몰 농도 범위를 충족하는 조건하에서 MgCl2와 CaCl2
를 혼합하여 사용할 경우, 복합 에어로겔의 탭밀도, 비표면적 및 기공부피 개선효과가 더욱 현저하였다.When the tap density, specific surface area, and pore volume of the composite aerogels were determined according to the type and mixing ratio of the metal salts at a pH of 5 to less than 7, the Mg 2+ ions in the metal salt was more than 50 mol% based on the total moles of the total metal ions. examples 2-1 to 2-4, Mg 2 + that does not contain the ion Comparative example 2-2, and Mg 2 + ions, including, but further reduced compared with Comparative example 2-1 the content is not more than 50 mole% containing MgCl 2 and CaCl 2 under conditions that meet the molar concentration range of Mg 2 + ions, in particular compared to using MgCl 2 alone, as well as increased tap density, increased specific surface area and pore volume. When used in combination, the effect of improving the tap density, specific surface area and pore volume of the composite airgel was more remarkable.
또, 실시예 2-2와 같이 금속염 용액내 금속이온의 농도와 실리케이트 용액내 물유리의 몰비가 1:3의 조건을 충족하는 경우가 1:1 또는 1:5인 경우에 비해 보다 개선된 효과를 나타내었다. In addition, as in Example 2-2, when the molar ratio of the metal ion concentration in the metal salt solution and the water glass in the silicate solution satisfies the conditions of 1: 3, the effect is more improved than in the case of 1: 1 or 1: 5. Indicated.
실험예 3Experimental Example 3
실리케이트 농도에 따른 금속산화물-실리카 복합 에어로겔의 탭밀도 변화를 평가하였다.The change in tap density of the metal oxide-silica composite airgel according to the silicate concentration was evaluated.
상세하게는 하기 표 3에 기재된 농도 및 pH로 수행하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 금속산화물-실리카 복합 에어로겔을 제조하였다. 제조한 복합 에어로겔에 대해 탭밀도를 측정하고, 그 결과를 하기 표 3에 나타내었다.In detail, the metal oxide-silica composite airgel was prepared in the same manner as in Example 1-1, except that the concentration and pH of Table 3 were performed. The tap density was measured for the prepared composite airgel, and the results are shown in Table 3 below.
금속염 용액Metal salt solution | 실리케이트 용액Silicate solution | 혼합액 pHMixed solution pH | 탭밀도 (g/ml)Tap Density (g / ml) | 비표면적(m2/g)Specific surface area (m 2 / g) | 기공부피(cm3/g)Pore volume (cm 3 / g) | 열전도도(mW/mK)Thermal Conductivity (mW / mK) | ||
MgCl2 농도 (M)MgCl 2 Concentration (M) | CaCl2 농도 (M)CaCl 2 concentration (M) | Na2SiO3 농도 (M)Na 2 SiO 3 Concentration (M) | ||||||
실시예 3-1Example 3-1 | 0.220.22 | 0.110.11 | 1.001.00 | 5.85.8 | 0.2040.204 | 280280 | 0.490.49 | 30.930.9 |
실시예 3-2Example 3-2 | 0.280.28 | 0.140.14 | 1.251.25 | 5.95.9 | 0.1680.168 | 340340 | 0.540.54 | 30.430.4 |
실시예 3-3Example 3-3 | 0.330.33 | 0.170.17 | 1.501.50 | 6.26.2 | 0.1340.134 | 390390 | 0.680.68 | 29.429.4 |
실시예 3-4Example 3-4 | 0.390.39 | 0.190.19 | 1.751.75 | 5.95.9 | 0.1180.118 | 420420 | 0.640.64 | 28.828.8 |
실시예 3-5Example 3-5 | 0.440.44 | 0.220.22 | 2.002.00 | 6.06.0 | 0.0980.098 | 450450 | 0.880.88 | 28.028.0 |
실시예 3-6Example 3-6 | 0.560.56 | 0.280.28 | 2.502.50 | 5.75.7 | 0.1450.145 | 410410 | 0.580.58 | 29.129.1 |
실시예 3-7Example 3-7 | 0.670.67 | 0.330.33 | 3.003.00 | 6.36.3 | 0.1980.198 | 320320 | 0.550.55 | 30.030.0 |
비교예 3-1Comparative Example 3-1 | 0.220.22 | 0.110.11 | 1.001.00 | 9.39.3 | 0.4020.402 | 9090 | 0.180.18 | 34.234.2 |
비교예 3-2Comparative Example 3-2 | 0.440.44 | 0.220.22 | 2.002.00 | 9.59.5 | 0.1750.175 | 150150 | 0.310.31 | 30.430.4 |
비교예 3-3Comparative Example 3-3 | 0.670.67 | 0.330.33 | 3.003.00 | 9.59.5 | 0.3110.311 | 100100 | 0.210.21 | 33.433.4 |
상기 표 3에서의 실시예 3-1 내지 3-7에서와 같이, Mg염과 Ca 염의 혼합 금속염을 2:1의 혼합비로 사용하고, 금속염의 농도와 물유리의 농도비가 약 1:3이며, 혼합액의 pH가 5 이상 7 미만 조건에서 복합 에어로겔의 제조시, 실리케이트 용액 중에 포함되는 물유리의 농도가 1.0M에서 3.0M로 다양하게 변화시켜도 0.41g/ml 이하의 낮은 탭밀도, 200m2/g 이상의 비표면적, 그리고 약 0.5cm3/g 이상의 기공부피를 갖는 복합 에어로겔이 제조되었다. 그 중에서도 실리케이트 용액 중에 포함되는 물유리의 농도가 1.5M 내지 2.5M일 때 0.15g/ml 이하의 보다 낮은 탭밀도, 350m2/g 이상의 비표면적, 그리고 약 0.5cm3/g 이상의 기공부피를 갖는 복합 에어로겔이 제조되었으며, 특히 물유리의 농도가 2.0M일 때 0.10g/ml 이하의 가장 낮은 탭밀도와 함께, 450 m2/g 이상의 비표면적, 그리고 약 0.8 cm3/g 이상의 기공부피를 갖는 복합 에어로겔이 제조되었다. 이 같은 결과로부터 보다 낮은 탭밀도를 갖는 복합 에어로겔 제조를 위해서는 실리케이트 용액내 포함되는 물유리의 농도가 1.5M 내지 2.5M, 보다 구체적으로는 2.0M임을 알 수 있다. As in Examples 3-1 to 3-7 in Table 3, using a mixed metal salt of Mg salt and Ca salt in a ratio of 2: 1, the concentration ratio of metal salt and water glass is about 1: 3, the mixed liquid When the composite airgel is prepared at a pH of 5 or more and less than 7, a low tap density of 0.41 g / ml or less and a ratio of 200 m 2 / g or more even if the concentration of water glass in the silicate solution varies from 1.0 M to 3.0 M Composite airgels having a surface area and pore volume of about 0.5 cm 3 / g or more were prepared. Above all, when the concentration of water glass contained in the silicate solution is 1.5M to 2.5M, the composite has lower tap density of 0.15g / ml or less, specific surface area of 350m 2 / g or more, and pore volume of about 0.5cm 3 / g or more Airgels have been prepared, especially composite airgels having a specific surface area of at least 450 m 2 / g and pore volume of at least about 0.8 cm 3 / g, with the lowest tap density of 0.10 g / ml or less, especially when the concentration of water glass is 2.0M Was prepared. From these results, it can be seen that the concentration of the water glass contained in the silicate solution is 1.5M to 2.5M, more specifically 2.0M, for producing a composite airgel having a lower tap density.
Claims (12)
- 물유리를 0.125M 내지 3.0M의 농도로 용해시켜 실리케이트 용액을 준비하는 단계; Dissolving the water glass at a concentration of 0.125M to 3.0M to prepare a silicate solution;상기 실리케이트 용액에, 금속이온의 농도가 0.125M 내지 3.0M인 금속염 용액을 첨가하여 혼합한 후, 산촉매를 첨가하여 결과로 수득되는 혼합물의 pH를 3 내지 9로 조절하여 금속산화물-실리카 복합 침전물을 침전시키는 단계; 및To the silicate solution, a metal salt solution having a metal ion concentration of 0.125M to 3.0M is added and mixed, and then, an acid catalyst is added to adjust the pH of the resulting mixture to 3 to 9, thereby preparing a metal oxide-silica composite precipitate. Precipitating; And상기 금속산화물-실리카 복합 침전물을 분리하고, 건조하는 단계를 포함하며,Separating and drying the metal oxide-silica composite precipitate,상기 금속염 용액은 금속염 용액내 금속이온의 총 몰에 대하여 마그네슘 이온의 함량이 50몰% 초과가 되도록 하는 양으로 마그네슘(Mg) 포함 금속염을 포함하는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The metal salt solution is a method for producing a metal oxide-silica composite aerogel containing a metal salt containing magnesium (Mg) in an amount such that the content of magnesium ions to more than 50 mol% relative to the total moles of metal ions in the metal salt solution.
- 제1항에 있어서,The method of claim 1,상기 실리케이트 용액과 금속염 용액은 물유리:금속이온의 몰비가 1:1 내지 5:1이 되도록 하는 양으로 사용되는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.Wherein the silicate solution and the metal salt solution are used in an amount such that the molar ratio of water glass to metal ions is 1: 1 to 5: 1.
- 제1항에 있어서,The method of claim 1,상기 pH 조절은 산촉매를 첨가하여 결과로 수득되는 혼합물의 pH를 5 이상 7 미만으로 조절함으로써 수행되는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The pH control method of producing a metal oxide-silica composite aerogel is to be carried out by adding an acid catalyst to adjust the pH of the resulting mixture to more than 5 to less than 7.
- 제1항에 있어서,The method of claim 1,상기 산촉매는 무기산인 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The acid catalyst is a method for producing a metal oxide-silica composite airgel is an inorganic acid.
- 제4항에 있어서,The method of claim 4, wherein상기 산촉매는 염산을 포함하는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The acid catalyst is a method of producing a metal oxide-silica composite airgel containing hydrochloric acid.
- 제1항에 있어서,The method of claim 1,상기 금속염은 염화마그네슘; 또는 염화마그네슘 및 알칼리 금속, 알칼리 토금속(마그네슘 제외), 란탄족, 악티늄족, 전이 금속 및 제13족(IIIA)의 금속으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 금속을 포함하는 염화물의 혼합물을 포함하는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The metal salt is magnesium chloride; Or a mixture of chlorides comprising one or two or more metals selected from the group consisting of magnesium chloride and alkali metals, alkaline earth metals (except magnesium), lanthanides, actinides, transition metals and metals of Group 13 (IIIA) Method for producing a metal oxide-silica composite airgel comprising a.
- 제1항에 있어서,The method of claim 1,상기 금속염은 마그네슘 이온과 칼슘 이온의 몰비가 2.5:1 내지 1.5:1이 되도록 하는 함량으로 MgCl2 및 CaCl2을 포함하는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The metal salt is a method of producing a metal oxide-silica composite airgel containing MgCl 2 and CaCl 2 in a content such that the molar ratio of magnesium ions and calcium ions is 2.5: 1 to 1.5: 1.
- 제1항에 있어서,The method of claim 1,상기 건조 공정은 90℃ 내지 200℃에서 수행되는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The drying process is a method for producing a metal oxide-silica composite airgel is carried out at 90 ℃ to 200 ℃.
- 제1항에 있어서,The method of claim 1,물유리를 0.125M 내지 3.0M의 농도로 용해시켜 실리케이트 용액을 준비하는 단계; Dissolving the water glass at a concentration of 0.125M to 3.0M to prepare a silicate solution;상기 실리케이트 용액에, 금속이온의 농도가 0.125M 내지 3.0M인 금속염 용액을 첨가하여 혼합한 후, 산촉매를 첨가하여 결과로 수득되는 혼합물의 pH를 5 이상 7 미만으로 조절하여 금속산화물-실리카 복합 침전물을 침전시키는 단계; 및To the silicate solution, a metal salt solution having a metal ion concentration of 0.125M to 3.0M is added and mixed, and then, an acid catalyst is added to adjust the pH of the resulting mixture to 5 or more and less than 7, thereby preparing a metal oxide-silica composite precipitate. Precipitating; And상기 금속산화물-실리카 복합 침전물을 분리한 후, 세척하고, 90℃ 내지 200℃에서 건조하는 단계를 포함하고, After separating the metal oxide-silica composite precipitate, washing, and drying at 90 ℃ to 200 ℃,상기 실리케이트 용액과 금속염 용액은 물유리:금속이온의 몰비가 5:1 내지 1:1이 되도록 하는 양으로 사용되고,The silicate solution and the metal salt solution are used in an amount such that the molar ratio of water glass: metal ion is 5: 1 to 1: 1,상기 금속염은 금속염 용액내 금속이온의 총 몰에 대하여 마그네슘 이온의 함량이 50몰% 초과가 되도록 하는 양으로 마그네슘(Mg) 포함 금속염을 포함하는 것인 마그네슘 이온과 칼슘 이온의 몰비가 2.5:1 내지 1.5:1이 되도록 하는 함량으로 MgCl2 및 CaCl2을 포함하는 것인 금속산화물-실리카 복합 에어로겔의 제조방법.The metal salt comprises a magnesium (Mg) -containing metal salt in an amount such that the content of magnesium ions exceeds 50 mol% with respect to the total moles of metal ions in the metal salt solution, the molar ratio of magnesium ions and calcium ions is 2.5: 1 to Method for producing a metal oxide-silica composite airgel comprising MgCl 2 and CaCl 2 in an amount of 1.5: 1.
- 제1항의 제조방법에 의해 제조된 금속산화물-실리카 복합 에어로겔.Metal oxide-silica composite airgel prepared by the method of claim 1.
- 제10항에 있어서,The method of claim 10,탭 밀도가 0.41g/ml 이하이고, BET 비표면적이 200m2/g 이상인 금속산화물-실리카 복합 에어로겔.A metal oxide-silica composite airgel having a tap density of 0.41 g / ml or less and a BET specific surface area of 200 m 2 / g or more.
- 제11항에 있어서,The method of claim 11,기공부피가 0.4cm3/g 내지 1.0cm3/g인 금속산화물-실리카 복합 에어로겔.A metal oxide-silica composite aerogel having a pore volume of 0.4 cm 3 / g to 1.0 cm 3 / g.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16803734.9A EP3305725B1 (en) | 2015-06-01 | 2016-06-01 | Method for preparing metal oxide-silica composite aerogel |
CN201680031820.4A CN107666954B (en) | 2015-06-01 | 2016-06-01 | Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel |
US15/577,750 US10941043B2 (en) | 2015-06-01 | 2016-06-01 | Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150077278 | 2015-06-01 | ||
KR10-2015-0077278 | 2015-06-01 | ||
KR1020160067869A KR101868683B1 (en) | 2015-06-01 | 2016-06-01 | Method for preparing metal oxide-silica complex aerogel and metal oxide-silica complex aerogel prepared by using the same |
KR10-2016-0067869 | 2016-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016195379A1 true WO2016195379A1 (en) | 2016-12-08 |
Family
ID=57440613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/005814 WO2016195379A1 (en) | 2015-06-01 | 2016-06-01 | Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016195379A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109790037A (en) * | 2017-03-16 | 2019-05-21 | 株式会社Lg化学 | Manufacture plate-type metal-silicon dioxide composite aerogel method and the plate-type metal-silicon dioxide composite aerogel thus manufactured |
TWI706914B (en) * | 2019-05-03 | 2020-10-11 | 中央研究院 | Metal oxides silica composite and method of manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090115714A (en) * | 2006-12-22 | 2009-11-05 | 로베르타 디 몬테 | Aerogel materials based on metal oxides and composites thereof |
KR20100065692A (en) * | 2008-12-08 | 2010-06-17 | 제일모직주식회사 | Plate type inorganic material-aerogel complex and method for preparing thereof |
KR20100090989A (en) * | 2009-02-09 | 2010-08-18 | 주식회사 영일이엔지 | Method for preparing silica aerogel |
US20110000370A1 (en) * | 2004-12-27 | 2011-01-06 | Svenska Aerogel Ab | Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration |
KR101323303B1 (en) * | 2012-02-08 | 2013-10-30 | 주식회사 화승티엔씨 | Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound |
-
2016
- 2016-06-01 WO PCT/KR2016/005814 patent/WO2016195379A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110000370A1 (en) * | 2004-12-27 | 2011-01-06 | Svenska Aerogel Ab | Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration |
KR20090115714A (en) * | 2006-12-22 | 2009-11-05 | 로베르타 디 몬테 | Aerogel materials based on metal oxides and composites thereof |
KR20100065692A (en) * | 2008-12-08 | 2010-06-17 | 제일모직주식회사 | Plate type inorganic material-aerogel complex and method for preparing thereof |
KR20100090989A (en) * | 2009-02-09 | 2010-08-18 | 주식회사 영일이엔지 | Method for preparing silica aerogel |
KR101323303B1 (en) * | 2012-02-08 | 2013-10-30 | 주식회사 화승티엔씨 | Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound |
Non-Patent Citations (1)
Title |
---|
See also references of EP3305725A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109790037A (en) * | 2017-03-16 | 2019-05-21 | 株式会社Lg化学 | Manufacture plate-type metal-silicon dioxide composite aerogel method and the plate-type metal-silicon dioxide composite aerogel thus manufactured |
US11452979B2 (en) | 2017-03-16 | 2022-09-27 | Lg Chem, Ltd. | Method for producing plate type metal-silica composite aerogel and plate type metal-silica composite aerogel produced thereby |
TWI706914B (en) * | 2019-05-03 | 2020-10-11 | 中央研究院 | Metal oxides silica composite and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107666954B (en) | Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel | |
KR101907737B1 (en) | Method for preparing metal oxide-silica complex aerogel and metal oxide-silica complex aerogel prepared by using the same | |
CN107683173B (en) | Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel | |
KR101938369B1 (en) | Preparation method of metal oxide-silica complex aerogel and metal oxide-silica complex aerogel produced by the same | |
KR101931569B1 (en) | Preparation method of hydrophobic metal oxide-silica complex aerogel and hydrophobic metal oxide-silica complex aerogel produced by the same | |
KR101941648B1 (en) | Preparation method of hydrophobic metal oxide-silica complex aerogel and hydrophobic metal oxide-silica complex aerogel produced by the same | |
EP3392198B1 (en) | Method for preparing metal oxide-silica composite aerogel | |
WO2013100492A1 (en) | Vacuum insulation material comprising a large specific surface area getter material | |
WO2016195379A1 (en) | Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same | |
KR20190028348A (en) | Preparation method of metal oxide-silica complex aerogel and metal oxide-silica complex aerogel produced by the same | |
WO2016195381A1 (en) | Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same | |
WO2016093611A1 (en) | Method for preparing mesoporous silica | |
WO2016195380A1 (en) | Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same | |
WO2011136497A2 (en) | Method for manufacturing a lithium transition metal phosphate | |
JP2019214505A (en) | Connected mesoporous silica particles and production method thereof | |
WO2017099488A1 (en) | Method for manufacturing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel manufactured thereby | |
WO2014112661A1 (en) | Pure granular mesoporous silica, and method for producing same using organic bonding agent | |
WO2018169155A1 (en) | Method for preparing plate-type metal-silica composite aerogel and plate-type metal-silica composite aerogel prepared thereby | |
WO2022080877A1 (en) | Porous silica microrod preparation method capable of controlling shape and size | |
WO2014112660A1 (en) | Granular mesoporous silica comprising inorganic bonding agent and method for producing same | |
JP2024061601A (en) | Method for producing zeolite and zeolite | |
KR20230077549A (en) | Menufacturing method of porous carbon structure derived from organic-inorganic nanoporous material and porous carbon structure menufactured thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16803734 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15577750 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016803734 Country of ref document: EP |