KR20210132551A - Method of manufacturing photocatalyst device, and photocatalyst device using the method - Google Patents

Method of manufacturing photocatalyst device, and photocatalyst device using the method Download PDF

Info

Publication number
KR20210132551A
KR20210132551A KR1020200051097A KR20200051097A KR20210132551A KR 20210132551 A KR20210132551 A KR 20210132551A KR 1020200051097 A KR1020200051097 A KR 1020200051097A KR 20200051097 A KR20200051097 A KR 20200051097A KR 20210132551 A KR20210132551 A KR 20210132551A
Authority
KR
South Korea
Prior art keywords
photocatalytic
binder
carrier
manufacturing
strength
Prior art date
Application number
KR1020200051097A
Other languages
Korean (ko)
Other versions
KR102335533B1 (en
Inventor
백준호
홍현택
Original Assignee
주식회사 큐디앤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 큐디앤 filed Critical 주식회사 큐디앤
Priority to KR1020200051097A priority Critical patent/KR102335533B1/en
Publication of KR20210132551A publication Critical patent/KR20210132551A/en
Application granted granted Critical
Publication of KR102335533B1 publication Critical patent/KR102335533B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/004
    • B01J35/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention provides a method for manufacturing a photocatalyst device which forms open pores to have excellent air permeability and high strength so that a photocatalyst device is not broken or damaged by external force, has excellent moisture resistance which prevents separation of the photocatalyst, and does not change strength even with moisture contained in the air. The method for manufacturing a photocatalytic device comprises the following steps of: preparing a carrier having a network structure in which the open pores are formed; forming a photocatalytic binder by mixing a photocatalytic material with a binder mixed with a water glass and a strength enhancer increasing the strength by a pozzolanic reaction or a geopolymer reaction; coating the photocatalytic binder on a surface of the network structure by impregnating the photocatalytic binder into the carrier; and low-temperature curing the carrier coated with the photocatalytic binder at room temperature.

Description

광촉매 장치의 제조 방법 및 이에 의하여 제작된 광촉매 장치{METHOD OF MANUFACTURING PHOTOCATALYST DEVICE, AND PHOTOCATALYST DEVICE USING THE METHOD}Method of manufacturing a photocatalytic device and a photocatalytic device manufactured thereby

본 발명은 광촉매 장치의 제조 방법 및 이에 의하여 제작된 광촉매 장치에 관한 것이다.The present invention relates to a method for manufacturing a photocatalytic device and a photocatalytic device manufactured thereby.

일반적으로 광촉매 장치는 빛에너지를 흡수하여 광화학 반응을 개시하고, 촉매로써 광화학 반응을 촉진하는 물질로서 정의되며, 대표적인 광촉매로서는 이산화티탄이 대표적이다.In general, a photocatalytic device is defined as a material that absorbs light energy to initiate a photochemical reaction and promotes a photochemical reaction as a catalyst, and a typical photocatalyst is titanium dioxide.

광촉매는 주로 담체에 부착된 상태에서 광에 노출되어 오염 물질을 정화하는데, 최근 광촉매 물질은 수질 정화, 건축물의 외벽은 물론 공기청정기 분야에도 적용되고 있다.Photocatalysts are mainly used to purify pollutants by exposure to light while attached to a carrier. Recently, photocatalysts are being applied to water purification, exterior walls of buildings, as well as air purifiers.

공기청정기 등에서 광촉매를 적용하기 위해서는 광촉매가 부착되는 담체에 개기공(open cell)이 형성되어 통기성이 우수해야 하며, 개기공이 형성됨에도 불구하고 담체의 강도가 우수해야 하는데, 이는 담체의 강도가 낮을 경우 담체에 부착된 광촉매가 이탈되고 담체로부터 이탈된 광촉매가 인체로 유입되어 신체 손상이 유발될 수 있기 때문이다.In order to apply a photocatalyst in an air purifier, etc., open cells are formed in the carrier to which the photocatalyst is attached, so air permeability must be excellent. In this case, the photocatalyst attached to the carrier is released, and the photocatalyst detached from the carrier is introduced into the human body, which may cause damage to the body.

본 발명의 출원인이 출원한 출원번호 제10-2018-0140789호, 물유리를 이용한 광촉매 제조 방법 및 이를 통해 제조된 광촉매 장치,(출원일 : 2018년 11월 15일)에는 물유리를 이용하여 개기공을 형성함으로써 통기성을 갖는 기술이 개발된 바 있다.In Application No. 10-2018-0140789 filed by the applicant of the present invention, a photocatalyst manufacturing method using water glass and a photocatalyst device manufactured through the same, (application date: November 15, 2018), open pores are formed using water glass By doing so, a technology with breathability has been developed.

그러나 상기 제조 방법 및 장치의 경우 물유리를 이용하여 개기공을 형성함으로써 통기성이 우수하나 물유리의 특성에 의하여 쉽게 부서지고 흡습에 의하여 강도가 크게 저하될 수 있는 문제점을 갖는다.However, in the case of the manufacturing method and apparatus, the air permeability is excellent by forming open pores using water glass, but it has a problem in that it is easily broken due to the characteristics of the water glass and the strength may be greatly reduced due to moisture absorption.

출원번호 제10-2018-0140789호, 물유리를 이용한 광촉매 제조 방법 및 이를 통해 제조된 광촉매 장치 (출원일 : 2018년 11월 15일)Application No. 10-2018-0140789, a method for manufacturing a photocatalyst using water glass and a photocatalyst device manufactured through the same (application date: November 15, 2018)

본 발명은 개기공을 형성하여 통기성이 우수하면서도 강도가 높아 외력에 의하여 부서지거나 파손되지 않음으로써 광촉매의 이탈을 방지하며 공기중에 포함된 습기에도 강도 변화가 없는 내습성이 우수한 광촉매 장치의 제조 방법 및 이에 의하여 제작된 광촉매 장치를 제공한다.The present invention provides a method of manufacturing a photocatalyst device having excellent moisture resistance without change in strength even with moisture contained in the air and preventing the photocatalyst from being broken or damaged by external force due to the formation of open pores and excellent breathability and high strength; A photocatalytic device thus manufactured is provided.

일실시예로서, 광촉매 장치의 제조 방법은 개기공이 형성된 망상 구조를 갖는 담체를 준비하는 단계; 포졸란 반응 또는 지오폴리 반응에 의하여 강도를 증가시키는 강도 증강제 및 물유리가 혼합된 바인더에 광촉매 물질을 혼합하여 광촉매 바인더를 형성하는 단계; 상기 광촉매 바인더를 상기 담체에 함침시켜 상기 망상 구조의 표면에 상기 광촉매 바인더를 코팅하는 단계; 및 상기 광촉매 바인더가 코팅된 상기 담체를 실온에서 저온 양생하는 단계를 포함한다.In one embodiment, a method of manufacturing a photocatalytic device includes: preparing a carrier having a network structure in which open pores are formed; forming a photocatalytic binder by mixing a photocatalyst material with a binder mixed with a strength enhancer and water glass for increasing strength by a pozzolan reaction or a geopoly reaction; coating the photocatalytic binder on the surface of the network structure by impregnating the photocatalytic binder into the carrier; and curing the carrier coated with the photocatalytic binder at a low temperature at room temperature.

상기 담체는 폴리우레탄 수지를 포함하며, 상기 물유리는 소듐 실리케이트, 포타슘실리케이트 및 리튬실리케이트 중 어느 하나를 포함하며, 상기 광촉매 물질은 이산화타탄을 포함한다.The carrier includes a polyurethane resin, the water glass includes any one of sodium silicate, potassium silicate, and lithium silicate, and the photocatalytic material includes tartan dioxide.

상기 강도 증강제는 상기 물유리에 대하여 상기 포졸란 반응 또는 상기 지오폴리(geopoly) 반응을 일으키는 플라이애쉬 및 슬래그 중 적어도 하나를 포함한다.The strength enhancer includes at least one of fly ash and slag that causes the pozzolan reaction or the geopoly reaction with respect to the water glass.

상기 바인더는 상기 바인더의 강도를 추가적으로 향상시키기 위한 경화제인 폴리이소시아네이트, 염산, 황산, 붕산 및 붕소 중 적어도 1개를 포함한다.The binder includes at least one of polyisocyanate, hydrochloric acid, sulfuric acid, boric acid, and boron, which are curing agents for further improving the strength of the binder.

상기 바인더는 첨가제인 제올라이트 및 알루미늄을 포함한다.The binder includes zeolite and aluminum as additives.

상기 저온 양생 후 50℃ 내지 250℃의 온도에서 1시간 내지 5시간 동안 상기 광촉매 바인더를 고온 양생하는 단계를 더 포함한다.After the low-temperature curing, the method further includes high-temperature curing of the photocatalytic binder at a temperature of 50° C. to 250° C. for 1 hour to 5 hours.

상기 담체에 광촉매 바인더를 코팅하는 단계 이전에 상기 담체의 상기 3차원 망상 구조에 요철을 형성하는 단계를 더 포함한다.The method further includes forming irregularities in the three-dimensional network structure of the carrier before the step of coating the photocatalytic binder on the carrier.

일실시예로서, 상기 청구항 1 내지 청구항 7 중 어느 한 항의 제조 방법에 의해 제조된다.In one embodiment, it is manufactured by the manufacturing method of any one of claims 1 to 7.

본 발명에 따른 광촉매 장치의 제조 방법 및 이에 의하여 제작된 광촉매 장치는 개기공을 형성하여 통기성이 우수하면서도 강도가 높아 외력에 의하여 부서지거나 파손되지 않음으로써 광촉매의 이탈을 방지하며 공기중에 포함된 습기에도 강도 변화가 없는 우수한 내습성을 갖는 효과를 갖는다.The method for manufacturing a photocatalyst device according to the present invention and the photocatalytic device manufactured thereby form open pores and have excellent air permeability and high strength so that the photocatalyst is not broken or damaged by an external force. It has the effect of having excellent moisture resistance with no change in strength.

도 1은 본 발명의 일실시예에 따른 광촉매 장치의 제조 방법을 도시한 순서도이다.1 is a flowchart illustrating a method of manufacturing a photocatalytic device according to an embodiment of the present invention.

이하 설명되는 본 발명은 다양한 변환을 가할 수 있고, 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다.The present invention described below can apply various transformations and can have various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

또한 제1, 제2 등의 용어는 다양한 구성요소들을 구분하여 설명하기 위해 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Also, terms such as first, second, etc. may be used to distinguish and describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.

또한, 본 출원에서 적어도 2개의 상이한 실시예들이 각각 기재되어 있을 경우, 본 발명의 기술적 사상을 벗어나지 않는 범위에서 별다른 기재가 없더라도 각 실시예들은 구성요소의 전부 또는 일부를 상호 병합 및 혼용하여 사용할 수 있다.In addition, when at least two different embodiments are described in the present application, all or part of the components may be used in combination with each other even if there is no special description within the scope not departing from the technical spirit of the present invention. have.

도 1은 본 발명의 일실시예에 따른 광촉매 장치의 제조 방법을 도시한 순서도이다.1 is a flowchart illustrating a method of manufacturing a photocatalytic device according to an embodiment of the present invention.

도 1을 참조하면, 광촉매 장치를 제조하기 위해서는 먼저 광촉매 장치에서 광촉매를 고정하기 위한 담체(carrier)를 준비한다. (단계 S10)Referring to FIG. 1 , in order to manufacture the photocatalytic device, a carrier for fixing the photocatalyst in the photocatalytic device is first prepared. (Step S10)

본 발명의 일실시예에서 광촉매 장치는 공기청정기 등에 적용되기 때문에 광촉매 장치는 우수한 통기성이 요구된다.In an embodiment of the present invention, since the photocatalytic device is applied to an air purifier, etc., the photocatalytic device is required to have excellent ventilation.

담체가 우수한 통기성을 갖기 위한 조건으로서 담체에는 개기공(open cell) 및 3차원 망상구조가 형성되어야 한다. 담체에 개기공 및 3차원 망상구조가 형성되지 않을 경우 기체가 통과될 수 없어 공기청정기 등에 사용하기 어렵다.As a condition for the carrier to have excellent air permeability, an open cell and a three-dimensional network structure should be formed in the carrier. If the carrier does not have open pores and a three-dimensional network structure, gas cannot pass therethrough, making it difficult to use in an air purifier or the like.

본 발명의 일실시예에서, 담체는, 예를 들어, 폴리우레탄과 같은 합성수지를 발포 등의 방법에 의하여 형성함으로써 개기공이 형성된 3차원 망상 구조를 갖는다.In one embodiment of the present invention, the carrier has, for example, a three-dimensional network structure in which open pores are formed by forming a synthetic resin such as polyurethane by foaming or the like.

폴리우레탄과 같은 합성수지로 제작되며 개기공 및 3차원 망상구조를 갖는 담체의 기공도(porosity)는 ppi 단위로 나타낼 수 있으며, ppi가 작을수록 기공의 사이즈는 크다. 본 발명의 일실시예에서, 개기공이 형성된 담체의 기공도는 8ppi 내지 80ppi로 형성될 수 있다.The porosity of a carrier made of synthetic resin such as polyurethane and having open pores and a three-dimensional network structure can be expressed in units of ppi, and the smaller the ppi, the larger the size of the pores. In an embodiment of the present invention, the porosity of the carrier in which the open pores are formed may be formed in a range of 8 ppi to 80 ppi.

비록 본 발명의 일실시예에서는 폴리우레탄 소재로 개기공 및 3차원 망상구조가 형성된 담체가 형성되는 것이 설명되고 있지만, 담체는 폴리우레탄 이외에 다양한 합성수지 소재로 제작될 수 있으며, 합성수지 이외에 발포 금속, 소성세라믹 및 보도블록 등의 소재가 사용되어도 무방하다.Although it is described that a carrier having open pores and a three-dimensional network structure is formed with a polyurethane material in one embodiment of the present invention, the carrier may be made of various synthetic resin materials other than polyurethane, and in addition to synthetic resin, foamed metal, plastic Materials such as ceramics and sidewalk blocks may be used.

3차원 망상 구조 및 개기공을 갖는 담체는 접착력이 없기 때문에 광촉매인 이산화티탄이 담체에 직접 결합되기 어렵다. 이를 극복하기 위해 접착제 등을 이용하여 광촉매인 이산화티탄을 담체에 결합하더라도 담체는 3차원 망상 구조에 의하여 유연성을 갖기 때문에 담체가 지정된 형상을 유지하지 못하고, 담체의 형상 변형에 따라 이산화티탄이 담체로부터 쉽게 분리될 수 있다.Since the carrier having a three-dimensional network structure and open pores does not have adhesive strength, it is difficult for titanium dioxide, a photocatalyst, to be directly bonded to the carrier. In order to overcome this, even if titanium dioxide, a photocatalyst, is bonded to the carrier using an adhesive, etc., the carrier cannot maintain the specified shape because the carrier has flexibility due to the three-dimensional network structure. can be easily separated.

본 발명의 일실시예에서는 개기공 및 3차원 망상 구조를 갖고 유연하여 형상 변형이 쉽게 발생될 수 있는 담체의 표면에 광촉매인 이산화티탄을 고정 및 담체의 강도를 증가시켜 담체의 형상 변형을 방지하기 위하여 광촉매 바인더가 형성된다. (단계 S20)In one embodiment of the present invention, titanium dioxide, a photocatalyst, is fixed to the surface of a carrier that has open pores and a three-dimensional network structure and is flexible and can easily be deformed in shape, and to prevent shape deformation of the carrier by increasing the strength of the carrier. To this end, a photocatalytic binder is formed. (Step S20)

단계 S20에서 형성되는 광촉매 바인더는 3차원 망상 구조를 갖는 담체의 표면에 결합 및 담체의 강도를 크게 증가시켜 외력에 의하여 담체의 형상 변형이 쉽게 발생되는 것을 방지한다.The photocatalytic binder formed in step S20 binds to the surface of the carrier having a three-dimensional network structure and greatly increases the strength of the carrier, thereby preventing the carrier from being easily deformed by an external force.

본 발명의 일실시예에서 광촉매 바인더는 바인더에 광촉매를 혼합하여 형성된다.In one embodiment of the present invention, the photocatalyst binder is formed by mixing the photocatalyst with the binder.

광촉매 바인더를 이루는 바인더는 물유리 및 강도 증강제를 포함한다.The binder constituting the photocatalytic binder includes water glass and a strength enhancer.

바인더에 포함되는 물유리는 소듐실리케이트, 포타슘실리케이트 및 리튬실리케이트가 사용될 수 있으며, 본 발명의 일실시예에서는 소듐실리케이트가 사용된다.As the water glass included in the binder, sodium silicate, potassium silicate and lithium silicate may be used, and sodium silicate is used in an embodiment of the present invention.

본 발명의 일실시예에서 물유리로 소듐실리케이트를 사용하는 이유는 소듐실리케이트에 포함된 실리콘(Si) 및 물이 후술 될 경화제인 플라이애쉬 또는 슬래그와 반응하여 포졸란 반응 또는 지오폴리머 반응을 일으키기 때문이다.The reason for using sodium silicate as the water glass in an embodiment of the present invention is that silicon (Si) and water contained in sodium silicate react with fly ash or slag, which will be described later, to cause a pozzolan reaction or a geopolymer reaction.

구체적으로, 물유리에 포함된 소듐옥사이드(Na2O)가 플라이애쉬에 포함된 알루미노 실리케이트 등과 지오폴리(geopoly) 반응을 일으켜 광촉매 바인더의 강도를 크게 증가시킬 수 있기 때문이다. 예를 들어, 플라이애쉬에 실리콘(Si)이 44%, 알루미늄이 18%, 칼슘이 12% 및 철이 11% 포함되었을 때, Al-O, Si-O 결합에 의한 축중합(지오폴리머) 반응이 일어나 경화가 발생된다. 특히 물유리 내 Na2O의 알칼리기로 인한 실리콘(Si) 및 알루미늄(Al) 성분의 겔화 반응이 함께 일어나며, 소량의 CaO 존재로 인한 수화반응도 함께 작용한다.Specifically, this is because sodium oxide (Na O ) contained in water glass can cause a geopoly reaction with aluminosilicate contained in fly ash to significantly increase the strength of the photocatalytic binder. For example, when fly ash contains 44% silicon (Si), 18% aluminum, 12% calcium, and 11% iron, polycondensation (geopolymer) reaction due to Al-O and Si-O bonding occurs. wake up and hardening occurs. In particular, the gelation reaction of the silicon (Si) and aluminum (Al) components due to the alkali group of Na 2 O in the water glass occurs together, and the hydration reaction due to the presence of a small amount of CaO also works.

한편, 물유리에 포함된 소듐옥사이드(Na2O)가 슬래그(slag)에 포함된 CaO 성분(Ca 59.8%, Si 22%, Al 10%)과 반응할 경우, C3A, C3S와 H2O가 반응해 수화반응(C-S-H) 반응을 일으켜 경화가 진행된다. 다만 Ca(OH)2 생성이 지속되지 않아 포졸란반응(지속적인 경화)은 일어나기 힘들다. 다만 적정량의 실리콘(Si) 또는 알루미늄(Al)으로 인해 축중합(지오폴리머) 반응도 함께 일어나게 되며, 특히 물유리 내 Na2O의 알칼리기로 인핸 실리콘 성분의 겔화 반응도 함께 일어나게 된다.On the other hand, when sodium oxide (Na2O) contained in water glass reacts with CaO components (Ca 59.8%, Si 22%, Al 10%) contained in slag, C3A, C3S and H2O react and hydration reaction ( CSH) reaction and curing proceeds. However, since Ca(OH)2 production does not continue, the pozzolan reaction (continuous curing) is difficult to occur. However, due to an appropriate amount of silicon (Si) or aluminum (Al), a polycondensation (geopolymer) reaction also occurs, and in particular, a gelation reaction of the silicone component caused by the alkali group of Na2O in the water glass also occurs.

시중에 판매되는 소듐실리케이트는 물의 농도에 따라서 다양한 점도를 갖는데 물이 많이 포함된 소듐실리케이트 제품의 경우 건조시간이 크게 증가되어 생산성 저하가 초래되며, 물이 상대적으로 적게 포함된 소듐실리케이트 제품의 경우 점도가 높아 강도 증강제, 첨가제 등을 균일하게 혼합하기 어려울 수 있다.Commercially available sodium silicate has various viscosities depending on the concentration of water. In the case of sodium silicate products containing a lot of water, the drying time is greatly increased, resulting in a decrease in productivity, and in the case of sodium silicate products containing relatively little water, the viscosity It may be difficult to uniformly mix strength enhancers, additives, etc.

본 발명의 일실시예에서는 물유리인 소듐실리케이트의 농도에 따라서 유동성을 확보하기 위해 소듐실리케이트에는 증류수(DW) 등을 추가적으로 혼합할 수 있다.In one embodiment of the present invention, distilled water (DW) or the like may be additionally mixed with sodium silicate in order to secure fluidity according to the concentration of sodium silicate, which is water glass.

한편, 소듐실리케이트에 혼합되는 증류수의 경우, 플라이애쉬 및 슬래그와 반응하여 광촉매 바인더의 강도를 보다 향상시킬 수 있다.On the other hand, in the case of distilled water mixed with sodium silicate, it is possible to further improve the strength of the photocatalytic binder by reacting with fly ash and slag.

바인더에 포함되는 강도 증강제는 개기공 및 3차원 망상구조를 가짐으로써 외력에 의하여 쉽게 형상이 변경되는 담체의 강도를 증가시켜 개기공 및 3차원 망상구조를 유지하면서도 외력에 의하여 쉽게 형상이 변경되지 않도록 한다.The strength enhancer included in the binder increases the strength of the carrier, which is easily changed in shape by an external force by having open pores and a three-dimensional network structure, so that the shape is not easily changed by an external force while maintaining the open pores and the three-dimensional network structure. do.

강도 증강제는 플라이애쉬(fly ash) 및 슬래그(slag) 중 적어도 하나를 포함할 수 있다.The strength enhancer may include at least one of fly ash and slag.

강도 증강제인 플라이애쉬는 물유리에 포함된 이산화규소(SiO2) 및 산화칼슘(CaO)을 기반으로 물과 수화 반응하여 칼슘 실리케이트 하이드레이트를 생성하여 포졸란 반응을 활성화하여 담체를 코팅하는 촉매 바인더의 강도를 크게 향상시키는 역할을 한다. 한편, 플라이애쉬는 구형 입자 형상을 가지고 있으며, 혼화제로서도 역할한다.Fly ash, a strength enhancer, generates calcium silicate hydrate by hydration reaction with water based on silicon dioxide (SiO 2 ) and calcium oxide (CaO) contained in water glass to activate the pozzolan reaction to increase the strength of the catalyst binder coating the carrier. plays a major role in improving it. On the other hand, fly ash has a spherical particle shape and also serves as an admixture.

강도 증강제인 슬래그는 이산화규소(SiO2) 및 산화칼슘(CaO)을 포함하고 있으며, 조직이 결정화되지 않은 유리질로서 화학 반응을 쉽게 일으키기 쉬우며, 물과 접촉되어 경화되는 수경성은 없으나 물유리인 소듐실리케이트에 포함된 소듐옥사이드(Na2O)에 의하여 경화되는 특성을 가지며, 슬래그는 물유리에 의하여 개기공 및 3차원 망상구조를 갖는 담체의 강도를 크게 증가시키는 역할을 한다.Slag, which is a strength enhancer, contains silicon dioxide (SiO 2 ) and calcium oxide (CaO). The structure is glassy, which is not crystallized, and it is easy to cause chemical reactions. It has a characteristic of being cured by sodium oxide (Na 2 O) contained in the slag, and the slag plays a role in greatly increasing the strength of the carrier having open pores and a three-dimensional network structure by water glass.

한편, 광촉매 바인더의 바인더에는 강도 증강제와 함께 광촉매 바인더의 강도를 증가시키는 경화제가 더 포함될 수 있다.Meanwhile, the binder of the photocatalytic binder may further include a curing agent for increasing the strength of the photocatalytic binder together with the strength enhancer.

본 발명의 일실시예에서, 경화제로서는 폴리이소시아네이트, 염산, 황산, 붕산 및 붕소 등이 사용될 수 있다. 특히 경화제로 사용되는 산성 물질은 물유리와 축합 반응하여 물유리를 겔화 시킴으로써 경화에 의하여 광촉매 바인더의 강도를 증가시킬 수 있다.In one embodiment of the present invention, polyisocyanate, hydrochloric acid, sulfuric acid, boric acid and boron may be used as the curing agent. In particular, the acidic material used as the curing agent can increase the strength of the photocatalytic binder by curing by condensation reaction with the water glass to gel the water glass.

이외에도 광촉매 바인더의 바인더에는 강도 증강제 및 경화제 이외에 물유리 내 실리콘 및 알루미늄의 함량을 높이기 위해 제올라이트 및 알루미늄 등을 부가적으로 첨가할 수 있다.In addition, zeolite and aluminum may be additionally added to the binder of the photocatalytic binder in order to increase the content of silicon and aluminum in the water glass in addition to the strength enhancer and curing agent.

이와 같은 구성을 갖는 바인더에는 광촉매가 혼합되어 광촉매 바인더가 제조된다. (단계 S20)A photocatalyst is mixed with the binder having such a configuration to prepare a photocatalyst binder. (Step S20)

광촉매 바인더에 포함되는 광촉매는, 예를 들어, 이산화티탄(TiO2)을 포함할 수 있으나, 광촉매는 이산화티탄 이외에 다양한 광촉매를 포함할 수 있다. 본 발명의 일실시예에서, 이산화티탄은 물유리 대비 5wt% 내지 30wt%가 포함될 수 있다.The photocatalyst included in the photocatalyst binder may include, for example, titanium dioxide (TiO2), but the photocatalyst may include various photocatalysts in addition to titanium dioxide. In one embodiment of the present invention, titanium dioxide may be included in 5 wt% to 30 wt% compared to water glass.

광촉매 바인더를 이루는 구성 요소들을 균일하게 혼합하여 광촉매 바인더가 형성되면, 광촉매 바인더를 개기공 및 3차원 망상구조를 갖는 담체에 제공하여 담체의 3차원 망상구조에 광촉매 바인더를 균일한 두께로 코팅한다. (단계 S30)When the photocatalytic binder is formed by uniformly mixing the components constituting the photocatalytic binder, the photocatalytic binder is provided to a carrier having open pores and a three-dimensional network structure, and the photocatalytic binder is coated on the three-dimensional network structure of the carrier to a uniform thickness. (Step S30)

한편, 본 발명의 일실시예에서, 개기공 및 3차원 망상 구조를 갖는 담체에 광촉매 바인더를 균일한 두께로 코팅하기 이전에 담체를 이루는 3차원 망상 구조의 표면에 강제로 요철 등을 형성하는 단계가 추가될 수 있다.On the other hand, in one embodiment of the present invention, before coating the photocatalytic binder to a uniform thickness on the carrier having the open pores and the three-dimensional network structure, forcibly forming irregularities on the surface of the three-dimensional network structure constituting the carrier. can be added.

3차원 망상 구조를 갖는 담체의 표면에 강제로 요철을 형성할 경우, 담체의 표면적이 크게 증가 되어 광촉매 바인더 및 담체의 부착력을 크게 향상시킬 수 있다.When the unevenness is forcibly formed on the surface of the carrier having a three-dimensional network structure, the surface area of the carrier is greatly increased, so that the adhesion between the photocatalytic binder and the carrier can be greatly improved.

본 발명의 일실시예에서, 개기공 및 3차원 망상 구조를 갖는 담체의 표면에 요철을 형성하는 방법으로는 샌드와 같이 표면이 거친 소재를 담체의 내부에 제공한 후 담체에 압력을 가해 담체에 요철을 형성하거나 담체의 일부에 마스크 물질을 도포하여 마스크를 형성한 후 담체를 화학적으로 처리하여 담체에 요철을 형성하는 방법이 사용될 수 있다. 이외에도 개기공 및 3차원 망상 구조를 갖는 담체의 표면에 다양한 방법으로 요철을 형성하여 담체 및 광촉매 바인더의 접착력을 크게 향상시킬 수 있다.In one embodiment of the present invention, as a method of forming irregularities on the surface of a carrier having open pores and a three-dimensional network structure, a material with a rough surface such as sand is provided inside the carrier and then the carrier is subjected to pressure by applying pressure to the carrier. A method of forming irregularities or applying a mask material to a part of the carrier to form a mask, and then chemically treating the carrier to form irregularities on the carrier may be used. In addition, by forming irregularities on the surface of the carrier having open pores and a three-dimensional network structure by various methods, the adhesion between the carrier and the photocatalytic binder can be greatly improved.

도 1을 다시 참조하면, 광촉매 바인더를 담체에 균일한 두께로 코팅한 후에는 광촉매 바인더가 코팅된 담체를 실온에서 저온 양생하는 단계가 수행된다. (단계 S40)Referring back to FIG. 1 , after the photocatalytic binder is coated on the carrier to a uniform thickness, a low-temperature curing step of the photocatalytic binder-coated carrier is performed at room temperature. (Step S40)

광촉매 바인더가 코팅된 담체를 실온에서 저온 양생하는 단계는 광촉매 바인더를 1차 경화하는 단계로서 광촉매 바인더에 포함된 물유리에 함유된 물을 제거하여 광촉매 바인더의 강도를 향상시킨다.The step of curing the photocatalyst binder-coated carrier at a low temperature at room temperature is a step of primary curing the photocatalyst binder, and improves the strength of the photocatalytic binder by removing water contained in the water glass contained in the photocatalytic binder.

저온 양생하는 단계에서 담체에 코팅된 광촉매 바인더는 약 1시간 내지 약 24시간 저온에서 양생될 수 있다.In the low-temperature curing step, the photocatalytic binder coated on the carrier may be cured at a low temperature for about 1 hour to about 24 hours.

한편, 본 발명의 일실시예에서는 저온 양생하는 단계 이후 약 50℃ 내지 약 250℃의 온도에서 1시간 내지 5시간 동안 담체에 코팅된 광촉매 바인더를 2차로 고온 양생하는 단계를 더 포함할 수 있다. (단계 S50)Meanwhile, in an embodiment of the present invention, after the low-temperature curing step, the method may further include a second high-temperature curing of the photocatalytic binder coated on the carrier at a temperature of about 50° C. to about 250° C. for 1 hour to 5 hours. (Step S50)

도 2는 본 발명의 일실시예에 따라 고온 양생되어 광촉매 바인더가 담체에 코팅된 광촉매 장치를 도시한 사진이다. 도 3은 도 2에 도시된 광촉매 장치를 200배 확대 도시한 사진이다.2 is a photograph showing a photocatalyst device in which a photocatalytic binder is coated on a carrier after curing at a high temperature according to an embodiment of the present invention. FIG. 3 is a 200-fold magnification of the photocatalytic device shown in FIG. 2 .

도 2 및 도 3을 참조하면, 도 1의 제조 방법에 의하여 제조된 광촉매 장치(100)의 광촉매 바인더(30)는 3차원 망상구조를 갖는 담체(20)의 표면을 균일한 두께로 코팅하며, 광촉매 바인더(30)는 담체(20)의 표면에 매우 강하게 결합된다.2 and 3, the photocatalytic binder 30 of the photocatalytic device 100 manufactured by the manufacturing method of FIG. 1 coats the surface of the carrier 20 having a three-dimensional network structure to a uniform thickness, The photocatalytic binder 30 is very strongly bonded to the surface of the carrier 20 .

이와 같이 담체(20)의 표면에 결합된 광촉매 바인더(30)에 의하여 광촉매 장치(100)의 강도는 크게 향상되어 광촉매 장치(100)는 외부에서 인가된 외력에 의하여 형상이 쉽게 변형되지 않으며 이로 인해 광촉매 장치(100)에 부착된 광촉매의 이탈 역시 방지할 수 있다.As described above, the strength of the photocatalytic device 100 is greatly improved by the photocatalytic binder 30 bonded to the surface of the carrier 20, so that the photocatalytic device 100 is not easily deformed in shape by an external force applied from the outside. The separation of the photocatalyst attached to the photocatalytic device 100 can also be prevented.

이상에서 상세하게 설명한 바에 의하면, 광촉매 장치의 제조 방법 및 이에 의하여 제작된 광촉매 장치는 개기공을 형성하여 통기성이 우수하면서도 강도가 높아 외력에 의하여 부서지거나 파손되지 않음으로써 광촉매의 이탈을 방지하며 공기중에 포함된 습기에도 강도 변화가 없는 우수한 내습성을 갖는 효과를 갖는다.As described in detail above, the method for manufacturing a photocatalyst device and the photocatalytic device manufactured thereby form open pores, so that the photocatalyst is not broken or damaged by an external force because of its high strength and excellent air permeability, thereby preventing the release of the photocatalyst in the air. It has the effect of having excellent moisture resistance with no change in strength even in the contained moisture.

한편, 본 도면에 개시된 실시예는 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the drawings are merely presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.

20...담체 30...광촉매 바인더
100...광촉매 장치
20...carrier 30...photocatalytic binder
100...photocatalytic device

Claims (8)

개기공이 형성된 망상 구조를 갖는 담체를 준비하는 단계;
포졸란 반응 또는 지오폴리 반응에 의하여 강도를 증가시키는 강도 증강제 및 물유리가 혼합된 바인더에 광촉매 물질을 혼합하여 광촉매 바인더를 형성하는 단계;
상기 광촉매 바인더를 상기 담체에 함침시켜 상기 망상 구조의 표면에 상기 광촉매 바인더를 코팅하는 단계; 및
상기 광촉매 바인더가 코팅된 상기 담체를 실온에서 저온 양생하는 단계를 포함하는 광촉매 장치의 제조 방법.
preparing a carrier having a network structure in which open pores are formed;
forming a photocatalytic binder by mixing a photocatalytic material with a binder in which a strength enhancer and water glass are mixed to increase strength by a pozzolan reaction or a geopoly reaction;
coating the photocatalytic binder on the surface of the network structure by impregnating the photocatalytic binder into the carrier; and
and curing the carrier coated with the photocatalytic binder at a low temperature at room temperature.
제1항에 있어서,
상기 담체는 폴리우레탄 수지를 포함하며,
상기 물유리는 소듐 실리케이트, 포타슘실리케이트 및 리튬실리케이트 중 어느 하나를 포함하며,
상기 광촉매 물질은 이산화타탄을 포함하는 광촉매 장치의 제조 방법.
According to claim 1,
The carrier comprises a polyurethane resin,
The water glass includes any one of sodium silicate, potassium silicate and lithium silicate,
The photocatalytic material is a method of manufacturing a photocatalytic device comprising tartan dioxide.
제1항에 있어서,
상기 강도 증강제는 상기 물유리에 대하여 상기 포졸란 반응 또는 상기 지오폴리(geopoly) 반응을 일으키는 플라이애쉬 및 슬래그 중 적어도 하나를 포함하는 광촉매 장치의 제조 방법.
According to claim 1,
The method of manufacturing a photocatalytic device, wherein the strength enhancer includes at least one of fly ash and slag that causes the pozzolan reaction or the geopoly reaction with respect to the water glass.
제1항에 있어서,
상기 바인더는 상기 바인더의 강도를 추가적으로 향상시키기 위한 경화제인 폴리이소시아네이트, 염산, 황산, 붕산 및 붕소 중 적어도 1개를 포함하는 광촉매 장치의 제조 방법.
According to claim 1,
The binder is a method of manufacturing a photocatalytic device comprising at least one of polyisocyanate, hydrochloric acid, sulfuric acid, boric acid, and boron, which are curing agents for further improving the strength of the binder.
제1항에 있어서,
상기 바인더는 첨가제인 제올라이트 및 알루미늄을 포함하는 광촉매 장치의 제조 방법.
According to claim 1,
The binder is a method of manufacturing a photocatalytic device comprising an additive zeolite and aluminum.
제1항에 있어서,
상기 저온 양생 후 50℃ 내지 250℃의 온도에서 1시간 내지 5시간 동안 상기 광촉매 바인더를 고온 양생하는 단계를 더 포함하는 광촉매 장치의 제조 방법.
According to claim 1,
After the low-temperature curing, the method of manufacturing a photocatalytic device further comprising the step of curing the photocatalytic binder at a high temperature for 1 hour to 5 hours at a temperature of 50 ° C. to 250 ° C.
제1항에 있어서,
상기 담체에 광촉매 바인더를 코팅하는 단계 이전에 상기 담체의 상기 3차원 망상 구조에 요철을 형성하는 단계를 더 포함하는 광촉매 장치의 제조 방법.
According to claim 1,
The method of manufacturing a photocatalytic device further comprising the step of forming irregularities in the three-dimensional network structure of the support before the step of coating the photocatalytic binder on the support.
상기 청구항 1 내지 청구항 7 중 어느 한 항의 제조 방법에 의해 제조된 광촉매 장치.A photocatalytic device manufactured by the manufacturing method of any one of claims 1 to 7.
KR1020200051097A 2020-04-27 2020-04-27 Method of manufacturing photocatalyst device, and photocatalyst device using the method KR102335533B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200051097A KR102335533B1 (en) 2020-04-27 2020-04-27 Method of manufacturing photocatalyst device, and photocatalyst device using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200051097A KR102335533B1 (en) 2020-04-27 2020-04-27 Method of manufacturing photocatalyst device, and photocatalyst device using the method

Publications (2)

Publication Number Publication Date
KR20210132551A true KR20210132551A (en) 2021-11-04
KR102335533B1 KR102335533B1 (en) 2021-12-07

Family

ID=78521810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200051097A KR102335533B1 (en) 2020-04-27 2020-04-27 Method of manufacturing photocatalyst device, and photocatalyst device using the method

Country Status (1)

Country Link
KR (1) KR102335533B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115814807A (en) * 2021-12-31 2023-03-21 广东职业技术学院 Load skeleton prepared from nickel slag, incineration fly ash and arsenic alkali slag and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084396A (en) * 2005-09-26 2007-04-05 Catalysts & Chem Ind Co Ltd Method for manufacturing porous silicious particle, and porous silicious particle obtained by the method
KR20130091482A (en) * 2012-02-08 2013-08-19 (주) 빛과환경 Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound
JP2014024041A (en) * 2012-07-30 2014-02-06 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE AND TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE
KR102099085B1 (en) * 2018-10-24 2020-04-10 충남대학교산학협력단 Functional mortar composition comprising photocatalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084396A (en) * 2005-09-26 2007-04-05 Catalysts & Chem Ind Co Ltd Method for manufacturing porous silicious particle, and porous silicious particle obtained by the method
KR20130091482A (en) * 2012-02-08 2013-08-19 (주) 빛과환경 Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound
JP2014024041A (en) * 2012-07-30 2014-02-06 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE AND TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE
KR102099085B1 (en) * 2018-10-24 2020-04-10 충남대학교산학협력단 Functional mortar composition comprising photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115814807A (en) * 2021-12-31 2023-03-21 广东职业技术学院 Load skeleton prepared from nickel slag, incineration fly ash and arsenic alkali slag and application thereof

Also Published As

Publication number Publication date
KR102335533B1 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
JP3380858B2 (en) Manufacturing method of inorganic moldings
KR101852037B1 (en) Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge
EA035361B1 (en) Lightweight composite materials produced from carbonatable calcium silicate and processes of production thereof
CN107473624B (en) Cement-based composite material based on steel fibers subjected to silane surface treatment
CN114105561B (en) Recycled concrete based on inorganic fibers and preparation method thereof
KR102335533B1 (en) Method of manufacturing photocatalyst device, and photocatalyst device using the method
CN109913006B (en) Building interface agent and preparation method and application thereof
CN107619298B (en) Anti-efflorescence cement-based permeable material
CN108395178B (en) Non-autoclaved aerated concrete containing bauxite tailings and preparation method thereof
JP4009619B2 (en) Building material and method of manufacturing building material
Zarina et al. Reviews on the geopolymer materials for coating application
JPH1133413A (en) Production of structure for air cleaning
CN113321466B (en) Facing mortar capable of removing adsorbed gas pollutants and preparation method thereof
KR101644008B1 (en) Geopolymer modified with hydrophobic polymer and high performance hybrid finish materials for construction using the same
CN109354448B (en) Method for preparing light foam concrete by using municipal solid waste incineration slag
JP4133197B2 (en) Inorganic binder and method for producing the same
JP3212591B1 (en) Humidity control building materials
KR102139468B1 (en) Method for manufacturing geopolymer using metakaolin
JP3238385B2 (en) Lining material
JP4755408B2 (en) Method for manufacturing wall-use decorative block
JP2003073178A (en) Light weight gypsum molding
CN112266192B (en) Alloy plastic, concrete and preparation method and application thereof
CN115849858B (en) Heat preservation slurry of aerogel precursor composite magnesium-based gelatinizing agent
JPH0781997A (en) Zeolite-magnesia light refractory structural material
KR20150059959A (en) composition of mortar

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant