KR20130085410A - Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product - Google Patents

Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product Download PDF

Info

Publication number
KR20130085410A
KR20130085410A KR1020137000998A KR20137000998A KR20130085410A KR 20130085410 A KR20130085410 A KR 20130085410A KR 1020137000998 A KR1020137000998 A KR 1020137000998A KR 20137000998 A KR20137000998 A KR 20137000998A KR 20130085410 A KR20130085410 A KR 20130085410A
Authority
KR
South Korea
Prior art keywords
steel sheet
sheet product
steel
annealing
coating
Prior art date
Application number
KR1020137000998A
Other languages
Korean (ko)
Inventor
마르틴 노르덴
옌스 콘드라튀크
만프레드 모이러
파트릭 쿤
폴케 막스
호르스트 베른드센
프란크 프리에델
Original Assignee
티센크루프 스틸 유럽 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티센크루프 스틸 유럽 악티엔게젤샤프트 filed Critical 티센크루프 스틸 유럽 악티엔게젤샤프트
Publication of KR20130085410A publication Critical patent/KR20130085410A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 적어도 0.4 중량%의 Mn 함량을 갖는 강 시트 제품으로부터 금속성 내부식 코팅으로 코팅된 강 구성부품을 제조하는 방법에 관한 것이다. 고강도 강 구성부품을 경제적으로 제조하면서 금속-유도 균열의 전개 위험을 최소화하기 위해, 본 발명의 제조 방법은, 최대 25 부피%의 H2, 잔부로서 0.1 내지 10 부피%의 NH3, H20 및 N2 뿐만 아니라 공정에 관련된 불가피한 불순물을 함유하고 -50℃ 내지 -5℃ 범위의 노점을 갖는 어닐링 분위기 하에서, 400℃ 내지 1100℃의 유지 온도에서, 5 s 내지 600 s의 유지 기간 동안, 강 시트 제품을 연속 로에서 어닐링 처리한다. 어닐링된 시트 제품은 5 ㎛ 내지 200 ㎛ 두께의 질화 층(N)을 가지고, 질화 층의 입자 크기가 강 시트 제품의 내부 코어 층(K)의 입자 크기보다 더 미세하다. 강 시트 제품을 금속성 보호 층으로 코팅하고, 강 시트 제품으로부터 블랭크를 분리하고, 이 블랭크를 선택적으로 예비성형한 후에, 상기 블랭크를 780℃ 내지 950℃의 오스테나이트화 온도로 가열하고, 강 구성부품을 형성하도록 열간 성형하고, 상기 강 시트 제품에 경화된 구조를 형성하도록 빠르게 냉각하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a method for producing a steel component coated with a metallic anticorrosion coating from a steel sheet product having an Mn content of at least 0.4% by weight. In order to economically manufacture high strength steel components while minimizing the risk of developing metal-induced cracks, the process of the invention provides up to 25% by volume of H 2 , remainder from 0.1 to 10% by volume of NH 3 , H 2 0. And in an annealing atmosphere containing not only N 2 but also unavoidable impurities related to the process and having a dew point in the range from -50 ° C. to −5 ° C., at a holding temperature of 400 ° C. to 1100 ° C., for a holding period of 5 s to 600 s, Sheet products are annealed in a continuous furnace. The annealed sheet product has a nitride layer (N) between 5 μm and 200 μm thick and the particle size of the nitride layer is finer than the particle size of the inner core layer (K) of the steel sheet product. After coating the steel sheet product with a metallic protective layer, separating the blank from the steel sheet product, and optionally preforming the blank, the blank is heated to an austenitization temperature of 780 ° C. to 950 ° C., and the steel component Hot forming to form a, characterized in that it comprises the step of rapidly cooling to form a cured structure on the steel sheet product.

Description

강 시트 제품으로부터 금속성 내부식 코팅으로 코팅된 열간 성형 및 경화처리된 강 구성부품을 제조하는 방법{METHOD FOR PRODUCING A HOT-FORMED AND HEAT-TREATED STEEL COMPONENT THAT IS COATED WITH A METAL ANTI-CORROSION COATING FROM A SHEET STEEL PRODUCT}METHOD FOR PRODUCING A HOT-FORMED AND HEAT-TREATED STEEL COMPONENT THAT IS COATED WITH A METAL ANTI-CORROSION COATING FROM A SHEET STEEL PRODUCT}

본 발명은 적어도 0.4 중량%의 Mn 함량을 갖는 강 시트 제품으로부터 금속성 내부식 코팅으로 코팅된 열간 성형 및 경화처리된 강 구성부품을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing hot formed and hardened steel components coated with a metallic anticorrosion coating from a steel sheet product having an Mn content of at least 0.4% by weight.

2005년 9월 15일부터 25일까지 프랑크푸르트에서 개최된 제61회 국제 자동차 박람회 동안 티센크루프 오토모티브 아게의 박람회 신문에서 공개된 "경량 본체 구조를 위한 가능성"의 기사에서 보고된 바와 같이, 열간 성형 경화는 특히 붕소-첨가 강으로부터의 고강도 본체 구성부품 제조에 실제로 적용된다. 이 형태의 강의 전형적인 예로서는 명칭 22MnB5로 알려진 강이며, 이 강은 재료 번호 1.5528에 따라 강(Steel) 2004 키(Key)에서 찾을 수 있다.Hot forming hardening, as reported in an article in "Possibility for lightweight body construction" published in ThyssenKrupp Automotive AG's trade fair newspaper during the 61st International Motor Show in Frankfurt, September 15-25, 2005. Is particularly applicable in the manufacture of high strength body components from boron-added steels. A typical example of this type of steel is the steel known under the name 22MnB5, which can be found in Steel 2004 Key according to material number 1.5528.

강 22MnB5와 비교할 수 있는 강은 일본 공개 특허 공보 제2006104526호에 공지되어 있다. 이 공지의 강은 중량%로, Fe와 불가피한 불순물 이외에, 0.05 내지 0.55% C, 최대 2% Si, 0.1 내지 3% Mn, 최대 0.1% P 및 최대 0.03% S를 포함한다. 경화능을 개선시키기 위해, 0.0002 내지 0.005% B 및 0.001 내지 0.1% Ti가 강에 첨가될 수 있다. 각각의 Ti 함량은 강에 존재하는 질소를 설정하기 위해 사용된다. 따라서, 강에 함유된 붕소는 그의 강도-증대 효과를 가능한한 완전하게 발현시킬 수 있다.A steel comparable to steel 22MnB5 is known from Japanese Laid-Open Patent Publication No. 2006104526. This known steel comprises, in weight percent, 0.05 to 0.55% C, at most 2% Si, 0.1 to 3% Mn, at most 0.1% P and at most 0.03% S, in addition to Fe and unavoidable impurities. To improve the hardenability, 0.0002 to 0.005% B and 0.001 to 0.1% Ti can be added to the steel. Each Ti content is used to set the nitrogen present in the steel. Thus, boron contained in the steel can express its strength-enhancing effect as completely as possible.

일본 공개 특허 공보 제2006104526호에 따르면, 상기 조성을 갖는 강으로 제조된 금속 시트는 Ac3 온도 이상, 전형적으로 850℃ 내지 950℃의 온도 범위로 예열된다. 이 온도 범위로부터 시작하는 급속 냉각 중에, 가압 공구를 사용하여, 목표로 하는 고강도를 보장하는 마르텐사이트 조직이 각각의 금속 시트 블랭크로부터의 구성부품 가압 성형시에 형성된다. 이 방법의 이점은, 전술한 온도 레벨로 가열된 금속 시트 부품은 비교적 낮은 성형력으로 복잡한 방식으로 성형되는 구성부품들로 성형될 수 있다는 것이다. 이는 또한, 고강도 강으로부터 제조되고 내부식성 코팅이 제공되는 형태의 금속 시트 부품에 적용할 수 있다.According to Japanese Laid-Open Patent Publication No. 2006104526, a metal sheet made of steel having the above composition is preheated to a temperature range of Ac 3 or higher, typically 850 ° C to 950 ° C. During rapid cooling starting from this temperature range, using a press tool, a martensite structure which ensures a targeted high strength is formed during component press molding from each metal sheet blank. The advantage of this method is that metal sheet parts heated to the aforementioned temperature levels can be molded into components that are molded in a complex manner with relatively low forming forces. It is also applicable to metal sheet parts of the type made from high strength steel and provided with a corrosion resistant coating.

아연 도금 강 시트 제품을 고강도 또는 초고강도 강 구성부품으로 열간 성형하는 것은 매우 어렵다. 금속성 내부식성 코팅이 제공된 강 시트가 열간 성형을 위해 가열되고, 보호성 코팅 금속의 용융 온도 이상의 온도로, 후속 경화처리가 가능하거나 또는 열간 성형과 조합하여 경화처리가 수행된다면, 소위 "액체-금속 취화(liquid metal embrittlement)"의 위험이 존재한다. 강의 이 취화는 용융 액체 금속의 코팅이 성형 중에 각각의 강 시트 제품의 표면에 형성되는 노치 내로 침투할 때 발생한다. 금속 기재에 도달하는 액체 금속은 입계에서 정착하게 되고, 이에 따라 최대 흡수 인장 및 압축 응력을 감소시킨다.It is very difficult to hot form galvanized steel sheet products into high strength or ultra high strength steel components. If a steel sheet provided with a metallic corrosion resistant coating is heated for hot forming and subsequent curing is possible at a temperature above the melting temperature of the protective coating metal, or if the curing is carried out in combination with hot forming, a so-called "liquid-metal" There is a risk of "liquid metal embrittlement". This embrittlement of the steel occurs when the coating of molten liquid metal penetrates into the notches formed on the surface of each steel sheet product during molding. The liquid metal reaching the metal substrate will settle at the grain boundaries, thus reducing the maximum absorbed tensile and compressive stresses.

고강도 및 고강도 Mn 함유 강으로부터 제조된 강 시트 제품에서의 액체 금속 취화의 위험은 대단히 중요하다는 것이 입증되고 있다. 이들 강은 제한된 연성만을 가지며, 표면 가까이에 균열을 형성하는 경향이 있으며 또한 그들의 성형 중에 입계 가까이에 균열을 형성하는 경향이 있다.The risk of liquid metal embrittlement in steel sheet products made from high strength and high strength Mn containing steels has proved to be of great importance. These steels have only limited ductility, tend to crack near the surface and also tend to crack near grain boundaries during their forming.

독일 특허 공보 제DE-OS 18 13 808호로부터, 강 시트의 내부식성 및 내산화성은 질화 처리에 의해 2.5 ㎛내지 19 ㎛ 두께를 가지며, 표면 가까이에서 강 시트의 코어 구역에 대해 상대적으로 증가된 질소 함량을 갖는 에지 층(edge layer)에 의해 개선될 수 있다는 것이 알려져 있다. 이 질화처리 층은 양호한 접착성을 갖는다.From DE-OS 18 13 808, the corrosion and oxidation resistance of the steel sheet is 2.5 to 19 μm thick by nitriding, with increased nitrogen relative to the core region of the steel sheet near the surface. It is known that it can be improved by an edge layer having a content. This nitriding layer has good adhesion.

독일 특허 공보 제691 07 931 T2호로부터, 저탄소 강으로 구성되고 차체 구조물로 사용되는 강 시트 제품의 표면에 가까운 구역에 있어서, 관련 강 시트 제품의 가공성을 개선시키기 위한 탄화 처리 또는 질화 처리에 의해 더 높은 C 함량 또는 N 함량이 포함될 수 있다.From German Patent Publication No. 691 07 931 T2, in areas close to the surface of steel sheet products composed of low carbon steel and used as body structures, further by carbonization or nitriding treatment to improve the processability of the relevant steel sheet products. High C content or N content may be included.

종래 기술에서의 이들 방안은 적어도 0.4 중량%의 Mn 함량, 전형적으로 0.4 내지 0.6 중량%, 특히 0.6 내지 3.0 중량%의 Mn 함량을 갖는 본 발명에 따라 처리된 초고강도 또는 고강도 강과 관련된 것은 아니다.These solutions in the prior art do not relate to very high or high strength steels treated according to the invention having an Mn content of at least 0.4% by weight, typically 0.4 to 0.6% by weight, in particular 0.6 to 3.0% by weight.

본 발명에 따라 처리된 강 시트 제품의 C 함량은 전형적으로 0.06 중량% 이상 0.8 중량% 미만, 특히 0.45 중량% 미만이다.The C content of the steel sheet product treated according to the invention is typically at least 0.06% by weight and less than 0.8% by weight, in particular less than 0.45% by weight.

본 발명에 따라 처리된 강의 예들은 그들 각각의 특성을 조정하기 위해, 최대 0.2 중량% Ti, 최대 0.005 중량% B, 최대 0.5 중량% Cr, 최대 0.1 중량% V 또는 최대 0.03 중량% Nb를 포함할 수 있다.Examples of steels treated according to the invention may include up to 0.2 wt% Ti, up to 0.005 wt% B, up to 0.5 wt% Cr, up to 0.1 wt% V or up to 0.03 wt% Nb to adjust their respective properties. Can be.

질화 처리 또는 내부 질화는 확산할 수 있는 질소가 존재하는 것을 가정한다. 이 전제 조건은 질소가 탄생의 상태(in statu nsscendi)에서 존재할 때 만족된다.Nitriding or internal nitriding assumes the presence of nitrogen that can diffuse. This precondition is satisfied when nitrogen is present in the statu nsscendi.

일반적으로, 질화는 H2-N2 함유 암모니아 어닐링 가스 분위기에서 각각의 강 시트 제품을 어닐링하는 것에 의해 이루어진다. 암모니아와 질소는 질소 디스펜서(dispenser)로서 생각할 수 있다. 암모니아 가스는 대기압에서 질소와 수소로 분리되며, 400℃ 이상의 온도에서 그의 부피가 두 배로 된다. 암모니아 가스의 해리는 하기 반응식으로 기술될 수 있다.In general, nitriding is achieved by annealing each steel sheet product in an H 2 -N 2 containing ammonia annealing gas atmosphere. Ammonia and nitrogen can be thought of as nitrogen dispensers. The ammonia gas is separated into nitrogen and hydrogen at atmospheric pressure and doubles its volume at temperatures above 400 ° C. Dissociation of ammonia gas can be described by the following scheme.

2NH3 → 2 [N] + 3H2 2NH 3 → 2 [N] + 3H 2

전술한 종래 기술의 배경과 관련하여, 본 발명의 목적은 금속-유도 균열의 전개 위험을 최소화하면서 고강도 강 구성부품을 경제적으로 제조할 수 있는 방법을 개시하는 것이다.In connection with the background of the prior art described above, it is an object of the present invention to disclose a method for economically manufacturing high strength steel components while minimizing the risk of developing metal-induced cracking.

본 발명의 목적은 고강도 강 구성부품을 제조할 때, 청구항 1에 개시된 단계를 수행하는 것에 의해 달성된다.The object of the present invention is achieved by performing the steps disclosed in claim 1 when producing high strength steel components.

본 발명의 기술 구성의 이점은 종속청구항들에 개시되어 있으며, 이하에서 상세히 기술할 것이다.Advantages of the technical construction of the invention are disclosed in the dependent claims, which will be described in detail below.

금속성 내부식 코팅으로 코팅된 강 구성부품을 제조하기 위한 본 발명에 따른 방법은 열간 성형 전에 강 시트 제품에 질화 처리를 수행하고, 이 질화 처리에 의해 강 시트 제품에 미세한 구조의 에지 층이 생산되는 기술 사상에 기반을 두고 있다. 한편, 이 에지 층은 열간 성형을 위한 표면-마무리 강 제품의 성형 특성을 개선시킨다.The method according to the invention for producing steel components coated with a metallic anticorrosion coating performs a nitriding treatment on a steel sheet product prior to hot forming, which produces a finely structured edge layer on the steel sheet product. It is based on technical ideas. On the other hand, this edge layer improves the molding properties of surface-finished steel products for hot forming.

한편, 본 발명에 따른 방식으로 질화처리된 강 시트 제품의 에지 구역은 열간 성형 중에 미세 금속 시트의 금속 취화를 회피하는 데 놀랍도록 유용하다는 것을 입증한다. 따라서, 질화 존은 열간 성형 공정 중에 입자 경계면/상 경계면에서 상당히 증가하며, 코팅의 금속 재료가 강 기재의 구조 내로 침투하여 재료의 균열을 일으키는 것에 대항한다. 더욱이, 대단히 높은 철 확산이 코팅 내에서 조정된다. 그 결과, 코팅은 아연에 기반하여 코팅 처리할 때 열적으로 더욱 안정된다.On the other hand, the edge zones of the steel sheet articles nitrided in the manner according to the invention prove surprisingly useful in avoiding metal embrittlement of fine metal sheets during hot forming. Thus, the nitriding zones increase significantly at the grain interface / phase interface during the hot forming process and resist the penetration of the metal material of the coating into the structure of the steel substrate to cause cracking of the material. Moreover, very high iron diffusion is adjusted in the coating. As a result, the coating is more thermally stable when coating based on zinc.

전술한 본 발명에 따라 수행된 질화 처리 에지 층의 긍정적 영향을 유용하게 하기 위해, 본 발명에 따른 방법은 하기의 가공 단계를 포함한다.In order to benefit the positive effects of the nitriding edge layers carried out according to the invention described above, the process according to the invention comprises the following processing steps.

- 0.4 중량%의 Mn 함량을 갖는 강으로 제조된 강 시트 제품을 제공한다. 본 명세서에서, 강 시트 제품은 일반적으로 강 시트, 밴드, 블랭크 등을 의미한다. 이러한 형태의 강 시트 제품은 본 발명에 따른 방식에서 열간 압연 상태 또는 냉간 압연 상태로 처리될 수 있다. 또한, 강 시트 제품을 형성하도록 서로 다른 강 블랭크들을 결합한 후에 본 발명에 따른 방식으로 처리하는 것도 생각할 수 있으며, 이러한 강 블랭크 중의 하나는 청구항 1에 개시된 형태의 강으로 구성된다.Providing a steel sheet product made of steel with an Mn content of 0.4% by weight. As used herein, steel sheet product generally refers to steel sheets, bands, blanks, and the like. Steel sheet articles of this type can be treated in the hot rolled or cold rolled state in the manner according to the invention. It is also conceivable to combine the different steel blanks to form a steel sheet product and then to treat it in the manner according to the invention, one of which consists of steel of the type disclosed in claim 1.

- 상기 강 시트 제품을 후술하는 어닐링 분위기의 연속 로에서 어닐링 처리되며, 이러한 어닐링 분위기는, 최대 25 부피%의 H2, 잔부로서 0.1 내지 10 부피%의 NH3, H20 및 N2 뿐만 아니라 공정에 관련된 불가피한 불순물을 함유하고 -50℃ 내지 -5℃ 범위의 노점을 갖는다. 강 시트 제품은 400℃ 내지 1100℃의 유지 온도에서, 5 s 내지 600 s의 유지 기간 동안 유지된다. 그 결과, 이 질화-어닐링 처리에 의해, 강 시트 제품의 자유 표면과 서로 접한 5 ㎛ 내지 200 ㎛ 두께의 연성 질화 층이 강 시트 제품에 존재하게 되고, 이 질화 층의 입자 크기는 질화 층에 의해 덮여지고 강 시트 제품의 기본 재료로 형성된 내부 코어 층의 입자 크기보다 더 미세하다.Annealing is carried out in a continuous furnace of an annealing atmosphere, the steel sheet product described below, wherein the annealing atmosphere is at most 25% by volume of H 2 , the remainder being from 0.1 to 10% by volume of NH 3 , H 2 0 and N 2 as well. It contains unavoidable impurities related to the process and has a dew point in the range of -50 ° C to -5 ° C. The steel sheet product is maintained at a holding temperature of 400 ° C. to 1100 ° C. for a holding period of 5 s to 600 s. As a result, by this nitriding-annealing treatment, a soft nitride layer having a thickness of 5 μm to 200 μm in contact with the free surface of the steel sheet product is present in the steel sheet product, and the particle size of the nitride layer is determined by the nitride layer. It is finer than the particle size of the inner core layer covered and formed from the base material of the steel sheet product.

- 질화 층의 형성 후에, 전술한 방식으로 어닐링된 강 시트 제품은 금속성 보호 층으로 코팅된다. 본 발명은 표면에 가까운 강 시트 제품 구역의 목표된 변형에 의해 액체 금속 취화의 위험이 최소화될 수 있고, 액체 금속 취화에 민감한 온도 범위는 열간 성형에 대한 일반적인 온도 간격과 일치하지 않는 방식으로 대체될 수 있다는 인식을 이용한다.After formation of the nitride layer, the steel sheet product annealed in the manner described above is coated with a metallic protective layer. The present invention allows the risk of liquid metal embrittlement to be minimized by targeted deformation of the steel sheet product zone close to the surface, and the temperature range sensitive to liquid metal embrittlement may be replaced in a manner that is inconsistent with the general temperature interval for hot forming. Use the recognition that it can.

- 블랭크는 금속성 보호 층으로 코팅된 강 시트 제품으로부터 분리된다.The blank is separated from the steel sheet product coated with a metallic protective layer.

- 성형을 두 개 이상의 단계에서 실시한다면, 블랭크는 선택적으로 이와 관련하여 예비성형될 수 있다. 예비성형은 예비성형 이후에도 수행될 수 있으며, 블랭크의 형상은 최종 구성부품의 형상과 실제적으로 완전하게 대응한다. 전형적으로, 예비성형은 오스테나이트화 온도 이하로 가열된 냉간 또는 반열간 블랭크로 이루어진다. 1단 성형은 단지 열간 성형으로만 수행되며, 예비성형은 생략된다.If the molding is carried out in two or more stages, the blank can optionally be preformed in this regard. The preforming can also be carried out after the preforming, the shape of the blank being substantially completely corresponding to the shape of the final component. Typically, the preform consists of a cold or semi hot blank that is heated to below the austenitization temperature. One-step molding is carried out only by hot forming, and preforming is omitted.

열간 성형을 위해, 블랭크는 780℃ 내지 950℃의 오스테나이트화 온도로 가열된다.For hot forming, the blank is heated to an austenitization temperature of 780 ° C to 950 ° C.

- 가열된 블랭크는 최종 강 구성부품을 형성하도록 열간 성형된다.The heated blank is hot formed to form the final steel component.

- 얻어진 강 구성부품은 오스테나이트화 온도로부터 시작하여 가속 냉각된다. 이러한 강 구성부품의 냉각은 강 시트 제품에 경화된 구조를 형성하는 방식으로 실시된다.The steel components obtained are accelerated cooled starting from the austenitization temperature. Cooling of these steel components is carried out in such a way as to form a hardened structure in the steel sheet product.

열간 성형 및 경화는 "1 단계"에서 실시된다. 이 경우에 있어서, 열간 성형 및 경화는 임의의 공구에서 함께 1 단계로 수행된다. 한편, 2 단계 공정에 있어서, "성형" 및 "열처리 또는 경화된 구조를 생산하는" 가공 단계들은 서로에 대해 개별적으로 수행된다.Hot forming and curing takes place in a "stage 1". In this case, the hot forming and curing are performed in one step together in any tool. On the other hand, in the two-step process, the "molding" and "processing to produce heat treated or cured structures" are performed separately from each other.

놀랍게도, 본 발명에 따라 미리 결정된 어닐링 조건들을 적용할 때, 매우 짧은 조절 시간에서도 소망 질화 깊이를 달성하는 것이 가능하다. 따라서, 본 발명에 따른 방법은 차이를 가지며, 특히, 본 발명에 따른 방법은 연속 로를 사용하는 특별한 경제적인 방식으로 수행될 수 있다. 이는 본 발명의 방법을 고속 벨트 속도를 갖고, 예를 들면 강 밴드가 열처리되고 연속 경로로 내부식 코팅으로 용융 코팅되는 융용 아연 도금 설비의 연속 제조 공정에 포함되는 것이 가능하다.Surprisingly, when applying predetermined annealing conditions according to the invention, it is possible to achieve the desired nitriding depth even with very short adjustment times. Thus, the method according to the invention has a difference, in particular the method according to the invention can be carried out in a special economic way using a continuous furnace. It is possible for the method of the present invention to be included in a continuous manufacturing process of a hot dip galvanizing installation, having a high belt speed, for example steel bands being heat treated and melt coated with a corrosion resistant coating in a continuous path.

반응 챔버에 있는 철 표면들은 촉매 반응으로 해리를 촉진시킨다. 분해시에 해제된 질소 원자들의 일부는 철 재료 내로 확산될 수 있다.Iron surfaces in the reaction chamber promote dissociation by catalytic reaction. Some of the nitrogen atoms released during decomposition may diffuse into the iron material.

질소 전이는 다수의 단계에서 이루어진다.Nitrogen transfer occurs in a number of steps.

· 가공물 표면으로의 운반Transport to workpiece surface

· 표면으로의 흡착Adsorption to surface

· 표면의 침투(흡착)Surface penetration (adsorption)

· 가공물 내부로의 확산Diffusion into the workpiece

증가된 질소의 오스테나이트에서의 용해도 때문에, 질소 전이는 2상영역 어닐링, 즉 2상영역 α/γ-Fe에서 수행하는 것이 편리하다. 후속 코팅이 금속성 보호 층으로 연속적으로 또는 구분적으로 수행되는지에 관계없이, 질화 처리의 결과는 특히 경제적이고 환경적인 방식, 즉 하기의 조건 중 적어도 하나가 고수되는 방식으로 제공되는 조건들 하에서 최적으로 얻어진다.Because of the increased solubility of austenite in nitrogen, it is convenient to carry out the nitrogen transition in a two-phase annealing, ie two-phase region α / γ-Fe. Regardless of whether the subsequent coating is carried out continuously or separately with the metallic protective layer, the result of the nitriding treatment is particularly optimal under conditions provided in an economical and environmental manner, ie in a manner in which at least one of the following conditions is adhered to: Obtained.

- 어닐링 분위기의 H2 함량은 최대 10 부피%이다.H 2 content in the annealing atmosphere is at most 10% by volume.

- 어닐링 분위기의 NH3 함량은 최대 5 부피%이다.NH 3 content in the annealing atmosphere is at most 5% by volume.

- 어닐링 분위기의 노점은 -40℃ 내지 -15℃이다.The dew point of the annealing atmosphere is from -40 ° C to -15 ° C.

- 어닐링 유지 온도는 680℃ 내지 840℃이다.Annealing holding temperature is from 680 ° C to 840 ° C.

- 어닐링 유지 기간은 30 s 내지 120 s이다.Annealing retention period is from 30 s to 120 s.

본 발명의 성공에 결정적인 것은 본 발명에 따른 어닐링 처리 중에 질화 에지 층이 조정되고, 질화 에지 층의 입자 크기는 어닐링 중에 질화처리하지 않은 강 시트 제품의 코어 층의 입자 크기보다 상당히 미세하다는 것이다. 실제적인 테스트는 DIN EN ISO 643에 따라 실시되며, 질화 층의 특정 입자 크기는 블랭크의 가열 및 열간 성형 전의 어닐링 처리된 강 스트 제품의 기본 재료(코어 층)의 특정 입자 크기보다 적어도 2배 작다.Critical to the success of the present invention is that the nitriding edge layer is adjusted during the annealing treatment according to the present invention and the particle size of the nitride edge layer is significantly finer than the particle size of the core layer of the non-nitrided steel sheet product during annealing. Practical tests are carried out in accordance with DIN EN ISO 643, wherein the specific particle size of the nitride layer is at least twice smaller than the specific particle size of the base material (core layer) of the annealed steel product prior to the heating and hot forming of the blank.

본 발명에 따른 방법 동안, 질화처리된 에지 층은 목표된 방식으로 생산된다. 이 미세하게 구성되고, 선택적으로 단지 부분적으로 재결정화된 질화 층의 두께는 DIN 50190-3에 따라 결정된 질화 경도 깊이에 의해 결정된다. 따라서, 질화 경도 깊이는 표면으로부터 강 기재의 소정 지점까지의 공간이며, 이는 코어 경도 +500 HV에 대응하는 경도이다. 이 방식에 있어서, 경도는 표면에 가까운 강 시트 제품의 질화처리된 에지 층에서 조정되며, 코어 구역의 경도보다 적어도 25% 높으며, 즉 HV(질화처리 구역)/HV(코어 구역) ≥ 1.25이다.During the process according to the invention, the nitrided edge layer is produced in the desired manner. The thickness of this finely constructed, optionally only partially recrystallized nitride layer is determined by the nitride hardness depth determined according to DIN 50190-3. Therefore, the nitride hardness depth is the space from the surface to a predetermined point of the steel substrate, which is the hardness corresponding to the core hardness +500 HV. In this way, the hardness is adjusted in the nitrided edge layer of the steel sheet product close to the surface and is at least 25% higher than the hardness of the core zone, ie HV (nitridation zone) / HV (core zone) ≧ 1.25.

전형적으로, 본 발명에 따라 처리된 강 시트 제품에 있어서, 어닐링 처리 후의 질화처리된 에지 구역의 두께는 > 5 ㎛ 내지 < 200 ㎛이다.Typically, for steel sheet products treated according to the present invention, the thickness of the nitrided edge zones after annealing is from> 5 μm to <200 μm.

본 발명의 특징적인 구성은, 금속성 보호 층을 구비한 강 시트 제품의 코팅은 어닐링 처리에 이어 연속적으로 수행되는 가공 단계에서 완료되는 용융 도금에 의해 실시되는 것을 특징으로 한다. 이 경우에 있어서, 본 발명에 따라 수행된 어닐링 처리는 여러 다른 종류들로 이뤄진 어닐링 가스-금속 반응에 의해 표면을 마무리하는 하류의 표면 조정과 동시에 수행된다.A characteristic construction of the invention is characterized in that the coating of the steel sheet article with the metallic protective layer is carried out by hot dip plating which is completed in a subsequent processing step which is subsequently carried out following the annealing treatment. In this case, the annealing treatment carried out according to the present invention is carried out simultaneously with the surface adjustment downstream of finishing the surface by an annealing gas-metal reaction of several different kinds.

특히, 본 발명에 따른 방법은 융융 도금 라인에서 사용되는 이점을 가지며, 이 경우에, 어닐링 처리는 에지 질화 처리, 표면 조정 및 기본 재료의 재결정화를 포함할 수 있으며, 용융 아연 도금은 어닐링 처리에 이어 연속적인 인라인 단계로 수행될 수 있다. 이 경우에 있어서, 그의 전체 길이에 걸쳐 NH3-함유 가스로 채워진 노를 강 시트 제품이 활주하는 것을 기본적으로 생각할 수 있지만, 노의 일부분을 노의 다른 부분들로부터 분리시키고, 이 분리된 부분을 단지 NH3-함유 분위기로 하는 것이 이로울 수도 있다.In particular, the method according to the invention has the advantage of being used in a fusion plating line, in which case the annealing treatment can comprise edge nitriding treatment, surface adjustment and recrystallization of the base material, and hot dip galvanizing is used for the annealing treatment. This can then be done in successive inline steps. In this case, it is basically conceivable that the steel sheet product slides a furnace filled with NH 3 -containing gas over its entire length, but a part of the furnace is separated from the other parts of the furnace and this separated part is separated. It may be advantageous to just have an NH 3 -containing atmosphere.

어닐링 처리된 강 시트 제품의 용융 도금이 수행되는 경우에, 특히 용융 아연 도금이 수행되는 경우에, 강 기재 상의 코팅의 최적의 접착을 보장하기 위해, 용융 도금 전에, 강 시트 제품의 표면의 산화가 수행될 수 있다.In the case where hot dip galvanization of the annealed steel sheet product is carried out, especially when hot dip galvanizing is performed, oxidation of the surface of the steel sheet product is carried out before hot dip galvanization to ensure optimum adhesion of the coating on the steel substrate. Can be performed.

본 발명에 따라 제조된 강 시트 제품의 표면 마무리에 있어서, 바람직하게는 용융 도금이 수행되며, Zn, Al, Zn-Al, Zn-Mg, Zn-Ni, Zn-Fe, Al-Mg, Al-Si, Zn-Al-Mg 또는 Zn-Al-Mg-Si에 기초한 공지된 코팅 시스템들이 강 기재에 적용될 수 있다. 용융 도금에 후속하여, 특정 방식으로 금속성 보호 층을 구성시키기 위해 추가의 열처리가 수행될 수 있다. 필요에 따라, 확산 어닐링, 예를 들면, 용융아연 처리가 또한 융융 도금 후에 연속적으로 실시될 수 있다.In the surface finishing of the steel sheet product manufactured according to the present invention, hot dip plating is preferably performed, and Zn, Al, Zn-Al, Zn-Mg, Zn-Ni, Zn-Fe, Al-Mg, Al- Known coating systems based on Si, Zn-Al-Mg or Zn-Al-Mg-Si can be applied to steel substrates. Subsequent to hot dip plating, additional heat treatment may be performed to construct the metallic protective layer in a particular manner. If desired, diffusion annealing, for example hot dip zinc treatment, may also be carried out continuously after the hot dip plating.

인라인으로 실시되는 용융 마무리에 대해 대안적으로 또는 부가적으로, 본 발명에 따른 방식으로 연속 어닐링으로 미세하게 구성된 질화 층이 형성된 강 스트 제품은 금속성, 금속-무기성 또는 금속-유기성 코팅을 수용할 수 있으며, 이러한 코팅들은 전해 도금, 물리기상증착 또는 화학기상증착 또는 다른 금속-유기성 또는 금속-무기성 코팅 방법에 의해 Zn, ZnNi 또는 ZnFe 코팅된다.Alternatively or additionally to the melt finish carried out inline, the steel product having the nitride layer finely configured by continuous annealing in a manner according to the invention may contain a metallic, metal-inorganic or metal-organic coating. Such coatings may be Zn, ZnNi or ZnFe coated by electroplating, physical vapor deposition or chemical vapor deposition or other metal-organic or metal-inorganic coating methods.

기계적 특성을 더 최적화하기 위해, 종래 방식으로 수행된 시효 처리가 본 발명에 따른 어닐링 처리 후에 이어질 수 있다.In order to further optimize the mechanical properties, the aging treatment carried out in a conventional manner can be followed after the annealing treatment according to the invention.

구성부품은 본 발명에 따라 처리된 강 시트 제품으로부터 열간 성형된 후, 800 내지 2000 MPa, 특히 900 내지 2000 MPa의 인장 강도를 갖도록 경화처리 된다.The components are hot formed from steel sheet products treated according to the invention and then cured to have a tensile strength of 800 to 2000 MPa, in particular 900 to 2000 MPa.

본 발명에 따라 생산된 질화 층은 오스테나이트화 온도로 문제점 없이 가열되는 본 발명에 따른 강 시트 제품을 허용하며, 이 온도에서 강 시트 제품은 실질적으로 완전하게 오스테나이트 구조를 갖는다. 이와 같이 높은 온도에서도, 취화 위험은 본 발명에 따라 제조된 강 시트 제품에서는 최소화되며, 강 시트 제품에 금속성 코팅이 제공될 때, 이 금속성 코팅의 용융 온도는 가열 온도 미만이거나 또는 가열 온도와 동등하다. 본 발명에 따른 질화 처리에 의해 제조된 에지 층의 입자 미세화는 균열 형성을 방지하고 또한 금속 코팅이 강 기재의 코어 구역 또는 기본 재료 내로 침투하는 것이 없도록 한다.The nitride layer produced according to the invention allows the steel sheet article according to the invention to be heated without problems to the austenitization temperature, at which temperature the steel sheet article has a substantially complete austenite structure. Even at such high temperatures, the risk of embrittlement is minimized in steel sheet products made in accordance with the present invention, when the metal sheet is provided with a metallic coating, the melting temperature of the metallic coating is below or equal to the heating temperature. . Particle refinement of the edge layer produced by the nitriding treatment according to the invention prevents crack formation and also prevents the metal coating from penetrating into the core region or base material of the steel substrate.

미세하게 구성된 질화처리된 질화 층의 본 발명에 따른 제조에 의해, 블랭크의 예비성형 전에, 금속성 코팅, 특히 아연 코팅으로부터 발생하는 고체 금속 취화 없이 열간 성형이 직접적으로 수행되며, 입계로의 금속 코팅의 확산이 방지된다. 유사하게, 본 발명에 따른 공정에 있어서, 질화처리로부터 제조되는 코팅 구성의 결과 및 Fe/코팅 금속 비율에 관한 이점은 땝납 균열의 발생을 방지하고 이에 따라액체 금속 취화에 대항한다.By the production according to the invention of the finely constructed nitrided nitride layer, hot forming is carried out directly before the preforming of the blank without solid metal embrittlement resulting from metallic coatings, in particular zinc coatings, Diffusion is prevented. Similarly, in the process according to the invention, the result of the coating construction produced from nitriding and the advantages relating to the Fe / coated metal ratio prevent the occurrence of solder cracking and thus counteract liquid metal embrittlement.

본 발명은 실시예들을 참조하여 이하에서 상세히 기술될 것이다.
도 1은 본 발명에 따른 질화-어닐링된 강 시료의 수직 박절편을 도시하는 도면이다.
도 2는 비어닐링 압연된 비교 시료의 수직 박절편을 도시하는 도면이다.
도 3은 도 1과 도 2에 도시된 시료의 질소 함량의 GDOES 깊이 프로파일을 도시하는 도면이다.
도 4는 도 1에 따른 강 시료로부터 형성된 강 성분의 인장 영역의 수직 박절편을 도시하는 도면이다.
도 5는 도 2에 따른 압연 강 시료로부터 형성된 강 성분의 인장 영역의 수직 박절편을 도시하는 도면이다.
The invention will be described in detail below with reference to embodiments.
1 shows a vertical slice of a nitride-annealed steel sample according to the present invention.
It is a figure which shows the vertical thin slice of a nonnealing rolled comparative sample.
FIG. 3 is a diagram showing the GDOES depth profile of the nitrogen content of the samples shown in FIGS. 1 and 2.
4 shows a vertical slice of the tensile region of the steel component formed from the steel sample according to FIG. 1.
FIG. 5 is a view showing vertical thin sections of tensile regions of steel components formed from the rolled steel sample according to FIG. 2.

본 발명에 따른 방법에 의해 달성된 효과를 점검하기 위해, 열간 성형을 위해 종래 방식으로 사용된 다중 상 강 "MP"와 강 "WU"의 압연 냉간 밴드 시료들을 각각 제조하였다. 이들 강 MP와 WU의 조성은 표 1에 나타나 있다.To check the effect achieved by the method according to the invention, rolled cold band samples of multi-phase steel "MP" and steel "WU", used conventionally for hot forming, were prepared, respectively. The compositions of these steels MP and WU are shown in Table 1.

강 MP와 WU로부터 제조된 두 개의 시료들은 에지 층 질화처리를 위한 연속 로에서 본 발명에 따라 어닐링 처리되었다. 이들 강들에 적용된 어닐링 파라미터는 표 2에 나타나 있다.Two samples made from steel MP and WU were annealed according to the invention in a continuous furnace for edge layer nitriding. Annealing parameters applied to these steels are shown in Table 2.

비교를 위해, 용융 아연 도금을 준비하기 위해 연속 로에서 일반적으로 수행되는 종래의 어닐링 처리를 한 강 MP와 WU로부터 제조된 두 개의 시료를 추가로 준비하였다.For comparison, two samples made from steel MP and WU, which were conventionally annealed in a continuous furnace to prepare hot dip galvanizing, were further prepared.

도 1은 강 WU로부터 제조되고 본 발명에 따른 어닐링에 의해 처리된 시료의 박절편(microsection)을 도시하는 도면으로서, 본 발명에 따른 공정의 결과로 조정된 표면 가까이의 최종 구조화된 구조적 구역(질화 층 "N")을 명확하게 도시하는 도면이다.1 shows a microsection of a sample made from steel WU and treated by annealing according to the present invention, the final structured structural region near the surface adjusted as a result of the process according to the present invention (nitridation). It is a figure which clearly shows layer "N".

한편, 강 WU로부터 제조된 압연 시료의 박절편은 질화 층이 없는 것을 도시한다(도 2 참조).On the other hand, thin sections of rolled samples made from steel WU show no nitride layer (see FIG. 2).

질소 함량의 GDOES 측정은 압연되어 본 발명에 따른 어닐링에 의해 처리되고, 강 WU로 구성된 시료들에서 추가적으로 수행되었다. GDOES 측정 방법("GDOES" = Glow Discharge Optical Emission Spectrometer(글로우방전방출분광기))은 코팅의 농도 분포를 빠르게 검출하는 표준 방법이다. 예를 들면, GDOES 측정 방법은, 휴버트 그라펜, VDI-Verlag GmbH, 뒤셀도르프 1993에 의해 공개된 VDI-사전 "Werkstofftechnik"(재료 기술)에 기재되어 있다.The GDOES measurement of the nitrogen content was rolled and processed by annealing according to the present invention and was further performed on samples composed of steel WU. The GDOES measurement method ("GDOES" = Glow Discharge Optical Emission Spectrometer) is a standard method for quickly detecting the concentration distribution of a coating. For example, the GDOES measurement method is described in the VDI dictionary "Werkstofftechnik" (material technology) published by Hubert Graphene, VDI-Verlag GmbH, Dusseldorf 1993.

GDOES 측정에 의한 결과는 도 3에 요약되어 있으며, 도 3에서, 점선은 압연 시료의 질소 분포를 도시하며, 직선은 본 발명에 따라 처리된 시료의 질소 분포를 도시한다.The results by the GDOES measurement are summarized in FIG. 3, in which the dashed line shows the nitrogen distribution of the rolled sample and the straight line shows the nitrogen distribution of the sample treated according to the invention.

또한, 도 3은 현저한 질화처리 질화 층(N)을 가지고, 이 층의 두께가 약 20 ㎛인, 본 발명에 따라 처리된 시료를 명확하게 도시한다.In addition, FIG. 3 clearly shows a sample treated according to the invention, having a significant nitrided nitride layer (N), whose thickness is about 20 μm.

또한, 미소 경도 측정을 부가하여, 강 WU로부터 제조되고 본 발명에 따라 처리된 시료에서 질화처리된 질화 구역(N)은 340 HV의 미소 경도를 가지고, 비질화처리된 코어 구역(기본 재료)(K)은 180 HV의 경도를 가지는 것을 알 수 있다. 질화처리 질화 층(N)의 경도 HVN과 코어 구역(K)의 경도 HVK의 비율 HVN/HVK은 약 1.9이며, 이 1.9의 값은 본 발명에 따라 미리 결정된 1.25의 값을 상당히 초과하는 것을 알 수 있다.In addition, in addition to the microhardness measurement, the nitriding zone N, which is made from steel WU and nitrided in a sample treated according to the present invention, has a microhardness of 340 HV, and the non-nitrided core zone (base material) ( It can be seen that K) has a hardness of 180 HV. Ratio HV N / HV K hardness HV K hardness HV N and the core zone (K) of the nitriding process is the nitride layer (N) is about 1.9, the value of 1.9 is significantly greater than the value of the predetermined 1.25 in accordance with the invention I can see that.

어닐링 처리에 이어서, 시료의 표면 마무리는 시료에 10 ㎛두께의 아연을 전해 침착하였다.Following the annealing treatment, the surface finish of the sample was electrolytically deposited with 10 μm thick zinc on the sample.

후속하여, 강 WU로 구성된 시료는 강 구성부품을 형성하기 위해 1단 또는 직접 열간 성형 방법에 의해 성형 및 가압-경화하였다. 이를 위해, 시료는 880℃의 오스테나이트화 온도에서 6분간 오스테나이트화하고, 차량 본체를 형성하기 위한 열간 압연 성형 공구로 열간 성형하였다.Subsequently, the samples composed of steel WU were molded and press-cured by a one-step or direct hot forming method to form steel components. For this purpose, the sample was austenitized for 6 minutes at an austenitizing temperature of 880 ° C, and hot formed by a hot rolling forming tool for forming a vehicle body.

열간 성형 후에, 얻어진 구성부품은 경화된 구조로 빠르게 성형되도록 공지의 방식으로 냉각되었다.After hot forming, the obtained components were cooled in a known manner so as to quickly form into a hardened structure.

도 4와 도 5의 비교를 통해, 본 발명에 따른 방식으로 제조된 구성부품에서의 인장 영역에서는 어떠한 종류의 균열 형성도 없었으며, 종래의 방식으로 제조된 구성부품에서는 결정 입계 균열 형성이 존재한다는 것을 명확하게 알 수 있다.4 and 5 show that there was no crack formation of any kind in the tensile region in the component produced in the manner according to the invention, and that grain boundary crack formation exists in the component produced in the conventional manner. It can be clearly seen.

강 MP로부터 제조되고 어닐링 처리되고 아연 도금된 시료에 대해, 본 발명에 따른 어닐링에 의해 처리된 시료와 종래와 같이 처리된 시료에 대한 비교 결과를 알 수 있다.For samples made from steel MP, annealed and galvanized, comparison results can be seen between samples treated by annealing according to the present invention and samples conventionally treated.

따라서, 본 발명에 따른 방법은 열간 성형을 위한 표면-마무리 강 시트 제품의 성형 특성을 개선시킨다. 이를 위해, 표면 마무리 전의 어닐링 처리 중에 목표 가스-금속 반응에 의해, 연속 처리 또는 구분적으로, 에지 질화처리되고, 그 결과로서, 최종적으로 구조화된 질소-함유 질화 층(N)이 조정된다. 한편, 이 질화처리된 에지 층(N)은 코팅 내의 Fe의 확산을 증가시키며, "코팅 금속" 취화 생산자(producer)의 이동, 즉 특히 열간 성형 전에 수행된 어닐링 처리 중의 입계로의 아연의 이동을 방지한다.Thus, the process according to the invention improves the molding properties of surface-finished steel sheet articles for hot forming. For this purpose, edge nitridation is carried out, either continuously or separately, by the target gas-metal reaction during the annealing treatment before the surface finish, as a result of which the structured nitrogen-containing nitride layer N is finally adjusted. On the other hand, this nitrided edge layer (N) increases the diffusion of Fe in the coating and prevents the movement of the "coated metal" embrittlement producers, ie the movement of zinc to the grain boundaries during the annealing treatment, especially performed before hot forming. prevent.

그 결과, 강 기재에 있어서 실질적으로 균열로부터 완전히 자유로운 구성부품이 얻어진다. As a result, a component that is substantially completely free from cracks in the steel substrate is obtained.

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

Claims (15)

적어도 0.4 중량%의 Mn 함량을 갖는 강 시트 제품으로부터 금속성 내부식 코팅으로 코팅된 강 구성부품을 제조하는 방법에 있어서,
- 강 시트 제품을 준비하는 단계;
- 상기 강 시트 제품을 연속 로에서 어닐링하는 단계로서,
- 최대 25 부피%의 H2, 잔부로서 0.1 내지 10 부피%의 NH3, H20 및 N2 뿐만 아니라 공정에 관련된 불가피한 불순물을 함유하고, -50℃ 내지 -5℃ 범위의 노점을 갖는 어닐링 분위기 하에서,
- 400℃ 내지 1100℃의 유지 온도에서,
- 5 s 내지 600 s의 유지 기간 동안,
- 어닐링 처리 후에 얻어진 강 시트 제품이 질화 층의 자유 표면과 인접하는 5 ㎛ 내지 200 ㎛ 두께의 질화 층(N)을 가지고, 질화 층의 입자 크기가 질화 층에 의해 덮여진 강 시트 제품의 내부 코어 층(K)의 입자 크기보다 더 미세하도록 어닐링하는 단계;
- 어닐링된 강 시트 제품을 금속성 보호 층으로 코팅하는 단계;
- 강 시트 제품으로부터 블랭크를 분리하는 단계;
- 상기 블랭크를 선택적으로 예비성형하는 단계;
- 상기 블랭크를 780℃ 내지 950℃의 오스테나이트화 온도로 가열하는 단계;
- 강 구성부품을 형성하도록 상기 가열된 블랭크를 열간 성형하는 단계; 및
- 상기 강 시트 제품에 경화된 구조를 형성하는 방식으로 강 구성부품을 가속 냉각하는 단계를 포함하는 것을 특징으로 하는 강 구성부품 제조 방법.
A method of making a steel component coated with a metallic anticorrosion coating from a steel sheet product having an Mn content of at least 0.4 wt.%,
Preparing a steel sheet product;
Annealing the steel sheet product in a continuous furnace,
Annealing with up to 25% by volume of H 2 , remaining 0.1 to 10% by volume of NH 3 , H 2 0 and N 2 , as well as unavoidable impurities relevant to the process and having a dew point in the range from -50 ° C. to −5 ° C. Under the atmosphere,
At a holding temperature of 400 ° C. to 1100 ° C.,
For a holding period of from 5 s to 600 s,
The inner core of the steel sheet product obtained after the annealing treatment has a nitride layer (N) having a thickness of 5 μm to 200 μm adjacent to the free surface of the nitride layer, the particle size of the nitride layer being covered by the nitride layer Annealing to be finer than the particle size of layer K;
Coating the annealed steel sheet product with a metallic protective layer;
Separating the blank from the steel sheet product;
Optionally preforming said blank;
Heating the blank to an austenitization temperature of 780 ° C. to 950 ° C .;
Hot forming the heated blank to form a steel component; And
-Accelerating cooling the steel component in such a way as to form a hardened structure in the steel sheet product.
제1항에 있어서,
어닐링 분위기의 H2 함량은 최대 10 부피%인 것을 특징으로 하는 강 구성부품 제조 방법.
The method of claim 1,
Method for producing steel components, characterized in that the H 2 content of the annealing atmosphere is at most 10% by volume.
선행하는 청구항들 중 어느 한 항에 있어서,
어닐링 분위기의 NH3 함량은 최대 5 부피%인 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
Process for producing steel components, characterized in that the NH 3 content of the annealing atmosphere is at most 5% by volume.
선행하는 청구항들 중 어느 한 항에 있어서,
어닐링 분위기의 노점은 -40℃ 내지 -15℃인 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
The dew point in the annealing atmosphere is -40 ° C to -15 ° C.
선행하는 청구항들 중 어느 한 항에 있어서,
어닐링 유지 온도는 680℃ 내지 840℃인 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
The annealing holding temperature is 680 ° C to 840 ° C.
선행하는 청구항들 중 어느 한 항에 있어서,
어닐링 유지 기간은 30 s 내지 120 s인 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
The annealing retention period is 30 s to 120 s.
선행하는 청구항들 중 어느 한 항에 있어서,
블랭크가 가열되고 열간 성형되기 전에, DIN EN ISO 643에 따라 결정된, 어닐링된 강 시트 제품의 질화 층(N)의 특정 입자 크기는 기본 재료(K)의 특정 입자 크기보다 적어도 2배 작은 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
Before the blank is heated and hot formed, the specific particle size of the nitrided layer N of the annealed steel sheet product, determined according to DIN EN ISO 643, is characterized by at least twice as small as the specific particle size of the base material K. Steel component manufacturing method.
선행하는 청구항들 중 어느 한 항에 있어서,
금속성 보호 층을 구비한 강 시트 제품의 코팅은 어닐링 처리에 이어 연속적으로 수행되는 가공 단계에서 완료되는 용융 도금에 의해 실시되는 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
The coating of the steel sheet product with the metallic protective layer is carried out by hot-dip plating which is completed in the processing step which is subsequently performed after the annealing treatment.
제8항에 있어서,
강 시트 제품의 표면의 산화는 용융 도금 전에 수행되는 것을 특징으로 하는 강 구성부품 제조 방법.
9. The method of claim 8,
The oxidation of the surface of the steel sheet product is carried out before hot-dip plating.
제8항 또는 제9항에 있어서,
강 시트 제품은 용융 도금 후에 연속 확산 어닐링되는 것을 특징으로 하는 강 구성부품 제조 방법.
10. The method according to claim 8 or 9,
The steel sheet product is a continuous diffusion anneal after hot-dip plating.
제1항 내지 제7항 중 어느 한 항에 있어서,
금속성, 금속-유기성 또는 금속-무기성 보호 층을 구비한 강 시트 제품의 코팅은 전해 코팅 또는 물리기상증착 또는 화학기상증착에 의해 실시되는 것을 특징으로 하는 강 구성부품 제조 방법.
8. The method according to any one of claims 1 to 7,
The coating of a steel sheet product with a metallic, metal-organic or metal-inorganic protective layer is carried out by electrolytic coating or physical vapor deposition or chemical vapor deposition.
선행하는 청구항들 중 어느 한 항에 있어서,
금속성 보호 층은 Zn, Al, Zn-Al, Zn-Mg, Zn-Ni, Al-Mg, Al-Si, Zn-Al-Mg 또는 Zn-Al-Mg-Si 코팅인 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
The metallic protective layer is a steel component characterized by a coating of Zn, Al, Zn-Al, Zn-Mg, Zn-Ni, Al-Mg, Al-Si, Zn-Al-Mg or Zn-Al-Mg-Si. Manufacturing method.
선행하는 청구항들 중 어느 한 항에 있어서,
가열 중에 조정된 오스테나이트화 온도는 860℃ 내지 950℃인 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
Austenitic temperature adjusted during heating is from 860 ° C to 950 ° C.
선행하는 청구항들 중 어느 한 항에 있어서,
열간 성형에 의해 얻어진 강 구성부품의 열간 성형과 냉각은 하나의 단계로 수행되는 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
Hot forming and cooling of steel components obtained by hot forming are carried out in one step.
선행하는 청구항들 중 어느 한 항에 있어서,
얻어진 구성부품은 블라스팅 처리되는 것을 특징으로 하는 강 구성부품 제조 방법.
10. A method according to any one of the preceding claims,
The obtained component is blasted.
KR1020137000998A 2010-06-14 2011-06-14 Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product KR20130085410A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010017354A DE102010017354A1 (en) 2010-06-14 2010-06-14 Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product
DE102010017354.1 2010-06-14
PCT/EP2011/059808 WO2011157690A1 (en) 2010-06-14 2011-06-14 Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product

Publications (1)

Publication Number Publication Date
KR20130085410A true KR20130085410A (en) 2013-07-29

Family

ID=44626931

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137000998A KR20130085410A (en) 2010-06-14 2011-06-14 Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product

Country Status (8)

Country Link
US (1) US20130206284A1 (en)
EP (1) EP2580358A1 (en)
JP (1) JP2013534971A (en)
KR (1) KR20130085410A (en)
CN (1) CN102985570B (en)
BR (1) BR112012030991A2 (en)
DE (1) DE102010017354A1 (en)
WO (1) WO2011157690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160057418A (en) * 2013-09-13 2016-05-23 티센크루프 스틸 유럽 악티엔게젤샤프트 Method for producing a steel component having a metal coating protecting it against corrosion, and steel component

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044861B3 (en) * 2009-12-10 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product
DE102011001140A1 (en) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Flat steel product, method for producing a flat steel product and method for producing a component
KR101667131B1 (en) * 2012-04-17 2016-10-17 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 Steel sheet provided with a coating offering sacrificial cathodic protection, method for the production of a part using such a sheet, and resulting part
DE102013107100A1 (en) * 2013-07-05 2015-01-08 Thyssenkrupp Steel Europe Ag Wear-resistant, at least partially uncoated steel part
DE102013107777A1 (en) * 2013-07-22 2015-01-22 Thyssenkrupp Steel Europe Ag Apparatus for the heat treatment of coated semi-finished steel products
TR201905219T4 (en) 2014-10-09 2019-05-21 Thyssenkrupp Ag Flat steel product annealed to cold rolled and recrystallized and the method for producing it
KR101693522B1 (en) * 2014-12-24 2017-01-06 주식회사 포스코 Grain oriented electrical steel having excellent magnetic properties and method for manufacturing the same
DE102015005625A1 (en) 2015-04-30 2016-11-03 Liebherr-Aerospace Lindenberg Gmbh Multilayer coating
KR102075182B1 (en) * 2015-12-24 2020-02-10 주식회사 포스코 Hot dip zinc alloy plated high strength steel material having excellent plating property and method for manufacturing same
DE102016104800A1 (en) * 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Method for producing a hot-formed steel component and a hot-formed steel component
CN106011652B (en) * 2016-06-28 2017-12-26 宝山钢铁股份有限公司 A kind of excellent cold rolling low-density steel plate of phosphorus characteristic and its manufacture method
DE102018222063A1 (en) * 2018-12-18 2020-06-18 Volkswagen Aktiengesellschaft Steel substrate for the production of a hot-formed and press-hardened sheet steel component as well as a hot-forming process
WO2020245027A1 (en) * 2019-06-03 2020-12-10 Thyssenkrupp Steel Europe Ag Method for producing a sheet-metal component from a steel-plate product which is provided with an anti-corrosion coating
DE102019130381A1 (en) * 2019-11-11 2021-05-12 Benteler Automobiltechnik Gmbh Motor vehicle component with increased strength
CN115287444B (en) * 2022-09-08 2024-02-06 西部超导材料科技股份有限公司 Bi-2212 superconducting wire heat treatment method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1813808A1 (en) 1967-12-11 1969-07-10 United States Steel Corp Process and manufacture of nitrided strip steel
JPS63166953A (en) * 1986-12-27 1988-07-11 Kawatetsu Kohan Kk Blasting treatment for hot dip galvanized-type steel sheet
CA2022907C (en) * 1989-08-09 1994-02-01 Mitsuru Kitamura Method of manufacturing a steel sheet
KR940003784B1 (en) 1990-07-31 1994-05-03 가와사키 세이데츠 가부시키가이샤 Continuous annealing line having carburizing/nitriding furnace
JP3296599B2 (en) * 1992-09-21 2002-07-02 川崎製鉄株式会社 Thin steel sheet for press working with high tensile rigidity and excellent press formability
JPH07278775A (en) * 1994-04-05 1995-10-24 Nippon Steel Corp Production of hot dip aluminum coated steel sheet for deep drawing excellent thermal discoloration resistance
JP3970323B2 (en) * 1996-06-05 2007-09-05 デュラセル、インコーポレーテッド Improved production of lithiated lithium manganese oxide spinel.
JP3777049B2 (en) * 1998-04-30 2006-05-24 新日本製鐵株式会社 Manufacturing method of BH cold-rolled steel sheet for deep drawing excellent in dent resistance and surface strain resistance
DE10039375A1 (en) * 2000-08-11 2002-03-28 Fraunhofer Ges Forschung Corrosion-protected steel sheet and process for its manufacture
EP1403388A1 (en) * 2002-09-26 2004-03-31 ThyssenKrupp Stahl AG Process for making products by high temperature deformation
CA2533633C (en) * 2003-07-29 2009-08-25 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel
JP4975245B2 (en) 2004-10-06 2012-07-11 新日本製鐵株式会社 Manufacturing method of high strength parts
US20090123651A1 (en) * 2005-10-14 2009-05-14 Nobuyoshi Okada Continuous Annealing and Hot Dip Plating Method and Continuous Annealing and Hot Dip Plating System of Steel sheet Containing Si
JP4762077B2 (en) * 2006-08-09 2011-08-31 日本パーカライジング株式会社 Hardening method of steel member, hardened steel member and hardened surface protective agent
DE102006039307B3 (en) * 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer
EP2009128A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Galvanized or galvannealed silicon steel
JP5354156B2 (en) * 2008-09-03 2013-11-27 Jfeスチール株式会社 Method for producing galvannealed steel sheet
DE102009053260B4 (en) * 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Process for coating steel strips and coated steel strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160057418A (en) * 2013-09-13 2016-05-23 티센크루프 스틸 유럽 악티엔게젤샤프트 Method for producing a steel component having a metal coating protecting it against corrosion, and steel component

Also Published As

Publication number Publication date
CN102985570A (en) 2013-03-20
CN102985570B (en) 2016-03-30
WO2011157690A1 (en) 2011-12-22
DE102010017354A9 (en) 2012-04-05
EP2580358A1 (en) 2013-04-17
US20130206284A1 (en) 2013-08-15
JP2013534971A (en) 2013-09-09
BR112012030991A2 (en) 2016-11-08
DE102010017354A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
KR20130085410A (en) Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product
US11408058B2 (en) High-strength steel sheet and method for producing the same
KR102129162B1 (en) Process for manufacturing steel sheets for press hardening, and parts obtained by means of this process
EP2159292B1 (en) Process for manufacturing shaped article
KR100854114B1 (en) Hot pressing method for high strength member using steel sheet and hot pressed parts
DK2553133T3 (en) Steel, flat steel product, the steel component and the process for the production of a steel component
US7892605B2 (en) High-strength quenched formed body with good corrosion resistance and process for producing the same
EP3647449B1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
CN109477197B (en) Component made of press-formed hardened aluminum-based coated steel sheet and method for producing the same
JP6298439B2 (en) Easily moldable flat steel product manufacturing method and method of manufacturing parts from the flat steel product
SK50632008A3 (en) Steel sheet for hot press forming having low-temperature heat treatment property and method of manufacturing the same
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
CN111424212B (en) Aluminum-plated steel plate with tensile strength of 1800MPa, manufacturing method thereof and hot-formed part
KR930001519B1 (en) Method of manufacturing a steel sheet
KR20160027146A (en) Method of manufacturing hot press member
JP2023503360A (en) HOT PRESS FORMING INTO STEEL PRODUCT AND STEEL PRODUCT
EP3396005A1 (en) Mn-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET AND MANUFACTURING METHOD THEREFOR
KR100851163B1 (en) Ultra high strength steel sheet having excellent coating adhesion and bendability and the method for manufacturing hot-dip galvanized steel sheet using the same
KR20180016980A (en) Deformation-hardened parts made of galvanized steel, method for making the same, and deformation of parts - Method for manufacturing steel strip suitable for hardening
KR100797364B1 (en) High yield ratio and ultra high strength steel sheet having excellent bendability and the method for manufacturing hot dip galvanized steel sheet using the same
EP3966355A1 (en) Methods of producing continuously cast hot rolled high strength steel sheet products
JPH0372032A (en) Production of sheet steel
JP2017066497A (en) Hot-press steel component and method for manufacturing the same
KR100685034B1 (en) Method for manufacturing high strength galvannealed steel sheet
WO2023132349A1 (en) Steel sheet for hot stamping, method for manufacturing steel sheet for hot stamping, and hot stamp molded body

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application