KR20130017589A - Method for synthesizing a bixsb2-xte3 thermoelectric nanocompound and the thermoelectric nanocompound thereof - Google Patents

Method for synthesizing a bixsb2-xte3 thermoelectric nanocompound and the thermoelectric nanocompound thereof Download PDF

Info

Publication number
KR20130017589A
KR20130017589A KR1020110080117A KR20110080117A KR20130017589A KR 20130017589 A KR20130017589 A KR 20130017589A KR 1020110080117 A KR1020110080117 A KR 1020110080117A KR 20110080117 A KR20110080117 A KR 20110080117A KR 20130017589 A KR20130017589 A KR 20130017589A
Authority
KR
South Korea
Prior art keywords
xte
bixsb2
xte3
nanoparticles
solutions
Prior art date
Application number
KR1020110080117A
Other languages
Korean (ko)
Other versions
KR101300141B1 (en
Inventor
김참
김동환
김종숙
김호영
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020110080117A priority Critical patent/KR101300141B1/en
Publication of KR20130017589A publication Critical patent/KR20130017589A/en
Application granted granted Critical
Publication of KR101300141B1 publication Critical patent/KR101300141B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: A method for manufacturing BixSb2-xTe3 nanocompound thermoelectric materials and the nanocompound thermoelectric materials manufactured by the same are provided to increase a thermoelectric performance index by synthesizing BixSb2-xTe3 nanocompounds for a low temperature through a wet chemical process. CONSTITUTION: Bi-Sb solutions are made by injecting a Bi and Sb precursor to solvents(A1). Te solutions are made by injecting Te powder to mixture of acid and solvents(A2). BixSb2-xTe3 reactants are made by mixing the Bi-Sb solutions with the Te solutions(A3). BixSb2-xTe3 nanoparticles are obtained by filtering and drying the BixSb2-xTe3 reactants(A4). The BixSb2-xTe3 nanoparticles are thermally processed(A5). [Reference numerals] (A1) Forming Bi-Sb solutions; (A2) Making Te solutions; (A3) Reacting between the Bi-Sb solutions and Te solutions; (A4) Obtaining BixSb2-xTe3 nanoparticles by filtering and drying; (A5) Thermally processing the BixSb2-xTe3 nanoparticles; (AA) Start; (BB) End

Description

BixSb2-xTe3 나노화합물 열전재료 제조방법 및 이에 따른 나노화합물 열전재료{Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof}Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound

본 발명은 나노화합물 열전재료의 제조방법에 관한 것으로, 보다 구체적으로는 열전성능지수가 증가된 저온용 BixSb2-xTe3 나노화합물 열전재료 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a nanocompound thermoelectric material, and more particularly, to a method for manufacturing a low temperature Bi x Sb 2 -xTe 3 nanocompound thermoelectric material having an increased thermoelectric performance index.

열전발전은 각종 산업분야 및 생활환경에서 발생하는 폐열을, 열전소자를 통해 기전력으로 변환시키는 기술을 총칭한다. 즉, 제벡(Seebeck) 효과를 이용하여 열에너지를 전기에너지로 변환시키는 것이다. 상기 열전소자의 에너지변환효율은 열전재료의 성능지수(ZT)에 의존한다. 성능지수는 온도(T)에 비례하며, 각 재료의 제벡 계수(α), 전기 전도도(σ), 및 열 전도도(κ)에 의해 결정될 수 있다(하기 수식 1). Thermoelectric power generation refers to a technology for converting waste heat generated in various industrial fields and living environments into electromotive force through thermoelectric elements. In other words, thermal energy is converted into electrical energy using the Seebeck effect. The energy conversion efficiency of the thermoelectric element depends on the ZT of the thermoelectric material. The figure of merit is proportional to the temperature T and can be determined by the Seebeck coefficient α, electrical conductivity σ, and thermal conductivity κ of each material (Equation 1 below).

(수식 1) ZT = α2σT/κ(Formula 1) ZT = α 2 σT / κ

수식 1에 의하면, 높은 값을 갖는 재료를 사용할수록 에너지변환 효율이 우수한 열전소자가 얻어질 수 있다. 따라서 높은 열전성능지수를 얻기 위해서는 높은 전기전도도 및 낮은 열전도도를 갖는 물질을 제조하는 것이 필요하다.According to Equation 1, as the material having a higher value is used, a thermoelectric device having better energy conversion efficiency can be obtained. Therefore, in order to obtain a high thermoelectric performance index, it is necessary to prepare a material having high electrical conductivity and low thermal conductivity.

초기 열전재료들은 기계적 밀링 및 혼합방법을 통하여 벌크상 형태로 제조되었다. 예를 들어, 출발물질인 Bi 및 Te를 용해응고시킨 후 분쇄과정을 거쳐 Bi2Te3 원료분말을 제조하고, 메카니칼 그라인딩(mechanical grinding) 공정을 통해 원료분말을 분산시켜 열전재료를 얻는다(대한민국 특허 출원 10-1998-0042228, 10-2006-0051291, 10-2008-0112429). 한편, 대한민국 특허 출원 10-2005-0120134는 액체급냉법과 압출을 통해 (BiSb)(TeSe)계 열전재료를 제조하는 방법을 기재하고 있다. 즉, 기본 물질인 BiTe계 열전재료에 Sb 및 Se를 주입함으로써 p-, n-type 특성을 띄는 열전재료를 제조하였으며, 그에 따라 재료의 전기전도도가 향상되는 것으로 나타난다. 하지만 이러한 방법으로 제조된 열전재료들은 수십 마이크로미터에 달하는 입자크기 때문에 열전도도가 높아지는 문제가 발생할 수 있다.Early thermoelectric materials were manufactured in bulk form by mechanical milling and mixing. For example, Bi 2 Te 3 raw powders are prepared by dissolving and coagulating the starting materials Bi and Te, and obtaining a thermoelectric material by dispersing the raw powder through a mechanical grinding process. Application 10-1998-0042228, 10-2006-0051291, 10-2008-0112429. Meanwhile, Korean Patent Application No. 10-2005-0120134 describes a method of manufacturing a (BiSb) (TeSe) -based thermoelectric material through a liquid quenching method and extrusion. That is, a thermoelectric material having p- and n-type characteristics was prepared by injecting Sb and Se into the BiTe-based thermoelectric material, which is a basic material, and thus the electrical conductivity of the material was improved. However, the thermoelectric materials manufactured in this way may have a problem of high thermal conductivity because of the particle size of several tens of micrometers.

한편, Bi 전구체인 BiCl3와 Te를 물속에 분산 및 환원시킨 후 반응시켜 Bi2Te3 나노입자를 얻는 방법이 제시되었다 (일본공개특허 2005-343782, 대한민국 특허 출원 10-2009-0056572). 이러한 종래 발명에서 제시된 Bi2Te3 나노입자는 낮은 열전도도 값을 가질 수 있지만, 제조 과정 중 사용되는 분산제나 환원제가 불순물로 작용하거나 산화물 2차상이 생성되는 것으로 확인되었다. 또한, 2원계 물질이므로 충분한 외인성 반도체 특성을 띄지 못해 열전소자에 적용하기 어렵다.On the other hand, Bi precursor was BiCl 3, and dispersion and reduction of the Te in water was reacted proposed a method of obtaining a Bi 2 Te 3 nanoparticles (Japanese Laid-Open Patent Publication 2005-343782, the Republic of Korea Patent Application No. 10-2009-0056572). Although the Bi 2 Te 3 nanoparticles presented in the related art may have low thermal conductivity values, it has been confirmed that the dispersing agent or reducing agent used during the manufacturing process acts as an impurity or an oxide secondary phase is produced. In addition, since the binary material does not exhibit sufficient exogenous semiconductor characteristics, it is difficult to apply to thermoelectric devices.

열전도도를 낮추기 위하여 나노복합재를 제조하는 방법이 제시되었다 (M.S. Dresselhaus et al., Advanced Materials 19 (2007) 1, 대한민국 특허출원 10-2007-7012151). 열전특성을 띄는 Si 나노입자를 Ge 호스트에 함입(inclusion)시킴으로써 복합재의 전기전도도는 유지하면서 열전도도를 감소시키고자 하였다. 상기 Si 입자는 수십 나노미터 수준이기 때문에 수십 마이크로미터 수준의 입자에 비해 포논이 감소하여 격자 열전도도가 줄어들게 된다. 상기 열전복합재는 중온영역(600 K 부근)에서 가장 높은 성능지수 값을 가지며, 원자재인 Si 및 Ge의 가격이 비싸다는 단점이 있다.In order to lower the thermal conductivity, a method of manufacturing a nanocomposite has been proposed (M.S. Dresselhaus et al., Advanced Materials 19 (2007) 1, Korean Patent Application 10-2007-7012151). By incorporating thermoelectric properties of Si nanoparticles into the Ge host, the thermal conductivity of the composite was maintained while maintaining the electrical conductivity of the composite. Since the Si particles are in the order of tens of nanometers, the phonon decreases compared to the particles in the tens of micrometers, thereby reducing lattice thermal conductivity. The thermoelectric composite material has the highest performance index value in the mid-temperature region (near 600 K), and has a disadvantage in that the price of the raw materials Si and Ge is high.

특정 원자의 진동효과(rattling effect)를 응용하여 열전재료의 열전도도를 감소시키는 방법 또한 제시되었다 (대한민국 특허 출원 10-2005-0098378, X. Song et al., J. Alloys Compd. 399 (2005) 276.) 높은 전기 전도도를 가지는 결정성 스쿠테루다이트 및 클라스레이트의 내부 공극에 희토류 금속 및 알칼리 금속을 주입하여 재료의 격자 열전도도를 감소시켰다. 상기 스쿠테루다이트 및 클라스레이트는 중고온영역(600 K 이상)에서 가장 높은 성능지수 값을 보이며, 고온 및 고압 제조공정을 필요로 한다.A method of reducing the thermal conductivity of thermoelectric materials by applying the rattling effect of certain atoms has also been proposed (Korean Patent Application 10-2005-0098378, X. Song et al., J. Alloys Compd. 399 (2005) 276.) The lattice thermal conductivity of the material was reduced by injecting rare earth metals and alkali metals into the internal pores of crystalline squaterite and clathrate with high electrical conductivity. Scooter rutite and clathrate show the highest figure of merit value in the mid-high temperature range (600 K or more), and requires a high temperature and high pressure manufacturing process.

본 발명의 구체 예들은 열전성능지수가 증가된 저온용 BixSb2-xTe3 나노화합물 열전재료 제조방법을 제공한다. Embodiments of the present invention provide a method for producing a low-temperature Bi x Sb 2 -xTe 3 nanocomposite thermoelectric material with an increased thermoelectric performance index.

본 발명의 다른 구체 예들은 상기 제조방법에 의해 합성된 나노화합물 열전재료를 제공한다. Other embodiments of the present invention provide a nanocompound thermoelectric material synthesized by the above production method.

본 발명의 일 측면에 따르면, Bi 및 Sb 전구체를 용매 중에 투입하여 Bi-Sb 용액을 형성하는 단계, Te 분말을 산과 용매의 혼합용액에 투입하여 Te 용액을 형성하는 단계, 상기 Bi-Sb 용액과 상기 Te 용액을 혼합하여 반응시켜 BixSb2-xTe3 반응물을 형성하는 단계, 상기 BixSb2-xTe3 반응물을 여과 및 건조하여 BixSb2-xTe3 나노입자를 얻는 단계, 및 상기 BixSb2-xTe3 나노입자를 열처리하는 단계를 포함하는 나노화합물 열전재료 제조방법이 제공된다.According to an aspect of the present invention, adding Bi and Sb precursor in a solvent to form a Bi-Sb solution, adding Te powder to a mixed solution of an acid and a solvent to form a Te solution, the Bi-Sb solution and the method comprising reacting a mixture of the solution to form a Te 3 -xTe reactant Bi x Sb 2, the Bi x Sb 2 -xTe 3 obtaining the filtration and drying -xTe 3 nanoparticles Bi x Sb 2 by the reaction, and the Provided is a method for manufacturing a nanocompound thermoelectric material comprising the step of heat-treating a Bi x Sb 2 -xTe 3 nanoparticle.

본 발명의 다른 측면에 따르면, 상기 제조방법에 의해 합성된 나노화합물 열전재료가 제공된다.According to another aspect of the present invention, there is provided a nanocompound thermoelectric material synthesized by the manufacturing method.

본 발명에 따르면, 열전재료로 사용하기 위한 저온용 (300K 이하) BixSb2-xTe3 나노화합물을 습식 화학공정을 통하여 합성할 수 있다. 이 경우, 1 내지 500 nm 수준의 입자들이 균일한 분포로 형성되므로, 포논 산란이 활발해져 상기 나노화합물의 격자 열전도도가 감소할 수 있다. 이를 통하여 열전성능지수가 증가할 수 있으므로 열전용으로 적합한 재료가 될 수 있다.According to the present invention, a low temperature (below 300K) Bi x Sb 2 -xTe 3 nanocompound for use as a thermoelectric material may be synthesized by a wet chemical process. In this case, since particles having a level of 1 to 500 nm are formed in a uniform distribution, phonon scattering may be activated to reduce lattice thermal conductivity of the nanocompound. As a result, the thermoelectric performance index may be increased, thereby making it a suitable material for thermal use.

도 1은 본 발명의 일 측면에 따른 나노화합물 열전재료의 제조방법을 나타내는 공정흐름도이다.
도 2는 BixSb2-xTe3 나노화합물의 X선 회절 분석결과이다.
도 3는 BixSb2-xTe3 나노화합물의 전계방출 주사현미경 사진이다.
1 is a process flow diagram illustrating a method of manufacturing a nanocompound thermoelectric material according to an aspect of the present invention.
2 is an X-ray diffraction analysis of Bi x Sb 2 -xTe 3 nano-compound.
3 is a field emission scanning microscope photograph of Bi x Sb 2 -xTe 3 nanocompound.

본 발명의 일 측면에 따르면, Bi 및 Sb 전구체를 용매 중에 투입하여 Bi-Sb 용액을 형성하는 단계, Te 분말을 산과 용매의 혼합용액에 투입하여 Te 용액을 형성하는 단계, 상기 Bi-Sb 용액과 상기 Te 용액을 혼합하여 반응시켜 BixSb2-xTe3 반응물을 형성하는 단계, 상기 BixSb2-xTe3 반응물을 여과 및 건조하여 BixSb2-xTe3 나노입자를 얻는 단계, 및 상기 BixSb2-xTe3 나노입자를 열처리하는 단계를 포함하는 나노화합물 열전재료 제조방법이 제공된다.According to an aspect of the present invention, adding Bi and Sb precursor in a solvent to form a Bi-Sb solution, adding Te powder to a mixed solution of an acid and a solvent to form a Te solution, the Bi-Sb solution and the method comprising reacting a mixture of the solution to form a Te 3 -xTe reactant Bi x Sb 2, the Bi x Sb 2 -xTe 3 obtaining the filtration and drying -xTe 3 nanoparticles Bi x Sb 2 by the reaction, and the Provided is a method for manufacturing a nanocompound thermoelectric material comprising the step of heat-treating a Bi x Sb 2 -xTe 3 nanoparticle.

본 발명의 다른 측면에 따르면, 상기 제조방법에 의해 합성된 나노화합물 열전재료가 제공된다.
According to another aspect of the present invention, there is provided a nanocompound thermoelectric material synthesized by the manufacturing method.

이하 도면을 참조하여 본 발명을 더욱 상세하게 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 일 측면에 따른 BixSb2-xTe3 나노화합물 열전재료의 제조방법을 나타내는 공정흐름도이다.1 is a process flow diagram illustrating a method of manufacturing a Bi x Sb 2 -xTe 3 nanocomposite thermoelectric material according to an aspect of the present invention.

도 1을 참조하면, 단계 A1에서, Bi 및 Sb 전구체를 용매에 투입하여 Bi-Sb 용액을 형성한다. 상기 Bi 및 Sb 전구체는 특별히 제한되지 않지만, 예를 들어 Bi(NO3)3, BiCl3, BiBr3, BiI3, BiF3 및 Sb(NO3)3, SbCl3, SbCl5, SbBr3, SbF3 등에서 선택될 수 있다.Referring to FIG. 1, in step A1, Bi and Sb precursors are added to a solvent to form a Bi-Sb solution. The Bi and Sb precursors are not particularly limited, but for example Bi (NO 3 ) 3 , BiCl 3 , BiBr 3 , BiI 3 , BiF 3 and Sb (NO 3 ) 3 , SbCl 3 , SbCl 5 , SbBr 3 , SbF 3 and the like.

단계 A2에서, Te 분말을 산과 용매의 혼합용액에 투입하여 분산, 용해시킴으로써 Te 용액을 형성한다. 상기 산은 프로틱 산을 포함할 수 있으며, 예를 들어 질산, 염산, 황산, 인산 등이 사용될 수 있다.In step A2, Te powder is added to a mixed solution of an acid and a solvent to disperse and dissolve to form a Te solution. The acid may comprise a protic acid, for example nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like may be used.

상기 단계 A1 및 단계 A2에서 용매는 극성의 프로틱(protic, 양성자성) 혹은 아프로틱(aprotic, 비양성자성) 용매를 포함할 수 있으며, 상기 Bi 및 Sb 전구체, 그리고 Te 분말을 분산, 용해시킬 수 있다. 예를 들어 탈이온수, 알코올, 아세트알데히드, DMF, DMSO, 에틸렌글리콜 등이 사용될 수 있다.In step A1 and step A2, the solvent may include a polar protic or aprotic solvent and disperse and dissolve the Bi and Sb precursors and the Te powder. Can be. For example, deionized water, alcohols, acetaldehyde, DMF, DMSO, ethylene glycol and the like can be used.

단계 A3에서, 상기 Bi-Sb 용액을 Te 용액과 혼합하여 반응시킨다. 상기 반응은 100 내지 350℃의 온도에서 3시간 내지 72시간 동안, 바람직하게는 200 내지 300℃의 온도에서 24시간 내지 48시간 동안 가열하여 수행될 수 있다. 상기 온도 및 시간 미만에서는 Bi-Sb 용액과 Te 용액 간 반응이 일어나지 않거나, BixSb2-xTe3 상 외 다른 상들(Bi2O3, Sb2O3, Bi2Te3, Sb2Te3, Te)이 형성될 수 있다.In step A3, the Bi-Sb solution is mixed with Te solution and reacted. The reaction may be carried out by heating for 3 hours to 72 hours at a temperature of 100 to 350 ℃, preferably for 24 to 48 hours at a temperature of 200 to 300 ℃. Below the temperature and time, the reaction between the Bi-Sb solution and the Te solution does not occur, or other phases other than the Bi x Sb 2 -xTe 3 phase (Bi 2 O 3 , Sb 2 O 3 , Bi 2 Te 3 , Sb 2 Te 3 , Te) may be formed.

단계 A4에서, 상기 BixSb2-xTe3 반응물을 여과하여 용매로부터 회수하고 알코올, 아세톤, 탈이온수 등으로 세척한다. 이후 건조 공정을, 예를 들어 40 내지 80℃의 진공 분위기에서 수 시간 수행하여 상기 BixSb2-xTe3 나노입자를 얻을 수 있다. 상기 BixSb2-xTe3 나노입자의 입경은 1 내지 500 nm 일 수 있으며, 입경분포는 ±20%, 바람직하게는 ±10% 일 수 있다. 상기 입경분포를 가질 경우, 나노입자의 물리적, 화학적 특성이 우수할 수 있다.In step A4, the Bi x Sb 2 -xTe 3 reactant is recovered from the solvent and washed with alcohol, acetone, deionized water and the like. Thereafter, the drying process may be performed, for example, in a vacuum atmosphere of 40 to 80 ° C. for several hours to obtain the Bi x Sb 2 -xTe 3 nanoparticles. The particle size of the Bi x Sb 2 -xTe 3 nanoparticles may be 1 to 500 nm, the particle size distribution may be ± 20%, preferably ± 10%. When having the particle size distribution, the physical and chemical properties of the nanoparticles may be excellent.

단계 A5에서, 상기 BixSb2-xTe3 나노입자를 열처리하여 결정성을 강화시키고 불순물을 제거할 수 있다. 상기 열처리 공정은 수소 또는 진공 분위기에서 1 내지 10℃/분의 승온 속도로 가열하여, 250 내지 500℃ 범위의 일정 온도를 유지하면서 1 내지 6시간 동안 수행될 수 있다.In step A5, the Bi x Sb 2 -xTe 3 nanoparticles may be heat treated to enhance crystallinity and remove impurities. The heat treatment process may be performed for 1 to 6 hours while maintaining a constant temperature in the range of 250 to 500 ℃ by heating at a temperature increase rate of 1 to 10 ℃ / min in a hydrogen or vacuum atmosphere.

여기서 BixSb2-xTe3의 x는 0 초과 내지 2 미만의 범위이다.
Wherein x of Bi x Sb 2 -xTe 3 ranges from greater than 0 to less than 2.

본 발명에 따르면, 열전재료로 사용하기 위한 저온용 (300K 이하) BixSb2-xTe3 나노화합물을 습식 화학공정을 통하여 합성할 수 있다. 이 경우, 1 내지 500 nm 수준의 입자들이 균일한 분포로 형성되므로, 포논 산란이 활발해져 상기 나노화합물의 격자 열전도도가 감소할 수 있다. 이를 통하여 열전성능지수가 증가할 수 있으므로 열전용으로 적합한 재료가 될 수 있다.According to the present invention, a low temperature (below 300K) Bi x Sb 2 -xTe 3 nanocompound for use as a thermoelectric material may be synthesized by a wet chemical process. In this case, since particles having a level of 1 to 500 nm are formed in a uniform distribution, phonon scattering may be activated to reduce lattice thermal conductivity of the nanocompound. As a result, the thermoelectric performance index may be increased, thereby making it a suitable material for thermal use.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

[[ 실시예Example ]]

습식 화학공정을 통해 이하의 방법으로 BixSb2-xTe3 나노화합물을 합성하였다Bi x Sb 2 -xTe 3 nanocomposites were synthesized by wet chemical processes as follows.

먼저, 15 mmol의 Bi(NO3)3 및 45 mmol의 SbCl3를 에틸렌글리콜에 투입하고 약 2시간 동안 교반시켜 Bi-Sb 용액을 제조하였다. 한편, 90 mmol의 Te 분말을 에틸렌글리콜에 투입하고 질산을 주입하여 Te 용액을 제조하였다. 상기 Bi-Sb 용액을 상기 Te 용액과 혼합한 후, 280℃에서 24시간 동안 에이징 시켰다. First, 15 mmol of Bi (NO 3 ) 3 and 45 mmol of SbCl 3 were added to ethylene glycol and stirred for about 2 hours to prepare a Bi-Sb solution. Meanwhile, Te solution was prepared by adding 90 mmol of Te powder to ethylene glycol and injecting nitric acid. The Bi-Sb solution was mixed with the Te solution and then aged at 280 ° C. for 24 hours.

반응기를 자연냉각 시킨 후, 반응물을 여과 과정을 통하여 회수하였고, 에탄올, 아세톤, 증류수를 사용하여 세척하였다. 반응물을 60℃의 진공 분위기에서 12시간 동안 건조시켜 BixSb2-xTe3 나노입자를 얻었다.After the reactor was naturally cooled, the reaction was recovered by filtration and washed with ethanol, acetone, and distilled water. The reaction was dried in a vacuum atmosphere at 60 ℃ for 12 hours to obtain Bi x Sb 2 -xTe 3 nanoparticles.

상기 BixSb2-xTe3 나노입자를 열처리하여 결정성을 강화시키고 불순물을 제거하였다. 상기 열처리 공정은 수소 분위기에서 5℃/분의 승온 속도로 가열하여, 300℃에서 6시간 동안 수행하였다.The Bi x Sb 2 -xTe 3 nanoparticles were heat treated to enhance crystallinity and remove impurities. The heat treatment process was heated at a temperature increase rate of 5 ℃ / min in a hydrogen atmosphere, it was carried out for 6 hours at 300 ℃.

도 2는 습식 화학공정을 통해 얻어진 BixSb2-xTe3 나노입자의 X선 회절 분석결과이다. 상기 나노입자는 롬보히드럴(rhombohedral, 능면체) 구조를 가지는 것으로 확인되었는데, 이는 상기 제조공정을 통해 BixSb2-xTe3 화합물이 제조되었음을 의미한다.2 is an X-ray diffraction analysis of Bi x Sb 2 -xTe 3 nanoparticles obtained through a wet chemical process. The nanoparticles were found to have a rhombohedral (rhombohedral) structure, which means that the Bi x Sb 2 -xTe 3 compound was prepared through the preparation process.

도 3은 상기 BixSb2-xTe3 화합물의 전계방출주사전자현미경 사진이다. 도 3을 참조하면, 얻어진 BixSb2-xTe3 나노화합물은 약 100 nm 전후의 입자들로 이루어져 있는 것으로 관찰되었다.
3 is a field emission scanning electron micrograph of the Bi x Sb 2 -x Te 3 compound. Referring to FIG. 3, the obtained Bi x Sb 2 -xTe 3 nanocompound was observed to be composed of particles around 100 nm.

이상에서 기재된 몇몇 실시예에 대해서만 본 발명이 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당 업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to some embodiments described above, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, and such modifications and modifications belong to the appended claims. It is natural.

Claims (9)

Bi 및 Sb 전구체를 용매 중에 투입하여 Bi-Sb 용액을 형성하는 단계;
Te 분말을 산과 용매의 혼합용액에 투입하여 Te 용액을 형성하는 단계;
상기 Bi-Sb 용액과 상기 Te 용액을 혼합하여 반응시켜 BixSb2-xTe3 반응물을 형성하는 단계;
상기 BixSb2-xTe3 반응물을 여과 및 건조하여 BixSb2-xTe3 나노입자를 얻는 단계; 및
상기 BixSb2-xTe3 나노입자를 열처리하는 단계를 포함하는 나노화합물 열전재료 제조방법.
Adding Bi and Sb precursors in a solvent to form a Bi-Sb solution;
Adding Te powder to a mixed solution of an acid and a solvent to form a Te solution;
Mixing the Bi-Sb solution with the Te solution to form a Bi x Sb 2 -xTe 3 reactant;
Filtering and drying the Bi x Sb 2 -xTe 3 reactant to obtain Bi x Sb 2 -xTe 3 nanoparticles; And
The method of manufacturing a nano-compound thermoelectric material comprising the step of heat-treating the Bi x Sb 2 -xTe 3 nanoparticles.
제1항에 있어서,
상기 용매는 극성의 프로틱 혹은 아프로틱 용매를 포함하는 나노화합물 열전재료의 제조방법.
The method of claim 1,
The solvent is a method for producing a nano-compound thermoelectric material containing a polar protic or aprotic solvent.
제1항에 있어서,
상기 산은 프로틱 산을 포함하는 나노화합물 열전재료의 제조방법.
The method of claim 1,
The acid is a method for producing a nano-compound thermoelectric material containing a protic acid.
제1항에 있어서,
BixSb2-xTe3의 x는 0 초과 내지 2 미만의 범위인 것을 특징으로 하는 나노화합물 열전재료의 제조방법.
The method of claim 1,
X of Bi x Sb 2 -xTe 3 is in the range of more than 0 to less than 2.
제1항에 있어서,
상기 반응은 100 내지 350℃의 온도로 3시간 내지 72시간 동안 가열하여 수행되는 나노화합물 열전재료의 제조방법.
The method of claim 1,
The reaction is carried out by heating for 3 hours to 72 hours at a temperature of 100 to 350 ℃ nano compound thermoelectric material manufacturing method.
제1항에 있어서,
상기 BixSb2-xTe3 나노입자는 롬보히드럴 구조를 가지는 나노화합물 열전재료의 제조방법.
The method of claim 1,
The Bi x Sb 2 -xTe 3 nanoparticles is a manufacturing method of the nano-compound thermoelectric material having a lambo hydride structure.
제1항에 있어서,
상기 BixSb2-xTe3 나노입자의 입경은 1 내지 500 nm인 나노화합물 열전재료의 제조방법.
The method of claim 1,
Particle diameter of the Bi x Sb 2 -xTe 3 nanoparticles is 1 to 500 nm of the manufacturing method of the nano-compound thermoelectric material.
제1항에 있어서,
상기 열처리는 수소 분위기에서 200 내지 500℃, 1시간 내지 6시간 동안 가열하여 수행되는 나노화합물 열전재료의 제조방법.
The method of claim 1,
The heat treatment is a method for producing a nano-compound thermoelectric material is carried out by heating for 200 to 500 ℃, 1 hour to 6 hours in a hydrogen atmosphere.
제1항 내지 제7항 중 어느 한 항에 따른 제조방법에 의해 제조된 나노화합물 열전재료.A nanocompound thermoelectric material manufactured by the manufacturing method according to any one of claims 1 to 7.
KR1020110080117A 2011-08-11 2011-08-11 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof KR101300141B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110080117A KR101300141B1 (en) 2011-08-11 2011-08-11 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110080117A KR101300141B1 (en) 2011-08-11 2011-08-11 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof

Publications (2)

Publication Number Publication Date
KR20130017589A true KR20130017589A (en) 2013-02-20
KR101300141B1 KR101300141B1 (en) 2013-08-26

Family

ID=47896731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110080117A KR101300141B1 (en) 2011-08-11 2011-08-11 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof

Country Status (1)

Country Link
KR (1) KR101300141B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178524A1 (en) * 2013-04-30 2014-11-06 대구경북과학기술원 Method for manufacturing bi2teyse3-y nanocompound thermoelectric material, and nanocompound thermoelectric material manufactured thereby
WO2014178525A1 (en) * 2013-04-30 2014-11-06 대구경북과학기술원 Method for manufacturing bixsb2-xte3 nanocompound thermoelectric material, and nanocompound thermoelectric material manufacturing thereby
KR20190049020A (en) 2017-11-01 2019-05-09 한국전기연구원 A2b3 based thermoelectric materials having nano structured hexagonal plate-type and manufacturing method the same
KR20200052642A (en) 2018-11-07 2020-05-15 한국전기연구원 Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same
KR20230014618A (en) * 2021-07-21 2023-01-30 재단법인대구경북과학기술원 Method for manufacturing organic-inorganic composite thermoelectric material comprising Bi2Te3 and conductive polymer in bulk form with improved thermoelectric properties, and bulk organic-inorganic composite thermoelectric material manufactured by the method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841272B2 (en) * 2001-09-28 2006-11-01 スズキ株式会社 Sb2Te3 single crystal thin film and manufacturing method thereof
KR100727391B1 (en) * 2005-12-20 2007-06-12 한국생산기술연구원 Method for manufacturing bi-te based thermoelectric materials
KR101452795B1 (en) * 2006-12-01 2014-10-21 메사추세츠 인스티튜트 오브 테크놀로지 Methods for high figure-of-merit in nanostructured thermoelectric materials
KR101051010B1 (en) * 2008-11-12 2011-07-26 세종대학교산학협력단 Method of manufacturing p-type Bi-Sb-Te thermoelectric material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178524A1 (en) * 2013-04-30 2014-11-06 대구경북과학기술원 Method for manufacturing bi2teyse3-y nanocompound thermoelectric material, and nanocompound thermoelectric material manufactured thereby
WO2014178525A1 (en) * 2013-04-30 2014-11-06 대구경북과학기술원 Method for manufacturing bixsb2-xte3 nanocompound thermoelectric material, and nanocompound thermoelectric material manufacturing thereby
US9634220B2 (en) 2013-04-30 2017-04-25 Daegu Gyeongbuk Institute Of Science & Technology Fabrication method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and thermoelectric nanocompound thereby
KR20190049020A (en) 2017-11-01 2019-05-09 한국전기연구원 A2b3 based thermoelectric materials having nano structured hexagonal plate-type and manufacturing method the same
KR20200052642A (en) 2018-11-07 2020-05-15 한국전기연구원 Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same
KR20230014618A (en) * 2021-07-21 2023-01-30 재단법인대구경북과학기술원 Method for manufacturing organic-inorganic composite thermoelectric material comprising Bi2Te3 and conductive polymer in bulk form with improved thermoelectric properties, and bulk organic-inorganic composite thermoelectric material manufactured by the method

Also Published As

Publication number Publication date
KR101300141B1 (en) 2013-08-26

Similar Documents

Publication Publication Date Title
KR101300141B1 (en) Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof
US9634220B2 (en) Fabrication method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and thermoelectric nanocompound thereby
KR20130084120A (en) Thermoelectric nano-composite, and thermoelectric module and thermoelectric apparatus comprising same
Lee et al. Design and preparation of high-performance bulk thermoelectric materials with defect structures
US11616182B2 (en) Method of producing semiconductor sintered body, electrical/electronic member, and semiconductor sintered body
Wu et al. Facile synthesis of monodisperse Cu 3 SbSe 4 nanoparticles and thermoelectric performance of Cu 3 SbSe 4 nanoparticle-based materials
KR20130036638A (en) Method for fabricating a bixte3-ysey thermoelectric nanocompound and the thermoelectric nanocompound thereof
JP6365950B2 (en) Thermoelectric material and manufacturing method thereof
KR101494612B1 (en) Manufacturing method of zinc oxide-reduced graphene oxide composite
KR101473750B1 (en) Fabrication method for synthesizing a Bi2TeySe3-y thermoelectric nanocompound and thermoelectric nanocompound thereby
JP2017076775A (en) Nano-composite type thermoelectric element and method of manufacturing the same
CN115650181B (en) N-type PbTe-based thermoelectric material and preparation method thereof
Zhu et al. EG-Assisted hand-in-hand growth of prism-like Cu 2 O nanorods with high aspect ratios and their thermal conductive performance
US10892394B2 (en) Higher manganese silicide based telluride composite for thermoelectric conversion and preparation method thereof
KR20110060345A (en) Fabrication method of nanoscrystalline thermoelecric materials
KR101872095B1 (en) A-Bi-Te COMPOUND AND METHOD OF FORMING THE SAME
Schierning et al. Nanocrystalline silicon compacted by spark-plasma sintering: Microstructure and thermoelectric properties
WO2014051709A1 (en) Bismuth antimony telluride nano-bulk composites with high figures of merit (zt)
CN103824931B (en) A kind of CoSb 3preparation method of/graphene nanocomposite material and products thereof and application
CN117222292A (en) Covalent organic framework doped bismuth sulfide thermoelectric material and preparation method thereof
Li et al. Synthesis and Thermoelectric Properties of Nd-Doped Uddlesden-Popper Phase SrO (SrTiO3) n (N= 1, 2) Oxides
KR20180015356A (en) Bi-Te COMPOUND AND METHOD OF FORMING THE SAME
Wu et al. Microwave Solvothermal Synthesis and Hthp Sintering of Cosb3/Rgo Composites: In-Situ Synthesis and Enhanced Thermoelectric Properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170628

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 7