KR20200052642A - Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same - Google Patents
Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same Download PDFInfo
- Publication number
- KR20200052642A KR20200052642A KR1020180135838A KR20180135838A KR20200052642A KR 20200052642 A KR20200052642 A KR 20200052642A KR 1020180135838 A KR1020180135838 A KR 1020180135838A KR 20180135838 A KR20180135838 A KR 20180135838A KR 20200052642 A KR20200052642 A KR 20200052642A
- Authority
- KR
- South Korea
- Prior art keywords
- plate
- antimony
- solution
- teo
- tellurium
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 229910017629 Sb2Te3 Inorganic materials 0.000 title 1
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 28
- 239000000243 solution Substances 0.000 claims abstract description 24
- 238000002156 mixing Methods 0.000 claims abstract description 23
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 23
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 20
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002243 precursor Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000003960 organic solvent Substances 0.000 claims abstract description 16
- MRPWWVMHWSDJEH-UHFFFAOYSA-N antimony telluride Chemical compound [SbH3+3].[SbH3+3].[TeH2-2].[TeH2-2].[TeH2-2] MRPWWVMHWSDJEH-UHFFFAOYSA-N 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 11
- 239000011259 mixed solution Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 8
- 239000003637 basic solution Substances 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 238000004090 dissolution Methods 0.000 claims abstract description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 22
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 16
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 16
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 16
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 7
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 7
- 239000011118 polyvinyl acetate Substances 0.000 claims description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 7
- 229920002873 Polyethylenimine Polymers 0.000 claims description 6
- 239000002861 polymer material Substances 0.000 claims description 6
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims 1
- 239000005642 Oleic acid Substances 0.000 claims 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- DDJAGKOCVFYQOV-UHFFFAOYSA-N tellanylideneantimony Chemical compound [Te]=[Sb] DDJAGKOCVFYQOV-UHFFFAOYSA-N 0.000 abstract description 14
- 230000003247 decreasing effect Effects 0.000 abstract 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000002245 particle Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002490 spark plasma sintering Methods 0.000 description 3
- YZAZXIUFBCPZGB-QZOPMXJLSA-N (z)-octadec-9-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O YZAZXIUFBCPZGB-QZOPMXJLSA-N 0.000 description 2
- 229910002909 Bi-Te Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- DPRMFUAMSRXGDE-UHFFFAOYSA-N ac1o530g Chemical compound NCCN.NCCN DPRMFUAMSRXGDE-UHFFFAOYSA-N 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910016339 Bi—Sb—Te Inorganic materials 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- JNKJTXHDWHQVDL-UHFFFAOYSA-N potassiotellanylpotassium Chemical compound [K][Te][K] JNKJTXHDWHQVDL-UHFFFAOYSA-N 0.000 description 1
- BFPJYWDBBLZXOM-UHFFFAOYSA-L potassium tellurite Chemical compound [K+].[K+].[O-][Te]([O-])=O BFPJYWDBBLZXOM-UHFFFAOYSA-L 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- PDYNJNLVKADULO-UHFFFAOYSA-N tellanylidenebismuth Chemical compound [Bi]=[Te] PDYNJNLVKADULO-UHFFFAOYSA-N 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/853—Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
-
- H01L35/18—
-
- H01L35/16—
-
- H01L35/24—
-
- H01L35/34—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/856—Thermoelectric active materials comprising organic compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
본 발명은 판상형 구조를 가지는 안티몬텔룰라이드(Sb2Te3) 열전재료 및 그 제조방법에 관한 것으로, 더욱 상세하게는 안티몬텔룰라이드(Sb2Te3)를 합성하는 공정에서 반응조건을 조절하여 결정방향 C축에 수직된 방향으로 성장된 방향성을 가지는 판상형 구조를 합성하며, 이를 통해 열전도도가 저하되고 열전변환 효율이 상승되는 방향으로 배열이 가능한 판상형 구조를 가지는 안티몬텔룰라이드 열전재료 및 그 제조방법에 관한 것이다.The present invention has an antimony telluride having a plate-like structure (Sb 2 Te 3 ) Regarding the thermoelectric material and its manufacturing method, more specifically, in the process of synthesizing antimony telluride (Sb 2 Te 3 ), the reaction conditions are controlled to form a plate-like structure having a directivity grown in a direction perpendicular to the C-axis of the crystal direction. It relates to an antimony telluride thermoelectric material having a plate-like structure capable of being synthesized and arranged in a direction in which the thermal conductivity decreases and the thermoelectric conversion efficiency increases, and a method for manufacturing the same.
열전현상이란 열전물질의 양단에 온도차가 있으면 기전력이 발생하거나 (제벡 효과), 또는 열전물질의 양단에 전압차를 주어 전류를 흐르게 하면 한 쪽의 온도는 하강하는 반면에 다른 쪽의 온도는 상승하는(펠티어 효과) 현상을 지칭하며, 열전소재는 열전현상이 강하게 발생하는 물질이다. 열전소재는 전기를 온도차이로 변환시켜 냉각에 사용할 수도 있고 온도차이를 전기로 변환시켜 발전용으로도 사용 가능하다. 열전변환특성은 무차원 성능지수(dimensionless figure of merit) ZT로 정량적으로 표현할 수 있으며 식은 다음과 같다.Thermoelectric phenomena means that when there is a temperature difference between both ends of a thermoelectric material, an electromotive force is generated (the Seebeck effect), or when a voltage is applied across both ends of a thermoelectric material to cause a current to flow, the temperature on one side decreases while the temperature on the other side increases. (Peltier effect) refers to the phenomenon, and the thermoelectric material is a material in which thermoelectric phenomena occur strongly. The thermoelectric material can be used for cooling by converting electricity into a temperature difference or converting a temperature difference into electricity to be used for power generation. The thermoelectric conversion characteristic can be quantitatively expressed by the dimensionless figure of merit ZT, and the equation is as follows.
<식 1> : ZT = S2T/ρκ<Equation 1>: ZT = S 2 T / ρκ
(T : 절대온도 (K), S : 제벡계수 (V/K), ρ : 열전소재의 비저항 (Ω*cm), κ : 열전소재의 열전도도 (W/K*cm))(T: absolute temperature (K), S: Seebeck coefficient (V / K), ρ: resistivity of thermoelectric material (Ω * cm), κ: thermal conductivity of thermoelectric material (W / K * cm))
ZT값이 클수록 열전변환특성이 우수하며, ZT는 제벡계수가 클수록, 비저항과 열전도도가 낮을수록 증가한다. The larger the ZT value, the better the thermoelectric conversion characteristics, and ZT increases as the Seebeck coefficient is larger and the specific resistance and thermal conductivity are lower.
위의 식에 따르면 열전도도가 낮을수록 열전변환 효율이 높아진다. 알려진 바로는 입자의 크기가 작을수록 계면에 의한 포논 산란이 증가하여 열전도도가 낮아지게 되므로 작은 입자를 만드는 연구들이 많이 진행되어 왔다. According to the above equation, the lower the thermal conductivity, the higher the thermoelectric conversion efficiency. It is known that as the particle size decreases, the phonon scattering by the interface increases and the thermal conductivity decreases, so many studies have been conducted to make small particles.
열전 입자의 크기를 작게 만드는 방법은 크게 두 가지로서 한 가지는 기계적인 핸드밀링 또는 볼밀링을 이용한 파쇄방법을 이용하는 것이다. 그러나 이러한 방법으로 만들어진 입자는 사이즈가 수십 마이크로 사이즈이므로 상당히 큰 편이다. There are two methods to make the size of the thermoelectric particles small, one is to use a mechanical hand milling or a crushing method using a ball milling. However, the particles produced in this way are quite large because they are several tens of micros in size.
따라서 열전입자를 작게 만들기 위해 화학적으로 합성하는 방법이 연구되었다. 대표적인 열전소재인 비스무스 텔룰라이드를 화학적으로 합성하기 위하여 비스무스 클로라이드(BiCl3)와 텔루륨(Te) 분말을 녹인 후 환원시켜 열전물질인 비스무스 텔룰라이드(Bi2Te3) 나노입자를 형성하는 방법이 보고되었다. 또한 Bi, Sb 및 Te 전구체를 용매에 투입하여 Bi-Sb-Te 용액을 제조하여 삼원계 열전물질을 만들기도 한다. 또한 용매열 합성법을 이용하여 나노튜브 모양으로 합성하기도 하며, microwave heating을 통하여 Bi2Te3 나노구조를 합성하기도 한다. Bi2Te3의 결정구조는 육방정구조(hexagonal)로서 공간군은 R3m이다. Bi 및 Te이 Te(1)-Bi-Te(2)-Bi-Te(1)의 5개 원자로 이루어진 적층배열을 기본으로 하여 육방정 구조의 c축 방향으로 적층되어 있다. 이때 Te(1)-Te(1) 결합은 반데르발스(van der Waals) 결합으로 알려져 있고, 그 외의 결합은 공유결합 및 이온결합이 혼재되어 있다. 실험적으로 전기적 물성 및 열적 물성은 이방성을 갖는 것으로 알려져 있다. 예를 들어 전기전도도 및 열전도도는 육방정구조에서 기저면 방향과 평행한 방향의 전기전도도 및 열전도도가 c축 방향에 비하여 크다. 이는 Sb2Te3, Bi2Se3 등의 같은 구조를 가지는 물질에서도 동일하다. Therefore, a method of chemically synthesizing a small thermoelectric particle has been studied. In order to chemically synthesize bismuth telluride, a representative thermoelectric material, there is a method of forming bismuth telluride (Bi 2 Te 3 ) nanoparticles by melting and reducing bismuth chloride (BiCl 3 ) and tellurium (Te) powders. Was reported. In addition, Bi, Sb, and Te precursors are added to a solvent to prepare a Bi-Sb-Te solution to make a ternary thermoelectric material. In addition, it is synthesized in the form of nanotubes using a solvent heat synthesis method, and may also synthesize a Bi 2 Te 3 nanostructure through microwave heating. The crystal structure of Bi 2 Te 3 is hexagonal, and the space group is R3m. Bi and Te are stacked in the c-axis direction of a hexagonal structure based on a stacked array of 5 atoms of Te (1) -Bi-Te (2) -Bi-Te (1). At this time, the Te (1) -Te (1) bond is known as a van der Waals bond, and the other bonds are covalent and ionic bonds. Experimentally, it is known that electrical and thermal properties have anisotropy. For example, in the hexagonal structure, electrical conductivity and thermal conductivity are greater than those in the c-axis direction in the direction parallel to the base surface direction. This is the same for materials having the same structure, such as Sb 2 Te 3 and Bi 2 Se 3 .
따라서 물질의 결정 방향성은 유지하면서 나노크기를 가지는 입자의 합성을 하고 이를 결정 방향에 따라 배열한다면 방향에 따라 향상된 열전변환 성능을 가지는 열전소재를 만들 수 있으나 종래의 나노입자 합성물은 구형의 모양으로 방향성에 따라 배열하기 어려운 실정이다. Therefore, if nanoparticles are synthesized while maintaining the crystal directionality of the material and arranged according to the crystalline direction, a thermoelectric material having improved thermoelectric conversion performance according to the direction can be produced, but conventional nanoparticle composites are oriented in a spherical shape. It is difficult to arrange according to the situation.
열전 물질 중 결정의 방향에 따라 전기적 특성이 다른 물질들이 있으나 이러한 물질들의 나노입자를 만들 때 계면에 의한 열전도도가 낮아져 열전변환 효율이 증가하지만, 방향성 있는 모양이 나오지 않고 둥근 구형의 모양으로 합성되어 방향성에 따른 효율 증가를 얻기가 어렵다. Some of the thermoelectric materials have different electrical properties depending on the direction of crystals, but when making nanoparticles of these materials, the thermal conductivity due to the interface is lowered to increase the thermoelectric conversion efficiency, but they are synthesized in a round spherical shape without producing a directional shape. It is difficult to obtain an increase in efficiency according to the direction.
따라서 이와 같은 문제점들을 해결하기 위한 방법이 요구된다.Therefore, a method for solving these problems is required.
본 발명의 기술적 과제는, 배경기술에서 언급한 문제점을 해결하기 위한 것으로, 더욱 상세하게는 안티몬텔룰라이드(Sb2Te3)를 합성하는 공정에서 반응조건을 조절하여 결정방향 C축에 수직된 방향으로 성장된 방향성을 가지는 안티몬텔룰라이드 (Sb2Te3)를 합성하며, 이를 통해 열전도도가 저하되고 열전변환 효율이 상승되는 방향으로 배열이 가능한 가지는 판상형 구조를 가지는 안티몬텔룰라이드(Sb2Te3) 열전재료 및 그 제조방법과 소결체를 제공하는 것이다.The technical problem of the present invention is to solve the problems mentioned in the background art, and more specifically, in the process of synthesizing antimony telluride (Sb 2 Te 3 ), the reaction conditions are adjusted to determine the direction perpendicular to the C-axis antimony telrul having a growth direction to the fluoride (Sb 2 Te 3) a synthetic, and is the thermal conductivity is lowered through this thermoelectric conversion efficiency is antimony having a plate-shaped structure with a possible arrangement in which lifting direction telrul fluoride (Sb 2 Te 3 ) It is to provide a thermoelectric material and its manufacturing method and a sintered body.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those skilled in the art from the following description. There will be.
기술적 과제를 해결하기 위해 안출된 본 발명에 따른 판상형 구조를 가지는 안티몬텔룰라이드 열전재료는 판상형 구조를 가지는 열전재료에 있어서, 안티몬(Sb) 전구체와 텔루륨(Te) 전구체의 합성으로 결정방향의 C축에 수직으로 성장하여 판상형 구조로 형성되는 것을 열전재료를 특징으로 한다. The antimony telluride thermoelectric material having a plate-like structure according to the present invention devised to solve the technical problem is in the crystal direction C in the synthesis of an antimony (Sb) precursor and a tellurium (Te) precursor in a thermoelectric material having a plate-like structure. It is characterized by thermoelectric materials that are grown perpendicular to the axis and formed into a plate-like structure.
한편, 본 발명 판상형 구조를 가지는 열전재료 안티몬텔룰라이드(Sb2Te3) 제조방법은 안티몬(Sb) 전구체, 텔루륨(Te) 전구체를 유기용매에 각각 용해시켜서 용액을 제조하는 용해단계, 상기 안티몬(Sb) 용액과 상기 텔루륨(Te) 용액을 혼합하고, 여기에 염기성용액을 혼합하여 혼합용액을 제조하는 혼합단계 및 상기 혼합용액을 용매열 반응기에 넣고 합성시키는 합성단계를 포함할 수 있다. On the other hand, the method of manufacturing a thermoelectric material antimony telluride (Sb 2 Te 3 ) having a plate-like structure of the present invention is a dissolution step of dissolving an antimony (Sb) precursor and a tellurium (Te) precursor in an organic solvent to prepare a solution, the antimony (Sb) a mixture step of mixing the solution and the tellurium (Te) solution, and mixing a basic solution to prepare a mixed solution, and may include a synthetic step of synthesizing the mixed solution in a solvent heat reactor.
상기 혼합단계에서 고분자물질 폴리비닐피롤리돈(polyvinyl pyrrolidone, PVP)을 유기용매 디에틸렌글리콜(diethyelene glycol)에 용해시킨 용액을 더 혼합하는 단계를 포함할 수 있다. In the mixing step, a step of further mixing a solution in which the polyvinyl pyrrolidone (PVP) is dissolved in an organic solvent dithyelene glycol may be further included.
상기 안티몬(Sb)은 Sb, Sb2O3 Sb(NO3)3, SbCl3, SbCl5, SbBr3, SbF3 중에서 어느 하나 선택될 수 있으며, 상기 텔루륨(Te)은 Te, Na2TeO3, Na2TeO4, K2TeO3, Te(OC2H5)4, H6TeO6, TeCl4, H2TeO3, H2TeO4, TeCl22SC(NH2)2, TeBr4, TeI4, TeO2 중에서 어느 하나 선택될 수 있다. The antimony (Sb) may be selected from any of Sb, Sb 2 O 3 Sb (NO 3 ) 3 , SbCl 3 , SbCl 5 , SbBr 3 , SbF 3 , and the tellurium (Te) is Te, Na 2 TeO 3 , Na 2 TeO4, K 2 TeO 3 , Te (OC 2 H 5 ) 4 , H 6 TeO 6 , TeCl 4 , H 2 TeO 3 , H 2 TeO 4 , TeCl 2 2SC (NH 2 ) 2 , TeBr 4 , TeI 4 or TeO 2 may be selected.
한편, 상기 유기용매는, 디에틸렌글리콜(diethyelene glycol), 에틸렌글리콜 (ethyelene glycol), 올레익산(oleic acid), 올레일아민(oleylamine), 에틸렌다이아민 (ethylenediamine) 및 이의 혼합으로 이루어진 군으로부터 선택될 수 있다. On the other hand, the organic solvent, diethylene glycol (diethyelene glycol), ethylene glycol (ethyelene glycol), oleic acid (oleic acid), oleylamine (oleylamine), ethylenediamine (ethylenediamine) and a mixture thereof selected from the group consisting of Can be.
여기서, 상기 고분자물질은, 폴리비닐피롤리돈(polyvinyl pyrrolidone, PVP), 폴리에틸렌옥사이드(Poly ethylene oxide, PEO), 폴리비닐알코올(Polyvinyl alcohol, PVA), 폴리비닐아세테이트(Polyvinyl acetate, PVAc), 폴리에틸렌이민(polyethylene imine, PEI) 및 이의 혼합으로 이루어진 군으로부터 선택될 수 있다.Here, the polymer material, polyvinyl pyrrolidone (polyvinyl pyrrolidone, PVP), polyethylene oxide (Poly ethylene oxide, PEO), polyvinyl alcohol (Polyvinyl alcohol, PVA), polyvinyl acetate (Polyvinyl acetate, PVAc), polyethylene It can be selected from the group consisting of imine (polyethylene imine, PEI) and mixtures thereof.
또한, 상기 제조방법으로 얻어진 판상형 구조를 가지는 안티몬텔룰라이드를 가압소결하는 소결체 제조방법 및 그 제조방법으로 제조된 안티몬 텔룰라이드 소결체를 특징으로 한다. In addition, it is characterized by a method for manufacturing a sintered body for pressure-sintering antimony telluride having a plate-like structure obtained by the above production method and an antimony telluride sintered body produced by the production method.
본 발명의 일 실시예에 따른 판상형 구조를 가지는 열전재료 안티몬텔룰라이드 제조방법에 따르면 다음과 같은 효과를 얻을 수 있다.According to a method of manufacturing an antimony telluride having a plate-like structure according to an embodiment of the present invention, the following effects can be obtained.
제조공정이 단순하고 대량 합성이 가능한 용매열 합성법을 이용하여 판상형 구조를 가지는 안티몬텔룰라이드(Sb2Te3) 열전재료를 합성하여, 결정방향 C축에 수직된 방향으로 성장된 방향성을 가지는 나노크기의 열전재료를 얻을 수 있다.Nano-sized with a direction grown in a direction perpendicular to the C-axis in the crystal direction by synthesizing antimony telluride (Sb 2 Te 3 ) thermoelectric materials having a plate-like structure using a solvent heat synthesis method that is simple in manufacturing and capable of mass synthesis. Can obtain thermoelectric materials.
따라서, 안티몬텔룰라이드(Sb2Te3) 열전재료를 소결한 소결체는 나노크기로 인한 열전도도 저하 효과 및 방향성에 따른 열전변환 효율 상승효과를 얻을 수 있다.Accordingly, the sintered body obtained by sintering the antimony telluride (Sb 2 Te 3 ) thermoelectric material can obtain a thermal conductivity reduction effect due to nano size and an increase in thermoelectric conversion efficiency depending on the direction.
이러한 본 발명에 의한 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명에 따른 육각판상형 나노구조를 가지는 Sb2Te3계 열전재료 제조방법의 순서도이다.
도 2는 본 발명에 따른 판상형 구조를 가지는 열전재료 Sb2Te3의 전자현미경 사진이다.
도 3은 본 발명에 따른 판상형 구조를 가지는 열전재료 Sb2Te3를 확대하여 촬영한 전자현미경 사진이다.
도 4는 본 발명의 실시예와 비교예에 따른 열전재료 소결체의 열전도도이다. 1 is a flow chart of a method for manufacturing a Sb 2 Te 3 based thermoelectric material having a hexagonal plate-like nanostructure according to the present invention.
2 is an electron microscope photograph of the thermoelectric material Sb 2 Te 3 having a plate-like structure according to the present invention.
3 is an electron microscope photograph of the thermoelectric material Sb 2 Te 3 having a plate-like structure according to the present invention, magnified.
4 is a thermal conductivity diagram of a sintered thermoelectric material according to Examples and Comparative Examples of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present invention, descriptions of already known functions or configurations will be omitted to clarify the gist of the present invention.
아울러, 본 발명을 설명하는데 있어서, 전방/후방 또는 상측/하측과 같이 방향을 지시하는 용어들은 당업자가 본 발명을 명확하게 이해할 수 있도록 기재된 것들로서, 상대적인 방향을 지시하는 것이므로, 이로 인해 권리범위가 제한되지는 않는다고 할 것이다.In addition, in describing the present invention, terms indicating directions such as forward / backward or upper / lower are described so that those skilled in the art can clearly understand the present invention, and indicate relative directions. It will be said that it is not limited.
도 1 내지 도 4를 참조하여, 본 발명의 일 실시예에 따른 판상형 구조를 가지는 열전재료 Sb2Te3 제조방법에 대하여 상세히 설명하기로 한다. 첨부된 도 1은 본 발명에 따른 판상형 구조를 가지는 열전재료 Sb2Te3 제조방법의 순서도이고, 도 2 및 도 3은 본 발명에 따른 판상형 구조를 가지는 열전재료 Sb2Te3의 전자현미경 사진이다. 1 to 4, the method of manufacturing the thermoelectric material Sb 2 Te 3 having a plate-like structure according to an embodiment of the present invention will be described in detail. 1 is a flow chart of a method for manufacturing a thermoelectric material Sb 2 Te 3 having a plate-like structure according to the present invention, and FIGS. 2 and 3 are electron micrographs of the thermoelectric material Sb 2 Te 3 having a plate-like structure according to the present invention. .
먼저, 도 1을 참조하면, 본 발명에 따른 판상형 구조를 가지는 열전재료 안티몬텔룰라이드 (Sb2Te3)조방법은 용해단계(S10), 혼합단계(S20) 및 합성단계(S30)를 포함할 수 있다.First, referring to FIG. 1, the method for preparing an antimony telluride (Sb 2 Te 3 ) having a plate-like structure according to the present invention includes a dissolution step (S10), a mixing step (S20), and a synthesis step (S30). Can be.
용해단계(S10)는 안티몬(Sb) 전구체를 유기용매에 용해시켜서 안티몬(Sb)용액을 제조하고, 텔루륨(Te) 전구체를 유기용매에 용해시켜서 텔루륨(Te) 용액을 제조하는 단계이다. The dissolving step (S10) is a step of preparing an antimony (Sb) solution by dissolving an antimony (Sb) precursor in an organic solvent, and dissolving a tellurium (Te) precursor in an organic solvent to prepare a tellurium (Te) solution.
여기서, 안티몬(Sb) 전구체는 Sb, Sb(NO3)3, SbCl3, SbCl5, SbBr3, SbF3, SbO2 등에서 어느 하나 선택하여 사용할 수 있다.Here, the antimony (Sb) precursor may be selected from Sb, Sb (NO 3 ) 3 , SbCl 3 , SbCl 5 , SbBr 3 , SbF 3 , SbO 2 and the like.
또한, 텔루륨(Te) 전구체는 Te, Na2TeO3, Na2TeO4, K2TeO3, Te(OC2H5)4, H6TeO6, TeCl4, H2TeO3, H2TeO4, TeCl22SC(NH2)2, TeBr4, TeI4, TeO2 등에서 어느 하나 선택하여 사용할 수 있다.In addition, the tellurium (Te) precursor is Te, Na 2 TeO 3 , Na 2 TeO4, K 2 TeO 3 , Te (OC 2 H 5 ) 4 , H 6 TeO 6 , TeCl 4 , H 2 TeO 3 , H 2 TeO 4 , TeCl 2 2SC (NH 2 ) 2 , TeBr 4 , TeI 4 , TeO 2, and the like.
전술한 바와 같은 안티몬(Sb) 전구체 및 텔루륨(Te) 전구체는 예시에 지나지 않으며, 후술하는 혼합단계(S20) 및 합성단계(S30) 공정을 통해 판상형 구조를 가지는 열전재료 Sb2Te3를 형성할 수 있다면 본 실시예에 제한되지 않고 다양할 수 있다.The antimony (Sb) precursor and the tellurium (Te) precursor as described above are only examples, and form a thermoelectric material Sb 2 Te 3 having a plate-like structure through a mixing step (S20) and a synthesis step (S30) described later. If possible, it is not limited to this embodiment and may vary.
한편, 상기 유기용매는 디에틸렌글리콜(diethyelene glycol), 에틸렌글리콜 (ethyelene glycol), 올레익산(oleic acid), 올레일아민(oleylamine), 에틸렌다이아민(ethylenediamine) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하며, 이외에도 안티몬(Sb) 전구체와 텔루륨(Te) 전구체를 균일하게 용해시켜서 혼합단계(S20) 및 합성단계(S30) 공정을 통해 판상형 구조를 가지는 열전재료 Sb2Te3를 형성할 수 있다면 본 실시예에 제한되지 않고 다양할 수 있다.On the other hand, the organic solvent is selected from the group consisting of diethylene glycol (diethyelene glycol), ethylene glycol (ethyelene glycol), oleic acid (oleic acid), oleylamine (oleylamine), ethylenediamine (ethylenediamine) and mixtures thereof Preferably, in addition, the antimony (Sb) precursor and the tellurium (Te) precursor are uniformly dissolved to form a thermoelectric material Sb 2 Te 3 having a plate-like structure through a mixing step (S20) and a synthesis step (S30). If present, the present embodiment is not limited and may vary.
혼합단계(S30)는 상기 안티몬(Sb) 용액 및 상기 텔루륨(Te) 용액을 염기성용액과 균일하게 혼합하여 혼합용액을 제조하는 단계이다.The mixing step (S30) is a step of uniformly mixing the antimony (Sb) solution and the tellurium (Te) solution with a basic solution to prepare a mixed solution.
상기 염기성용액은 수산화나트륨, 수산화칼륨, 수산화암모늄 등의 염기 용액일 수 있으며, 수용액일 수 있고 유기용매 용액일 수 있으며, 염기성용액이 상기 안티몬(Sb) 용액 및 상기 텔루륨(Te) 용액과 균일하게 혼합되며 후술하는 합성단계(S30) 공정을 통해 판상형 구조를 가지는 안티몬텔룰라이드(Sb2Te3) 열전재료를 형성할 수 있다면 본 실시예에 제한되지 않고 다양할 수 있다.The basic solution may be a basic solution such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide, and may be an aqueous solution or an organic solvent solution, and the basic solution is uniform with the antimony (Sb) solution and the tellurium (Te) solution. If it can be mixed and formed of an antimony telluride (Sb 2 Te 3 ) thermoelectric material having a plate-like structure through the synthesis step (S30) described later may be various without being limited to this embodiment.
상기 혼합단계(S20)는 고분자물질을 상기 유기용매에 용해시킨 고분자물질 용액을 혼합하는 것을 더 포함할 수 있다. 고분자물질은 폴리비닐피롤리돈(polyvinyl pyrrolidone, PVP), 폴리에틸렌옥사이드(Poly ethylene oxide, PEO), 폴리비닐알코올(Polyvinyl alcohol, PVA), 폴리비닐아세테이트(Polyvinyl acetate, PVAc), 폴리에틸렌이민(polyethylene imine, PEI) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하며, 후술하는 혼합단계(S20) 및 합성단계(S30) 공정을 통해 판상형 구조를 가지는 열전재료 Sb2Te3를 형성할 수 있다면 본 실시예에 제한되지 않고 다양할 수 있다. 여기서, 상기 유기용매는 상기 안티몬(Sb) 및 텔루륨(Te)에 사용한 것과 동일하다. The mixing step (S20) may further include mixing a polymer material solution in which a polymer material is dissolved in the organic solvent. Polymer materials include polyvinyl pyrrolidone (PVP), polyethylene oxide (PEO), polyvinyl alcohol (PVA), polyvinyl acetate (PVAc), and polyethyleneimine , PEI) and mixtures thereof, preferably, if the thermoelectric material Sb 2 Te 3 having a plate-like structure can be formed through a mixing step (S20) and a synthesis step (S30) described below. It is not limited to and may vary. Here, the organic solvent is the same as that used for the antimony (Sb) and tellurium (Te).
합성단계(S30)는 상기 혼합용액을 용매열 반응기(Teflon-lined hydrothermal reactor)에 넣고 가열하는 단계이다. 이때, 상기 가열단계(S40)는 200 내지 250℃ 사이에서, 20~28시간 동안 가열하는 것이 바람직하다. The synthesis step (S30) is a step in which the mixed solution is placed in a Teflon-lined hydrothermal reactor and heated. At this time, the heating step (S40) is preferably heated for 20 to 28 hours between 200 to 250 ℃.
전술한 제조방법을 통해, 결정방향 C축에 수직된 방향으로 성장된 방향성을 가지는 나노크기의 열전재료를 얻을 수 있으며, 따라서, 나노크기로 인한 열전도도 저하 효과 및 방향성에 따른 열전변환 효율 상승효과를 얻을 수 있다. 즉, 열전재료를 합성하는 공정에서 반응조건을 조절하여 결정방향 C축에 수직된 방향으로 성장된 방향성을 가지는 열전재료를 합성하며, 이를 통해 열전도도가 저하되고 열전변환 효율이 상승되도록 방향성에 따른 배열이 가능한 판상형 구조를 가지는 열전재료 Sb2Te3를 얻을 수 있다. Through the above-described manufacturing method, it is possible to obtain a nano-sized thermoelectric material having a directionality grown in a direction perpendicular to the C-axis in the crystal direction, and thus, the effect of reducing the thermal conductivity due to the nanosized and the effect of increasing the thermoelectric conversion efficiency according to the directionality. Can get That is, in the process of synthesizing the thermoelectric material, the reaction conditions are adjusted to synthesize the thermoelectric material having a directionality grown in a direction perpendicular to the C-axis in the crystal direction, and accordingly, the directionality is increased so that the thermal conductivity decreases and the thermoelectric conversion efficiency increases. A thermoelectric material Sb 2 Te 3 having a plate-like structure that can be arranged can be obtained.
상기와 같은 방법으로 제조된 안티몬텔룰라이드(Sb2Te3) 판상형 입자를 흑연 몰드에 넣고 5 분 동안 693K 및 50 MPa의 압력에서 아르곤 분위기 하에서 스파크 플라즈마 소결(SPS)에 의해 가압소결하여 방향성을 가지는 벌크 열전 소결체를 얻을 수 있다.The antimony telluride (Sb 2 Te 3 ) plate-shaped particles prepared in the above manner were put into a graphite mold and pressurized by spark plasma sintering (SPS) under an argon atmosphere at a pressure of 693K and 50 MPa for 5 minutes to have directionality. A bulk thermoelectric sintered body can be obtained.
이하에서는 본 발명의 실시예를 좀 더 상세하게 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in more detail.
<제1 실시예><First Example>
안티몬클로라이드(SbCl3, Antimony chloride) 1 mmol을 6 mL의 유기용매 디에틸렌글리콜(diethylene glycol)에 용해시킨다. 포타슘 텔룰라이드 (K2TeO3, Potassium Tellurite) 1.5 mmol을 6 mL의 유기용매 디에틸렌글리콜(diethylene glycol)에 용해시킨다. 고분자물질 폴리비닐피롤리돈 (Polyvinyl Pyrrolidone, PVP, 분자량 40000) 0.2 g을 6 mL의 유기용매 디에틸렌글리콜(diethylene glycol)에 용해시킨다. 상기와 같이 용해시킨 세 가지 용액을 혼합한 후, 4 mL의 수산화나트륨 수용액 (NaOH, 4 M)을 혼합시킨다. 모두 혼합한 후 혼합용액을 용매열 반응기(Teflon-lined hydrothermal reactor)에 넣고 230도에서 24시간 가열한다. 이 후 얻어진 결과물을 원심분리기로 분리하고 에탄올로 세척한 후 건조하는 과정을 통해, 판상형 나노구조를 가지는 안티몬텔룰라이드(Sb2Te3) 열전재료를 합성하였다. 즉, 결정방향 C축에 수직된 방향으로 성장된 방향성을 가지는 육각판상형 나노구조를 가지는 안티몬텔룰라이드(Sb2Te3) 열전재료를 합성하였다. 1 mmol of antimony chloride (SbCl 3 , Antimony chloride) is dissolved in 6 mL of organic solvent diethylene glycol. Potassium telluride (K 2 TeO 3 , Potassium Tellurite) 1.5 mmol is dissolved in 6 mL of organic solvent diethylene glycol. 0.2 g of the polymer material polyvinylpyrrolidone (Polyvinyl Pyrrolidone, PVP, molecular weight 40000) is dissolved in 6 mL of organic solvent diethylene glycol. After mixing the three solutions dissolved as above, 4 mL of an aqueous sodium hydroxide solution (NaOH, 4 M) is mixed. After mixing, the mixed solution is placed in a Teflon-lined hydrothermal reactor and heated at 230 degrees for 24 hours. Afterwards, the resultant product was separated by a centrifuge, washed with ethanol, and dried to synthesize an antimony telluride (Sb 2 Te 3 ) thermoelectric material having a plate-like nanostructure. That is, an antimony telluride (Sb 2 Te 3 ) thermoelectric material having a hexagonal plate-like nanostructure having a direction grown in a direction perpendicular to the C-axis of the crystal direction was synthesized.
첨부된 도 4는 본 발명의 실시예와 비교예에 따른 열전재료 Sb2Te3를 가압소결한 소결체의 열전도도로서, 비교예는 Sb, Te 원소를 각각 계량하여 밀봉한 후 녹인다(800℃ 10h). 300rm 10h 볼밀링(ball milling) 후에 체별(seiving) 한다(325mesh, 45um). 체별(seiving)한 분말을 SPS로 420℃ 50MPa 5min 소결하여 제조하였다. 4 is a thermal conductivity of the sintered body sintered by pressure sintering the thermoelectric material Sb 2 Te 3 according to the examples and comparative examples of the present invention, and the comparative example measures and seals the Sb and Te elements, respectively, and melts them (800 ° C 10h ). After 300rm 10h ball milling, sieve is performed (325mesh, 45um). The sieve powder was prepared by sintering 50MPa 5min at 420 ° C with SPS.
<제2 실시예><Second Example>
안티몬옥사이드(SbO, Antimony oxide) 0.5 mmol, 텔루륨 옥사이드(TeO, Tellurium dioxide) 1.5 mmol, 폴리비닐피롤리돈(Polyvinyl Pyrrolidone, PVP, 분자량 40000) 0.2 g을 각각 6 mL의 디에틸렌글라이콜(diethylene glycol)에 용해시킨다. 상기와 같이 용해시킨 세 가지 용액을 혼합한 후, 4 mL의 수산화나트륨 수용액(NaOH, 4 M)을 혼합시킨다. 혼합용액을 용매열 반응기(Teflon-lined hydrothermal reactor)에 넣고 230도에서 24시간 가열한다. 이 후 얻어진 결과물을 감압필터로 분리하고 에탄올로 세척한 후 건조하여 안티몬텔룰라이드(Sb2Te3) 판상형 입자를 얻었다. 안티몬텔룰라이드(Sb2Te3) 판상형 입자를 흑연 몰드에 넣고 5 분 동안 693K 및 50 MPa의 압력에서 아르곤 분위기 하에서 스파크 플라즈마 소결(SPS)에 의해 가압소결하여 방향성을 가지는 벌크 열전 소결체를 얻었다. Antimony oxide (Sb O , Antimony oxide) 0.5 mmol, tellurium oxide (TeO , Tellurium dioxide 1.5 mmol, 0.2 g of polyvinyl pyrrolidone (PVP, molecular weight 40000) are dissolved in 6 mL of diethylene glycol, respectively. After mixing the three solutions dissolved as above, 4 mL of an aqueous sodium hydroxide solution (NaOH, 4 M) is mixed. The mixed solution was placed in a Teflon-lined hydrothermal reactor and heated at 230 degrees for 24 hours. Thereafter, the obtained product was separated using a vacuum filter, washed with ethanol, and dried to obtain antimony telluride (Sb 2 Te 3 ) plate-shaped particles. The antimony telluride (Sb 2 Te 3 ) plate-shaped particles were placed in a graphite mold and pressurized by spark plasma sintering (SPS) under an argon atmosphere at a pressure of 693 K and 50 MPa for 5 minutes to obtain a bulk thermoelectric sintered body having directionality.
따라서 본 발명은 판상형 구조를 가지는 열전재료를 합성하여 열전전도 저하 효과 및 방향성에 따른 열전변환 효율 상승 효과를 얻을 수 있다.Therefore, according to the present invention, a thermoelectric material having a plate-like structure can be synthesized to obtain a thermal conductivity reduction effect and an increase in thermoelectric conversion efficiency according to direction.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, the preferred embodiments according to the present invention have been examined, and the fact that the present invention may be embodied in other specific forms without departing from the spirit or scope of the embodiments described above has ordinary knowledge in the art. It is obvious to them. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and accordingly, the present invention is not limited to the above description and may be changed within the scope of the appended claims and their equivalents.
Claims (9)
안티몬(Sb) 전구체와 텔루륨(Te) 전구체의 합성으로 결정방향의 C축에 수직으로 성장하여 판상형 구조로 형성되는 것을 특징으로 하는 판상형 구조를 가지는 안티몬텔룰라이드 열전재료.In the thermoelectric material having a plate-like structure,
An antimony telluride thermoelectric material having a plate-like structure characterized by being formed in a plate-like structure by growing perpendicular to the C-axis in the crystal direction through the synthesis of the antimony (Sb) precursor and the tellurium (Te) precursor.
상기 안티몬(Sb) 용액과 상기 텔루륨(Te) 용액을 혼합하고, 여기에 염기성용액을 혼합하여 혼합용액을 제조하는 혼합단계; 및
상기 혼합용액을 용매열 반응기에 넣고 합성시키는 합성단계; 를 포함하는 판상형 구조를 가지는 안티몬텔룰라이드 제조방법. A dissolution step of preparing a solution by dissolving the antimony (Sb) precursor and the tellurium (Te) precursor in an organic solvent, respectively;
A mixing step of mixing the antimony (Sb) solution and the tellurium (Te) solution and mixing a basic solution therewith to prepare a mixed solution; And
A synthesis step of synthesizing the mixed solution in a solvent heat reactor; Antimony telluride production method having a plate-like structure comprising a.
상기 혼합단계에서 고분자물질 폴리비닐피롤리돈(polyvinyl pyrrolidone, PVP)을 유기용매 디에틸렌글리콜(diethyelene glycol)에 용해시킨 용액을 더 혼합하는 단계를 포함하는 판상형 구조를 가지는 안티몬텔룰라이드 제조방법.According to claim 2,
In the mixing step, the method of manufacturing an antimony telluride having a plate-like structure comprising the step of further mixing a solution in which the polyvinyl pyrrolidone (PVP) is dissolved in an organic solvent dithyelene glycol.
상기 안티몬(Sb)은 Sb, Sb2O3 Sb(NO3)3, SbCl3, SbCl5, SbBr3, SbF3 중에서 어느 하나 선택된 것을 특징으로 하는 판상형 구조를 가지는 안티몬텔룰라이드 제조방법.According to claim 2,
The antimony (Sb) is Sb, Sb 2 O 3 Sb (NO 3 ) 3 , SbCl 3 , SbCl 5 , SbBr 3 , SbF 3 , antimony telluride having a plate-shaped structure characterized in that any one selected.
상기 텔루륨(Te)은 Te, Na2TeO3, Na2TeO4, K2TeO3, Te(OC2H5)4, H6TeO6, TeCl4, H2TeO3, H2TeO4, TeCl22SC(NH2)2, TeBr4, TeI4, TeO2 중에서 어느 하나 선택된 것을 특징으로 하는 판상형 구조를 가지는 안티몬텔룰라이드 제조방법.According to claim 2,
The tellurium (Te) is Te, Na 2 TeO 3 , Na 2 TeO4, K 2 TeO 3 , Te (OC 2 H 5 ) 4 , H 6 TeO 6 , TeCl 4 , H 2 TeO 3 , H 2 TeO 4 , TeCl 2 2SC (NH 2 ) 2 , TeBr 4 , TeI 4 , TeO 2 , one of the antimontelluride production method having a plate-like structure, characterized in that selected from any one.
상기 유기용매는,
디에틸렌글리콜(diethyelene glycol), 에틸렌글리콜(ethyelene glycol), 올레익산(oleic acid), 올레일아민(oleylamine), 에틸렌다이아민(ethylenediamine) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 판상형 구조를 가지는 안티몬텔룰라이드 제조방법.According to claim 2,
The organic solvent,
A plate-like structure characterized by being selected from the group consisting of dithyelene glycol, ethyelene glycol, oleic acid, oleylamine, ethylenediamine and mixtures thereof Antimony telluride production method having a.
상기 고분자물질은,
폴리비닐피롤리돈(polyvinyl pyrrolidone, PVP), 폴리에틸렌옥사이드(Poly ethylene oxide, PEO), 폴리비닐알코올(Polyvinyl alcohol, PVA), 폴리비닐아세테이트(Polyvinyl acetate, PVAc), 폴리에틸렌이민(polyethylene imine, PEI) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 판상형 구조를 가지는 안티몬텔룰라이드 제조방법.According to claim 3,
The polymer material,
Polyvinyl pyrrolidone (PVP), Polyethylene oxide (PEO), Polyvinyl alcohol (PVA), Polyvinyl acetate (PVAc), Polyethylene imine (PEI) And a plate-like structure, characterized in that it is selected from the group consisting of mixtures thereof.
상기 제조방법으로 얻어진 판상형 구조를 가지는 안티몬텔룰라이드를 가압소결하는 소결체 제조방법.The method according to any one of claims 2 to 7,
A method for producing a sintered body by pressure sintering antimony telluride having a plate-like structure obtained by the above production method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180135838A KR102566232B1 (en) | 2018-11-07 | 2018-11-07 | Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same |
PCT/KR2019/014819 WO2020096302A1 (en) | 2018-11-07 | 2019-11-04 | Antimony-telluride thermoelectric material having sheet-shaped structure, and method for preparing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180135838A KR102566232B1 (en) | 2018-11-07 | 2018-11-07 | Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200052642A true KR20200052642A (en) | 2020-05-15 |
KR102566232B1 KR102566232B1 (en) | 2023-08-10 |
Family
ID=70611224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180135838A KR102566232B1 (en) | 2018-11-07 | 2018-11-07 | Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102566232B1 (en) |
WO (1) | WO2020096302A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111644636B (en) * | 2020-06-12 | 2022-09-30 | 陕西师范大学 | Method for synthesizing antimony nanosheet in controllable manner through high-temperature liquid phase |
CN111864045A (en) * | 2020-06-30 | 2020-10-30 | 同济大学 | Method for preparing high-performance polyvinylpyrrolidone/silver selenide/nylon flexible composite thermoelectric film |
CN116022744B (en) * | 2022-12-30 | 2024-03-26 | 安徽工程大学 | Multilayer nano sheet-nano rod heterojunction structure and preparation method and application thereof |
CN116789084B (en) * | 2023-02-22 | 2024-08-06 | 山东泰和科技股份有限公司 | Antimony tellurium heterojunction material, preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130017589A (en) | 2011-08-11 | 2013-02-20 | 재단법인대구경북과학기술원 | Method for synthesizing a bixsb2-xte3 thermoelectric nanocompound and the thermoelectric nanocompound thereof |
KR20140129597A (en) | 2013-04-30 | 2014-11-07 | 재단법인대구경북과학기술원 | Fabrication method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and thermoelectric nanocompound thereby |
KR20170017214A (en) * | 2015-08-06 | 2017-02-15 | 한국전기연구원 | Thermoelectric material and a method of manufacturing the zinc oxide is mixed |
KR20180023765A (en) | 2016-08-24 | 2018-03-07 | 공주대학교 산학협력단 | Method for fabricating thermoelectric materials by using water atomizing process |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101098248B1 (en) * | 2009-12-09 | 2011-12-23 | 한국과학기술연구원 | Manufacturing process of nano-structured compound thermoelectric materials using metal organic chemical vapor deposition |
KR102097063B1 (en) * | 2013-05-28 | 2020-04-06 | 삼성전자주식회사 | Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof |
US10249808B2 (en) * | 2015-09-08 | 2019-04-02 | The Regents Of The University Of California | Surface doping of nanostructures |
-
2018
- 2018-11-07 KR KR1020180135838A patent/KR102566232B1/en active IP Right Grant
-
2019
- 2019-11-04 WO PCT/KR2019/014819 patent/WO2020096302A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130017589A (en) | 2011-08-11 | 2013-02-20 | 재단법인대구경북과학기술원 | Method for synthesizing a bixsb2-xte3 thermoelectric nanocompound and the thermoelectric nanocompound thereof |
KR20140129597A (en) | 2013-04-30 | 2014-11-07 | 재단법인대구경북과학기술원 | Fabrication method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and thermoelectric nanocompound thereby |
KR20170017214A (en) * | 2015-08-06 | 2017-02-15 | 한국전기연구원 | Thermoelectric material and a method of manufacturing the zinc oxide is mixed |
KR20180023765A (en) | 2016-08-24 | 2018-03-07 | 공주대학교 산학협력단 | Method for fabricating thermoelectric materials by using water atomizing process |
Also Published As
Publication number | Publication date |
---|---|
KR102566232B1 (en) | 2023-08-10 |
WO2020096302A1 (en) | 2020-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102566232B1 (en) | Sb2Te3 based thermoelectric materials having a plate-like structure and manufacturing method the same | |
Saleemi et al. | Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi 2 Te 3) | |
Han et al. | Rational design of Bi2Te3 polycrystalline whiskers for thermoelectric applications | |
Scheele et al. | Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles | |
Fu et al. | Bi 2 Te 3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties | |
JP5214695B2 (en) | Thermoelectric material, composite material using the same, and method for producing the same | |
Wu et al. | Effects of different morphologies of Bi 2 Te 3 nanopowders on thermoelectric properties | |
US10020435B2 (en) | Composite thermoelectric material, thermoelectric element and module including the same, and preparation method thereof | |
KR101594132B1 (en) | Thermoelectric nano-complex and thermoelectric module and thermoelectric apparatus comprising same | |
KR20110052225A (en) | Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same | |
KR101902925B1 (en) | Thermoelectric material, thermoelectric element, and thermoelectric module | |
JP2011029566A (en) | Method for fabrication of high performance densified nanocrystalline bulk thermoelectric material using high pressure sintering technique | |
JP2012104560A (en) | Nano-composite thermoelectric conversion material, method for manufacturing the same, and thermoelectric conversion element | |
Ju et al. | Study of the thermoelectric properties of Bi2Te3/Sb2Te3 core–shell heterojunction nanostructures | |
CN102694116A (en) | Method for preparing thermoelectric material with P-type nano-structure and bismuth telluride matrix | |
KR20200010241A (en) | Method of manufacturing semiconductor sintered body, electric / electronic member and semiconductor sintered body | |
Wu et al. | Facile synthesis of monodisperse Cu 3 SbSe 4 nanoparticles and thermoelectric performance of Cu 3 SbSe 4 nanoparticle-based materials | |
Akshay et al. | Surfactant-induced structural phase transitions and enhanced room temperature thermoelectric performance in n-type Bi2Te3 nanostructures synthesized via chemical route | |
Chen et al. | Improved thermoelectric properties of multi-walled carbon nanotubes/Ag 2 Se via controlling the composite ratio | |
Chauhan et al. | Scalable colloidal synthesis of Bi 2 Te 2.7 Se 0.3 plate-like particles give access to a high-performing n-type thermoelectric material for low temperature application | |
JP2015107881A (en) | Electrothermal nano composite material having high mechanical reliability and manufacturing method thereof | |
Shi et al. | Hydrothermal synthesis and thermoelectric transport properties of Sb 2 Te 3–Te heterogeneous nanostructures | |
KR102571834B1 (en) | Composite nanoparticle compositions and assemblies | |
KR20170067457A (en) | Bi-Sb-Te based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof | |
KR101205901B1 (en) | Fabrication method of thermoelectric materials and the thermoelectric materials thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |