KR20120136829A - Hybrid starter & generator control method - Google Patents

Hybrid starter & generator control method Download PDF

Info

Publication number
KR20120136829A
KR20120136829A KR1020110056004A KR20110056004A KR20120136829A KR 20120136829 A KR20120136829 A KR 20120136829A KR 1020110056004 A KR1020110056004 A KR 1020110056004A KR 20110056004 A KR20110056004 A KR 20110056004A KR 20120136829 A KR20120136829 A KR 20120136829A
Authority
KR
South Korea
Prior art keywords
hsg
speed difference
slip
engine
target
Prior art date
Application number
KR1020110056004A
Other languages
Korean (ko)
Inventor
김정은
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020110056004A priority Critical patent/KR20120136829A/en
Publication of KR20120136829A publication Critical patent/KR20120136829A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE: A controlling method of a hybrid starter and generator(HSG) capable of preventing the breakage of a belt is provided to prevent the load of a slip when operating or stopping the engine with the HSG in a hybrid vehicle. CONSTITUTION: A controlling method of a hybrid starter and generator(HSG) comprises the following steps: calculating the speed difference between the engine and the HSG(S10); determining the slip of a belt by the speed difference(S20); calculating the reduced torque value of the HSG(S30); and calculating the HSG target torque value based on the reduced torque value(S40). [Reference numerals] (AA) Start; (BB) Monitoring current engine speed; (CC) Calculating target HSG speed for controlling engine speed; (DD) Controlling HSG by the HSG target torque value; (S10) Calculating speed difference : target HSG speed - (current engine speed X pulley ratio); (S20) Slipping?; (S30) Calculating reduced torque value : f(speed difference); (S35) Calculating temporary HSG target torque value : speed difference x PI gain; (S40) Calculating HSG target torque value : temporary HSG target torque value - reduced torque value; (S50) Calculating HSG target torque value : speed difference x PI gain

Description

HSG 제어방법{Hybrid Starter & Generator Control Method}Hybrid control method {Hybrid Starter & Generator Control Method}

본 발명은 하이브리드 차량의 엔진에 연결된 HSG를 제어하는 방법에 관한 것으로서, 보다 상세하게는 벨트를 통해 엔진과 연결되어, 엔진을 기동 또는 정지시킬 수 있도록 된 HSG의 제어방법에 관한 기술이다.The present invention relates to a method for controlling an HSG connected to an engine of a hybrid vehicle, and more particularly, to a method for controlling an HSG connected to an engine through a belt so as to start or stop an engine.

하이브리드 차량의 일부 타입에서는 엔진에 HSG(Hybrid Starter & Generator)를 연결하여, 엔진의 시동시에 상기 HSG가 엔진을 구동하도록 하고 엔진의 정지시에도 HSG가 엔진의 정지를 제어하도록 하고 있으며, 통상 HSG는 벨트와 풀리를 통해 엔진의 크랭크샤프트에 연결된 구조를 가지고 있다.
In some types of hybrid vehicles, an HSG (Hybrid Starter & Generator) is connected to the engine so that the HSG drives the engine when the engine starts and the HSG controls the engine stop even when the engine is stopped. Has a structure connected to the crankshaft of the engine via belts and pulleys.

그런데, 상기한 바와 같이 엔진과 HSG가 물리적으로 벨트와 풀리에 의해 연결된 구조에서는 HSG와 엔진의 거동에 따라 벨트에서 슬립이 발생할 가능성이 있으며, 엔진의 기동시에 상기와 같은 슬립이 발생할 경우 HSG의 속도가 엔진으로 그대로 전달되지 못하고 헛돌게 되며, 엔진의 속도를 상승시키기 위해 HSG의 토크를 증가시킬 경우 오히려 벨트의 슬립 현상만 가중되는 상황이 발생하게 된다.
As described above, in the structure in which the engine and the HSG are physically connected by the belt and the pulley, there is a possibility that slip occurs in the belt according to the behavior of the HSG and the engine. Is not delivered to the engine as it is, and if the torque of the HSG is increased to increase the speed of the engine, only the slippage of the belt occurs.

즉, 도 1에 도시된 바와 같이 엔진의 시동시에 HSG로 엔진을 구동함에 있어서, HSG의 토크를 증가시킴에 따라 HSG의 속도가 상승하고, 이에 의해 엔진의 속도가 상승하다가, 벨트에 슬립이 발생하면, 엔진의 속도가 감소하므로, 이를 보정하기 위해 HSG의 토크를 더욱 상승시키게 되는데, 이는 오히려 슬립현상을 가중시켜서 HSG의 속도는 상승하고 엔진의 속도는 더 떨어지게 되는 상황이 발생하는 것이다.
That is, as shown in FIG. 1, when the engine is driven by the HSG at the start of the engine, the speed of the HSG increases as the torque of the HSG is increased, thereby increasing the speed of the engine, and then slipping on the belt. When the engine speed decreases, the torque of the HSG is further increased to compensate for this, which increases the slippage, thereby increasing the speed of the HSG and lowering the engine speed.

특히, 하이브리드 차량에서는 잦은 엔진의 기동과 정지가 반복되는 주행상황이 벌어지게 되는데, 상기와 같이 HSG와 엔진 사이의 벨트에서 슬립이 자주 발생하게 되고, 상기한 바와 같은 벨트 슬립의 가중현상이 반복되다 보면, 벨트의 파단까지도 발생할 염려가 있다.
In particular, in a hybrid vehicle, a driving situation in which frequent starting and stopping of the engine is repeated occurs frequently. As described above, slip occurs frequently in the belt between the HSG and the engine, and weighting phenomenon of the belt slip is repeated as described above. If you look, there is a possibility that even the belt breaks.

상기한 바와 같은 상황은 종래 HSG의 제어가 도 2에 도시된 바와 같은 방식으로 이루어지기 때문으로, 도 2의 제어방법은 궁극적인 제어 목표인 엔진의 속도제어를 위해 목표 HSG 속도를 연산하고, 현재의 엔진속도를 모니터링하여, 엔진과 HSG 사이의 풀리비를 고려하여 이들의 속도차를 연산한 후, 그 속도차에 제어 게인을 곱하여 상기 목표 HSG 속도를 구현하기 위한 HSG의 목표 토크값을 설정하는 것으로 구성되는 바, 물론 상기한 바와 같이 설정된 HSG 목표 토크값에 따라 HSG가 구동됨으로써 상기 목표 HSG 속도에 도달하도록 하는 것이며, 이와 같은 과정을 반복적으로 수행하여 목표로 하는 엔진의 속도를 형성하도록 하는 것이다.
Since the situation as described above is controlled in the conventional HSG in the manner shown in Figure 2, the control method of Figure 2 calculates the target HSG speed for the speed control of the engine which is the ultimate control target, By monitoring the engine speed of the engine, calculating the speed difference in consideration of the pulley ratio between the engine and the HSG, and multiplying the speed difference by a control gain to set a target torque value of the HSG for implementing the target HSG speed. Of course, the HSG is driven according to the HSG target torque value set as described above to reach the target HSG speed, and the above process is repeated to form the target engine speed. .

여기서, 상기 풀리비를 고려한 엔진과 HSG의 속도차는 실질적으로 벨트의 슬립량을 의미하는 바, 상기와 같은 제어방법에서는 상기 속도차가 증가할수록 상기 HSG 목표 토크값이 커지게 되므로, 슬립이 발생하면 HSG의 토크가 증가하면서 슬립 상황이 더욱 악화되는 결과를 가져오게 되는 것이다.Here, the speed difference between the engine and the HSG considering the pulley ratio substantially means the slip amount of the belt. In the control method as described above, the HSG target torque value increases as the speed difference increases. As the torque increases, the slip situation becomes worse.

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, HSG와 엔진이 벨트를 통해 동력을 전달하도록 구성된 하이브리드 차량에서, HSG로 엔진을 기동시키거나 정지시키는 동안 벨트의 슬립이 발생하게 될 때, 상기 슬립이 가중되는 것을 방지하고 슬립이 저감될 수 있도록 함과 아울러, 벨트의 파단을 예방할 수 있도록 한 HSG 제어방법을 제공함에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and in a hybrid vehicle in which the HSG and the engine are configured to transmit power through the belt, when the slip of the belt occurs while starting or stopping the engine with the HSG. It is an object of the present invention to provide an HSS control method that prevents the slip from being weighted and reduces the slip and prevents the belt from breaking.

상기한 바와 같은 목적을 달성하기 위한 본 발명 HSG 제어방법은The present invention HS control method for achieving the object as described above

엔진과 HSG 사이의 속도차를 연산하는 속도차연산단계와;A speed difference calculation step of calculating a speed difference between the engine and the HSG;

상기 속도차에 따라 벨트의 슬립상황인지를 판단하는 슬립판단단계와;A slip determination step of determining whether the belt is in a slip state according to the speed difference;

슬립상황인 경우, HSG의 토크를 저감시켜야 할 저감토크량을 연산하는 저감량산출단계와;A reduction amount calculation step of calculating a reduction torque amount to reduce the torque of the HSG in the slip situation;

상기 저감토크량을 감안하여 HSG 목표 토크값을 연산하는 제1목표연산단계;A first target calculation step of calculating an HSG target torque value in consideration of the reduced torque amount;

를 포함하여 구성된 것을 특징으로 한다.And a control unit.

본 발명은 HSG와 엔진이 벨트를 통해 동력을 전달하도록 구성된 하이브리드 차량에서, HSG로 엔진을 기동시키거나 정지시키는 동안 벨트의 슬립이 발생하게 될 때, 상기 슬립이 가중되는 것을 방지하고 슬립이 저감될 수 있도록 하여, 엔진의 안정된 시동과 정지 작용이 이루어질 수 있도록 함과 아울러, 벨트의 파단을 예방할 수 있도록 한다.In a hybrid vehicle in which the HSG and the engine are configured to transmit power through the belt, the present invention prevents the slip from being weighted when the belt slips while the engine is started or stopped by the HSG, and the slip is reduced. In this way, the engine can be stably started and stopped, and the belt can be prevented from breaking.

도 1은 종래 기술에 의한 HSG에 의한 엔진의 시동중 슬립이 발생하는 상황을 설명한 그래프,
도 2는 종래 기술에 의한 HSG 제어방법을 설명한 순서도,
도 3은 본 발명에 따른 HSG 제어방법의 실시예를 도시한 순서도,
도 4는 본 발명에 따른 HSG 제어방법의 작용을 설명한 그래프이다.
1 is a graph illustrating a situation in which slip occurs during starting of an engine by an HSG according to the prior art;
2 is a flow chart illustrating a HSG control method according to the prior art;
3 is a flow chart showing an embodiment of an HSG control method according to the present invention;
4 is a graph illustrating the operation of the HSG control method according to the present invention.

도 3을 참조하면, 본 발명 HSG 제어방법의 실시예는 엔진과 HSG 사이의 속도차를 연산하는 속도차연산단계(S10)와; 상기 속도차에 따라 벨트의 슬립상황인지를 판단하는 슬립판단단계(S20)와; 슬립상황인 경우, HSG의 토크를 저감시켜야 할 저감토크량을 연산하는 저감량산출단계(S30)와; 상기 저감토크량을 감안하여 HSG 목표 토크값을 연산하는 제1목표연산단계(S40)를 포함하여 구성된다.
3, an embodiment of the HSS control method of the present invention includes a speed difference calculation step (S10) of calculating a speed difference between an engine and an HSG; A slip determination step (S20) of determining whether the belt is in a slip state according to the speed difference; A reduction amount calculation step (S30) of calculating a reduction torque amount to reduce the torque of the HSG in the slip situation; The first target calculation step (S40) for calculating the HSG target torque value in consideration of the reduced torque amount is configured.

즉, HSG가 엔진을 가속시키거나 감속시키는 상황에서, 상기 HSG와 엔진 사이에 동력을 전달하도록 연결된 벨트에 슬립이 발생하면, 종래와 달리 그 슬립량에 따라 상기 HSG의 토크를 저감시켜서 상기 벨트의 슬립을 저감시킬 수 있도록 하는 것이다.
That is, when slip occurs in a belt connected to transmit power between the HSG and the engine in a situation where the HSG accelerates or decelerates the engine, unlike the related art, the torque of the HSG is reduced by reducing the torque of the belt according to the slip amount. This is to reduce the slip.

물론, 상기 슬립판단단계(S20) 수행 결과, 슬립상황이 아닌 경우, 상기 속도차연산단계(S10)에서 계산된 속도차를 감안하여 HSG 목표 토크값을 연산하는 제2목표연산단계(S50)도 구비하고 있다.
Of course, when the slip determination step S20 is not performed, the second target operation step S50 of calculating the HSG target torque value in consideration of the speed difference calculated in the speed difference calculation step S10 is also performed. Equipped.

상기 제2목표연산단계(S50)에서, 상기 HSG 목표 토크값을 연산하는 것은 종래와 마찬가지로, 상기 속도차에 비례적분게인을 곱하여 구할 수 있을 것이다.
In the second target operation step (S50), calculating the HSG target torque value may be obtained by multiplying the speed difference by a proportional integral gain as in the related art.

또한, 상기 제1목표연산단계(S40) 이전에, 상기 속도차연산단계(S10)에서 계산된 속도차를 감안하여 임시 HSG 목표 토크값을 연산하는 임시목표연산단계(S35)가 구비되어 있는 바, 이 임시목표연산단계(S35)에서도 상기 속도차에 비례적분게인을 곱하여 종래와 마찬가지로 엔진의 회전수를 추종하기 위해 제어하도록 해야 할 HSG의 토크값을 임시 HSG 목표 토크값으로 계산해 둔다.
In addition, before the first target calculation step S40, a temporary target calculation step S35 for calculating a temporary HSG target torque value in consideration of the speed difference calculated in the speed difference calculation step S10 is provided. In this temporary target calculation step (S35), the torque difference of the HSG to be controlled to follow the engine rotational speed is calculated as the temporary HSG target torque value by multiplying the speed difference by the proportional integral gain.

한편, 상기 슬립판단단계(S20)에서는 상기 속도차가 소정값 이상이 되는 경우를 슬립상황으로 판단하고, 그 미만인 경우 슬립이 발생하지 않은 것으로 판단하도록 구성할 수 있다.
On the other hand, in the slip determination step (S20) it can be configured to determine that the case where the speed difference is more than a predetermined value as the slip situation, and if less than that it is determined that the slip has not occurred.

즉, 벨트의 인장이나 풀리의 백래쉬 등 벨트의 슬립으로 보기 어려운 약간의 속도차에 대해서는 슬립으로 판단하지 않도록 함으로써 제어의 안정성을 확보할 수 있도록 한 것으로, 상기 소정값은 실험에 의해 적절한 값으로 설정되는 것이 바람직할 것이다.
In other words, it is possible to secure the stability of the control by not judging the slight speed difference that is difficult to see due to the slip of the belt such as the tension of the belt or the backlash of the pulley, and the predetermined value is set to an appropriate value by experiment. It would be desirable to be.

상기 저감량산출단계(S30)에서 연산하는 상기 저감토크량은 상기 속도차연산단계(S10)에서 계산된 속도차에 따라 연산된다.
The reduction torque amount calculated in the reduction amount calculation step S30 is calculated according to the speed difference calculated in the speed difference calculation step S10.

즉, 어느 정도의 속도차에 대해서는 슬립을 감소시키기 위해 어느 정도의 토크를 저감시켜야 하는지를 미리 실험에 의해서 속도차와 저감토크량의 맵으로 구성해두고, 이 맵으로부터 해당 속도차에 상응하는 저감토크량의 값을 구하거나, 상기 속도차를 독립변수로 하는 함수를 실험 및 해석에 의해 구성하고, 그 함수를 이용해서 상기 저감토크량을 연산하도록 하는 방법 등이 사용될 수 있을 것이다.
In other words, for a certain speed difference, an experiment is performed to determine how much torque is to be reduced in order to reduce slip, and the reduction torque corresponding to the speed difference is formed from this map. A method of obtaining the value of the amount or configuring the speed difference as an independent variable by experiment and analysis, and calculating the reduced torque amount using the function may be used.

한편, 상기 제1목표연산단계(S40)에서는, 상기 임시목표연산단계(S35)에서 연산된 상기 임시 HSG 목표 토크값에서, 상기 저감토크량을 차감하여 상기 HSG 목표 토크값을 연산한다.
On the other hand, in the first target operation step (S40), the HSG target torque value is calculated by subtracting the reduced torque amount from the temporary HSG target torque value calculated in the temporary target operation step (S35).

따라서, 상기 슬립판단단계(S20)에서 슬립상황이 아니라고 판단되면, 종래와 동일하게 목표로 하는 엔진의 속도를 맞추기 위해 종래와 같이 상기 제2목표연산단계(S50)에서 HSG 목표 토크값을 연산하고, 그에 따라 HSG를 제어하여, 정상적으로 엔진을 구동하게 되며, 슬립상황이라고 판단되면, 상기 임시목표연산단계(S35)에서 속도차에 근거하여 구한 임시 HSG 목표 토크값과 상기 저감량산출단계(S30)에서 구한 저감토크량으로 상기 제1목표연산단계(S40)에서 연산한 HSG 목표 토크값으로 상기 HSG를 제어하여, 도 4에서 보는 바와 같이 HSG의 속도가 저하되도록 함으로써, 슬립상황을 종료시키고, 슬립이 종료되면 다시 HSG의 토크를 상승시키면서 재차 엔진의 시동을 시도하게 되는 것이다.
Therefore, if it is determined that the slip situation is not in the slip determination step (S20), in order to match the speed of the target engine in the same manner as in the conventional, the HSG target torque value is calculated in the second target calculation step (S50) as in the prior art. In response to the control of the HSG, the engine is normally driven, and when it is determined that the slip situation is performed, the temporary HSG target torque value and the reduction amount calculation step (S30) obtained based on the speed difference in the temporary target calculation step (S35). The HSG is controlled using the HSG target torque value calculated in the first target operation step S40 using the obtained reduced torque amount, so that the speed of the HSG is lowered as shown in FIG. When it is finished, it will try to start the engine again while raising the torque of HSG again.

물론, 도 4의 상황은 엔진을 시동시키는 경우이지만, HSG가 엔진을 정지시키는 경우에도 마찬가지의 원리로 제어가 이루어지도록 한다.
Of course, the situation of Fig. 4 is a case of starting the engine, but control is made in the same principle even when the HSG stops the engine.

상기한 바와 같이 슬립이 발생하면, 결과적으로 HSG의 토크를 저감시킴으로써, 슬립상황이 더욱 가중되지 않고 감소되도록 하여 슬립 상황이 종료되도록 함으로써, HSG에 의한 엔진의 시동 및 정지 작동의 신뢰성을 더욱 향상시킬 수 있으며, HSG와 엔진을 연결하는 벨트의 파단 등의 손상을 미연에 방지할 수 있게 된다.As described above, when slip occurs, as a result, the torque of the HSG is reduced, thereby reducing the slip situation without further weighting and ending the slip situation, thereby further improving the reliability of starting and stopping operation of the engine by the HSG. In addition, it is possible to prevent damage such as the break of the belt connecting the HSG and the engine in advance.

S10; 속도차연산단계
S20; 슬립판단단계
S30; 저감량산출단계
S40; 제1목표연산단계
S50; 제2목표연산단계
S35; 임시목표연산단계
S10; Speed difference calculation step
S20; Slip determination
S30; Reduction amount calculation step
S40; First target operation stage
S50; Second target operation stage
S35; Interim Target Computation Stage

Claims (7)

엔진과 HSG 사이의 속도차를 연산하는 속도차연산단계(S10)와;
상기 속도차에 따라 벨트의 슬립상황인지를 판단하는 슬립판단단계(S20)와;
슬립상황인 경우, HSG의 토크를 저감시켜야 할 저감토크량을 연산하는 저감량산출단계(S30)와;
상기 저감토크량을 감안하여 HSG 목표 토크값을 연산하는 제1목표연산단계(S40);
를 포함하여 구성된 것을 특징으로 하는 HSG 제어방법.
A speed difference calculation step (S10) of calculating a speed difference between the engine and the HSG;
A slip determination step (S20) of determining whether the belt is in a slip state according to the speed difference;
A reduction amount calculation step (S30) of calculating a reduction torque amount to reduce the torque of the HSG in the slip situation;
A first target operation step (S40) of calculating an HSG target torque value in consideration of the reduced torque amount;
HSS control method comprising a.
청구항 1에 있어서,
상기 슬립판단단계(S20) 수행 결과, 슬립상황이 아닌 경우, 상기 속도차연산단계(S10)에서 계산된 속도차를 감안하여 HSG 목표 토크값을 연산하는 제2목표연산단계(S50);
를 수행하는 것을 특징으로 하는 HSG 제어방법.
The method according to claim 1,
A second target calculation step (S50) of calculating an HSG target torque value in consideration of the speed difference calculated in the speed difference calculation step (S10) when the slip determination step (S20) is not a slip situation;
HSS control method characterized in that for performing.
청구항 1에 있어서,
상기 슬립판단단계(S20)에서는 상기 속도차가 소정값 이상이 되는 경우를 슬립상황으로 판단하고, 그 미만인 경우 슬립이 발생하지 않은 것으로 판단하며;
상기 저감량산출단계(S30)에서 연산하는 상기 저감토크량은 상기 속도차연산단계(S10)에서 계산된 속도차에 따라 연산되는 것
을 특징으로 하는 HSG 제어방법.
The method according to claim 1,
In the slip determination step (S20), it is determined that the case where the speed difference is greater than or equal to a predetermined value is a slip situation, and when it is less than that, it is determined that slip has not occurred;
The reduction torque amount calculated in the reduction amount calculation step S30 is calculated according to the speed difference calculated in the speed difference calculation step S10.
HSS control method characterized in that.
청구항 1에 있어서,
상기 제1목표연산단계(S40) 이전에, 상기 속도차연산단계(S10)에서 계산된 속도차를 감안하여 임시 HSG 목표 토크값을 연산하는 임시목표연산단계(S35)를 더 구비하고;
상기 제1목표연산단계(S40)에서는, 상기 임시목표연산단계(S35)에서 연산된 상기 임시 HSG 목표 토크값에서, 상기 저감토크량을 차감하여 상기 HSG 목표 토크값을 연산하는 것
을 특징으로 하는 HSG 제어방법.
The method according to claim 1,
Before the first target calculation step (S40), further comprising a temporary target calculation step (S35) for calculating a temporary HSG target torque value in consideration of the speed difference calculated in the speed difference calculation step (S10);
In the first target operation step (S40), to calculate the HSG target torque value by subtracting the reduced torque amount from the temporary HSG target torque value calculated in the temporary target operation step (S35).
HSS control method characterized in that.
HSG가 엔진을 가속시키거나 감속시키는 상황에서, 상기 HSG와 엔진 사이에 동력을 전달하도록 연결된 벨트에 슬립이 발생하면, 그 슬립량에 따라 상기 HSG의 제어 토크를 저감시켜서 상기 벨트의 슬립을 저감시키도록 하는 것
을 특징으로 하는 HSG 제어방법.
In the situation where the HSG accelerates or decelerates the engine, when slip occurs on the belt connected to transfer power between the HSG and the engine, the slip torque of the HSG is reduced by reducing the control torque of the HSG according to the slip amount. To
HSS control method characterized in that.
청구항 5에 있어서,
상기 HSG와 엔진을 연결하는 벨트의 슬립량은, 상기 HSG와 엔진 사이의 풀리비를 고려한 상기 HSG와 엔진의 속도차에 의해 판단하고;
상기 HSG의 제어 토크를 저감시켜야 할 저감토크량은 상기 속도차를 독립변수로 하는 함수에 의해 정해지는 것을 특징으로 하는 HSG 제어방법.
The method according to claim 5,
The slip amount of the belt connecting the HSG and the engine is determined by the speed difference between the HSG and the engine in consideration of the pulley ratio between the HSG and the engine;
A reduction control torque amount to decrease the control torque of the HSG is determined by a function of the speed difference as an independent variable.
청구항 5에 있어서,
상기 HSG와 엔진을 연결하는 벨트의 슬립량은, 상기 HSG와 엔진 사이의 속도차에 의해 판단하고;
상기 HSG의 제어 토크를 저감시켜야 할 저감토크량은 상기 속도차와 저감토크량의 맵으로부터 선정되는 것을 특징으로 하는 HSG 제어방법.
The method according to claim 5,
The slip amount of the belt connecting the HSG and the engine is determined by the speed difference between the HSG and the engine;
The reduction torque amount to reduce the control torque of the HSG is selected from the map of the speed difference and the reduction torque amount.
KR1020110056004A 2011-06-10 2011-06-10 Hybrid starter & generator control method KR20120136829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110056004A KR20120136829A (en) 2011-06-10 2011-06-10 Hybrid starter & generator control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110056004A KR20120136829A (en) 2011-06-10 2011-06-10 Hybrid starter & generator control method

Publications (1)

Publication Number Publication Date
KR20120136829A true KR20120136829A (en) 2012-12-20

Family

ID=47904119

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110056004A KR20120136829A (en) 2011-06-10 2011-06-10 Hybrid starter & generator control method

Country Status (1)

Country Link
KR (1) KR20120136829A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017839A1 (en) * 2014-07-31 2016-02-04 볼보 컨스트럭션 이큅먼트 에이비 Engine rpm override control device
KR101714212B1 (en) * 2015-09-09 2017-03-08 현대자동차주식회사 Method and device for controlling HSG of HEV
CN108202738A (en) * 2016-12-16 2018-06-26 现代自动车株式会社 The method that hybrid vehicle is controlled in the case where MHSG transmission belts slide
CN109973210A (en) * 2017-12-28 2019-07-05 罗伯特·博世有限公司 Method for running belt drive unit
CN110466497A (en) * 2018-05-10 2019-11-19 现代自动车株式会社 For reducing the device of belt slippage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017839A1 (en) * 2014-07-31 2016-02-04 볼보 컨스트럭션 이큅먼트 에이비 Engine rpm override control device
KR101714212B1 (en) * 2015-09-09 2017-03-08 현대자동차주식회사 Method and device for controlling HSG of HEV
CN106515715A (en) * 2015-09-09 2017-03-22 现代自动车株式会社 Method and device for controlling hybrid starter generator of hybrid electric vehicle
US9862278B2 (en) 2015-09-09 2018-01-09 Hyundai Motor Company Method and device for controlling hybrid starter generator of hybrid electric vehicle
CN106515715B (en) * 2015-09-09 2021-05-07 现代自动车株式会社 Method and apparatus for controlling a hybrid starter generator of a hybrid electric vehicle
CN108202738A (en) * 2016-12-16 2018-06-26 现代自动车株式会社 The method that hybrid vehicle is controlled in the case where MHSG transmission belts slide
CN109973210A (en) * 2017-12-28 2019-07-05 罗伯特·博世有限公司 Method for running belt drive unit
CN110466497A (en) * 2018-05-10 2019-11-19 现代自动车株式会社 For reducing the device of belt slippage

Similar Documents

Publication Publication Date Title
JP3997227B2 (en) Hydraulic supply device
US9863334B2 (en) Drive control apparatus for prime mover
US9156467B2 (en) Vehicle power generating device and power generation control method
JP3731594B2 (en) VEHICLE POWER GENERATION CONTROL DEVICE AND VEHICLE DRIVE CONTROL DEVICE HAVING THE SAME
KR20120136829A (en) Hybrid starter & generator control method
US10458350B2 (en) Method for ascertaining an accuracy of a torque transmitted by a belt-driven starter generator of an internal combustion engine to the internal combustion engine
US10527167B2 (en) Method for controlling pulley of vehicle having continuously variable transmission
JP6614599B2 (en) Control device for continuously variable transmission
JP5976423B2 (en) Apparatus and method for controlling damper clutch of automatic transmission
JP2016153268A (en) Driving control device
JP6047930B2 (en) Vehicle power supply
JPWO2016143762A1 (en) Vehicle hydraulic control apparatus and method
KR20160033335A (en) Method for controlling transmission fail safe for vehicle
CN112895915B (en) Motor control method, device and controller
KR20200015158A (en) Belt pulley control method for continuously variable transmission
JP2013204716A (en) Device and method of controlling lock-up
JP6569486B2 (en) Vehicle engine control device
JP6264571B2 (en) Control device for power transmission mechanism
KR101416427B1 (en) Apparatus for control damper clutch of automatic transmission and method thereof
JP4964330B2 (en) Vehicle drive control device
JP2011190900A (en) Control device of electric oil pump
KR20150074810A (en) Vibration Decreasing Appatus and Vibration Decreasing Method Using the same
KR101836608B1 (en) Control method for vehicle with automatic transmission
KR101744995B1 (en) Start control system using motor/alternator, and control method of the same
US10443522B2 (en) Engine idling control system of construction machine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application