KR20120123982A - 몰리브덴이 도핑된 ito계 tco 박막 및 이의 코팅방법 - Google Patents

몰리브덴이 도핑된 ito계 tco 박막 및 이의 코팅방법 Download PDF

Info

Publication number
KR20120123982A
KR20120123982A KR1020110041676A KR20110041676A KR20120123982A KR 20120123982 A KR20120123982 A KR 20120123982A KR 1020110041676 A KR1020110041676 A KR 1020110041676A KR 20110041676 A KR20110041676 A KR 20110041676A KR 20120123982 A KR20120123982 A KR 20120123982A
Authority
KR
South Korea
Prior art keywords
thin film
ito
molybdenum
substrate
coating method
Prior art date
Application number
KR1020110041676A
Other languages
English (en)
Other versions
KR101298490B1 (ko
Inventor
김태원
허기석
김광영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020110041676A priority Critical patent/KR101298490B1/ko
Publication of KR20120123982A publication Critical patent/KR20120123982A/ko
Application granted granted Critical
Publication of KR101298490B1 publication Critical patent/KR101298490B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

몰리브덴이 도핑된 ITO계 TCO 박막 및 이의 코팅방법에 관한 것으로, 보다 구체적으로는 기판을 준비하는 단계 및 상기 기판상에 일정량의 몰리브덴 및 ITO를 동시에 증착하는 단계를 포함하는 것을 특징으로 한다.

Description

몰리브덴이 도핑된 ITO계 TCO 박막 및 이의 코팅방법{The Mo dopped ITO TCO and coating methode of it}
본 발명은 몰리브덴이 도핑된 ITO계 TCO 박막 및 이의 코팅방법에 관한 것으로, 스퍼터링 공정 조건 및 조성 변화 등을 통하여, 가시광 파장영역 (visible range) 에서는 고 투과도를 유지하고, IR 영역 및 UV영역에서는 투과 윈도우 (transparency window shift) engineering 을 달성, energy saving 건축용 유리, 태양전지, 자동차 썬팅 등에 응용이 가능한 새로운 TCO 박막 및 이의 코팅방법에 관한 것이다.
Transparent Conducting Oxide(TCO) 는 낮은 비저항 및 높은 투과도 특성을 가지는 물질로서, OLED, solar cell, smart window, flexible display 등의 opto-electronic device에 필수적으로 이용되는 물질이다.
이러한 TCO로 현재 가장 널리 쓰이는 물질은 우수한 전기적, 광학적 특성을 나타내는 ITO (Tin 10wt%) 이다. 최근, 이러한 ITO 에서의 Sn 대신 Mo을 도핑하여, energy efficient window, transparent TFT, 박막태양전지 등, 다양한 opto-electronic devices 적용을 목표로 하여, Mo-doped In2O3(IMO) 와 관련된 연구가 활발히 진행되고 있다.
기본적으로, 이러한 IMO의 경우, transparency window와 관련된 long wavelength limit는 plasma frequency (λp)에 의하여 결정되는 것으로 알려져 있는데, Drude 모델에 의하면, 이러한 경우, plasma edge는 캐리어 농도의 증가와 더불어 단파장 쪽으로 이동하는 것으로 알려져 있다. 그러므로, 투과도와 관련된 long wavelength limit 등의 변화를 수반하지 않으면서, 동시에 전기전도도가 증가하는 경우에는, IMO에 있어, 모빌러티(mobility) 증가에 의하여 가능하게 되며, 또한, 비저항이 낮으면서, 광학적으로 transparency window의 장파장 방향으로의 shift를 위해서는, 모빌러티가 증가하는 동안, 캐리어 농도는 감소해야 하는 것으로 알려져 있다.
그동안 보고된 IMO계 TCO의 대부분은 모빌러티 향상 측면에서 주로 연구되어 왔는데, 스퍼터링 방법을 이용하여, 대략 약 70cm2/vs의 이상의 높은 모빌러티 달성이 알려져 있으며, 특히, Meng et al. 및 Warmsingh et al.에 의하면, thermal reactive evaporation 및 PLD 방법을 통하여, 80 ~ 130 cm2/vs의 모빌러티를 달성한 것으로 보고되고 있었다.
그러나, 종래 기술의 경우, 상술한 바와 같이 모빌러티 증대를 위한 연구에 국한되어 있었으며, 전기적 및 광학적 특성 향상에 대한 복합적인 연구는 이루어지지 않고 있었다.
본 발명은 상술한 바와 같은 문제를 해결하기 위해 창안된 것으로,
먼저 박막태양전지용 투명전극 및 UV/IR cut filter 응용이 가능한 ITO계 TCO 박막 및 이의 코팅방법의 제공을 일 목적으로 한다.
또한, 모빌러티 뿐만 아니라 우수한 전기전도도, 가시광 파장 범위에서의 높은 투과도 확보와 동시에, 특히, 건물의 에너지 절감 (energy-saving)을 위한 적외선, 자외선 영역의 차단 특성을 갖는 박막의 코팅방법 제공을 다른 목적으로 한다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 코팅방법은 상기 목적들을 달성하기 위하여 기판을 준비하는 단계 및 상기 기판상에 일정량의 몰리브덴 및 ITO를 동시에 증착하는 단계를 포함한다.
바람직하게는 상기 기판은 투명한 유리기판을 이용한다.
바람직하게는 상기 증착 단계는 RF magnetron 방식의 Combinatorial sputter를 이용하며, 상기 증착 단계는 증착 온도 350℃에서 수행된다.
바람직하게는 상기 증착 단계는 Ar 가스 분위기에 일정비율의 산소를 주입시켜 수행되며, 상기 증착 단계는 공정 압력 0.14 ~ 0.15Pa 및 증착 거리 150mm의 조건에서 수행된다.
본 발명은 다음과 같은 우수한 효과가 있다.
먼저, 본 발명에 따른 몰리브덴이 도핑된 ITO계 TCO 박막은 박막태양전지용 투명전극 및 UV/IR cut filter 응용이 가능하다.
아울러, 모빌러티 뿐만 아니라 우수한 전기전도도, 가시광 파장 범위에서의 높은 투과도는 물론, 특히, 적외선, 가시광, 자외선 영역에서의 transmission window engineering 까지 가능한 우수한 효과가 있다.
도 1 은 본 발명의 일실시 예에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 코팅방법에 대한 전체 공정도다.
도 2 는 본 발명의 일실시 예에 따른 증착 단계의 모식도를 나타내는 도다.
도 3 은 본 발명의 일실시 예에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 조성 및 인가 가스 비 변화에 대한 면 저항 변화를 도시한 그래프다.
도 4 는 Ar gas 만으로 증착한 경우 및 Ar:O2 비 20:0.7, 그리고 20:1로 증착한 경우의, 비저항, 캐리어 농도 및 모빌러티를 도시한 그래프다.
도 5a는 Ar gas 만으로 증착한 박막, 도 5b는 Ar:O2 비 20:0.7 의 조건으로 증착한 박막 및 도 5c는 Ar:O2 비 20:1 의 조건으로 증착한 박막의 조성분포에 따른 x-ray diffraction pattern을 나타낸 그래프다.
도 6a는 Ar gas만으로 증착한 ITO 박막, 도 6b는 Ar gas 만으로 증착한 In-Sn-Mo-O계 박막 [Mo/(In+Mo+Sn) = 2.8 at.%], 도 6c는 Ar:O2 비 20:0.7 의 조건으로 증착한 In-Sn-Mo-O계 박막 [Mo/(In+Mo+Sn) = Not detected](c) 및 도 6d는 Ar:O2 비 20:1 의 조건으로 증착한 In-Sn-Mo-O계 박막 [Mo/(In+Mo+Sn) = 0.6 at.%]의 SEM 평면 이미지다.
도 7 은 Ar gas 만으로 증착한 박막의 파장에 따른 투과도 (normalized to the glass substrate)를 나타내는 그래프이다.
도 8a 는 Ar:O2 비 20:0.7로 증착한 박막의 파장에 따른 투과도를 나타내는 그래프이고, 도 8b는 도 8a 중 일부 구간의 확대도이다.
도 9 는 Ar:O2 비 20:1의 조건으로 증착한 In-Sn-Mo-O계 박막의 파장에 따른 투과도 (normalized to the glass substrate)를 나타내는 그래프이다.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명을 실시하기 위한 구체적인 내용에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
이하, 첨부한 도면에 도시된 바람직한 실시 예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.
먼저, 도 1은 본 발명의 일실시 예에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 코팅방법에 대한 전체 공정도다.
도 1을 참조하면, 본 발명에 따른 상기 몰리브덴이 도핑된 ITO계 TCO 박막의 코팅방법은 기판을 준비하는 단계(S100) 및 상기 기판상에 일정량의 몰리브덴 및 ITO를 동시에 증착하는 단계(S200)로 이루어져 있다.
먼저, 상기 기판을 준비하는 단계(S100)는 투명한 재질의 다양한 기판을 준비할 수 있으나, 본 발명의 바람직한 실시 예에 있어서 상기 기판은 유리기판을 이용하여 준비하였다.
다음으로 상기 기판상에 일정량의 몰리브덴(Mo) 및 ITO(Indium Tin Oxide)를 동시에 증착하는 단계(S200)로, 이때 사용되는 증착기는 다양한 방식의 증착기를 사용할 수 있음은 물론이나, 본 발명의 바람직한 실시 예에 있어서, 상기 증착기는 RF magnetron 방식의 combinatorial sputter를 이용하여 증착 공정을 수행하였다.
이에 대해 본 발명의 일실시 예에 따른 증착 단계의 모식도를 나타내는 도 2를 참조하여 좀도 구체적으로 설명하면, ITO [Sn(10wt%) doped In2O3, 99.99%] 및 Mo(99.99%)를 타겟으로 하고, shadow mask (open window size : 40 × 8mm)를 이용하여, 유리기판(glass substrate) (180 × 50mm) 상에 증착시켜 In-Sn-Mo-O계 Transparent Conducting Oxide(TCO)박막을 코팅하였다.
한편, 본 발명의 일실시 예로 상기 박막을 코팅하기 위하여 Mo(molybdenum)를 ITO와 동시에 증착하는 것을 설명하였으나, 다른 실시 예에 있어서 상기 Zn을 상기 ITO와 동시에 증착하여 코팅할 수도 있다.
아울러 증착을 위한 증착 조건에 있어서는 다양한 조건 하에서 증착이 가능하다 할 것이나, 본 발명의 바람직한 실시 예에 있어서는 증착온도 350℃, Ar(20sccm) 및 상기 Ar가스 분위기에 일정량의 산소(O2)가 인가된 분위기, 공정압력 0.14 ~ 0.15Pa, 증착거리 150mm, 공정파워는 ITO RF 200W, Mo RF 50W 의 동일 공정조건하에서 증착 공정을 수행하였다.
한편 본 발명의 다양한 실시 예들에 있어서는 Ar에 대하여 산소 인가 범위를 각각 0, 0.7, 1, 3, 5sccm과 같이 인가하여 증착 공정을 수행하였다.
아울러, 본 발명에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 코팅 공정에 대한 다양한 실시 예들을 아래 [표 1]에 정리하였다.
구분
온도
Gas flow 공정파워(Power) 공정압력
증착거리
(Dts)
Ar O2 ITO Mo
실시예 1 350 20 sccm 0 sccm 200w 50w 0.14Pa 150mm
실시예 2 350 20 sccm 0.7 sccm 200w 50w 0.14Pa 150mm
실시예 3 350 20 sccm 1 sccm 200w 50w 0.14Pa 150mm
한편, 본 발명의 일실시 예에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 코팅방법에 있어서, 증착 시간 및 상기 In-Sn-Mo-O계 박막의 두께는 다양한 실시 예를 통해 이루어질 수 있으나, 본 발명의 바람직한 실시 예에 있어서는 증착 시간을 30분으로 유지하였고, 상기 박막의 두께는 130 ~ 300nm로 형성하였다.
이하에서는 첨부된 도면을 참조하여 본 발명의 일실시 예에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 효과에 대해 상세히 설명한다.
먼저, 도 3은 본 발명의 일실시 예에 따른 몰리브덴이 도핑된 ITO계 TCO 박막의 조성 및 인가 가스 비 변화에 대한 면 저항 변화를 도시한 그래프다.
도 3을 참조하면, In-Sn-Mo-O계 박막의 면 저항은 Ar:O2 비 20:3 이상의 영역에서는 103 order 이상으로, 면 저항이 매우 높게 나타났으나, Ar:O2비 20:1 이하 조건에서는 100Ω/sq 이하의 낮은 면 저항값을 나타냈다.
조성적으로는 Ar 만으로 증착한 In-Sn-Mo-O계 박막의 경우, Mo rich 영역에서는 큰 면 저항값을 나타내다가, Mo 함량의 감소와 더불어 감소하는 경향을 나타냈으나, 산소가 인가된 경우에는 Mo 함량 증가에 따라서 다소 감소하다가 커지는 경향을 보였으나, 그 변화폭은 20Ω/sq 이하로 작았다.
한편, 도 4는 Ar gas 만으로 증착한 경우 및 Ar:O2 비 20:0.7, 그리고 20:1로 증착한 경우의, 비저항, 캐리어 농도 및 모빌러티를 도시한 그래프로 이를 참조하면, 산소가 인가되지 않은 경우에는, 산소가 인가된 박막에 비하여 캐리어 농도가 높게 나타났다. (Mo/(In+Mo+Sn) = 5.6 at.%:최대 캐리어 농도 1.35 × 1021cm-3) 모빌러티의 경우, 산소가 미량 인가된 Ar:O2 비 20:0.7sccm 조건에서, 다른 공정조건에 비하여, 상대적으로 높은 값을 가졌으나 (Mo/(In+Mo+Sn) = 0.09 at.% : 최대 모빌러티 36.1 cm2/Vs), 산소분압이 더 높아진, Ar:O2 비 20:1sccm 조건에서는, 모빌러티는 다시 낮아졌다.
또한, Ar gas 만으로 증착한 박막의 경우에는, Mo 함량이 증가함에 따라, 모빌러티는 감소하는 경향을 보였다. 최소 비저항은 Ar만으로 증착하고, Mo/(In+Mo+Sn) = 2.8 at.% 조성 조건에서 2.20 × 10-4 Ω?cm로서, 이때 캐리어 농도는 1.11 × 1021cm-3, 홀 모빌러티는 25.59 cm2/Vs 였다.
한편, 도 5a 내지 도 5c는 각각 Ar gas 만으로 증착한 박막, 그리고 Ar:O2 비 20:0.7 의 조건으로 증착한 박막 및 Ar:O2 비 20:1 의 조건으로 증착한 박막의 조성분포에 따른 x-ray diffraction pattern을 나타낸 그래프이다.
도 5a 내지 도 5c를 참조하면, 도 5a에서, 2θ = 30.6°, 35.5°, 50.7°근처의 In-Sn-Mo-O계 박막 peak은 각각 ITO(222), (400), (440)에 해당하는 피크로 판단된다.
이때, 5b의 전기적 특성 그래프와 더불어 살펴보면, Ar 만으로 증착한 박막의 경우, Mo/(In+Mo+Sn) = 2.8 at.% 조성에서부터 Mo/(In+Mo+Sn) = 5.6 at.% 조성 영역범위에서, (1.11 ~ 1.35) × 1021 cm-3 범위의 높은 캐리어 농도를 나타내며, 또한, Mo 함량 증가에 따라서, 미세한 캐리어 농도 향상 및 모빌러티 감소가 관찰되었는데, 이는 Meng et. al. 및 Yoshida et al. 이 In2O3에 Mo이 도핑될 때, 아래와 같은 관계를 제안한바,
Mo6+ : 2InIn + 2MoO3 ⇒ 2MoIn + In2O3 + 3/2O2(g) + 6e’ ------ (1)
Mo4+ : 2InIn + 2MoO3 ⇒ 2MoIn ? + 3/2O2(g) + 2e’ ------------ (2)
ITO에 Mo을 첨가하는 경우에도, 상대적으로 크기가 작은 Mo6+ or 4+ (1.45Å)가 In3+ (1.55Å) sites를 치환함에 의하여, 캐리어 농도가 증가하고, 이에 따른 impurity scattering 증가로 인하여, 동일영역에서 모빌러티 감소가 관찰된 것으로 보인다.
XRD 격자상수 분석을 통해서 Mo의 In site 치환 여부를 확인한바, 동일한 스퍼터링 공정조건으로 증착한 ITO의 격자상수 (d= 2.95272Å) 에 비하여, Mo 이 포함된 Mo/(In+Mo+Sn) = 2.8 at.% 조성 박막의 격자상수는 d= 2.92526Å으로서, 격자상수의 감소가 확인되었으며, 또한, Mo 함량이 증가함에 따라서도, 격자상수는 계속 감소 (Mo/(In+Mo+Sn) = 5.6 at.% 조성의 격자상수 d= 2.91986Å) 하는 경향을 보임을 확인할 수 있었다.
산소가 미량(0.7sccm) 인가된 도5b에서는 ITO (222) 피크 및 매우 약한 강도의 ITO (440) 피크만이 관찰되었고, 산소가 (1sccm) 인가된 (c)에서는 단지 ITO (222) 피크만이 관찰되었다. 산소가 인가되지 않았을 때, 관찰되었던, ITO (400) 피크는 산소가 인가된 경우에는 전혀 관찰되지 않았다. 상기 도 4의 전기적 특성 그래프와 함께 살펴 볼 때, 공정가스로서의 산소 인입 여부에 따라서, 전 조성영역에서, 인가되는 산소량이 많을수록, 캐리어 농도의 감소는 더 크며, 모빌러티의 경우에는, 인가되는 산소량이 커짐에 따라, 증가하였다가(Ar:O2비 20:0.7), 결국, 다시 감소 (Ar:O2비 20:1) 하는 경향을 보였다.
이러한 결과는, 산소가 인가된 경우, Mo6+ or 4+의 In3+ sites 치환에 의한 캐리어 농도 증가 효과에 비해, 산소공급량 증가에 의한 Vo 감소가 더 dominant 하게 발생하여, 캐리어 농도가 감소하고, 모빌러티의 경우, 미량의 산소 첨가 (O2 0.7sccm) 시에는, 좀더 우수한 배향성 (ITO 222) 및 결정성에 기인하여 (more stoichiometric), 결정립 크기가 커지고, grain boundary scattering이 감소하게 되어, 모빌러티가 증가하지만, 추가적인 산소 인입 (O2 1sccm)이 되면 (인가되는 이온, 가스 증가), ionized impurity scattering의 증가로 인하여, 모빌러티는 감소하는 것으로 판단된다.
도 6a 내지 도 6d는 각각 Ar gas만으로 증착한 ITO 박막, Ar gas 만으로 증착한 In-Sn-Mo-O계 박막 [Mo/(In+Mo+Sn) = 2.8 at.%], Ar:O2 비 20:0.7 의 조건으로 증착한 In-Sn-Mo-O계 박막 [Mo/(In+Mo+Sn) = Not detected] 및 Ar:O2 비 20:1 의 조건으로 증착한 In-Sn-Mo-O계 박막 [Mo/(In+Mo+Sn) = 0.6 at.%]의 SEM 평면 이미지다.
도 6a 내지 도 6d를 참조하면 350℃에서 증착한 pure ITO 박막(a)는 grain size가 상대적으로 큰 결정질 상을 나타내는 반면[ 도 6a의 경우, grain size는 수 um), 도 6b와 같이 동일 증착 조건에서, Mo가 함유되게 되면 [Mo/(In+Mo+Sn) = 2.8 at.%], XRD 분석 결과에서도 확인하듯이, ITO에 비하여, 결정성이 급격히 감소하고 (피크 강도 및 sharpness 감소), 이미지 관찰결과에서는 거의 비정질 상과 유사한 형태의 이미지가 관찰된다.
그러나, 도6c 및 도6d에 도시된 바와 같이, 산소가 인가되고, 인가되는 산소량이 증가하게 되면, Ar gas 만으로 증착한 (비정질과 같은) In-Sn-Mo-O계 박막에 비하여, more stoichiometric 박막이 형성되면서, 도6c와 같이 부분적으로 결정질 형성이 되기 시작하여, 산소가 1sccm 첨가되는 도6d의 경우, 거의 완전한 결정상 이미지가 관찰된다. 그렇지만, pure ITO 박막(도6a)과 비교하면 그 grain size (도6d)의 경우, grain size는 500nm 이하) 는 훨씬 작았다.
한편, 도 7 은 Ar gas 만으로 증착한 박막의 파장에 따른 투과도 (normalized to the glass substrate)를 나타내는 그래프이고, 도 8a 는 Ar:O2 비 20:0.7로 증착한 박막의 파장에 따른 투과도를 나타내는 그래프이고, 도 8b는 도 8a 중 일부 구간의 확대도이며, 도 9 는 Ar:O2 비 20:1의 조건으로 증착한 In-Sn-Mo-O계 박막의 파장에 따른 투과도 (normalized to the glass substrate)를 나타내는 그래프이다.
도 7을 참조하면, Ar gas만으로 증착한 경우 350 ~ 1,200nm 영역에서 ITO rich 영역 일부 [Mo/(In+Mo+Sn) = 4.3 at.% 이하 농도)]를 제외하고는, 측정된 모든 파장영역에서 박막의 투과도는 매우 낮았으나, 도 9와 같이 산소를 (1sccm) 인가한 경우, 가시광을 포함한 파장범위 400 ~ 1,800nm의 근 적외선 영역까지 평균 92%의 우수한 투과도 특성을 나타냈다.
이러한 결과는 산소가 부족한 상태에서의 박막의 nonstoichiometry에 의하여 나타난 현상으로, 적절한 산소가 공급되면, oxidization이 발생하고, more stoichiometric 박막이 형성되어, 투과도가 향상되는 것을 의미한다.
한편, 도 7의 그래프에서, 동일 조건으로 증착 및 동일 두께 (300 ~ 320nm) 의 ITO 및 In-Sn-Mo-O계 [Mo/(In+Mo+Sn) = 2.8 at.%] 박막을 살펴보면, Mo이 포함된 박막의 경우, 그 transmission window가 상당히 줄어듬을 확인할 수 있다.
이러한 경향은, Drude 모델에 의하면, transparency window와 관련된 long wavelength limit (plasma edge) 는 캐리어 농도의 증가와 더불어 단파장 쪽으로 이동하는 것으로 알려져 있는바, 인가된 Mo에 의하여, ITO에 비하여 캐리어 농도가 증가한 효과에 의한 것으로 판단된다. 또한, O2 함량이 점점 늘어나게 되면, 박막의 transparency window는 점점 크게 되어, 적외선 영역 (780 ~ 2.5um, 평균 80% 투과도) 에서의 투과도가 크게 상승함이 관찰되는데, 이러한 현상은 산소량 증가에 따른 캐리어 농도 감소 경향과 일치하는 결과이다. 투과도 그래프의 흡수단 측면에서 살펴보면, Ar/O2 비 20:0.7의 조건에서 코팅된 박막의 absorption edges는 Mo 함량 증가와 더불어 단파장 영역으로 shift 되는데, 이러한 이동은 Burstein-Moss shift로 알려진 blue shift 현상과 관련, Mo 함량 증가에 따른 캐리어 농도 증가와 잘 일치하는 결과이다.
본 발명의 일실시 예에 따른 In-Sn-Mo-O계 박막의 광학적 특성은 ITO에 도핑되는 Mo 량 및 Ar:O2 비 조절을 통하여, IR 영역뿐만 아니라 가시광 혹은 자외선 영역에서의 transmission window 및 광학적 투과 혹은 흡수도 등의 특성 engineering 까지도 가능함을 보여주는 결과이다.
본 발명에 따른 몰리브덴이 도핑된 ITO계 TCO 박막 및 이의 코팅방법은 Combinatorial rf magnetron sputtering system을 이용하여 다양한 조성 및 Ar:O2 비 조건으로, 조성 및 두께 gradient In-Sn-Mo-O계 박막을 코팅하였다. Ar 만으로 증착한 IMTO 박막의 경우, 동일조건에서 코팅된 ITO의 비저항에 비해서는 다소 높았지만, 캐리어 농도는 오히려 더 증가하는 결과를 가져왔다.
광학적 측면에서, IMTO 박막은 인가되는 산소량 및 조성변화에 따라서 가시광 및 적외선 영역에서의 투과도 및 투과도 그래프 양 끝단의 transparency window 의 영역이 결정되었으며, Mo 도핑량 및 Ar:O2비 조절을 통하여, 다양한 파장 영역에서의 transmission window emgineering이 가능함을 보여주는 결과로서, UV/IR cut filter 및 박막 태양전지 등의 다양한 opto-electronic devices에 적용이 기대된다.
또한, hydrogen 도입 등을 통하여, 추가적 전기적 특성 향상이 기대되는 새로운 다성분계 TCO의 코팅 가능성 또한 보여주고 있다.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능하다 할 것이다.

Claims (7)

  1. 기판을 준비하는 단계; 및
    상기 기판상에 일정량의 몰리브덴 및 ITO를 동시에 증착하는 단계;를 포함하는 것을 특징으로 하는 몰리브덴이 도핑된 ITO계 TCO 박막 코팅방법.
  2. 제 1 항에 있어서,
    상기 기판은 투명한 유리기판을 이용하는 것을 특징으로 하는 몰리브덴이 도핑된 ITO계 TCO 박막 코팅방법.
  3. 제 1 항에 있어서,
    상기 증착 단계는 RF magnetron 방식의 Combinatorial sputter를 이용하는 것을 특징으로 하는 몰리브덴이 도핑된 ITO계 TCO 박막 코팅방법.
  4. 제 3 항에 있어서,
    상기 증착 단계는 증착 온도 350℃에서 수행되는 것을 특징으로 하는 몰리브덴이 도핑된 ITO계 TCO 박막 코팅방법.
  5. 제 4 항에 있어서,
    상기 증착 단계는 Ar 가스 분위기에 일정비율의 산소를 주입시켜 수행되는 것을 특징으로 하는 몰리브덴이 도핑된 ITO계 TCO 박막 코팅방법.
  6. 제 5 항에 있어서,
    상기 증착 단계는 공정 압력 0.14 ~ 0.15Pa 및 증착 거리 150mm의 조건에서 수행되는 것을 특징으로 하는 몰리브덴이 도핑된 ITO계 TCO 박막 코팅방법.
  7. 제 1 항 내지 제 6 항 중 어느 한 항으로 이루어진 몰리브덴이 도핑된 ITO계 TCO 박막.


KR1020110041676A 2011-05-02 2011-05-02 몰리브덴이 도핑된 ito계 tco 박막 및 이의 코팅방법 KR101298490B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110041676A KR101298490B1 (ko) 2011-05-02 2011-05-02 몰리브덴이 도핑된 ito계 tco 박막 및 이의 코팅방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110041676A KR101298490B1 (ko) 2011-05-02 2011-05-02 몰리브덴이 도핑된 ito계 tco 박막 및 이의 코팅방법

Publications (2)

Publication Number Publication Date
KR20120123982A true KR20120123982A (ko) 2012-11-12
KR101298490B1 KR101298490B1 (ko) 2013-08-21

Family

ID=47509502

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110041676A KR101298490B1 (ko) 2011-05-02 2011-05-02 몰리브덴이 도핑된 ito계 tco 박막 및 이의 코팅방법

Country Status (1)

Country Link
KR (1) KR101298490B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892445B2 (en) 2017-11-28 2021-01-12 Lg Display Co., Ltd. Light apparatus for organic light emitting device
US10910585B2 (en) 2017-11-28 2021-02-02 Lg Display Co., Ltd. OLED lighting apparatus having a double layered electrode
KR20210057535A (ko) * 2019-11-12 2021-05-21 고려대학교 산학협력단 전기장을 이용한 도핑 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241617A (ja) * 1990-02-19 1991-10-28 Fujitsu Ltd 透明導電膜の形成方法
KR100744017B1 (ko) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 고저항 투명 도전막용 스퍼터링 타겟 및 고저항 투명도전막의 제조방법
KR100739457B1 (ko) * 2005-08-26 2007-07-19 인하대학교 산학협력단 마그네트론 코스퍼터링법을 이용한 금속 도핑 ZnO 박막의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892445B2 (en) 2017-11-28 2021-01-12 Lg Display Co., Ltd. Light apparatus for organic light emitting device
US10910585B2 (en) 2017-11-28 2021-02-02 Lg Display Co., Ltd. OLED lighting apparatus having a double layered electrode
KR20210057535A (ko) * 2019-11-12 2021-05-21 고려대학교 산학협력단 전기장을 이용한 도핑 방법
US11512396B2 (en) 2019-11-12 2022-11-29 Korea University Research And Business Foundation Method for doping using electric field

Also Published As

Publication number Publication date
KR101298490B1 (ko) 2013-08-21

Similar Documents

Publication Publication Date Title
Guillén et al. Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature
US8736947B2 (en) Materials and device stack for market viable electrochromic devices
Parthiban et al. High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications
CN106773436A (zh) 一种全固态电致变色玻璃器件及其制备方法
WO2008105614A1 (en) Conductive laminated body and method for preparing the same
US20130335803A1 (en) Thermochromic Window
KR101449258B1 (ko) 산화물 기반의 고 유연성 투명전극
Wie et al. Fully crystallized ultrathin ITO films deposited by sputtering with in-situ electron beam irradiation for touch-sensitive screens
Kim et al. Effect of thickness and substrate temperature on the properties of transparent Ti-doped In2O3 films grown by direct current magnetron sputtering
KR101298490B1 (ko) 몰리브덴이 도핑된 ito계 tco 박막 및 이의 코팅방법
JP2022176332A (ja) エレクトロクロミック調光部材、光透過性導電ガラスフィルムおよびエレクトロクロミック調光素子
US10167545B2 (en) Indium tin oxide thin films with both near-infrared transparency and excellent resistivity
Micali et al. Structural, optical and electrical characterization of ITO films co-doped with Molybdenum
KR101236039B1 (ko) 도전 적층체 및 이의 제조방법
KR100982129B1 (ko) 산화아연계 박막 및 그 제조방법
JP4358251B2 (ja) 高抵抗化スズドープ酸化インジウム膜の成膜方法
KR102164629B1 (ko) 복합체 투명 전극
CN101834009B (zh) 一种低铟掺杂量氧化锌透明导电膜及其制备方法
Fang et al. Magnetron sputtered AZO thin films on commercial ITO glass for application of a very low resistance transparent electrode
KR101005973B1 (ko) 도전 적층체 및 이의 제조방법
US11500257B2 (en) Inorganic solid-state electrochromic module containing inorganic transparent conductive film
KR100682741B1 (ko) 산화 아연 계 투명 전도성 산화물 박막의 제조 방법
KR20140011854A (ko) 마그네슘 산화아연을 포함하는 다층 투명 전극 및 이의 제조방법
Kim Properties of ITO/Cu/ITO multilayer films for application as low resistance transparent electrodes
KR20080006812A (ko) Ito 이중막 증착방법 및 이에 따라 제조된 ito이중막

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 18