KR20120121725A - Method for fabricating semiconductor device - Google Patents

Method for fabricating semiconductor device Download PDF

Info

Publication number
KR20120121725A
KR20120121725A KR1020110039694A KR20110039694A KR20120121725A KR 20120121725 A KR20120121725 A KR 20120121725A KR 1020110039694 A KR1020110039694 A KR 1020110039694A KR 20110039694 A KR20110039694 A KR 20110039694A KR 20120121725 A KR20120121725 A KR 20120121725A
Authority
KR
South Korea
Prior art keywords
etching
silicon oxynitride
semiconductor device
fin
semiconductor
Prior art date
Application number
KR1020110039694A
Other languages
Korean (ko)
Inventor
손승형
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020110039694A priority Critical patent/KR20120121725A/en
Publication of KR20120121725A publication Critical patent/KR20120121725A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to prevent a particle defect by etching reflection preventing layer formed on a semiconductor substrate in an etching process for forming a pin gate. CONSTITUTION: A SiON(Si-Rich Silicon OxyNitride)(130) and a reflection preventing layer(140) are formed on a semiconductor substrate. The SiON and the reflection preventing layer are etched using a fined mask as an etching mask. A fined active region(160) is formed. HBr(hydrogen bromide) gas is included when the reflection preventing layer is etched. CHF6, Cl2(chlorine gas), and O2(oxyen) are included when the SiON is etched.

Description

반도체 소자의 제조 방법{METHOD FOR FABRICATING SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {METHOD FOR FABRICATING SEMICONDUCTOR DEVICE}

본 발명은 고집적 반도체 소자의 제조방법에 관한 것으로, 특히 고집적 반도체 소자에 포함되는 핀 트랜지스터의 형성 과정에서 공정 마진을 높여 수율을 향상시키고 핀 트랜지스터를 포함하는 반도체 소자의 동작 안정성을 높이기 위한 기술에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a highly integrated semiconductor device, and more particularly, to a process for increasing a process margin in the process of forming a fin transistor included in a highly integrated semiconductor device, to improve a yield, and to improve the operation stability of a semiconductor device including a pin transistor. will be.

일반적으로, 반도체는 전기전도도에 따른 물질의 분류 가운데 하나로 도체와 부도체의 중간영역에 속하는 물질로서, 순수한 상태에서는 부도체와 비슷하지만 불순물의 첨가나 기타 조작에 의해 전기전도도가 늘어나는 성질을 가진다. 이러한 반도체는 불순물을 첨가하고 도체를 연결하여 트랜지스터 등의 반도체 소자를 생성하는 데 사용되며, 반도체 소자를 사용하여 만들어진 여러 가지 기능을 가지는 장치를 반도체 장치라 한다. 이러한 반도체 장치의 대표적인 예로는 반도체 기억 장치를 들 수 있다.In general, a semiconductor is one of a class of materials according to electrical conductivity, and is a material belonging to an intermediate region between conductors and non-conductors. In a pure state, a semiconductor is similar to non-conductor, but the electrical conductivity is increased by the addition of impurities or other operations. Such a semiconductor is used to create a semiconductor device such as a transistor by adding impurities and connecting conductors. A device having various functions made using the semiconductor device is called a semiconductor device. A representative example of such a semiconductor device is a semiconductor memory device.

복수의 반도체 장치들로 구성된 시스템에서 반도체 기억 장치는 데이터를 저장하기 위한 것이다. 데이터 처리 장치, 예를 들면, 중앙처리장치(CPU) 등에서 데이터를 요구하게 되면, 반도체 기억 장치는 데이터를 요구하는 장치로부터 입력된 어드레스에 대응하는 데이터를 출력하거나, 그 어드레스에 대응하는 위치에 데이터 요구 장치로부터 제공되는 데이터를 저장한다.In a system composed of a plurality of semiconductor devices, the semiconductor memory device is for storing data. When data is requested from a data processing device, for example, a central processing unit (CPU), the semiconductor memory device outputs data corresponding to an address input from a device requesting data, or at a position corresponding to the address. Stores data provided from the requesting device.

반도체 기억 장치의 데이터 저장 용량이 증가하면서 다수의 단위셀의 크기는 점점 작아지고 있으며, 읽기 혹은 쓰기 동작을 위한 여러 구성 요소들의 크기 역시 줄어들고 있다. 따라서, 반도체 기억 장치 내부의 불필요하게 중첩되는 배선 혹은 트랜지스터가 있다면 통합하여 각각의 요소가 차지하는 면적을 최소화하는 것이 중요하다. 또한, 반도체 기억 장치 내 포함된 다수의 단위셀의 크기를 줄이는 것 역시 집적도 향상에 큰 영향을 미친다.As the data storage capacity of the semiconductor memory device increases, the size of a plurality of unit cells becomes smaller and smaller, and the size of various components for read or write operations decreases. Therefore, it is important to minimize the area occupied by each element by integrating any unnecessary wiring or transistors inside the semiconductor memory device. In addition, reducing the size of the plurality of unit cells included in the semiconductor memory device also greatly increases the degree of integration.

반도체 기억 장치는 캐패시터 및 트랜지스터로 구성된 단위셀을 다수 포함하고 있으며, 이중 캐패시터는 데이터를 임시 저장하기 위해 사용되고 트랜지스터는 환경에 따라 전기전도도가 변화하는 반도체의 성질을 이용하여 제어 신호(워드 라인)에 대응하여 비트 라인과 캐패시터간 데이터를 전달하기 위해 사용된다. 트랜지스터는 게이트(gate), 소스(source) 및 드레인(drain)의 세 영역으로 구성되어 있으며, 게이트로 입력되는 제어 신호에 따라 소스와 드레인 간 전하의 이동은 반도체 기판의 채널(channel) 영역을 통해 일어난다.A semiconductor memory device includes a plurality of unit cells each composed of a capacitor and a transistor. The capacitor is used for temporarily storing data, and the transistor is connected to a control signal (word line) using the property of a semiconductor whose electric conductivity changes according to the environment. And is used to transfer data between the bit line and the capacitor correspondingly. The transistor is composed of three regions: a gate, a source, and a drain, and the movement of charge between the source and the drain is controlled through a channel region of the semiconductor substrate according to a control signal input to the gate. Happens.

통상적인 트랜지스터를 반도체 기판에 만드는 경우 반도체 기판에 게이트를 형성하고 게이트의 양 옆에 불순물을 도핑하여 소스와 드레인을 형성해왔다. 반도체 기억 장치의 데이터 저장용량이 증가하고 집적도는 높아지면서 각각의 단위셀의 크기는 점점 작게 제조되도록 요구되고 있다. 즉, 단위셀에 포함된 캐패시터와 트랜지스터의 디자인 규칙(Design Rule)이 감소하였고, 이에 따라 셀 트랜지스터의 채널 길이도 점점 줄어들면서 통상적인 트랜지스터에 단채널 효과 및 DIBL(Drain Induced Barrier Lower) 효과 등이 발생하여 동작의 신뢰성이 저하되었다. 채널의 길이가 감소하면서 발생한 현상들은 셀 트랜지스터가 정상적인 동작을 수행할 수 있도록 문턱 전압을 유지할 경우 극복이 가능하다. 통상적으로, 트랜지스터의 채널이 짧아질수록 채널이 형성되는 영역에 불순물의 도핑 농도를 증가시켜왔다.When conventional transistors are made in a semiconductor substrate, a gate is formed on the semiconductor substrate and doped with impurities on both sides of the gate to form a source and a drain. As the data storage capacity of the semiconductor memory device increases and the degree of integration increases, the size of each unit cell is required to be made smaller and smaller. That is, the design rules of the capacitors and transistors included in the unit cell have been reduced. As a result, the channel length of the cell transistors has gradually decreased, and thus, short channel effects and drain induced barrier lower (DIBL) effects have been applied to conventional transistors. Occurred, and the reliability of the operation was deteriorated. Phenomena that occur as the channel length decreases can be overcome by maintaining the threshold voltage so that the cell transistor can perform normal operation. Typically, the shorter the channel of the transistor, the higher the doping concentration of impurities in the region where the channel is formed.

하지만, 디자인 규칙이 100nm 이하로 감소하면서 그만큼 채널 영역에 도핑 농도를 더 증가하는 것은 SN접합(Storage Node(SN) junction)에서의 전계를 증가시켜 반도체 기억 장치의 리프레쉬 특성을 저하하는 또 다른 문제를 야기한다. 이를 극복하기 위해 디자인 규칙이 감소하더라도 셀 트랜지스터의 채널 길이를 유지할 수 있도록 채널이 수직 방향으로 길게 확보된 3차원 채널 구조를 가진 셀 트랜지스터를 사용한다.However, as the design rule decreases below 100 nm, increasing the doping concentration in the channel region further increases the electric field at the storage node (SN) junction, which deteriorates the refresh characteristics of the semiconductor memory device. Cause. To overcome this problem, a cell transistor having a three-dimensional channel structure having a long channel length in the vertical direction is used to maintain the channel length of the cell transistor even if the design rule is reduced.

3차원 채널 구조를 가진 셀 트랜지스터로서 대표적으로 사용되는 것이 핀(fin) 트랜지스터이다. 핀 트랜지스터는 입체형 채널 구조를 가지는 트랜지스터로서, 채널 영역이 형성되는 실리콘을 핀(Fin: 물고기의 지느러미)이라고 하는 얇은 지느러미 모양으로 세우고 그 양면에 게이트를 설치하는 이중 게이트 구조를 가진다. 수평 방향의 채널 폭이 짧더라도 수직 방향으로 채널 길이를 확보한 만큼 도핑 농도를 감소시킬 수 있기 때문에, 이러한 핀 구조는 게이트가 실리콘 평면 위에 설치되는 현재의 평면형 게이트 구조에 비해 트랜지스터 구동시 필요한 구동전류를 크게 증가시킬 수 있을 뿐만 아니라 구동하지 않을 때의 누설전류를 차단할 수 있는 장점이 있고, 반도체 장치의 크기를 크게 줄일 수 있다.Fin transistors are typically used as cell transistors having a three-dimensional channel structure. The fin transistor is a transistor having a three-dimensional channel structure, and has a double gate structure in which silicon in which a channel region is formed is formed in a thin fin shape called fin (fish fin) and gates are provided on both sides thereof. Since the doping concentration can be reduced by securing the channel length in the vertical direction even if the channel width in the horizontal direction is short, this fin structure requires the driving current required to drive the transistor compared to the current planar gate structure in which the gate is installed on the silicon plane. In addition to increasing significantly, the leakage current when not driven can be cut off, and the size of the semiconductor device can be greatly reduced.

전술한 종래의 문제점을 해결하기 위하여, 본 발명은 핀 게이트를 형성하기 위한 식각 공정 시 반도체 기판상에 형성된 반사방지막(OBARC)을 HBr 가스를 이용하여 식각하고, 실리콘산화질화막(SiON)을 CHF3, Cl2 및 O2 가스를 이용하여 핀 게이트의 프로파일(profile)의 이상 현상과 파티클(particle) 불량 등을 방지할 수 있는 반도체 소자의 제조 방법을 제공한다.In order to solve the above-described conventional problems, the present invention, in the etching process for forming the fin gate, the anti-reflection film (OBARC) formed on the semiconductor substrate is etched using HBr gas, the silicon oxynitride film (SiON) CHF 3 The present invention provides a method of manufacturing a semiconductor device capable of preventing abnormalities in profile of a fin gate, particle defects, and the like, using Cl 2 and O 2 gases.

본 발명은 반도체 기판상에 실리콘산화질화막 및 반사방지막을 형성하는 단계 및 핀형 마스크를 식각 마스크로 상기 반사방지막 및 상기 실리콘산화질화막을 식각하여 핀형 활성영역을 형성하는 단계를 포함하되, 상기 반사방지막의 식각 시에는 HBr 가스를 포함하고, 상기 실리콘산화질화막의 식각 시에는 CHF3, Cl2 및 O2를 포함하는 것을 특징으로 하는 반도체 소자의 제조 방법을 제공한다.The present invention includes forming a silicon oxynitride film and an anti-reflection film on a semiconductor substrate and forming the fin-type active region by etching the anti-reflection film and the silicon oxynitride film with an etch mask using a fin mask. In the etching, HBr gas is included, and in etching the silicon oxynitride layer, CHF 3 , Cl 2 and O 2 provides a method for manufacturing a semiconductor device characterized in that it comprises.

바람직하게는, 상기 반사방지막의 식각 시, 7mT ~ 15mT의 압력, 200Ws ~ 500Ws의 소스 파워(source power), 30Wb ~ 90Wb의 하부 파워(bottom power), 100sccm ~ 150sccm의 유량의 HBr 및 5sccm ~ 10sccm 유량의 O2를 포함하는 것을 특징으로 한다.Preferably, when etching the anti-reflection film, the pressure of 7mT ~ 15mT, source power of 200Ws ~ 500Ws, bottom power (30Wb ~ 90Wb), HBr of 5sccm ~ 10sccm flow rate of 100sccm ~ 150sccm It characterized by including the flow rate of O 2 .

바람직하게는, 상기 실리콘산화질화막의 식각 시, 5mT ~ 10mT의 압력,500Ws ~ 700Ws의 소스 파워(source power), 50Wb ~ 150Wb의 하부 파워(bottom power), 50sccm ~ 150sccm 유량의 CHF3, 5sccm ~ 20sccm 유량의 Cl2 및 2sccm ~ 5sccm의 O2를 포함하는 것을 특징으로 한다.Preferably, when etching the silicon oxynitride layer, a pressure of 5mT ~ 10mT, source power of 500Ws ~ 700Ws, bottom power of 50Wb ~ 150Wb, CHF 3 , 5sccm ~ ~ 50sccm ~ 150sccm flow rate It is characterized in that it comprises Cl 2 of 20sccm flow rate and O 2 of 2sccm ~ 5sccm.

본 발명은 핀 게이트를 형성하기 위한 식각 공정 시 반도체 기판상에 형성된 반사방지막(OBARC)을 HBr 가스를 이용하여 식각하고, 실리콘산화질화막(SiON)을 CHF3, Cl2 및 O2 가스를 이용하여 핀 게이트의 프로파일(profile)의 이상 현상과 파티클(particle) 불량 등을 방지할 수 있는 장점이 있다.According to an embodiment of the present invention, an anti-reflection film (OBARC) formed on a semiconductor substrate is etched using HBr gas and a silicon oxynitride film (SiON) is formed using CHF 3 , Cl 2, and O 2 gases in an etching process for forming a fin gate. Anomalies in the profile of the fin gate and particle defects can be prevented.

도 1은 본 발명에 따른 반도체 소자의 제조 방법을 도시한 단면도.
도 2는 본 발명에 따른 반도체 소자의 제조 방법을 도시한 그래프.
도 3은 본 발명에 따른 반도체 소자의 제조 방법을 도시한 사진도.
1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to the present invention.
2 is a graph illustrating a method of manufacturing a semiconductor device according to the present invention.
3 is a photograph showing a method of manufacturing a semiconductor device according to the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1을 참조하면, 반도체 기판(100) 상에 활성영역(110)을 정의하는 소자분리영역(120)을 형성한다.Referring to FIG. 1, a device isolation region 120 defining an active region 110 is formed on a semiconductor substrate 100.

다음에는, 활성영역(110) 및 소자분리영역(120) 상부에 실리콘산화질화막(130) 및 반사방지막(140)을 순차적으로 형성한다.Next, the silicon oxynitride film 130 and the anti-reflection film 140 are sequentially formed on the active region 110 and the device isolation region 120.

다음에는, 반사방지막(140) 상부에 감광막을 형성한 후, 핀형 마스크를 이용한 노광 및 현상 공정으로 감광막 패턴(150)을 형성한다. 감광막 패턴(150)을 식각 마스크로 반사방지막(140), 실리콘산화질화막(130), 소자분리영역(120) 및 활성영역(110)을 식각하여 핀형 활성영역(160)을 형성한다. 여기서, 반사방지막(BARC)의 식각 시, 감광막 패턴을 보호하기 위하여 7mT ~ 15mT의 압력, 200Ws ~ 500Ws의 소스 파워, 30Wb ~ 90Wb의 하부 파워, 100sccm ~ 150sccm의 유량의 HBr 및 5sccm ~ 10sccm 유량의 O2로 구성하고, 실리콘산화질화막(SiON)의 식각 시, 핀형 활성 영역의 수직한 프로파일(vertical profile)을 위하여 5mT ~ 10mT의 압력, 500Ws ~ 700Ws의 소스 파워, 50Wb ~ 150Wb의 하부 파워, 50sccm ~ 150sccm 유량의 CHF3, 5sccm ~ 20sccm 유량의 Cl2 및 2sccm ~ 5sccm의 O2로 구성하는 것이 바람직하다.Next, after the photoresist film is formed on the antireflection film 140, the photoresist pattern 150 is formed by an exposure and development process using a fin mask. The anti-reflection film 140, the silicon oxynitride layer 130, the device isolation region 120, and the active region 110 are etched using the photoresist pattern 150 as an etch mask to form the fin type active region 160. Here, when etching the anti-reflection film (BARC), in order to protect the photoresist pattern, the pressure of 7mT ~ 15mT, the source power of 200Ws ~ 500Ws, the lower power of 30Wb ~ 90Wb, HBr of the flow rate of 100sccm ~ 150sccm and the flow rate of 5sccm ~ 10sccm Composed of O 2 , and during etching of silicon oxynitride film (SiON), pressure of 5mT ~ 10mT, source power of 500Ws ~ 700Ws, lower power of 50Wb ~ 150Wb, 50sccm for the vertical profile of the fin active region It is preferable to comprise CHF 3 at a flow rate of ˜150 sccm, Cl 2 at a flow rate of 5 sccm to 20 sccm, and O 2 of 2 sccm to 5 sccm.

도 2는 본 발명에 따른 반도체 소자의 제조 방법을 도시한 그래프이다.2 is a graph illustrating a method of manufacturing a semiconductor device according to the present invention.

도 2를 참조하면, 반사방지막 및 실리콘산화질화막의 식각 공정 시 2 가지의 다른 층들 중 하나의 층을 식각하고 다른 하나의 층이 노출될 때 순간적으로 식각이 중지되는 감지점(엔드 포인트, End Point)을 나타내는 것으로써 Y축의 파장(wavelength) 및 X축의 시간(time)에 따라 A와 같이 엔드 포인트가 안정된 것을 도시하고 있다.Referring to FIG. 2, in the etching process of the anti-reflection film and the silicon oxynitride film, a detection point (end point or end point) in which one of two different layers is etched and the etching stops instantaneously when the other layer is exposed. ) Shows that the end point is stable like A according to the wavelength of the Y axis and the time of the X axis.

도 3은 본 발명에 따른 반도체 소자의 제조 방법을 도시한 사진도이다.3 is a photograph showing a method of manufacturing a semiconductor device according to the present invention.

도 3을 참조하면, 핀형 마스크를 식각 마스크로 반사방지막 및 실리콘산화질화막을 식각하여 핀형 활성영역(160)을 형성 시, 반사방지막(BARC)의 식각 시, 7mT ~ 15mT의 압력, 200Ws ~ 500Ws의 소스 파워, 30Wb ~ 90Wb의 하부 파워, 100sccm ~ 150sccm의 유량의 HBr 및 5sccm ~ 10sccm 유량의 O2로 구성하고 등방성 프로파일을 개선한다. 또한, 실리콘산화질화막(SiON)의 식각 시, 핀형 활성 영역의 수직한 프로파일(vertical profile)을 위하여 5mT ~ 10mT의 압력, 500Ws ~ 700Ws의 소스 파워, 50Wb ~ 150Wb의 하부 파워, 50sccm ~ 150sccm 유량의 CHF3, 5sccm ~ 20sccm 유량의 Cl2 및 2sccm ~ 5sccm의 O2로 구성하고 버티컬 프로파일(Vertical profile)을 개선한다.Referring to FIG. 3, when the anti-reflection film and the silicon oxynitride layer are etched using the fin mask as an etch mask to form the fin active region 160, when the anti-reflection film BARC is etched, a pressure of 7 mT to 15 mT and a pressure of 200 Ws to 500 Ws Source power, lower power from 30Wb to 90Wb, HBr at flow rates of 100sccm to 150sccm and O 2 at flow rates of 5sccm to 10sccm and improve isotropic profile. In addition, during etching of the silicon oxynitride film (SiON), a pressure of 5 mT to 10 mT, a source power of 500 Ws to 700 Ws, a lower power of 50 Wb to 150 Wb, and a flow rate of 50 sccm to 150 sccm for the vertical profile of the fin-type active region CHF 3 , Cl 2 at a flow rate of 5 sccm to 20 sccm and O 2 at 2 sccm to 5 sccm, and improve the vertical profile.

전술한 바와 같이, 본 발명은 핀 게이트를 형성하기 위한 식각 공정 시 반도체 기판상에 형성된 반사방지막(OBARC)을 HBr 가스를 이용하여 식각하고, 실리콘산화질화막(SiON)을 CHF3, Cl2 및 O2 가스를 이용하여 핀 게이트의 프로파일(profile)의 이상 현상과 파티클(particle) 불량 등을 방지할 수 있는 장점이 있다.As described above, in the present invention, an anti-reflection film (OBARC) formed on a semiconductor substrate is etched using HBr gas in the etching process for forming a fin gate, and the silicon oxynitride film (SiON) is CHF 3 , Cl 2, and O. The use of two gases has the advantage of preventing abnormalities in the profile of the fin gate and particle defects.

아울러 본 발명의 바람직한 실시예는 예시의 목적을 위한 것으로, 당업자라면 첨부된 특허청구범위의 기술적 사상과 범위를 통해 다양한 수정, 변경, 대체 및 부가가 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.It will be apparent to those skilled in the art that various modifications, additions, and substitutions are possible, and that various modifications, additions and substitutions are possible, within the spirit and scope of the appended claims. As shown in Fig.

Claims (3)

반도체 기판상에 실리콘산화질화막 및 반사방지막을 형성하는 단계; 및
핀형 마스크를 식각 마스크로 상기 반사방지막 및 상기 실리콘산화질화막을 식각하여 핀형 활성영역을 형성하는 단계를 포함하되, 상기 반사방지막의 식각 시에는 HBr 가스를 포함하고, 상기 실리콘산화질화막의 식각 시에는 CHF3, Cl2 및 O2를 포함하는 것을 특징으로 하는 반도체 소자의 제조 방법.
Forming a silicon oxynitride film and an anti-reflection film on the semiconductor substrate; And
Forming an fin-type active region by etching the anti-reflection film and the silicon oxynitride layer by using a fin-type mask as an etch mask, wherein the anti-reflection film includes HBr gas, and CHF when etching the silicon oxynitride layer. 3 , Cl 2 and O 2 comprising a semiconductor device manufacturing method.
제 1 항에 있어서,
상기 반사방지막의 식각 시, 7mT ~ 15mT의 압력, 200Ws ~ 500Ws의 소스 파워, 30Wb ~ 90Wb의 하부 파워, 100sccm ~ 150sccm의 유량의 HBr 및 5sccm ~ 10sccm 유량의 O2를 포함하는 것을 특징으로 하는 반도체 소자의 제조 방법.
The method of claim 1,
When the anti-reflection film is etched, the semiconductor comprising a pressure of 7mT ~ 15mT, source power of 200Ws ~ 500Ws, lower power of 30Wb ~ 90Wb, HBr of 100sccm ~ 150sccm flow rate and O 2 of 5sccm ~ 10sccm flow rate Method of manufacturing the device.
제 1 항에 있어서,
상기 실리콘산화질화막의 식각 시, 5mT ~ 10mT의 압력, 500Ws ~ 700Ws의 소스 파워, 50Wb ~ 150Wb의 하부 파워, 50sccm ~ 150sccm 유량의 CHF3, 5sccm ~ 20sccm 유량의 Cl2 및 2sccm ~ 5sccm의 O2를 포함하는 것을 특징으로 하는 반도체 소자의 제조 방법.
The method of claim 1,
When etching the silicon oxynitride layer, 5mT ~ 10mT pressure, 500Ws ~ 700Ws source power, 50Wb ~ 150Wb bottom power, 50sccm ~ 150sccm flow rate of CHF 3 , 5sccm ~ 20sccm flow rate Cl 2 and 2sccm ~ 5sccm O 2 Method of manufacturing a semiconductor device comprising a.
KR1020110039694A 2011-04-27 2011-04-27 Method for fabricating semiconductor device KR20120121725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110039694A KR20120121725A (en) 2011-04-27 2011-04-27 Method for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110039694A KR20120121725A (en) 2011-04-27 2011-04-27 Method for fabricating semiconductor device

Publications (1)

Publication Number Publication Date
KR20120121725A true KR20120121725A (en) 2012-11-06

Family

ID=47508132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110039694A KR20120121725A (en) 2011-04-27 2011-04-27 Method for fabricating semiconductor device

Country Status (1)

Country Link
KR (1) KR20120121725A (en)

Similar Documents

Publication Publication Date Title
US9343326B2 (en) CMP slurry composition for polishing an organic layer and method of forming a semiconductor device using the same
US9859443B2 (en) Field-effect transistor, and memory and semiconductor circuit including the same
TWI415250B (en) Rigid semiconductor memory having amorphous metal oxide semiconductor channels
KR102170770B1 (en) Semiconductor device
US7560768B2 (en) Nonvolatile memory device and method of manufacturing the same
KR102352229B1 (en) CMP composition for polishing an organic layer and method of forming a semiconductor device using the composition
US7898019B2 (en) Semiconductor constructions having multiple patterned masking layers over NAND gate stacks
KR102240769B1 (en) Magnetic memory device and forming the same
US20140226392A1 (en) Arrays Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells and Methods Of Reading A Data Value Stored By An Array Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells
CN106206445B (en) The forming method of memory construction
TWI624061B (en) Semiconductor device and method for fabricating the same
US20190027537A1 (en) Interconnect capping process for integration of mram devices and the resulting structures
KR20140029024A (en) Junctionless semiconductor device having buried gate, module and system having the device and manufacturing method of the device
US20220045165A1 (en) Channel conduction in semiconductor devices
TW201724590A (en) High density memory array with self-aligned via
US20130099298A1 (en) Semiconductor device and method for manufacturing the same
KR101205160B1 (en) Semiconductor device and method of fabricating the same
US20170352801A1 (en) Semiconductor memory device
KR20120121725A (en) Method for fabricating semiconductor device
KR20120048903A (en) Semiconductor device and method of fabricating the same
CN110556378B (en) Semiconductor structure and forming method thereof
CN107978554B (en) Semiconductor device, manufacturing method thereof and electronic device
US11393688B2 (en) Semiconductor contact formation
US11114443B2 (en) Semiconductor structure formation
CN108417537B (en) SRAM memory and forming method thereof

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination