KR20120121354A - 유리 용해로용 전극 홀더 - Google Patents

유리 용해로용 전극 홀더 Download PDF

Info

Publication number
KR20120121354A
KR20120121354A KR1020120041081A KR20120041081A KR20120121354A KR 20120121354 A KR20120121354 A KR 20120121354A KR 1020120041081 A KR1020120041081 A KR 1020120041081A KR 20120041081 A KR20120041081 A KR 20120041081A KR 20120121354 A KR20120121354 A KR 20120121354A
Authority
KR
South Korea
Prior art keywords
wall
electrode holder
electrode
shielding layer
refractory
Prior art date
Application number
KR1020120041081A
Other languages
English (en)
Other versions
KR101941287B1 (ko
Inventor
질베르 드 앙젤리
데이비드 엠. 라인맨
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20120121354A publication Critical patent/KR20120121354A/ko
Application granted granted Critical
Publication of KR101941287B1 publication Critical patent/KR101941287B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • F27D11/04Ohmic resistance heating with direct passage of current through the material being heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • F27D11/10Disposition of electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)
  • Discharge Heating (AREA)

Abstract

용융 유리를 형성하는 배치 재료의 용해로에 사용되는 전극 홀더는 노즈 부재에 코팅되고 용해로 내에 있는 용융 유리 재료와 접촉하는 내화성 차폐층을 구비한다. 바람직하기로, 내화성 차폐층은 알루미나 혹은 지르코니아와 같은 화염 혹은 플라즈마 용사 세라믹으로 이루어진다. 이는 고온의 용융 유리로부터 노즈 부재의 부식을 보호한다.

Description

유리 용해로용 전극 홀더 {Electrode holder for electric glass melting}
본 출원은 2011년 4월 26일자로 출원된 미국 출원 제US 13/094,182호를 35 U.S.C. §120에 따라 우선권으로 주장한다.
본 발명은 유리 용해하는 동안에 사용할 수 있는 개선된 전극 홀더에 관한 것으로, 특히 용융 유리와 접촉하는 전극 홀더의 전면부에 증착된 내화성 차폐층에 관한 것이다.
유리의 저항 용해를 위한 전극으로 금속 뿐만 아니라 전도성 산화물물 및 탄소와 같은 비금속 재료의 사용은 이미 널리 알려져 있는 기술이다. 원통형 혹은 직사각형의 단면으로 된 몰리브덴(Mo), 탄소 혹은 산화주석이 전극 재료로서 범용적으로 사용되고 있다. 이러한 재료들, 특히 몰리브덴이 가지고 있는 문제점은 500℃~600℃를 초과하는 임의의 산화 분위기 혹은 대기 중에서 작업하게 되면 빠르게 산화되는 경향을 갖는다. 산화 온도 범위는 전형적인 유리의 용해 온도 내에 존재한다.
일반적으로, 유리 내에 있는 전극의 일부는 유리 내에 낮은 산소 수준으로 인해 산화 속도를 제어할 수 있다. 산화와 관련되어 있는 전극의 일부는 용해로의 벽을 관통하고 대기 중으로 뻗어 있는 전극이다. 용해로의 벽을 관통하여 연장된 전극은 전극에 전원을 공급하는 전기연결을 필요로 한다. 전극 재료의 훌륭한 열전도성 때문에, 전극의 일부는 500℃ 이상으로 뜨거워지고 대기와 접촉하게 된다. 이 영역이 산화하게 된다. 이러한 산화를 방지하기 위해, 산화로부터 전극을 보호하려는 여러 방법들이 개발되고 있다. 가장 일반적인 산화방지 방법은 산화로부터 몰리브덴을 보호할 수 있는 스테인리스강 혹은 초합금(super alloy)으로 제작된 전극 혹더 혹은 슬리브(sleeve)를 사용하는 것이다. 전극 홀더는 통상적으로 전극 주변에 유리를 냉각수로 응고시켜 산소가 고온의 재료와 접촉하는 것을 방지하거나 산화가 중단되는 지점까지 전극을 냉각시킨다. 냉각수의 사용이 조정 절차의 역할로서, 용해유닛에서 많은 열을 제거할 수 없기 때문에, 전극 홀더 재료는 유리를 산화 방지 혹은 부식 방지하기 위해 충분히 냉각되어야만 한다.
소다석회와 같이 구매가능한 유리를 용해하는 전형적인 전극 설비에서, 전극 홀더의 온도가 전극 홀더 재료를 부식시키는 한계치보다 충분히 낮춰져, 용해로의 운전중에 산화로부터 전극 홀더와 전극을 보호한다. 영상표시장치용으로 사용되는 더 높은 융해 온도를 가진 유리에서, 전극 홀더의 온도는 부식이 충분히 발생할 수 있는 온도보다 높게 된다. 일단 전극 홀더가 부식되면, 산소와 고온의 전극 재료의 접촉을 방지하는 차폐물로써 더 이상 사용할 수 없어, 지속적으로 산화된다. 만약 전극 산화가 더 악화된다면, 전극은 넥다운(neck down)되고 고장나서 더 이상 전기를 전도할 수 없게 된다.
1,300℃ 이상의 온도에서 작동하는 스테인리스강의 전극 홀더는 원소상태에서 유리 내에 산화물을 저감하는 알루미나 붕규산 유리(alumina borosilicate glass)와 접촉하는 스테인리스강으로 분석된다. 원소상태에서, 이러한 재료들은 금속에 부식을 야기하는 스테인리스강과 합금을 제작할 수 있어 낮은 용해 온도를 가진 합금을 형성한다. 철-규소 상태도로부터, 310계 스테인리스강과 같이 철기합금에 규소는 높은 작동 온도에서 금속을 약화시킬 수 있는 낮은 용해 온도 상태를 형성하게 될 것이다. 높은 작동 온도는 대략 1,000℃ 이상, 예컨대 대략 1,100℃ 이상, 1,200℃ 이상 또는 1,300℃ 이상을 의미한다. 1,200℃ 보다 높은 온도에서, 액상의 철-규소가 형성된다. 이러한 상의 형성은 총괄적으로 전극 슬리브의 강도를 저해하게 될 것이며 전극에 산소의 접근을 방지할 수 없게 된다. 이러한 한계성을 극복하기 위해, 내화성 차폐층이 용융 유리 재료에 대부분 노출되는 전극 홀더 일부에 증착된다.
일 실시예에서, 유리 용해로용 전극 홀더(10)는 외벽(12)과, 전극을 수용하기 위한 채널(20)을 형성하는 내벽(14), 상기 외벽과 내벽 사이에 위치된 냉각수의 유동을 수용하는 경로, 전극 홀더의 제1단부에서 상기 내벽과 외벽을 결합하는 노즈 부재(16), 및 상기 노즈 부재의 외부면에 증착된 내화성 차폐층(46)으로 이루어진다. 경로는 전극 홀더 내에 간극 혹은 공동부를 구비할 수 있거나 예컨대 이러한 간극 혹은 공동부 내에 수용된 도관일 수도 있다. 바람직하기로, 내화성 차폐층(46)은 내벽의 외주 부분을 따라 연장된다. 바람직하기로, 차폐층은 내벽의 일부를 따라서 연장된다.
몇몇 실시예에서, 내화성 차폐층은 지르코니아 혹은 알루미나로 이루어지며, 다른 적합한 내화성 재질은 알루미나-티타니아와 같은 재료를 사용할 수 있다. 바람직하기로, 내화성 차폐층의 두께는 100㎛ 이상으로 형성된다. 내화성 차폐층은 화염 용사 혹은 플라즈마 용사에 의해 환형상의 노즈 부재 상에 증착될 수 있다. 몇몇 실시예에서, 초고속 용사코팅이 차폐층을 증착하는 데에 사용될 수 있다. 바람직하기로, 차폐층의 열팽창계수와 환형상의 노즈 부재의 열팽창계수의 차는 10배를 넘지 않는다. 전극 홀더는 전극과 내벽 사이에 무산소 가스를 공급하고 무산소 가스를 수용하는 유입구를 구비할 수 있다.
다른 실시예에서, 용융 유리 재료를 형성하는 용해로(52)는 관통 경로를 형성하는 내화 블록(44);과, 경로 내에 위치선정되고, 외벽(12)과, 전극(22)을 수용하기 위한 채널(20)을 형성하는 내벽(14), 상기 외벽과 내벽 사이에 위치된 냉각수의 유동을 수용하는 냉각수 경로(30,40), 및 전극 홀더의 제1단부에서 내벽과 외벽을 결합하는 노즈 부재(16)를 구비한 전극 홀더(10);로 이루어진다. 환형상의 노즈 부재는 이의 외부면에 증착된 내화성 차폐층(46)을 구비한다. 몇몇 실시예에서, 냉각수 경로는 도관(30)으로 이루어진다. 하지만, 냉각수는 전극 홀더 내에 공동부를 통해 순환될 수도 있다. 용해로의 운전 도중에, 다시 말하자면 전극을 사용하여 용융 유리 재료를 가열하는 경우에, 내화성 차폐층(46)은 용융 유리 재료(48)와 접촉하게 된다. 바람직하기로, 내화성 차폐층(46)의 두께는 100㎛ 이상으로 형성한다. 몇몇 실시예에서, 전극 홀더(10)는 용해로의 바닥벽(45)에 위치선정되되, 이와 달리 다른 실시예에서는 전극 홀더가 용해로의 측벽에 위치선정된다. 내화성 차폐층(46)은 몇몇 경우에 적어도 전극 홀더(10)의 내벽(14) 일부에 증착될 수 있다. 바람직하기로, 차폐층의 열팽창계수와 환형상의 노즈 부재(예컨대, 차폐층이 증착될 기판)의 열팽창계수의 차는 10배를 넘지 않는다.
여전히 다른 실시예에서, 용융 유리 재료를 형성하는 방법은 용기 내에 용융 유리 재료를 가열하는 단계를 포함하는데, 이 가열 단계는 전극 홀더(10)에 위치된 전극(22)을 통해 전류를 인가하는 단계를 포함하는 한편, 전극 홀더는 외벽(12)과, 전극을 수용하기 위한 채널(20)을 형성하는 내벽(14), 외벽과 내벽 사이에 위치된 냉각수의 유동을 수용하는 경로, 전극 홀더의 제1단부에서 내벽과 외벽을 결합하는 노즈 부재(16), 및 환형상의 노즈 부재의 외부면에 증착된 내화성 차폐층(46)을 구비한다. 방법은 가열하는 동안에 내벽(14)과 전극 사이에 질소 또는 헬륨과 같은 무산소 가스를 공급하는 단계를 추가로 포함한다.
본 발명의 추가적인 특징과 장점들은 아래의 상세한 설명을 통해 기술될 것이며, 특히 어느 정도는 당해 분야의 숙련자들에게 명백해지거나 여기에 기술된 바와 같이 상세한 설명, 청구범위 그리고 첨부도면을 포함한 본 발명의 구현으로 인식될 것이다.
전술된 요약과 아래의 상세한 설명은 본 발명의 모범적인 실례이며 청구된 바와 같이 본 발명의 본질과 특징을 이해하기 위한 제공되는 개요 또는 구조로 이해해야 한다. 첨부된 도면은 본 발명의 이해를 돕기 위해 제공되는 것이며 본 명세서의 일부를 구성하고 병합된다. 도면은 본 발명의 다양한 실시예를 도해한 것으로 설명과 함께 본 발명의 원리와 작동을 설명하는 것이다.
이상 본 발명의 설명에 의하면, 본 발명은 고온의 유리 재료에 노출되는 전극 홀더 일부에 내화성 차폐층을 증착시켜 산소와의 접촉을 효과적으로 차단할 수 있다.
도 1은 본 발명의 실시예에 따른 전극 홀더의 길이방향에 단면도이다.
도 2는 유리 용해로의 내화벽 내에 위치된 도 1의 전극 홀더의 길이방향에 단면도이다.
도 3은 도 2의 전극 홀더 일부의 길이방향에 확대 단면도로, 이 전극 홀더의 노즈 부재에 증착된 내화층을 도시한다.
도 4는 전극 홀더의 내부벽과 노즈 부재 상에 증착된 내화성 절연층의 위치를 도해한 본 발명의 실시예에 따른 전극 홀더 일부의 사시도이다.
도 5는 용해로의 바닥부를 향해 바라본 도면으로, 노의 측벽과 바닥부(하부)에 장착된 전극 홀더를 도시한다.
아래의 상세한 설명에서, 설명을 목적으로 하고 이에 국한되지 않은 모범적인 실시예가 본 발명의 전반적인 이해를 돕기 위해 설명된다. 한편, 본 발명의 장점은 당해 분야의 숙련자들에게 명백하게 이해될 것이며, 본 발명은 여기에 기재된 특정 내용에서 벗어난 다른 실시예로 구현될 수 있다. 더욱이, 이미 널리 알려져 있는 장치, 방법 및 재료에 대한 내용은 본 발명의 명료한 이해를 돕기 위해 생략될 수 있다. 마지막으로, 유사 참조부호는 유사한 부재를 나타낸다.
비록 본 발명이 한정된 실시예로 기술되어 있더라도, 당해 분야의 숙련자들은 본 명세서에 기재된 바와 같이 본 발명의 범주에서 벗어나지 않게 창안된 다른 실시예들 인식하게 될 것이다. 따라서, 본 발명의 범주는 첨부된 청구항으로만 제한될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전극 홀더(10)의 길이방향에 단면도이다. 전극 홀더(10)는 일반적으로 원통형의 외형을 가지며, 외벽(12)과, 내벽(14), 환형상의 노즈 부재(16), 및 환형상의 후미 부재(18)로 이루어진다. 외벽(12)과 내벽(14)은 관형상으로 되어 있다. 노즈 부재(16;nose member)와 후미 부재(18)는 내고온성(high temperature resistant) 금속으로 제작된다. 예컨대, 적당한 금속은 310계 스테인리스강과 같은 스테인리스강일 수 있다. 노즈 부재(16)와 후미 부재(18) 모두는 외벽(12)과 내벽(14)에 결합된다. 내벽(14)은 전극(22;도 2 참조)이 장착될 중공부 혹은 채널(20)을 형성한다. 외벽(12)과, 내벽(14), 노즈 부재(16), 및 후미 부재(18)가 전극 홀더(10)의 헤드부(24)를 이루고 있다. 내벽(14)은 채널(20) 내에서 전극을 지지하고, 전극(22)과 내벽(14) 사이에 전기절연부를 구비하며, 내벽(14)과의 접촉 면적을 최소화시킬 수 있는 간격자(26)를 구비할 수 있어, 채널(20) 내에서 전극(22)의 이동을 용이하게 한다. 몇몇 실시예에서, 내벽(14)의 일부는 헤드부(24)에서 후방으로 연장될 수 있고 전극 홀더(10)의 후미부(28)를 구비한다.
헤드부(24)는 추가로 물과 같은 냉각수가 전극 홀더(10)와 전극(22)을 냉각시키기 위해 유동할 수 있는 도관(30)을 추가로 외벽(12)과 내벽(14) 사이에 위치시킨다. 도관(30)은 예컨대 나선형 관으로 이루어질 수 있다. 하지만, 도관(30)은 직선부, 곡선부 또는 이들 직선부와 곡선부의 조합형으로 이루어질 수 있다. 바람직하기로, 도관(30)은 내벽(14)에 인접하게 배치되어 전극의 냉각을 극대화시킬 수 있는, 한편 바람직하기로 도관은 전극 홀더의 가열 혹은 냉각 도중에 열팽창을 수용할 수 있도록 전체 길이부를 따라 내벽에 견고하게 장착되지 않는다. 액체 공급라인(32)과 액체 배출라인(34)은 도관(30)에 연결되고 공급원(미도시)으로부터 냉각수를 도관에 공급한다.
도관(30)에 덧붙여서, 가스성 냉각제도 가스 공급라인(36)과 가스 배출라인(38)에 의해 헤드부(24)를 관통해 순환될 수 있다. 예컨대, 공기는 압력 하에서 가스 공급라인(36)을 통해 외벽(12)과 내벽(14) 사이의 공동부(40) 내로 공급될 수 있고, 가스 배출라인(38)을 통해 공동부에서 제거될 수 있다.
다른 냉각구성도 가능하며 본 발명의 범주 내에 존재하게 된다. 예컨대, 몇몇 실시예에서, 도관(30)이 생략될 수 있으며, 냉각수는 가스성 냉각 매질을 사용하지 않고 공동부(40)를 통해 순환된다. 다른 실시예에서, 승화성 액체로 구성된 하이브리드 냉각 매질이 도관(30) 혹은 공동부(40) 내로 주입될 수 있다. 다른 실시예에서, 가스성 냉각제 혹은 하이브리드 냉각제 모두가 공동부(40) 내에서 순환될 수 있다. 본 발명의 실시예에 따르면, 헤드부(24)는 냉각 매질로 냉각되고, 냉각 매질은 액체, 가스, 액체와 가스, 혹은 액체와 가스의 혼합물일 수 있다. 냉각 매질이 헤드부(24), 예컨대 도관(30) 또는 공동부(40) 내에 경로를 따라 유동한다.
여전히 다른 실시예에서, 환원가스 또는 비산화가스가 선택적으로 전극과 내벽(14) 사이에 채널(20)로 공급될 수 있다. 예컨대, 질소 또는 헬륨과 같은 불활성가스가 용해공정의 개시 상태 또는 정상 운전상태 도중에 화살표(43)로 표시된 바와 같이 유입구(41)를 통해 채널(20)로 공급될 수 있다.
헤드부(24)는 외벽(12)과 내벽(14) 사이에 위치된 단열재층(42)을 추가로 구비할 수 있다. 단열재층(42)은 예컨대 섬유상 알루미나와 같은 섬유상 세라믹 절연재일 수 있다. 몇몇 실시예에서, 섬유상 무기물 절연재의 제2층이 외벽(12)의 외주면 둘레를 둘러씌울 수 있다. 예컨대, 둘러싼 절연재는 노즈 부재(16)까지 연장되되, 이 노즈 부재(16)를 덮어씌우지는 않는다.
만약 전극 홀더(10)가 헤드부(24)에서 후방으로 뻗어 있는 후미부(28)를 형성하는 확장형 내벽(14)을 구비한다면, 후미부(28)는 환형상의 후미 블록(29)을 구비할 수 있다. 몇몇 실시예에서, 전극(22)이 하나 이상의 나사를 매개로 하여 전극(22)에 죄여진 칼라(31;collar)에 끼워 넣어지고 후미 블록(29)과 칼라를 맞물리게 하여, 특히 전극 홀더가 용해 용기의 바닥에서 수직방향으로 위치선정되어 있는 경우에 전극 홀더에서 전극이 빠져나가지 않도록 한다.
도 2 및 도 3에 도해된 바와 같이, 전극 홀더(10)는 용해 용기의 벽을 구성하는 내화 블록(44) 내에 위치선정된다. 도 2 및 도 3의 실시예에서, 전극 홀더는 용해로의 내화바닥 혹은 바닥벽(45)을 구성하는 내화 블록 내에 위치되어 있다. 다른 실시예에서, 전극 홀더는 용해로의 측벽을 구성하는 내화 블록 내에 위치선정될 수 있다. 노즈 부재(16)의 외부면 일부가 500℃ 이상의 온도에서 용융 재료에 노출될 수 있기 때문에, 내화재가 용융 유리와 접촉하는 노즈 부재(16)의 외부면 일부에 내화성 차폐층(46)으로 증착된다. 증착은 화염 증착(flame deposition) 또는 플라즈마 증착(plasma deposition)으로 구현될 수 있다. 예컨대, 플라즈마 용사공정에서, 증착될 재료는 플라즈마 스트림으로 공급되되, 재료가 용해되고 코팅될 물체를 향해 가속화된다. 플라즈마 스트림의 온도는 10,000K와 같이 높을 수 있다. 증착될 재료가 물체에 충돌하여 라멜라(lamella)로 불리는 편평한 증착을 형성한다. 라멜라가 축적되어 바람직한 두께의 코팅을 형성한다. 플라즈마 조성, 플라즈마 유량, 목표 물체에서 플라즈마 스트림을 생성하는 플라즈마 토치(torch)의 오프셋 거리와 같은 매개변수를 조절함으로써, 코팅의 특성은 바람직한 다공성, 열전도성, 전기전도성, 인장변형률 등을 달성하기 위해 변경될 수 있다. 코팅을 증착하는 다른 방법은 플라즈마 용사보다 조밀 코팅을 제공하는 초고속 용사코팅(High Velocity Oxygen Fuel thermal spray coating)이다. 라멜라의 형성은 통상적으로 공극률, 크랙, 및 불안정한 접합을 초래할 수 있기 때문에, 열용사 코팅은 전형적으로 낮은 열전도성을 가지고 있어 절연성능을 향상시킨다. 노즈 부재(16)의 외주면에 증착된 내화성 차폐층(46)의 두께는 100㎛ 이상, 200㎛ 이상, 300㎛ 이상 혹은 400㎛ 이상이어야 한다. 내화성 차폐층(46)을 형성하기에 적합한 재료는 산화알루미늄(알루미나), 산화지르코늄(지르코니아) 및 알루미나-티타니아(titania)를 포함하며, 이에 국한되지는 않는다. 바람직하기로, 내화성 차폐층의 열팽창계수는 차폐층의 스폴링(spalling) 현상을 방지하기 위해 기초 기판, 예컨대 노즐 부재(16)의 열팽창계수과 동일하거나 거의 일치한다. 예컨대, 몇몇 실시예에서, 노즈 부재(16)가 310계 스테인리스강으로 제작되되, 1,000℃에서 1.9×10-6/℃의 선팽창계수를 가지며, 알루미늄은 1,000℃에서 8.2×10-6/℃의 선팽창계수를 갖는다. 바람직하기로, 차폐층의 열팽창계수는 기초 기판의 열팽창계수의 10배 내에 있게 된다. 즉, 바람직한 차폐층의 열팽창계수는 노즈 부재의 열팽창계수보다 10배 이하이거나 노즈 부재의 열팽창계수보다 1/10배 이상이다.
노즈 부재(16)의 전방 외부면과 더불어서, 내화성 차폐층(46)이 다른 면에 증착될 수도 있다. 그러므로 내화성 차폐층(46)은 도 4에 도시된 바와 같이 노즈 부재(16)의 전면 상에 증착된 부분(46a)과 외주 부분(46b) 및 내벽(14) 위에 적층된 부분(46c)으로 이루어진다.
도 5는 유리를 형성하는 배치 재료(batch material)를 용해하는 용해로(52)를 위에서 아래로 바라본 도면으로, 용해로는 용해로의 바닥벽(45)과 측벽(54) 모두에 장착된 전극 홀더를 구비한다. 다른 실시예는 용해로의 측벽에만 혹은 바닥벽에만 전극 홀더를 장착하고 있다.
용해공정의 초기 단계 중, 전극 홀더의 냉각이 줄어들거나 중단되어, 도 3에 도시된 바와 같이 상대적으로 낮은 점도를 가진 용융 유리 재료(48)를 내화 블록(44)과 전극 홀더(10) 사이의 (그리고 내화 블록(44)과 전극(22) 사이의) 공간(50)으로 유동을 허용한다. 또한, 용융 유리 재료는 전극이 채널 내에 장착되는 경우에 환형상으로 된 채널(20) 내로 유동할 수 있다. 용융 유리 재료가 공간(50) 및 채널(20)과 같은 틈새 영역으로 유동하는 경우에, 냉각이 전극 홀더에 다시 발생되어, 전극 홀더와 내화 블록 사이에 틈새 공간 그리고 전극 홀더 내벽과 전극 사이에 틈새 공간에 위치되는 용융 유리 재료의 점도가 증가하여, 전극 홀더 둘레에 유리 재료를 응고시켜, 전극 홀더와 내화 블록 사이에 그리고 전극 홀더와 전극 사이에 밀봉부(seal)를 형성한다.
일례에서, 냉각이 줄어들거나 중단될 때 전극은 추가로 용융 유리 재료 속으로 연장될 필요가 있는데, 앞서 기술된 채널(20)과 공간(50)에서 응고된 유리 재료를 재용해할 수 있도록 한다. 그런 다음에, 전극이 용융 유리 재료 속으로 밀어 넣어진다. 점성 저항이 틈새 영역에서 용융 유리 재료를 밀어내므로, 통상적으로 전극은 필요 이상으로 밀어붙여, 채널(20)과 공간(50) 속에서 용융 유리 재료가 후퇴되는 것을 중단하게 된다. 일단 전극이 바람직하게 위치선정되면, 냉각이 회복되어 다시 틈새 영역 내에서 유리가 응고되어 용융 유리 내에 함유된 산소와 전극 및/또는 전극 홀더의 접촉을 방지하는 유리 밀봉부를 형성하게 된다. 몇몇 실시예에서, 비산화 분위기가 질소 혹은 불활성가스(예컨대, 헬륨, 크립톤, 아르곤 또는 제논)와 같은 무산소 가스를 유입구(41)를 통해 유동시켜 내벽(14)과 전극(22) 사이의 채널(20) 내에 형성될 수 있다. 채널(20)로 유입된 가스는 전방을 통해 (용융 유리 속으로) 혹은 채널(20)의 후방을 통해 (대기 속으로) 배출될 수 있다.
전술된 내용과 도 2 및 도 3에서, 노즈 부재(16)는 적어도 용해공정의 초기 단계 도중에 그리고 통상적으로 생산 운전 전반에 걸쳐 정기적으로 용융 유리와 직접 접촉한다. 용융 유리 재료는 1,000℃ 이상, 1,100℃ 이상, 1,200℃ 이상, 1,300℃ 이상, 1,400℃ 이상, 1,520℃ 이상, 1,540℃ 이상, 1,550℃ 이상, 또는 1,560℃ 이상일 수 있다. 내화성 차폐층(46)이 용해 운전 도중 용융 유리에 노출될 때 전극 홀더의 부식을 방지하기 위해 전극 홀더를 고온에서 작동할 수 있게 한다. 내화성 차폐층(46)은 전극의 사용수명을 연장시키고, 현저하게 사용수명을 줄이지 않고서도 전극 홀더를 고온에서 작동할 수 있도록 한다. 전극 홀더의 작동 온다가 높아질수록, 유리에서 제거되는 에너지가 줄어들게 되고 작업비용을 줄이게 된다. 내화성 차폐층의 사용은 전극 홀더를 위해 외산 및 고가 제품의 사용과 비교하면 전극의 사용수명을 연장하는 비용 효율이 높은 수단이다.
따라서, 모범적이고 이에 국한되지 않는 실시예가 구비한다:
C1. 유리 용해로용 전극 홀더(10)는 외벽(12)과; 전극을 수용하기 위한 채널(20)을 형성하는 내벽(14); 외벽과 내벽 사이에 위치되어 냉각수의 유동을 수용하는 경로; 전극 홀더의 제1단부에서 내벽과 외벽을 결합하는 노즈 부재(16); 및 이 노즈 부재의 외부면에 증착된 내화성 차폐층(46)을 구비한다.
C2. C1에 따른 전극 홀더에 있어서, 경로는 도관(30)으로 이루어진다.
C3. C1 또는 C2에 따른 전극 홀더에 있어서, 내화성 차폐층(46)은 내벽의 외주 부분을 따라 연장된다.
C4. C1 내지 C3 중 어느 하나에 따른 전극 홀더에 있어서, 내화성 차폐층은 내벽의 일부를 따라 연장된다.
C5. C1 내지 C4 중 어느 하나에 따른 전극 홀더에 있어서, 내화성 차폐층은 지르코니아 혹은 알루미나로 이루어진다.
C6. C1 내지 C5 중 어느 하나에 따른 전극 홀더에 있어서, 내화성 차폐층의 두께는 100㎛ 이상으로 형성된다.
C7. C1 내지 C6 중 어느 하나에 따른 전극 홀더에 있어서, 내화성 차폐층은 화염 용사 층 혹은 플라즈마 용사 층으로 이루어진다.
C8. C1 내지 C7 중 어느 하나에 따른 전극 홀더에 있어서, 차폐층의 열팽창계수와 환형상의 노즈 부재의 열팽창계수의 차는 10배(an order of magnitude)를 넘지 않는다.
C9. C1 내지 C8 중 어느 하나에 따른 전극 홀더에 있어서, 전극과 내벽 사이에 무산소 가스를 공급하고 무산소 가스를 수용하는 유입구를 추가로 구비한다.
C10. 용해로(52)는 관통 경로를 형성하는 내화 블록(44)과; 경로 내에 위치되고, 외벽(12)과, 전극(22)을 수용하기 위한 채널(20)을 형성하는 내벽(14), 외벽과 내벽 사이에 위치되어 냉각수의 유동을 수용하는 냉각수 경로(30,40), 및 전극 홀더의 제1단부에서 내벽과 외벽을 결합하는 노즈 부재(16)를 갖춘 전극 홀더(10);로 이루어지고, 환형상의 노즈 부재는 이의 외부면에 증착된 내화성 차폐층(46)을 구비한다.
C11. C10에 따른 용해로에 있어서, 냉각수 경로는 도관(30)으로 이루어진다.
C12. C10 또는 C11에 따른 용해로에 있어서, 내화성 차폐층(46)은 용융 유리 재료(48)가 접촉한다.
C13. C10 내지 C12 중 어느 하나에 따른 용해로에 있어서, 내화성 차폐층(46)의 두께는 100㎛ 이상으로 형성한다.
C14. C10 내지 C13 중 어느 하나에 따른 용해로에 있어서, 전극 홀더(10)는 용해로의 바닥벽(45)에 위치된다.
C15. C10 내지 C14 중 어느 하나에 따른 용해로에 있어서, 전극 홀더(10)는 용해로의 측벽(52)에 위치된다.
C16. C10 내지 C15 중 어느 하나에 따른 용해로에 있어서, 내화성 차폐층(46)은 적어도 전극 홀더(10)의 내벽(14) 일부에 증착된다.
C17. C10 내지 C16 중 어느 하나에 따른 용해로에 있어서, 차폐층의 열팽창계수와 환형상의 노즈 부재의 열팽창계수의 차는 10배를 넘지 않는다.
C18. 용융 유리 재료를 형성하는 방법은 용기에서 용융 유리 재료를 가열하는 단계를 포함하는데, 이 가열 단계는 전극 홀더(10) 내에 위치된 전극(22)을 통해 전류를 인가하는 단계를 포함하고, 전극 홀더는 외벽(12)과; 전극을 수용하는 채널(20)을 형성하는 내벽(14); 외벽과 내벽 사이에 위치되어 냉각수의 유동을 수용하는 경로; 전극 홀더의 제1단부에서 내벽과 외벽을 결합하는 노즈 부재(16); 및 환형상의 노즈 부재의 외부면에 증착된 내화성 차폐층(46);을 구비한다.
C19. C18에 따른 방법에 있어서, 가열하는 동안에 내벽(14)과 전극 사이에 무산소 가스를 유동하는 단계를 추가로 포함한다.
C20. C18 또는 C19에 따른 방법에 있어서, 무산소 가스는 질소이다.
당해 분야의 숙련자들은 본 발명의 범주와 범위 내에서 벗어나지 않게 창안된 다양한 변형과 변형을 인식하게 될 것이다. 따라서, 본 발명은 첨부된 청구범위의 범주 내에 본 발명의 변형과 변경을 포함한다.

Claims (10)

  1. 외벽(12)과;
    전극을 수용하기 위한 채널(20)을 형성하는 내벽(14);
    상기 외벽과 내벽 사이에 위치된 냉각수의 유동을 수용하는 경로;
    전극 홀더의 제1단부에서 상기 내벽과 외벽을 결합하는 노즈 부재(16); 및
    상기 노즈 부재의 외부면에 증착된 내화성 차폐층(46);으로 이루어진, 유리 용해로용 전극 홀더.
  2. 청구항 1에 있어서,
    상기 내화성 차폐층은 상기 내벽의 일부를 따라서 연장되는 전극 홀더.
  3. 청구항 1에 있어서,
    상기 내화성 차폐층은 지르코니아 또는 알루미나 이루어진 전극 홀더.
  4. 청구항 1에 있어서, 상기 내화성 차폐층의 두께는 100㎛ 이상으로 되어 있는 전극 홀더.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 차폐층의 열팽창계수와 상기 환형상의 노즈 부재의 열팽창계수의 차는 10배를 넘지 않는 전극 홀더.
  6. 관통 경로를 형성하는 내화 블록(44)과;
    상기 경로 내에 위치선정되고, 외벽(12)과, 전극(22)을 수용하기 위한 채널(20)을 형성하는 내벽(14), 상기 외벽과 내벽 사이에 위치되어 냉각수의 유동을 수용하는 냉각수 경로(30,40), 및 전극 홀더의 제1단부에서 상기 내벽과 외벽을 결합하는 노즈 부재(16)를 구비한 전극 홀더(10);로 이루어지고,
    상기 환형상의 노즈 부재는 이의 외부면에 증착된 내화성 차폐층(46)을 구비하는 용해로.
  7. 청구항 6에 있어서,
    상기 내화성 차폐층(46)이 용융 유리 재료(48)와 접촉하는 용해로.
  8. 청구항 6에 있어서,
    상기 내화성 차폐층(46)의 두께는 100㎛ 이상으로 되어 있는 용해로.
  9. 청구항 6 내지 청구항 8 중 어느 한 항에 있어서,
    상기 내화성 차폐층(46)은 상기 전극 홀더(10)의 내벽(14) 일부에 증착되는 용해로.
  10. 용기 내에 용융 유리 재료를 가열하는 단계와; 상기 가열 단계는 전극 홀더(10)에 위치된 전극(22)을 통해 전류를 인가하는 단계를 포함하며,
    상기 전극 홀더는,
    외벽(12)과;
    상기 전극을 수용하기 위한 채널(20)을 형성하는 내벽(14);
    상기 외벽과 내벽 사이에 위치되어 냉각수의 유동을 수용하는 경로;
    상기 전극 홀더의 제1단부에서 상기 내벽과 외벽을 결합하는 노즈 부재(16); 및
    상기 환형상의 노즈 부재의 외부면에 증착된 내화성 차폐층(46);을 구비하고,
    가열하는 동안에, 상기 내벽(14)과 전극 사이에 무산소 가스를 공급하는 단계;를 포함하는 용융 유리 재료를 형성하는 방법.
KR1020120041081A 2011-04-26 2012-04-19 유리 용해로용 전극 홀더 KR101941287B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/094,182 US20120275483A1 (en) 2011-04-26 2011-04-26 Electrode holder for electric glass melting
US13/094,182 2011-04-26

Publications (2)

Publication Number Publication Date
KR20120121354A true KR20120121354A (ko) 2012-11-05
KR101941287B1 KR101941287B1 (ko) 2019-01-22

Family

ID=46084816

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120041081A KR101941287B1 (ko) 2011-04-26 2012-04-19 유리 용해로용 전극 홀더

Country Status (6)

Country Link
US (1) US20120275483A1 (ko)
EP (1) EP2518027B1 (ko)
JP (2) JP5936904B2 (ko)
KR (1) KR101941287B1 (ko)
CN (2) CN202912819U (ko)
TW (1) TWI592380B (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275483A1 (en) * 2011-04-26 2012-11-01 Gilbert De Angelis Electrode holder for electric glass melting
JP6333602B2 (ja) * 2014-03-31 2018-05-30 AvanStrate株式会社 ガラス基板の製造方法
JP6794691B2 (ja) * 2016-07-15 2020-12-02 日本電気硝子株式会社 電極ホルダ及び電極ユニット
JP6925583B2 (ja) * 2017-12-20 2021-08-25 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
JP7118359B2 (ja) * 2018-05-30 2022-08-16 日本電気硝子株式会社 ガラス物品の製造方法
JP7462646B2 (ja) 2018-12-21 2024-04-05 コーニング インコーポレイテッド 低抵抗率ガラスに対する大電流入力を可能とするためのバスバー設計
CN110054395A (zh) * 2019-06-03 2019-07-26 山东力诺特种玻璃股份有限公司 电熔炉用电极水套及安装方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634588A (en) * 1970-05-28 1972-01-11 Toledo Engineering Co Inc Electric glass furnace
US3777040A (en) * 1973-04-25 1973-12-04 Toledo Eng Co Inc Protection of glass melting furnace electrode
JPH05505168A (ja) * 1991-01-07 1993-08-05 トリード・エンジニアリング・カンパニー・インコーポレイテツド ガラス溶融電気炉

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693498A (en) * 1953-08-03 1954-11-02 Harvey L Penberthy Electrode assembly for glass furnaces
BE757265Q (fr) * 1955-11-21 1971-03-16 Babcock & Wilcox Co Four electrique et electrodes pour la fusion de kaolin
US3384698A (en) * 1966-03-21 1968-05-21 Emhart Corp Electrode holder for glass melting furnace
GB1472057A (en) * 1973-04-25 1977-04-27 Elemelt Ltd Electrodes for glass melting furnaces
JPS5551723A (en) * 1978-10-05 1980-04-15 Asahi Glass Co Ltd Oxidation preventing method for glass melting molybdenum electrode
US4287381A (en) * 1978-12-19 1981-09-01 British Steel Corporation Electric arc furnace electrodes
DE3040150A1 (de) * 1980-10-24 1982-05-27 Sorg GmbH & Co KG, 8770 Lohr Halterung fuer eine elektrode eines glasschmelzofens
US4468779A (en) * 1982-12-06 1984-08-28 Cri Engineering, Inc. Electrode assembly for melting glass
US4633481A (en) * 1984-10-01 1986-12-30 Ppg Industries, Inc. Induction heating vessel
US5151918A (en) * 1990-08-28 1992-09-29 Argent Ronald D Electrode blocks and block assemblies
JPH04342425A (ja) * 1991-05-17 1992-11-27 Nippon Sheet Glass Co Ltd 電極の保護方法
US5569475A (en) * 1993-06-10 1996-10-29 D-M-E Company Insulator for thermoplastic molding nozzle assembly
IT1310574B1 (it) * 1999-06-11 2002-02-19 Danieli Off Mecc Dispositivo per il raffreddamento e la protezione di un catododi un forno elettrico ad arco
DE102004031241B4 (de) * 2004-06-29 2007-05-24 Beteiligungen Sorg Gmbh & Co. Kg Elektrodensystem für Glas-Schmelzöfen
US20120275483A1 (en) * 2011-04-26 2012-11-01 Gilbert De Angelis Electrode holder for electric glass melting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634588A (en) * 1970-05-28 1972-01-11 Toledo Engineering Co Inc Electric glass furnace
US3777040A (en) * 1973-04-25 1973-12-04 Toledo Eng Co Inc Protection of glass melting furnace electrode
JPH05505168A (ja) * 1991-01-07 1993-08-05 トリード・エンジニアリング・カンパニー・インコーポレイテツド ガラス溶融電気炉

Also Published As

Publication number Publication date
EP2518027B1 (en) 2017-10-25
EP2518027A3 (en) 2012-11-28
JP5936904B2 (ja) 2016-06-22
EP2518027A2 (en) 2012-10-31
CN202912819U (zh) 2013-05-01
CN102757166A (zh) 2012-10-31
JP2016169151A (ja) 2016-09-23
KR101941287B1 (ko) 2019-01-22
JP2012229153A (ja) 2012-11-22
TWI592380B (zh) 2017-07-21
US20120275483A1 (en) 2012-11-01
TW201247576A (en) 2012-12-01
JP6324435B2 (ja) 2018-05-16
CN102757166B (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
KR101941287B1 (ko) 유리 용해로용 전극 홀더
KR101808962B1 (ko) 백금 함유 베셀의 직접 저항 가열에 사용하는 장치
KR101771249B1 (ko) 측면 분사기를 가진 플라즈마 토치
US3983309A (en) Primary electrode arrangement for high temperature melting furnace
JP2006516046A (ja) 溶融物加熱方法および装置
EP1391142B1 (en) Plasma torch
JPH026073A (ja) プラズマトーチ
US4898368A (en) Wear resistant metallurgical tuyere
TWI544111B (zh) 藉由使用阻障層降低高溫時鉑(Pt)及銠(Rh)之汽化損失
JPH11223464A (ja) 電気炉
JP2008105042A (ja) 溶鋼注湯用ノズルの予熱方法
CN114059024B (zh) 一种等离子物理气相沉积用喷枪及热障涂层制备方法
USRE30521E (en) Primary electrode arrangement for high temperature melting furnace
CN108917401B (zh) 用于冶炼设备的喷口砖组件
CN113234937A (zh) 一种电渣炉简易密集型氩气保护设备及其方法
JP4456284B2 (ja) プラズマトーチを用いた溶鋼の加熱装置
WO1997016051A1 (en) Electric heating element
KR100419169B1 (ko) 스팀 플라즈마를 이용한 장수명 흑연전극봉 제조방법
RU2233338C1 (ru) Дутьевая фурма для доменных печей и способ ее изготовления
KR100321048B1 (ko) 세라믹이 선단에 내장된 코렉스 용융로 노즐
KR20030066342A (ko) 야금 용기용 내화 노즐
KR20110109186A (ko) 가열로
KR20020016027A (ko) 흑연전극봉 코팅장치
JPH0826736A (ja) ガラス電気熔融炉及びその熔融炉用の電極
CN115325823A (zh) 一种用于电渣重熔液渣冶炼的坩埚结构

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant