KR20120121089A - Method for manufacturing solarcell - Google Patents

Method for manufacturing solarcell Download PDF

Info

Publication number
KR20120121089A
KR20120121089A KR1020110038843A KR20110038843A KR20120121089A KR 20120121089 A KR20120121089 A KR 20120121089A KR 1020110038843 A KR1020110038843 A KR 1020110038843A KR 20110038843 A KR20110038843 A KR 20110038843A KR 20120121089 A KR20120121089 A KR 20120121089A
Authority
KR
South Korea
Prior art keywords
solar cell
high efficiency
forming
efficiency solar
manufacturing
Prior art date
Application number
KR1020110038843A
Other languages
Korean (ko)
Other versions
KR101214956B1 (en
Inventor
신웅철
최규정
백민
성낙진
Original Assignee
주식회사 엔씨디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔씨디 filed Critical 주식회사 엔씨디
Priority to KR1020110038843A priority Critical patent/KR101214956B1/en
Publication of KR20120121089A publication Critical patent/KR20120121089A/en
Application granted granted Critical
Publication of KR101214956B1 publication Critical patent/KR101214956B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for manufacturing a solar cell is provided to have a back side electrode without using an expensive photo lithography process by forming a back contact structure using selective atomic layer deposition. CONSTITUTION: A polymer film pattern is formed on a position where a back side contact structure is formed(S110). A back side protective film is formed using atomic layer deposition(S120). The back side protective film is made of an aluminum oxide. The polymer layer pattern is removed by a stripping method(S130). A back side metal layer is formed(S140). An ohmic contact is formed using heat treatment(S150). [Reference numerals] (S110) Formation of a polymer film pattern; (S120) Selective formation of a back side protective film; (S130) Removal of a polymer film; (S140) Deposition of a back side metal layer; (S150) Heat treatment for an ohmic contact

Description

고효율 태양전지 제조방법{METHOD FOR MANUFACTURING SOLARCELL}High efficiency solar cell manufacturing method {METHOD FOR MANUFACTURING SOLARCELL}

본 발명은 고효율 태양전지 제조방법에 관한 것으로서, 보다 상세하게는 선택적 원자층 증착방법(Selective Atomic Layer Deposition)을 이용하여 후면 점 또는 선 접촉(point contact)구조를 형성함으로써, 간단한 공정에 의하여 고효율 태양전지를 제조할 수 있는 고효율 태양전지 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a high efficiency solar cell, and more particularly, by forming a back point or point contact structure using a selective atomic layer deposition method, a high efficiency solar cell by a simple process. It relates to a high efficiency solar cell manufacturing method capable of manufacturing a battery.

일반적으로 태양전지는 외부에서 들어온 빛을 이용하여 전기를 생산한다. 구체적으로 태양전지는 외부에서 유입되는 빛에 의하여 태양전지의 반도체 내부에서 전자와 정공의 쌍이 생성되고, 이러한 전자와 정공의 쌍에서 pn 접합에서 발생한 전기장에 의해 전자는 n형 반도체로 이동하고, 정공은 p형 반도체로 이동함으로써 전기를 생산한다. In general, solar cells generate electricity by using light from outside. Specifically, in the solar cell, a pair of electrons and holes are generated inside the semiconductor of the solar cell by light flowing from the outside, and the electron moves to the n-type semiconductor by the electric field generated at the pn junction in the pair of electrons and holes. Produces electricity by moving to p-type semiconductors.

이러한 태양전지의 효율을 높이기 위해 다양한 고효율 태양전지 구조가 고안되고 있으며, 그 하나의 예로 산업용 파이알씨(i-PERC : Industrial Passivated Emitter Rear and Cell)구조에서는, 실리콘 기판의 후면에 국부적으로 후면전극을 형성하고, 소결 공정(firing)을 통해 후면필드(back surface field : BSF)형성을 위한 후면 반사층(back reflector)을 형성한다. Various high-efficiency solar cell structures have been devised to increase the efficiency of such solar cells. For example, in the industrial passivated emitter rear and cell (i-PERC) structure, a rear electrode is locally applied to the back of the silicon substrate. And a back reflector for forming a back surface field (BSF) through a sintering process.

도 1은 이러한 i-PERC 구조의 태양전지를 도시한 단면도이다. 도 1에 도시된 바와 같이, i-PERC 구조의 태양전지에서 P형의 실리콘 기판(10) 전면은 광흡수를 높이기 위해 텍스처링(Texturing)되어 있고, 텍스처링된 기판(10)의 전면에는 n층(11)이 형성되어 있다. 1 is a cross-sectional view showing a solar cell of such an i-PERC structure. As illustrated in FIG. 1, in the i-PERC structured solar cell, the front surface of the P-type silicon substrate 10 is textured to increase light absorption, and the n-layer surface is formed on the front surface of the textured substrate 10. 11) is formed.

n층(11) 상에는 전면 태양광의 반사방지를 위해 실리콘 질화막(13)이 더 형성된다. 전면 실리콘 질화막(13)의 상부에는 전면전극(15)이 형성된다. The silicon nitride film 13 is further formed on the n layer 11 to prevent reflection of the front solar light. The front electrode 15 is formed on the top silicon nitride film 13.

기판(10)의 후면 상에는 후면 산화막(23)이 형성되어 있고, 후면 전극(24)은 후면 산화막(23)이 부분적으로 개구된 개구부(22)를 통해 P+ 영역과 연결되도록 후면 산화막(23) 상에 형성되어 있다. A rear oxide layer 23 is formed on the rear surface of the substrate 10, and the rear electrode 24 is formed on the rear oxide layer 23 so that the rear oxide layer 23 is connected to the P + region through the partially opened opening 22. It is formed in.

그런데 이러한 고효율 태양전지를 제조하는데에는 후면 전극을 형성하기 위해 기판의 후면 상에 형성된 후 산화막을 부분적으로 제거하는 포토리소그래피 공정을 수행하여야 하는 문제점이 있다. 일반적으로 포토리소그래피 공정은 매우 고가의 장비를 사용하여야 하며, 공정 관리도 어려워서 제조단가가 높아지는 문제점이 있다. However, in manufacturing such a high efficiency solar cell, there is a problem in that a photolithography process is performed to partially remove an oxide film after being formed on the back side of a substrate to form a back electrode. In general, the photolithography process has to use a very expensive equipment, the process management is difficult, there is a problem that the manufacturing cost increases.

따라서 고효율 태양전지를 제조하는데 있어서 포토리소그래피 공정을 사용하지 않고서도 후면 전극을 용이하게 제조하여 태양전지의 효율을 높일 수 있는 제조방법의 개발이 절실하게 요구되고 있다. Therefore, in manufacturing a high efficiency solar cell, there is an urgent need for the development of a manufacturing method that can easily manufacture the rear electrode without using a photolithography process to increase the efficiency of the solar cell.

본 발명이 해결하고자 하는 기술적 과제는 선택적 원자층 증착방법(Selective Atomic Layer Deposition)을 이용하여 후면 접촉(point contact)구조를 형성함으로써, 간단한 공정에 의하여 고효율 태양전지를 제조할 수 있는 고효율 태양전지 제조방법을 제공하는 것이다. The technical problem to be solved by the present invention is to form a point contact structure by using a Selective Atomic Layer Deposition method, manufacturing a high efficiency solar cell that can manufacture a high efficiency solar cell by a simple process To provide a way.

전술한 기술적 과제를 달성하기 위한 본 발명에 따른 고효율 태양전지 제조방법은, 고효율 태양전지 제조방법에 있어서, 선택적 원자층 증착방법(Selective Atomic Layer Deposition)을 이용하여 후면 접촉구조를 형성하는 것을 특징으로 한다. The high efficiency solar cell manufacturing method according to the present invention for achieving the above technical problem, in the high efficiency solar cell manufacturing method, characterized in that to form a back contact structure using a selective atomic layer deposition method (Selective Atomic Layer Deposition) do.

본 발명의 고효율 태양전지 제조방법에서 후면 접촉 구조를 형성하는 단계는, 1) 후면 점접촉 구조가 형성될 위치에 스크린 인쇄 방식을 이용한 폴리머막 패턴을 형성하는 단계; 2) 선택적 원자층 증착방법을 이용하여 후면 보호막을 형성하는 단계; 3) 상기 폴리머막 패턴을 제거하는 단계; 4) 후면 금속막을 형성하는 단계;를 포함하는 것을 특징으로 한다. In the method of manufacturing a high efficiency solar cell of the present invention, the forming of the back contact structure may include: 1) forming a polymer film pattern using a screen printing method at a position where the back point contact structure is to be formed; 2) forming a back protective film using a selective atomic layer deposition method; 3) removing the polymer film pattern; 4) forming a back side metal film.

그리고 본 발명의 고효율 태양전지 제조방법의 상기 1)단계에서는, 스크린 인쇄 방식을 이용하는 것이 바람직하다. And in the step 1) of the high efficiency solar cell manufacturing method of the present invention, it is preferable to use a screen printing method.

또한 본 발명에서 상기 폴리머는, 포토레지스트(Photo Resist), PMMA 또는 OTS 중 선택되는 어느 하나일 수 있다. In the present invention, the polymer may be any one selected from photoresist, PMMA or OTS.

한편 상기 후면 보호막은 산화 알루미늄(Al2O3)인 것이 바람직하다. On the other hand, the rear protective film is preferably aluminum oxide (Al 2 O 3 ).

그리고 상기 폴리머가 포토레지스트(Photo Resist)인 경우에는 상기 3)단계는 스트립(Strip) 방법으로 진행되는 것이 바람직하다. In the case where the polymer is a photoresist, step 3) may be performed by a strip method.

본 발명에 따르면 선택적 원자층 증착방법(Selective Atomic Layer Deposition)을 이용하여 후면 접촉구조를 형성함으로써, 고가의 포토리소그래피 공정을 사용하지 않고서도 후면 전극을 가지는 고효율 태양전지를 제조할 수 있는 장점이 있다. According to the present invention, by forming a back contact structure by using a selective atomic layer deposition method, there is an advantage that a high efficiency solar cell having a back electrode can be manufactured without using an expensive photolithography process. .

특히 본 발명에서는 스크린 프린팅 방법이라는 매우 간단한 방법으로 소수성 폴리머 패턴을 형성하고 선택적 원자층 증착법을 이용하여 정확한 위치에 후면 전극을 형성하며, 스트립이라는 매우 간단한 방법으로 소수성 폴리머 패턴을 제거하므로, 공정시간도 대폭 단축되는 장점도 있다. In particular, in the present invention, a hydrophobic polymer pattern is formed by a very simple method called screen printing method, and a back electrode is formed at a precise position by using selective atomic layer deposition method. There is also a significant shortening.

도 1은 고효율 태양전지의 일예를 도시하는 단면도이다.
도 2는 본 발명의 일 실시예에 따른 고효율 태양전지 제조방법의 공정도이다.
도 3 내지 5는 본 발명의 일 실시예에 따른 고효율 태양전지 제조방법의 각 공정을 도시하는 단면도들이다.
1 is a cross-sectional view showing an example of a high efficiency solar cell.
2 is a process chart of a method of manufacturing a high efficiency solar cell according to an embodiment of the present invention.
3 to 5 are cross-sectional views illustrating respective processes of the method for manufacturing a high efficiency solar cell according to an embodiment of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다.
Hereinafter, a specific embodiment of the present invention will be described in detail with reference to the accompanying drawings.

본 실시예에 따른 고효율 태양전지 제조방법에 있어서, 실리콘 기판(110) 전면을 텍스처링(Texturing)하고, 텍스처링된 기판(110)의 전면에 n층(111)을 형성하고, n층(111) 상에 전면 실리콘 질화막(113)을 형성하고, 그 상부에 전면전극(115)을 형성하는 공정은 종래의 고효율 태양전지 제조방법의 그것과 실질적으로 동일하므로 이에 대한 상세한 설명은 생략한다. In the method of manufacturing a high efficiency solar cell according to the present embodiment, the entire surface of the silicon substrate 110 is textured, the n layer 111 is formed on the entire surface of the textured substrate 110, and the n layer 111 is formed on the surface. Since the process of forming the front silicon nitride film 113 and the front electrode 115 thereon is substantially the same as that of the conventional high efficiency solar cell manufacturing method, a detailed description thereof will be omitted.

이하에서는 본 실시예에서 특징적인 부분인 후면 전극 구조를 형성하는 단계, 보다 구체적으로 후면 접촉 구조를 형성하는 단계를 상세하게 설명한다.
Hereinafter, the step of forming the back electrode structure, which is a characteristic part of the present embodiment, and more specifically, the step of forming the back contact structure will be described in detail.

먼저 후면 점접촉 구조가 형성될 위치에 폴리머막 패턴(121)을 형성하는 단계(S110)가 수행된다. 본 실시예에서는 후면 보호막을 먼저 형성한 후에, 이 후면 보호막의 일부를 개구하는 공정이 아니라, 후면 보호막 자체를 개구된 형상으로 형성하는 방법을 이용한다. 이를 위하여 도 3에 도시된 바와 같이, 후면 보호막이 개구될 부분 즉, 후면 점접촉 구조가 형성될 위치에 폴리머막 패턴(121)을 형성하는 단계를 먼저 수행하는 것이다. First, a step (S110) of forming a polymer film pattern 121 at a position where a rear point contact structure is to be formed is performed. In the present embodiment, after forming the rear protective film first, a method of forming the rear protective film itself in an open shape is used instead of the process of opening a part of the rear protective film. To this end, as shown in FIG. 3, the step of forming the polymer layer pattern 121 at a portion where the rear protective layer is to be opened, that is, the position where the rear point contact structure is to be formed is first performed.

본 실시예에서 사용되는 상기 소수성 폴리머로는 포토레지스트(Photo Resist), PMMA 또는 OTS 중 선택되는 어느 하나인 것이 바람직하며, 특히, 간단한 방법으로 공정 후에 제거될 수 있는 포토레지스트(Photo Resist)가 더욱 바람직하다. 그리고 이 폴리머막 패턴(121)은 간단한 프린팅 장비를 이용하여 스크린 인쇄 방식으로 형성하는 것이 바람직하다. The hydrophobic polymer used in the present embodiment is preferably any one selected from photoresist, PMMA, and OTS. In particular, a photoresist that can be removed after the process by a simple method is more preferred. desirable. The polymer film pattern 121 is preferably formed by screen printing using simple printing equipment.

이렇게 폴리머를 이용하여 패턴을 형성하는 이유는 후속으로 이어지는 후면 보호막 형성과정에서 사용하는 선택적 원자층 증착법에 의한 증착과정에서 폴리머가 형성된 위치를 제외한 나머지 영역에만 선택적으로 증착하는 선택성을 얻기 위함이다.
The reason for forming the pattern using the polymer is to obtain the selectivity for selectively depositing only the remaining regions except for the position where the polymer is formed in the deposition process by the selective atomic layer deposition method used in the subsequent protective film formation process.

다음으로는 도 4에 도시된 바와 같이, 선택적 원자층 증착방법을 이용하여 후면 보호막(122)을 형성하는 단계(S120)가 진행된다. 본 실시예에서 상기 후면 보호막(122)은 산화 알루미늄(Al2O3)인 것이 바람직하다. 한편 상기 선택적 원자층 증착방법은 이미 알려진 반도체 공정 기술에서 사용되는 그것과 실질적으로 동일한 것이므로 이에 대한 상세한 설명은 생략한다.
Next, as shown in FIG. 4, the forming of the rear passivation layer 122 using the selective atomic layer deposition method is performed (S120). In the present embodiment, the rear passivation layer 122 is preferably aluminum oxide (Al 2 O 3 ). Meanwhile, the selective atomic layer deposition method is substantially the same as that used in the known semiconductor process technology, and thus a detailed description thereof will be omitted.

다음으로 상기 후면 보호막(122)의 선택적 형성에 기여한 상기 폴리머막 패턴(121)을 제거하는 단계(S130)가 진행된다. 이렇게 상기 폴리머막 패턴(121)을 제거하면 도 5에 도시된 바와 같이, 상기 후면 보호막(122)에 개구부(123)가 형성된다. 이 폴리머막 패턴 제거 단계(S130)에서 사용되는 구체적인 제거 방법은, 형성된 폴리머막의 종류에 따라 달라질 수 있다. 예를 들어 상기 폴리머막이 포토레지스트(Photo Resist)인 경우에는 스트립 방법으로 제거할 수 있다.
Next, a step (S130) of removing the polymer film pattern 121 that contributes to the selective formation of the rear passivation layer 122 is performed. When the polymer layer pattern 121 is removed as shown in FIG. 5, an opening 123 is formed in the rear passivation layer 122. The specific removal method used in the polymer film pattern removing step S130 may vary depending on the type of polymer film formed. For example, when the polymer film is a photoresist, it may be removed by a strip method.

다음으로는 도 6에 도시된 바와 같이, 후면 금속막(124)을 형성하여, 상기 개구부(123)를 통하여 후면 점접촉 구조를 형성하는 단계(S140)가 진행된다. 후면 금속막을 형성하는 단계에서는 금속 종류에 따라 다른 방법을 사용할 수 있으며, 예를 들어 스크린 프린팅, 스퍼터링(sputtering), 증기 증착(evaporating) 등의 방법이 사용될 수 있다. Next, as shown in FIG. 6, the forming of the back metal layer 124 and forming the back point contact structure through the opening 123 is performed (S140). In the forming of the back metal layer, different methods may be used according to the type of metal, and for example, screen printing, sputtering, evaporating, or the like may be used.

이후에는 금속막을 형성한 후, 옴 접촉을 위하여 열처리 하는 단계(S150)가 더 진행될 수 있다.
Thereafter, after forming the metal film, the heat treatment for ohmic contact (S150) may be further performed.

이후에는 소결 공정(firing) 및 에지 아이솔레이션(edge isolation) 등의 공정이 이어지는데, 이러한 공정은 종래의 태양전지 제조방법의 그것과 실질적으로 동일하므로 그에 대한 상세한 설명은 생략한다.
Subsequently, a process such as firing and edge isolation is followed. Since this process is substantially the same as that of a conventional solar cell manufacturing method, a detailed description thereof will be omitted.

110 : 기판 111 : n층
113 : 실리콘 질화막 114 : 개구부
121 : 폴리머막 패턴 122 : 후면 보호막
124 : 후면 금속막
110 substrate 111 n layer
113: silicon nitride film 114: opening part
121: polymer film pattern 122: rear protective film
124: rear metal film

Claims (7)

고효율 태양전지 제조방법에 있어서,
선택적 원자층 증착방법(Selective Atomic Layer Deposition)을 이용하여 후면 접촉구조를 형성하는 것을 특징으로 하는 고효율 태양전지 제조방법.
In the high efficiency solar cell manufacturing method,
A method of manufacturing a high efficiency solar cell, comprising forming a back contact structure by using a selective atomic layer deposition method.
제1항에 있어서, 후면 접촉구조를 형성하는 단계는,
1) 후면 접촉 구조가 형성될 위치에 폴리머막 패턴을 형성하는 단계;
2) 원자층 증착방법을 이용하여 후면 보호막을 형성하는 단계;
3) 상기 폴리머막 패턴을 제거하는 단계;
4) 후면 금속막을 형성하는 단계;를 포함하는 것을 특징으로 하는 고효율 태양전지 제조방법.
The method of claim 1, wherein forming the back contact structure comprises:
1) forming a polymer film pattern at a position where a back contact structure is to be formed;
2) forming a back protective film using an atomic layer deposition method;
3) removing the polymer film pattern;
4) forming a back metal film; high efficiency solar cell manufacturing method comprising a.
제2항에 있어서, 상기 1)단계에서는,
스크린 인쇄 방식을 이용하는 것을 특징으로 하는 고효율 태양전지 제조방법.
The method of claim 2, wherein in step 1),
High efficiency solar cell manufacturing method characterized by using a screen printing method.
제2항에 있어서,
5) 열처리를 이용하여 옴접촉(Ohmic Contact)을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 고효율 태양전지 제조방법.
The method of claim 2,
5) forming an ohmic contact using a heat treatment; high efficiency solar cell manufacturing method further comprising.
제2항에 있어서, 상기 폴리머막은,
포토레지스트(Photo Resist), PMMA 또는 OTS 중 선택되는 어느 하나로 이루어지는 것을 특징으로 하는 고효율 태양전지 제조방법.
The method of claim 2, wherein the polymer film,
Photoresist (Photo Resist), PMMA or OTS made of any one selected from high efficiency solar cell manufacturing method.
제2항에 있어서, 상기 후면 보호막은,
산화 알루미늄(Al2O3)인 것을 특징으로 하는 고효율 태양전지 제조방법.
The method of claim 2, wherein the rear protective film,
High efficiency solar cell manufacturing method characterized in that the aluminum oxide (Al 2 O 3 ).
제2항에 있어서, 상기 3)단계는,
스트립(Strip) 방법으로 진행되는 것을 특징으로 하는 고효율 태양전지 제조방법.
The method of claim 2, wherein step 3) comprises:
High efficiency solar cell manufacturing method characterized in that proceeds by the strip (Strip) method.
KR1020110038843A 2011-04-26 2011-04-26 Method for manufacturing solarcell KR101214956B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110038843A KR101214956B1 (en) 2011-04-26 2011-04-26 Method for manufacturing solarcell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110038843A KR101214956B1 (en) 2011-04-26 2011-04-26 Method for manufacturing solarcell

Publications (2)

Publication Number Publication Date
KR20120121089A true KR20120121089A (en) 2012-11-05
KR101214956B1 KR101214956B1 (en) 2012-12-24

Family

ID=47507603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110038843A KR101214956B1 (en) 2011-04-26 2011-04-26 Method for manufacturing solarcell

Country Status (1)

Country Link
KR (1) KR101214956B1 (en)

Also Published As

Publication number Publication date
KR101214956B1 (en) 2012-12-24

Similar Documents

Publication Publication Date Title
KR102397342B1 (en) Solar cell emitter region fabrication with differentiated p-type and n-type region architectures
JP6317124B2 (en) Method for manufacturing heterojunction inter-fitting back contact photovoltaic cell
JP2005310830A (en) Solar cell and manufacturing method thereof
JP6690859B2 (en) Relative dopant concentration level in solar cells
JP2012243797A (en) Solar cell manufacturing method
US20110014772A1 (en) Aligning method of patterned electrode in a selective emitter structure
KR20120110728A (en) Solar cell and method for manufacturing the same
JP2010161310A (en) Backside electrode type solar cell and method of manufacturing the same
US20120264253A1 (en) Method of fabricating solar cell
JP5734447B2 (en) Photovoltaic device manufacturing method and photovoltaic device
JP2014112600A (en) Method for manufacturing back-electrode-type solar cell and back-electrode-type solar cell
US20110186118A1 (en) Method of doping impurities, method of manufacturing a solar cell using the method and solar cell manufactured by using the method
JP2006156646A (en) Solar cell manufacturing method
US8304282B2 (en) Method for manufacturing a solar cell
KR101160116B1 (en) Method of manufacturing Back junction solar cell
KR101161807B1 (en) Method of manufacturing Back junction solar cell by using plasma doping and diffusion and the solar cell
KR101214956B1 (en) Method for manufacturing solarcell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
US20110284983A1 (en) Photodiode device and manufacturing method thereof
TW201431108A (en) A process of manufacturing an interdigitated back-contact solar cell
US20160126369A1 (en) Semiconductor device and patterning method for plated electrode thereof
US20110277824A1 (en) Solar Cell and Method of Manufacturing the Same
KR20120131643A (en) Method for manufacturing solarcell
KR101163321B1 (en) Method for Fabricating Solar Cell
JP4964222B2 (en) Method for manufacturing photovoltaic device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151127

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171124

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191213

Year of fee payment: 8