KR20120098954A - 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법 - Google Patents

플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법 Download PDF

Info

Publication number
KR20120098954A
KR20120098954A KR1020127020279A KR20127020279A KR20120098954A KR 20120098954 A KR20120098954 A KR 20120098954A KR 1020127020279 A KR1020127020279 A KR 1020127020279A KR 20127020279 A KR20127020279 A KR 20127020279A KR 20120098954 A KR20120098954 A KR 20120098954A
Authority
KR
South Korea
Prior art keywords
subfield
shutter
field
left eye
sustain
Prior art date
Application number
KR1020127020279A
Other languages
English (en)
Inventor
유야 시오자키
다카히코 오리구치
미츠히로 이시즈카
Original Assignee
파나소닉 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파나소닉 주식회사 filed Critical 파나소닉 주식회사
Publication of KR20120098954A publication Critical patent/KR20120098954A/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects

Abstract

플라즈마 디스플레이 패널에 3D 화상을 표시할 때에, 기입 동작을 안정하게 하는 것과 아울러, 크로스토크를 저감하면서 양호한 콘트라스트를 실현한다. 이를 위해, 초기화 기간에는 전체 셀 초기화 동작을 행하고 유지 기간에는 모든 방전셀에 유지 방전을 발생시키는 서브필드를 1필드의 선두 서브필드로 하여 플라즈마 디스플레이 패널을 구동하는 구동 회로와, 우안용 필드를 표시할 때에 온이 되는 우안용 타이밍 신호 및 좌안용 필드를 표시할 때에 온이 되는 좌안용 타이밍 신호로 이루어지는 셔터 개폐용 타이밍 신호를 발생시키는 제어 신호 발생 회로를 구비하고, 선두 서브필드의 기간은 우안용 타이밍 신호 및 좌안용 타이밍 신호가 모두 오프가 되는 셔터 개폐용 타이밍 신호를 발생시킨다.

Description

플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법{PLASMA DISPLAY DEVICE, PLASMA DISPLAY SYSTEM, AND CONTROL METHOD FOR SHUTTER GLASSES FOR PLASMA DISPLAY DEVICE}
본 발명은, 플라즈마 디스플레이 패널에 교대로 표시되는 우안용 화상과 좌안용 화상으로 이루어지는 입체 화상을 셔터 안경을 이용하여 입체시할 수 있는 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법에 관한 것이다.
플라즈마 디스플레이 패널(이하, 「패널」이라고 약기한다)로서 대표적인 교류 면방전형 패널은, 대향 배치된 전면 기판과 배면 기판의 사이에 다수의 방전셀이 형성되어 있다. 전면 기판은, 1쌍의 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍이 전면측의 유리 기판상에 서로 평행하게 복수 쌍 형성되어 있다. 그리고, 그들 표시 전극쌍을 덮도록 유전체층 및 보호층이 형성되어 있다.
배면 기판은, 배면측의 유리 기판상에 복수의 평행한 데이터 전극이 형성되고, 그들 데이터 전극을 덮도록 유전체층이 형성되고, 그 위에 데이터 전극과 평행하게 복수의 격벽이 형성되어 있다. 그리고, 유전체층의 표면과 격벽의 측면에 형광체층이 형성되어 있다.
그리고, 표시 전극쌍과 데이터 전극이 입체 교차하도록, 전면 기판과 배면 기판을 대향 배치하여 밀봉한다. 밀봉된 내부의 방전 공간에는, 예컨대 분압비 5%의 크세논을 포함하는 방전 가스를 봉입하고, 표시 전극쌍과 데이터 전극이 대향하는 부분에 방전셀을 형성한다. 이러한 구성의 패널에 있어서, 각 방전셀 내에서 가스 방전에 의해 자외선을 발생시키고, 이 자외선으로 적색(R), 녹색(G) 및 청색(B)의 각 색의 형광체를 여기 발광시켜 컬러의 화상 표시를 행한다.
패널을 구동하는 방법으로서는 일반적으로 서브필드법이 이용되고 있다. 서브필드법에서는, 1필드를 복수의 서브필드로 분할하고, 각각의 서브필드에서 각 방전셀을 발광 또는 비발광으로 하는 것에 의해 계조 표시를 행한다. 각 서브필드는, 초기화 기간, 기입 기간 및 유지 기간을 갖는다.
초기화 기간에는, 각 주사 전극에 초기화 파형을 인가하고, 각 방전셀에서 초기화 방전을 발생시키는 초기화 동작을 행한다. 이에 의해, 각 방전셀에 있어서, 후속하는 기입 동작을 위해 필요한 벽전하를 형성함과 아울러, 기입 방전을 안정하게 발생시키기 위한 프라이밍 입자(방전을 발생시키기 위한 여기 입자)를 발생시킨다.
기입 기간에는, 주사 전극에 주사 펄스를 순차적으로 인가함과 아울러, 데이터 전극에는 표시해야 할 화상 신호에 근거하여 선택적으로 기입 펄스를 인가한다. 이에 의해, 발광을 행해야 할 방전셀의 주사 전극과 데이터 전극의 사이에 기입 방전을 발생시키고, 그 방전셀 내에 벽전하를 형성한다(이하, 이러한 동작을 총칭하여 「기입」이라고도 적는다).
유지 기간에는, 서브필드마다 정해진 휘도 가중치에 근거하는 수의 유지 펄스를 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍에 교대로 인가한다. 이에 의해, 기입 방전을 발생시킨 방전셀에서 유지 방전을 발생시키고, 그 방전셀의 형광체층을 발광시킨다(이하, 방전셀을 유지 방전에 의해 발광시키는 것을 「점등」, 발광시키지 않는 것을 「비점등」이라고도 적는다). 이에 의해, 각 방전셀을, 휘도 가중치에 따른 휘도로 발광시킨다. 이와 같이 하여, 패널의 각 방전셀을 화상 신호의 계조치에 따른 휘도로 발광시켜, 패널의 화상 표시 영역에 화상을 표시한다.
패널에 있어서의 화상 표시 품질을 높이는데 있어서 중요한 요인의 하나로 콘트라스트의 향상이 있다. 그리고, 서브필드법의 하나로서, 계조 표시에 관계하지 않는 발광을 가능한 한 줄여 콘트라스트비를 향상시키는 구동 방법이 개시되어 있다.
이 구동 방법에서는, 1필드를 구성하는 복수의 서브필드 중, 1개의 서브필드의 초기화 기간에는 모든 방전셀에 초기화 방전을 발생시키는 초기화 동작을 행한다. 또한, 다른 서브필드의 초기화 기간에는 직전의 서브필드의 유지 기간에 유지 방전을 발생시킨 방전셀에 대하여 선택적으로 초기화 방전을 발생시키는 초기화 동작을 행한다.
유지 방전을 발생시키지 않는 흑색을 표시하는 영역의 휘도(이하, 「흑휘도」라고 약기한다)는 화상의 표시에 관계가 없는 발광, 예컨대, 초기화 방전에 의해 생기는 발광 등에 의해 변화한다. 그리고, 상술한 구동 방법에서는, 흑색을 표시하는 영역에 있어서의 발광은 모든 방전셀에 초기화 동작을 행할 때의 미약 발광만이 된다. 이에 의해, 흑휘도를 저감하여 콘트라스트가 높은 화상을 표시하는 것이 가능하게 된다(예컨대, 특허 문헌 1 참조).
또한, 입체시가 가능한 3차원(3 Dimension : 이하 「3D」라고 적는다) 화상(이하, 「3D 화상」이라고 적는다)을 패널에 표시하고, 3D 화상 표시 장치로서 플라즈마 디스플레이 장치를 이용하는 것이 검토되고 있다.
1매의 3D 화상은, 1매의 우안용 화상과 1매의 좌안용 화상으로 구성되어 있다. 그리고, 이 플라즈마 디스플레이 장치에서는, 3D 화상을 패널에 표시할 때에는, 우안용 화상과 좌안용 화상을 패널에 교대로 표시한다.
그리고, 사용자는, 우안용 화상을 표시하는 필드와 좌안용 화상을 표시하는 필드의 각각에 동기하여 좌우의 셔터가 교대로 개폐되는 셔터 안경이라고 불리는 특수한 안경을 이용하여, 패널에 표시되고 있는 3D 화상을 감상한다.
셔터 안경은, 우안용의 셔터와 좌안용의 셔터를 구비하고, 패널에 우안용 화상이 표시되고 있는 기간은 우안용의 셔터를 여는(가시광을 투과시키는 상태) 것과 아울러 좌안용의 셔터를 닫고(가시광을 차단하는 상태), 좌안용 화상이 표시되고 있는 기간은 좌안용의 셔터를 여는 것과 아울러 우안용의 셔터를 닫는다. 이에 의해, 사용자는, 우안용 화상을 우안만으로 관측하고, 좌안용 화상을 좌안만으로 관측할 수 있어, 패널에 표시되는 3D 화상을 입체시할 수 있다.
1매의 3D 화상은, 1매의 우안용 화상과 1매의 좌안용 화상으로 구성된다. 그 때문에, 3D 화상을 표시할 때는, 단위 시간(예컨대, 1초간)에 패널에 표시되는 화상의 반이 우안용 화상이 되고, 나머지의 반이 좌안용 화상이 된다. 따라서, 1초간에 패널에 표시되는 3D 화상의 수는, 필드 주파수(1초간에 표시되는 필드의 수)의 반이 된다. 그리고, 단위 시간에 패널에 표시되는 화상의 수가 적어지면, 플리커라고 불리는 화상의 깜박임이 보이기 쉬워진다.
3D 화상이 아닌 화상, 즉, 우안용, 좌안용의 구별이 없는 통상 화상(이하, 「2D 화상」이라고 적는다)을 패널에 표시할 때는, 예컨대, 필드 주파수가 60㎐이면, 1초간에 60매의 화상이 패널에 표시된다. 따라서, 단위 시간에 패널에 표시되는 3D 화상의 수를 2D 화상과 같게(예컨대, 60매/초) 하기 위해서는, 3D 화상의 필드 주파수를 2D 화상의 2배(예컨대, 120㎐)로 설정할 필요가 있다.
플라즈마 디스플레이 장치를 이용하여 3D 화상을 입체시하는 방법의 하나로서, 예컨대, 복수의 서브필드를, 우안용 화상을 표시하는 서브필드군과 좌안용 화상을 표시하는 서브필드군으로 나누고, 각각의 서브필드군의 최초의 서브필드의 기입 기간의 개시에 동기하여 셔터 안경의 셔터를 개폐하는 방법이 개시되어 있다(예컨대, 특허 문헌 2 참조).
패널의 대화면화, 고해상도화에 따라 화상 표시 품질을 더욱 향상시킬 것이 요구되고 있다. 그리고, 3D 화상 표시 장치로서 이용할 수 있는 플라즈마 디스플레이 장치에 있어서도, 높은 화상 표시 품질이 요구되고 있다.
(선행 기술 문헌)
(특허 문헌)
(특허 문헌 1) 일본 특허 공개 2000-242224호 공보
(특허 문헌 2) 일본 특허 공개 2000-112428호 공보
본 발명은, 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍을 갖는 방전셀을 복수 구비한 패널과, 초기화 기간과 기입 기간과 유지 기간을 갖는 서브필드를 복수 이용하여 1필드를 구성하고, 초기화 기간에 있어서 상승 경사 파형 전압을 주사 전극에 인가함과 아울러 유지 기간에 있어서 모든 방전셀에 유지 방전을 발생시키는 서브필드를 1필드의 선두 서브필드로 하고, 우안용 화상 신호 및 좌안용 화상 신호를 갖는 화상 신호에 근거하여 우안용 화상 신호를 표시하는 우안용 필드와 좌안용 화상 신호를 표시하는 좌안용 필드를 교대로 반복하여 패널에 화상을 표시하는 구동 회로와, 패널에 우안용 필드를 표시할 때에 온이 되고 좌안용 필드를 표시할 때에 오프가 되는 우안용 타이밍 신호와, 좌안용 필드를 표시할 때에 온이 되고 우안용 필드를 표시할 때에 오프가 되는 좌안용 타이밍 신호로 이루어지는 셔터 개폐용 타이밍 신호를 발생시키는 제어 신호 발생 회로를 구비한 플라즈마 디스플레이 장치로서, 제어 신호 발생 회로는, 선두 서브필드의 기간은 우안용 타이밍 신호 및 좌안용 타이밍 신호가 모두 오프가 되는 셔터 개폐용 타이밍 신호를 발생시키는 것을 특징으로 한다.
이에 의해, 3D 화상 표시 장치로서 사용 가능한 플라즈마 디스플레이 장치에 있어서, 3D 화상을 패널에 표시할 때에, 기입 동작을 안정하게 하는 것과 아울러, 셔터 안경을 통해 표시 화상을 감상하는 사용자에 대하여 크로스토크를 저감하면서, 양호한 콘트라스트의 3D 화상을 실현할 수 있다.
또한, 본 발명의 플라즈마 디스플레이 장치에 있어서의 구동 회로는, 선두 서브필드를 제외한 서브필드의 유지 기간에 있어서는 휘도 가중치에 휘도 배율을 곱한 수의 유지 펄스를 발생시키고, 선두 서브필드의 유지 기간에 있어서는 휘도 배율에 관계없이 일정한 수의 유지 펄스를 발생시키는 구성이더라도 좋다.
또한, 본 발명의 플라즈마 디스플레이 장치에 있어서의 구동 회로는, 선두 서브필드의 기입 기간에 있어서 기입 동작을 행하지 않는 구성이더라도 좋다. 이에 의해, 3D 구동시에 있어서, 선두 서브필드에 요하는 시간을 단축할 수 있다.
또한, 본 발명은, 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍을 갖는 방전셀을 복수 구비한 패널과, 초기화 기간과 기입 기간과 유지 기간을 갖는 서브필드를 복수 이용하여 1필드를 구성하고, 초기화 기간에 있어서 상승 경사 파형 전압을 주사 전극에 인가함과 아울러 유지 기간에 있어서 모든 방전셀에 유지 방전을 발생시키는 서브필드를 1필드의 선두 서브필드로 하고, 우안용 화상 신호 및 좌안용 화상 신호를 갖는 화상 신호에 근거하여 우안용 화상 신호를 표시하는 우안용 필드와 좌안용 화상 신호를 표시하는 좌안용 필드를 교대로 반복하여 패널에 화상을 표시하는 구동 회로와, 패널에 우안용 필드를 표시할 때에 온이 되고 좌안용 필드를 표시할 때에 오프가 되는 우안용 타이밍 신호와, 좌안용 필드를 표시할 때에 온이 되고 우안용 필드를 표시할 때에 오프가 되는 좌안용 타이밍 신호로 이루어지는 셔터 개폐용 타이밍 신호를 발생시키는 제어 신호 발생 회로를 갖는 플라즈마 디스플레이 장치와, 각각 독립적으로 셔터의 개폐가 가능한 우안용 셔터 및 좌안용 셔터를 갖고, 제어 신호 발생 회로에서 발생한 셔터 개폐용 타이밍 신호로 셔터의 개폐가 제어되는 셔터 안경을 구비한 플라즈마 디스플레이 시스템으로서, 셔터 안경은, 선두 서브필드의 기간은 우안용 셔터 및 좌안용 셔터가 모두 닫힌 상태가 되는 것을 특징으로 한다.
이에 의해, 3D 화상 표시 장치로서 사용 가능한 플라즈마 디스플레이 장치를 구비한 플라즈마 디스플레이 시스템에 있어서, 3D 화상을 패널에 표시할 때에, 기입 동작을 안정하게 하는 것과 아울러, 셔터 안경을 통해 표시 화상을 감상하는 사용자에 대하여 크로스토크를 저감하면서, 양호한 콘트라스트의 3D 화상을 실현할 수 있다.
또한, 본 발명은, 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍을 갖는 방전셀을 복수 구비한 패널과, 초기화 기간과 기입 기간과 유지 기간을 갖는 서브필드를 복수 이용하여 1필드를 구성하고, 초기화 기간에 있어서 상승 경사 파형 전압을 주사 전극에 인가함과 아울러 유지 기간에 있어서 모든 방전셀에 유지 방전을 발생시키는 서브필드를 1필드의 선두 서브필드로 하고, 우안용 화상 신호 및 좌안용 화상 신호를 갖는 화상 신호에 근거하여 우안용 화상 신호를 표시하는 우안용 필드와 좌안용 화상 신호를 표시하는 좌안용 필드를 교대로 반복하여 패널에 화상을 표시하는 구동 회로와, 패널에 우안용 필드를 표시할 때에 온이 되고 좌안용 필드를 표시할 때에 오프가 되는 우안용 타이밍 신호와, 좌안용 필드를 표시할 때에 온이 되고 우안용 필드를 표시할 때에 오프가 되는 좌안용 타이밍 신호로 이루어지는 셔터 개폐용 타이밍 신호를 발생시키는 제어 신호 발생 회로를 구비한 플라즈마 디스플레이 장치에 표시되는 화상의 관측에 이용되고, 각각 독립적으로 셔터의 개폐가 가능한 우안용 셔터 및 좌안용 셔터를 갖는 셔터 안경의 제어 방법으로서, 선두 서브필드의 기간은 우안용 셔터 및 좌안용 셔터가 모두 닫힌 상태가 되도록 셔터 안경을 제어하는 것을 특징으로 한다.
이에 의해, 3D 화상 표시 장치로서 사용 가능하며, 3D 화상을 패널에 표시할 때에 기입 동작을 안정하게 할 수 있는 플라즈마 디스플레이 장치를, 이 제어 방법으로 제어되는 셔터 안경을 이용하여 감상하는 것에 의해, 패널에 표시되는 3D 화상을, 크로스토크를 저감하면서 흑휘도를 저감하여 콘트라스트를 높인, 화상 표시 품질이 높은 화상으로서 감상할 수 있다.
도 1은 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 이용하는 패널의 구조를 나타내는 분해 사시도이다.
도 2는 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 이용하는 패널의 전극 배열도이다.
도 3은 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치의 회로 블록 및 플라즈마 디스플레이 시스템의 개요를 개략적으로 나타내는 도면이다.
도 4는 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 이용하는 패널의 각 전극에 인가하는 구동 전압 파형을 개략적으로 나타내는 도면이다.
도 5는 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 이용하는 패널의 각 전극에 인가하는 구동 전압 파형 및 셔터 안경의 개폐 동작을 개략적으로 나타내는 파형도이다.
도 6은 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 3D 화상을 표시할 때의 서브필드 구성과 우안용 셔터 및 좌안용 셔터의 개폐 상태를 개략적으로 나타내는 도면이다.
이하, 본 발명의 실시의 형태에 있어서의 플라즈마 디스플레이 장치 및 플라즈마 디스플레이 시스템에 대하여, 도면을 이용하여 설명한다.
(실시의 형태)
도 1은 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 이용하는 패널(10)의 구조를 나타내는 분해 사시도이다. 유리제의 전면 기판(21)상에는, 주사 전극(22)과 유지 전극(23)으로 이루어지는 표시 전극쌍(24)이 복수 형성되어 있다. 그리고, 주사 전극(22)과 유지 전극(23)을 덮도록 유전체층(25)이 형성되고, 그 유전체층(25)상에 보호층(26)이 형성되어 있다.
이 보호층(26)은, 방전셀에 있어서의 방전 개시 전압을 낮추기 위해, 패널의 재료로서 사용 실적이 있으며, 네온(Ne) 및 크세논(Xe) 가스를 봉입한 경우에 2차 전자 방출 계수가 크고 내구성이 우수한 산화마그네슘(MgO)을 주성분으로 하는 재료로 형성되어 있다.
배면 기판(31)상에는 데이터 전극(32)이 복수 형성되고, 데이터 전극(32)을 덮도록 유전체층(33)이 형성되고, 그 위에 우물정자(井) 형상의 격벽(34)이 형성되어 있다. 그리고, 격벽(34)의 측면 및 유전체층(33)상에는 적색(R), 녹색(G) 및 청색(B)의 각 색으로 발광하는 형광체층(35)이 마련되어 있다.
본 실시의 형태에 있어서는, 청색 형광체로서 BaMgAl10O17 : Eu를 이용하고, 녹색 형광체로서 Zn2SiO4 : Mn을 이용하고, 적색 형광체로서(Y, Gd)BO3 : Eu를 이용하고 있다. 그러나, 본 발명은 형광체층(35)을 형성하는 형광체가 조금도 상술한 형광체로 한정되는 것은 아니다. 또, 형광체의 잔광이 감쇠하는 시간을 나타내는 시정수는, 형광체 재료에 따라 다르지만, 청색 형광체가 1msec 이하, 녹색 형광체가 2msec~5msec 정도, 적색 형광체가 3msec~4msec 정도이다. 예컨대, 본 실시의 형태에 있어서 이용하고 있는 청색의 형광체의 시정수는 약 0.1msec 정도이며, 녹색의 형광체 및 적색의 형광체의 시정수는 약 3msec 정도이다. 또, 이 시정수는, 방전 종료 후, 방전 발생시의 발광 휘도(피크 휘도)의 10% 정도까지 잔광이 감쇠하는데 요하는 시간으로 한다.
이들 전면 기판(21)과 배면 기판(31)을, 미소한 방전 공간을 사이에 두고 표시 전극쌍(24)과 데이터 전극(32)이 교차하도록 대향 배치한다. 그리고, 그 외주부를 유리 프리트 등의 봉착재에 의해 봉착한다. 그리고, 그 내부의 방전 공간에는, 예컨대 네온과 크세논의 혼합 가스를 방전 가스로서 봉입한다.
방전 공간은 격벽(34)에 의해 복수의 구획으로 나누어져 있고, 표시 전극쌍(24)과 데이터 전극(32)이 교차하는 부분에 방전셀이 형성되어 있다.
그리고, 이들 방전셀에서 방전을 발생시키고, 방전셀의 형광체층(35)을 발광(방전셀을 점등)시키는 것에 의해, 패널(10)에 컬러의 화상을 표시한다.
또, 패널(10)에 있어서는, 표시 전극쌍(24)이 연장되는 방향으로 배열된 연속하는 3개의 방전셀, 즉, 적색(R)으로 발광하는 방전셀과, 녹색(G)으로 발광하는 방전셀과, 청색(B)으로 발광하는 방전셀의 3개의 방전셀로 1개의 화소가 구성된다.
또, 패널(10)의 구조는 상술한 것으로 한정되는 것은 아니고, 예컨대 스트라이프 형상의 격벽을 구비한 것이더라도 좋다.
도 2는 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 이용하는 패널(10)의 전극 배열도이다. 패널(10)에는, 수평 방향(행 방향)으로 연장된 n개의 주사 전극 SC1~주사 전극 SCn(도 1의 주사 전극(22)) 및 n개의 유지 전극 SU1~유지 전극 SUn(도 1의 유지 전극(23))이 배열되고, 수직 방향(열 방향)으로 연장된 m개의 데이터 전극 D1~데이터 전극 Dm(도 1의 데이터 전극(32))이 배열되어 있다. 그리고, 1쌍의 주사 전극 SCi(i=1~n) 및 유지 전극 SUi와 1개의 데이터 전극 Dj(j=1~m)가 교차한 부분에 방전셀이 형성된다. 즉, 1쌍의 표시 전극쌍(24)상에는, m개의 방전셀이 형성되고, m/3개의 화소가 형성된다. 그리고, 방전셀은 방전 공간 내에 m×n개 형성되고, m×n개의 방전셀이 형성된 영역이 패널(10)의 화상 표시 영역이 된다. 예컨대, 화소수가 1920×1080개인 패널에서는, m=1920×3이 되고, n=1080이 된다.
도 3은 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치(40)의 회로 블록 및 플라즈마 디스플레이 시스템의 개요를 개략적으로 나타내는 도면이다. 본 실시의 형태에 나타내는 플라즈마 디스플레이 시스템은, 플라즈마 디스플레이 장치(40)와 셔터 안경(50)을 구성 요소에 포함한다.
플라즈마 디스플레이 장치(40)는, 주사 전극(22)과 유지 전극(23)과 데이터 전극(32)을 갖는 방전셀을 복수 배열한 패널(10)과, 패널(10)을 구동하는 구동 회로를 구비하고 있다. 구동 회로는, 화상 신호 처리 회로(41), 데이터 전극 구동 회로(42), 주사 전극 구동 회로(43), 유지 전극 구동 회로(44), 제어 신호 발생 회로(45), 및 각 회로 블록에 필요한 전원을 공급하는 전원 회로(도시하지 않음)를 구비하고 있다.
구동 회로는, 3D 화상 신호에 근거하여 우안용 필드와 좌안용 필드를 교대로 반복하여 패널(10)에 3D 화상을 표시하는 3D 구동과, 우안용, 좌안용의 구별이 없는 2D 화상 신호에 근거하여 패널(10)에 2D 화상을 표시하는 2D 구동 중 하나에 의해 패널(10)을 구동한다. 또한, 플라즈마 디스플레이 장치(40)는, 사용자가 사용하는 셔터 안경(50)의 셔터의 개폐를 제어하는 셔터 개폐용 타이밍 신호를 셔터 안경(50)에 출력하는 타이밍 신호 출력부(46)를 구비하고 있다. 셔터 안경(50)은, 3D 화상을 패널(10)에 표시할 때에 사용자가 사용하는 것이며, 사용자는 셔터 안경(50)을 통해 3D 화상을 감상하는 것에 의해 3D 화상을 입체시할 수 있다.
화상 신호 처리 회로(41)는, 2D 화상 신호 또는 3D 화상 신호가 입력되고, 입력된 화상 신호에 근거하여, 각 방전셀에 계조치를 할당한다. 그리고, 그 계조치를, 서브필드마다의 발광ㆍ비발광을 나타내는 화상 데이터(발광ㆍ비발광을 디지털 신호의 「1」, 「0」에 대응시킨 데이터)로 변환한다. 즉, 화상 신호 처리 회로(41)는, 1필드마다의 화상 신호를 서브필드마다의 발광ㆍ비발광을 나타내는 화상 데이터로 변환한다.
예컨대, 입력된 화상 신호가 R 신호, G 신호, B 신호를 포함할 때에는, 그 R 신호, G 신호, B 신호에 근거하여, 각 방전셀에 R, G, B의 각 계조치를 할당한다. 혹은, 입력된 화상 신호가 휘도 신호(Y 신호) 및 채도 신호(C 신호, 또는 R-Y 신호 및 B-Y 신호, 또는 u 신호 및 v 신호 등)를 포함할 때에는, 그 휘도 신호 및 채도 신호에 근거하여 R 신호, G 신호, B 신호를 산출하고, 그 후, 각 방전셀에 R, G, B의 각 계조치(1필드로 표현되는 계조치)를 할당한다. 그리고, 각 방전셀에 할당한 R, G, B의 계조치를, 서브필드마다의 발광ㆍ비발광을 나타내는 화상 데이터로 변환한다.
또한, 입력되는 화상 신호가, 우안용 화상 신호와 좌안용 화상 신호를 갖는 입체시용의 3D 화상 신호이며, 그 3D 화상 신호를 패널(10)에 표시할 때에는, 우안용 화상 신호와 좌안용 화상 신호가 필드마다 교대로 화상 신호 처리 회로(41)에 입력된다. 따라서, 화상 데이터 변환 회로(49)는, 우안용 화상 신호를 우안용 화상 데이터로 변환하고, 좌안용 화상 신호를 좌안용 화상 데이터로 변환한다.
제어 신호 발생 회로(45)는, 입력 신호에 근거하여 2D 화상 신호 및 3D 화상 신호 중 어느 것이 플라즈마 디스플레이 장치(40)에 입력되고 있는지를 판별한다. 그리고, 그 판별 결과에 근거하여, 2D 화상 또는 3D 화상을 패널(10)에 표시하기 위해, 각 구동 회로를 제어하는 제어 신호를 발생시킨다.
구체적으로는, 제어 신호 발생 회로(45)는, 입력 신호 중 수평 동기 신호 및 수직 동기 신호의 주파수로부터 플라즈마 디스플레이 장치(40)로의 입력 신호가 3D 화상 신호인지 2D 화상 신호인지를 판단한다. 예컨대, 수평 동기 신호가 33.75㎑, 수직 동기 신호가 60㎐이면 입력 신호를 2D 화상 신호라고 판단하고, 수평 동기 신호가 67.5㎑, 수직 동기 신호가 120㎐이면 입력 신호를 3D 화상 신호라고 판단한다. 그리고, 수평 동기 신호 및 수직 동기 신호에 근거하여, 각 회로 블록의 동작을 제어하는 각종 제어 신호를 발생시킨다. 그리고, 발생한 제어 신호를 각각의 회로 블록(데이터 전극 구동 회로(42), 주사 전극 구동 회로(43), 유지 전극 구동 회로(44), 및 화상 신호 처리 회로(41) 등)에 공급한다.
또한, 제어 신호 발생 회로(45)는, 3D 화상을 패널(10)에 표시할 때에, 셔터 안경(50)의 셔터의 개폐를 제어하는 셔터 개폐용 타이밍 신호를 타이밍 신호 출력부(46)에 출력한다. 또, 제어 신호 발생 회로(45)는, 셔터 안경(50)의 셔터를 여는(가시광을 투과시키는 상태로 하는) 때에는 셔터 개폐용 타이밍 신호를 온(「1」)으로 하고, 셔터 안경(50)의 셔터를 닫는(가시광을 차단하는 상태로 하는) 때에는 셔터 개폐용 타이밍 신호를 오프(「0」)로 한다.
또한, 셔터 개폐용 타이밍 신호는, 패널(10)에 3D 화상의 우안용 화상 신호에 근거하는 우안용 필드를 표시할 때에 온이 되고, 좌안용 화상 신호에 근거하는 좌안용 필드를 표시할 때에 오프가 되는 우안용 타이밍 신호(우안 셔터 개폐용 타이밍 신호)와, 3D 화상의 좌안용 화상 신호에 근거하는 좌안용 필드를 표시할 때에 온이 되고, 우안용 화상 신호에 근거하는 우안용 필드를 표시할 때에 오프가 되는 좌안용 타이밍 신호(좌안 셔터 개폐용 타이밍 신호)로 이루어진다.
또, 본 실시의 형태에 있어서, 수평 동기 신호 및 수직 동기 신호의 주파수는, 조금도 상술한 수치로 한정되는 것은 아니다. 또한, 입력 신호에 2D 화상 신호와 3D 화상 신호를 판별하기 위한 판별 신호가 부가되어 있을 때에는, 제어 신호 발생 회로(45)는, 그 판별 신호에 근거하여, 2D 화상 신호 및 3D 화상 신호 중 어느 것이 입력되고 있는지를 판별하는 구성이더라도 좋다.
주사 전극 구동 회로(43)는, 초기화 파형 발생 회로, 유지 펄스 발생 회로, 주사 펄스 발생 회로(도 3에는 나타내지 않음)를 구비하고, 제어 신호 발생 회로(45)로부터 공급되는 제어 신호에 근거하여 구동 전압 파형을 작성하고, 주사 전극 SC1~주사 전극 SCn의 각각에 인가한다. 초기화 파형 발생 회로는, 초기화 기간에, 제어 신호에 근거하여 주사 전극 SC1~주사 전극 SCn에 인가하는 초기화 파형을 발생시킨다. 유지 펄스 발생 회로는, 유지 기간에, 제어 신호에 근거하여 주사 전극 SC1~주사 전극 SCn에 인가하는 유지 펄스를 발생시킨다. 주사 펄스 발생 회로는, 복수의 주사 전극 구동 IC(주사 IC)를 구비하고, 기입 기간에, 제어 신호에 근거하여 주사 전극 SC1~주사 전극 SCn에 인가하는 주사 펄스를 발생시킨다.
유지 전극 구동 회로(44)는, 유지 펄스 발생 회로, 및 전압 Ve1, 전압 Ve2를 발생시키는 회로를 구비하고(도 3에는 나타내지 않음), 제어 신호 발생 회로(45)로부터 공급되는 제어 신호에 근거하여 구동 전압 파형을 작성하고, 유지 전극 SU1~유지 전극 SUn의 각각에 인가한다. 유지 기간에는, 제어 신호에 근거하여 유지 펄스를 발생시키고, 유지 전극 SU1~유지 전극 SUn에 인가한다.
데이터 전극 구동 회로(42)는, 2D 화상 신호에 근거하는 화상 데이터, 또는, 3D 화상 신호에 근거하는 우안용 화상 데이터 및 좌안용 화상 데이터를 구성하는 서브필드마다의 데이터를, 각 데이터 전극 D1~데이터 전극 Dm에 대응하는 신호로 변환한다. 그리고, 그 신호, 및 제어 신호 발생 회로(45)로부터 공급되는 제어 신호에 근거하여, 각 데이터 전극 D1~데이터 전극 Dm을 구동한다. 기입 기간에는 기입 펄스를 발생시키고, 각 데이터 전극 D1~데이터 전극 Dm에 인가한다.
타이밍 신호 출력부(46)는, LED(Light Emitting Diode) 등의 발광 소자를 갖는다. 그리고, 셔터 개폐용 타이밍 신호를, 예컨대 적외선의 신호로 변환하여 셔터 안경(50)에 공급한다.
셔터 안경(50)은, 타이밍 신호 출력부(46)로부터 출력되는 신호(예컨대 적외선의 신호)를 수신하는 신호 수신부와(도시하지 않음), 우안용 셔터(52R) 및 좌안용 셔터(52L)를 갖는다. 우안용 셔터(52R) 및 좌안용 셔터(52L)는, 각각 독립적으로 셔터의 개폐가 가능하다. 그리고, 셔터 안경(50)은, 타이밍 신호 출력부(46)로부터 공급되는 셔터 개폐용 타이밍 신호에 근거하여 우안용 셔터(52R) 및 좌안용 셔터(52L)를 개폐한다.
우안용 셔터(52R)는, 우안용 타이밍 신호가 온일 때에는 열리고(가시광을 투과시키고), 오프일 때에는 닫힌다(가시광을 차단한다). 좌안용 셔터(52L)는, 좌안용 타이밍 신호가 온일 때에는 열리고(가시광을 투과시키고), 오프일 때에는 닫힌다(가시광을 차단한다).
우안용 셔터(52R) 및 좌안용 셔터(52L)는, 예컨대 액정을 이용하여 구성할 수 있다. 단, 본 발명은, 셔터를 구성하는 재료가 조금도 액정으로 한정되는 것이 아니고, 가시광의 차단과 투과를 고속으로 전환할 수 있는 것이면 어떠한 것이더라도 상관없다.
다음으로, 패널(10)을 구동하기 위한 구동 전압 파형과 그 동작의 개요에 대하여 설명한다.
본 실시의 형태에 있어서의 플라즈마 디스플레이 장치(40)는, 서브필드법에 의해 패널(10)을 구동한다. 서브필드법에서는, 1필드를 시간축상에서 복수의 서브필드로 분할하고, 각 서브필드에 휘도 가중치를 각각 설정한다. 따라서, 각 필드는 각각 복수의 서브필드를 갖는다. 그리고, 각각의 서브필드는 초기화 기간, 기입 기간 및 유지 기간을 갖는다.
초기화 기간에는, 방전셀에 초기화 방전을 발생시키고, 후속하는 기입 기간에 있어서의 기입 방전에 필요한 벽전하를 각 전극상에 형성하는 초기화 동작을 행한다.
기입 기간에는, 주사 전극(22)에 주사 펄스를 인가함과 아울러 데이터 전극(32)에 선택적으로 기입 펄스를 인가하고, 발광해야 할 방전셀에 선택적으로 기입 방전을 발생시켜, 후속하는 유지 기간에 유지 방전을 발생시키기 위한 벽전하를 그 방전셀 내에 형성하는 기입 동작을 행한다.
유지 기간에는, 각각의 서브필드에 설정된 휘도 가중치에 소정의 비례 상수를 곱한 수의 유지 펄스를 주사 전극(22) 및 유지 전극(23)에 교대로 인가하고, 직전의 기입 기간에 기입 방전을 발생시킨 방전셀에서 유지 방전을 발생시키고, 그 방전셀을 발광시키는 유지 동작을 행한다. 이 비례 상수가 휘도 배율이다.
휘도 가중치란, 각 서브필드에서 표시하는 휘도의 크기의 비를 나타내는 것이며, 각 서브필드에서는 휘도 가중치에 따른 수의 유지 펄스를 유지 기간에 발생시킨다. 그 때문에, 예컨대, 휘도 가중치 「8」의 서브필드는, 휘도 가중치 「1」의 서브필드의 약 8배의 휘도로 발광하고, 휘도 가중치 「2」의 서브필드의 약 4배의 휘도로 발광한다.
또한, 예컨대, 휘도 배율이 2배일 때, 휘도 가중치 「2」의 서브필드의 유지 기간에는, 주사 전극(22)과 유지 전극(23)에 각각 4회씩 유지 펄스를 인가한다. 그 때문에, 그 유지 기간에 발생하는 유지 펄스의 수는 8이 된다.
이렇게 하여, 화상 신호에 따른 조합으로 서브필드마다 각 방전셀의 발광ㆍ비발광을 제어하여 각 서브필드를 선택적으로 발광시키는 것에 의해, 여러 가지 계조를 표시하고, 화상을 패널(10)에 표시할 수 있다.
또한, 초기화 동작에는, 직전의 서브필드의 동작에 관계없이 방전셀에 초기화 방전을 발생시키는 전체 셀 초기화 동작과, 직전의 서브필드의 기입 기간에 기입 방전을 발생시키고 유지 기간에 유지 방전을 발생시킨 방전셀에만 선택적으로 초기화 방전을 발생시키는 선택 초기화 동작이 있다. 전체 셀 초기화 동작에서는 상승하는 상승 경사 파형 전압 및 하강하는 하강 경사 파형 전압을 주사 전극(22)에 인가하고, 화상 표시 영역 내의 모든 방전셀에 초기화 방전을 발생시킨다. 그리고, 복수의 서브필드 중, 1개의 서브필드의 초기화 기간에 있어서는 전체 셀 초기화 동작을 행하고(이하, 전체 셀 초기화 동작을 행하는 초기화 기간을 「전체 셀 초기화 기간」이라고 적고, 전체 셀 초기화 기간을 갖는 서브필드를 「전체 셀 초기화 서브필드」라고 적는다), 다른 서브필드의 초기화 기간에 있어서는 선택 초기화 동작을 행한다(이하, 선택 초기화 동작을 행하는 초기화 기간을 「선택 초기화 기간」이라고 적고, 선택 초기화 기간을 갖는 서브필드를 「선택 초기화 서브필드」라고 적는다).
그리고, 본 실시의 형태에서는, 각 필드의 선두 서브필드(필드의 최초로 발생하는 서브필드)만을 전체 셀 초기화 서브필드로 한다. 즉, 선두 서브필드(서브필드 SF1)의 초기화 기간에는 전체 셀 초기화 동작을 행하고, 다른 서브필드의 초기화 기간에는 선택 초기화 동작을 행한다. 이에 의해, 적어도 1필드에 1회는 모든 방전셀에 초기화 방전을 발생시킬 수 있어, 전체 셀 초기화 동작 이후의 기입 동작을 안정화할 수 있다. 또한, 화상의 표시에 관계가 없는 발광은 서브필드 SF1에 있어서의 전체 셀 초기화 동작의 방전에 따르는 발광만이 된다. 따라서, 유지 방전을 발생시키지 않는 흑색을 표시하는 영역의 휘도인 흑휘도는 전체 셀 초기화 동작에 있어서의 미약 발광만이 되어, 패널(10)에 콘트라스트가 높은 화상을 표시하는 것이 가능해진다.
그러나, 본 실시의 형태는, 1필드를 구성하는 서브필드의 수나 각 서브필드의 휘도 가중치가 상술한 수치로 한정되는 것은 아니다. 또한, 화상 신호 등에 근거하여 서브필드 구성을 전환하는 구성이더라도 좋다.
또, 본 실시의 형태에 있어서, 플라즈마 디스플레이 장치(40)에 입력되는 화상 신호는, 2D 화상 신호, 또는 3D 화상 신호이며, 플라즈마 디스플레이 장치(40)는, 각각의 화상 신호에 따라 패널(10)을 구동한다. 우선, 2D 화상 신호가 플라즈마 디스플레이 장치(40)에 입력되었을 때에 패널(10)의 각 전극에 인가하는 구동 전압 파형을 설명한다. 다음으로, 3D 화상 신호가 플라즈마 디스플레이 장치(40)에 입력되었을 때에 패널(10)의 각 전극에 인가하는 구동 전압 파형을 설명한다.
도 4는 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치에 이용하는 패널(10)의 각 전극에 인가하는 구동 전압 파형을 개략적으로 나타내는 도면이다. 도 4에는, 기입 기간에 있어서 최초로 기입 동작을 행하는 주사 전극 SC1, 기입 기간에 있어서 최후에 기입 동작을 행하는 주사 전극 SCn, 유지 전극 SU1~유지 전극 SUn, 및 데이터 전극 D1~데이터 전극 Dm의 각각에 인가하는 구동 전압 파형을 나타낸다. 또한, 이하에 있어서의 주사 전극 SCi, 유지 전극 SUi, 데이터 전극 Dk는, 각 전극 중에서 화상 데이터(서브필드마다의 발광ㆍ비발광을 나타내는 데이터)에 근거하여 선택된 전극을 나타낸다.
또한, 도 4에는, 서브필드 SF1과 서브필드 SF2의 2개의 서브필드의 구동 전압 파형을 나타내고 있다. 서브필드 SF1은 전체 셀 초기화 동작을 행하는 서브필드이며, 서브필드 SF2는 선택 초기화 동작을 행하는 서브필드이다. 따라서, 서브필드 SF1과 서브필드 SF2에서는, 초기화 기간에 주사 전극(22)에 인가하는 구동 전압의 파형 형상이 다르다. 또, 다른 서브필드에 있어서의 구동 전압 파형은, 유지 기간에 있어서의 유지 펄스의 발생수가 다른 것 외에는 서브필드 SF2의 구동 전압 파형과 거의 같다.
또, 본 실시의 형태에 있어서의 플라즈마 디스플레이 장치(40)는, 2D 화상 신호에 의해 패널(10)을 구동할 때에는, 1필드를 8서브필드(서브필드 SF1, 서브필드 SF2, …, 서브필드 SF8)로 구성하고, 서브필드 SF1~서브필드 SF8의 각 서브필드에 각각 1, 2, 4, 8, 16, 32, 64, 128의 휘도 가중치를 설정하는 예를 설명한다.
이와 같이, 본 실시의 형태에서는, 2D 화상 신호에 의해 패널(10)을 구동할 때에는, 필드의 최초로 발생하는 서브필드 SF1을 휘도 가중치가 가장 작은 서브필드로 하고, 그 이후는 휘도 가중치가 순차적으로 커지도록 각 서브필드에 휘도 가중치를 설정하고, 필드의 최후에 발생하는 서브필드 SF8을 휘도 가중치가 가장 큰 서브필드로 한다.
또, 본 실시의 형태는, 1필드를 구성하는 서브필드의 수나 각 서브필드의 휘도 가중치가 상기의 값으로 한정되는 것은 아니다.
우선, 전체 셀 초기화 서브필드인 서브필드 SF1에 대하여 설명한다.
우선, 서브필드 SF1에 대하여 설명한다.
전체 셀 초기화 동작을 행하는 서브필드 SF1의 초기화 기간의 전반부에는, 데이터 전극 D1~데이터 전극 Dm, 유지 전극 SU1~유지 전극 SUn에는, 각각 전압 0(V)을 인가한다. 주사 전극 SC1~주사 전극 SCn에는, 전압 0(V)을 인가한 후에 전압 Vi1을 인가하고, 전압 Vi1로부터 전압 Vi2를 향해 완만하게(예컨대, 1.3V/μsec의 기울기로) 상승하는 상승 경사 파형 전압(이하, 「램프 전압 L1」이라고 적는다)을 인가한다. 전압 Vi1은, 유지 전극 SU1~유지 전극 SUn에 대하여 방전 개시 전압보다 낮은 전압으로 설정하고, 전압 Vi2는, 방전 개시 전압을 넘는 전압으로 설정한다.
이 램프 전압 L1이 상승하는 동안에, 각 방전셀의 주사 전극 SC1~주사 전극 SCn과 유지 전극 SU1~유지 전극 SUn의 사이, 및 주사 전극 SC1~주사 전극 SCn과 데이터 전극 D1~데이터 전극 Dm의 사이에, 각각 미약한 초기화 방전이 지속하여 발생한다. 그리고, 주사 전극 SC1~주사 전극 SCn상에 부의 벽전압이 축적되고, 데이터 전극 D1~데이터 전극 Dm상 및 유지 전극 SU1~유지 전극 SUn상에는 정의 벽전압이 축적된다. 이 전극상의 벽전압이란, 전극을 덮는 유전체층상, 보호층상, 형광체층상 등에 축적된 벽전하에 의해 생기는 전압을 나타낸다.
서브필드 SF1의 초기화 기간의 후반부에는, 유지 전극 SU1~유지 전극 SUn에는 정의 전압 Ve1을 인가하고, 데이터 전극 D1~데이터 전극 Dm에는 전압 0(V)을 인가한다. 주사 전극 SC1~주사 전극 SCn에는, 전압 Vi3으로부터 부의 전압 Vi4를 향해 완만하게(예컨대, -2.5V/μsec의 기울기로) 하강하는 하강 경사 파형 전압(이하, 「램프 전압 L2」라고 적는다)을 인가한다. 전압 Vi3은, 유지 전극 SU1~유지 전극 SUn에 대하여 방전 개시 전압 미만이 되는 전압으로 설정하고, 전압 Vi4는 방전 개시 전압을 넘는 전압으로 설정한다.
이 램프 전압 L2를 주사 전극 SC1~주사 전극 SCn에 인가하는 동안에, 각 방전셀의 주사 전극 SC1~주사 전극 SCn과 유지 전극 SU1~유지 전극 SUn의 사이, 및 주사 전극 SC1~주사 전극 SCn과 데이터 전극 D1~데이터 전극 Dm의 사이에, 각각 미약한 초기화 방전이 발생한다. 그리고, 주사 전극 SC1~주사 전극 SCn상의 부의 벽전압 및 유지 전극 SU1~유지 전극 SUn상의 정의 벽전압이 약해지고, 데이터 전극 D1~데이터 전극 Dm상의 정의 벽전압은 기입 동작에 적합한 값으로 조정된다.
이상에 의해, 서브필드 SF1의 초기화 기간에 있어서의 초기화 동작, 즉, 모든 방전셀에서 강제적으로 초기화 방전을 발생시키는 전체 셀 초기화 동작이 종료되고, 모든 방전셀에 있어서, 후속하는 기입 동작에 필요한 벽전하가 각 전극상에 형성된다.
후속하는 서브필드 SF1의 기입 기간에는, 유지 전극 SU1~유지 전극 SUn에 전압 Ve2를 인가하고, 주사 전극 SC1~주사 전극 SCn의 각각에는 전압 Vc(Vc=Va+Vscn)를 인가한다.
다음으로, 최초로 기입 동작을 행하는 1행째의 주사 전극 SC1에 부의 전압 Va의 부극성의 주사 펄스를 인가한다. 그리고, 데이터 전극 D1~데이터 전극 Dm 중 1행째에 있어서 발광해야 할 방전셀의 데이터 전극 Dk에 정의 전압 Vd의 정극성의 기입 펄스를 인가한다.
전압 Vd의 기입 펄스를 인가한 방전셀의 데이터 전극 Dk와 주사 전극 SC1의 교차부의 전압차는, 외부 인가 전압의 차 (전압 Vd-전압 Va)에 데이터 전극 Dk상의 벽전압과 주사 전극 SC1상의 벽전압의 차가 가산된 것이 된다. 이에 의해 데이터 전극 Dk와 주사 전극 SC1의 전압차가 방전 개시 전압을 넘어, 데이터 전극 Dk와 주사 전극 SC1의 사이에 방전이 발생한다.
또한, 유지 전극 SU1~유지 전극 SUn에 전압 Ve2를 인가하고 있기 때문에, 유지 전극 SU1과 주사 전극 SC1의 전압차는, 외부 인가 전압의 차인 (전압 Ve2-전압 Va)에 유지 전극 SU1상의 벽전압과 주사 전극 SC1상의 벽전압의 차가 가산된 것이 된다. 이때, 전압 Ve2를, 방전 개시 전압을 약간 하회하는 정도의 전압치로 설정하는 것에 의해, 유지 전극 SU1과 주사 전극 SC1의 사이를, 방전에는 이르지 않지만 방전이 발생하기 쉬운 상태로 할 수 있다.
이에 의해, 데이터 전극 Dk와 주사 전극 SC1의 사이에 발생하는 방전을 트리거로 하여, 데이터 전극 Dk와 교차하는 영역에 있는 유지 전극 SU1과 주사 전극 SC1의 사이에 방전이 발생한다. 이렇게 하여, 주사 펄스와 기입 펄스가 동시에 인가된 방전셀(발광해야 할 방전셀)에 기입 방전이 발생하고, 주사 전극 SC1상에 정의 벽전압이 축적되고, 유지 전극 SU1상에 부의 벽전압이 축적되고, 데이터 전극 Dk상에도 부의 벽전압이 축적된다.
이와 같이 하여, 1행째의 방전셀에 있어서의 기입 동작이 종료된다. 또, 기입 펄스를 인가하지 않은 데이터 전극(32)과 주사 전극 SC1의 교차부의 전압은 방전 개시 전압을 넘지 않기 때문에, 기입 방전은 발생하지 않는다.
다음으로, 2행째의 주사 전극 SC2에 주사 펄스를 인가함과 아울러, 2행째에 발광해야 할 방전셀에 대응하는 데이터 전극 Dk에 기입 펄스를 인가하고, 2행째의 방전셀에 있어서의 기입 동작을 행한다.
이상의 기입 동작을, 주사 전극 SC3, 주사 전극 SC4, …, 주사 전극 SCn의 차례로, n행째의 방전셀에 이를 때까지 순차적으로 행하고, 서브필드 SF1의 기입 기간이 종료된다. 이와 같이 하여, 기입 기간에는, 발광해야 할 방전셀에 선택적으로 기입 방전을 발생시키고, 그 방전셀에 벽전하를 형성한다.
후속하는 서브필드 SF1의 유지 기간에는, 우선 유지 전극 SU1~유지 전극 SUn에 베이스 전위가 되는 전압 0(V)을 인가함과 아울러 주사 전극 SC1~주사 전극 SCn에 정의 전압 Vs의 유지 펄스를 인가한다.
이 유지 펄스의 인가에 의해, 기입 방전을 발생시킨 방전셀에서는, 주사 전극 SCi와 유지 전극 SUi의 전압차가, 유지 펄스의 전압 Vs에 주사 전극 SCi상의 벽전압과 유지 전극 SUi상의 벽전압의 차가 가산된 것이 된다.
이에 의해, 주사 전극 SCi와 유지 전극 SUi의 전압차가 방전 개시 전압을 넘어, 주사 전극 SCi와 유지 전극 SUi의 사이에 유지 방전이 발생한다. 그리고, 이 방전에 의해 발생한 자외선에 의해 형광체층(35)이 발광한다. 또한, 이 방전에 의해, 주사 전극 SCi상에 부의 벽전압이 축적되고, 유지 전극 SUi상에 정의 벽전압이 축적된다. 또한, 데이터 전극 Dk상에도 정의 벽전압이 축적된다. 단, 기입 기간에 있어서 기입 방전이 발생하지 않은 방전셀에서는 유지 방전은 발생하지 않는다.
이어서, 주사 전극 SC1~주사 전극 SCn에는 전압 0(V)을 인가하고, 유지 전극 SU1~유지 전극 SUn에는 전압 Vs의 유지 펄스를 인가한다. 직전에 유지 방전을 발생시킨 방전셀에서는, 유지 전극 SUi와 주사 전극 SCi의 전압차가 방전 개시 전압을 넘는다. 이에 의해, 다시 유지 전극 SUi와 주사 전극 SCi의 사이에 유지 방전이 발생하고, 유지 전극 SUi상에 부의 벽전압이 축적되고, 주사 전극 SCi상에 정의 벽전압이 축적된다.
이후 마찬가지로, 주사 전극 SC1~주사 전극 SCn과 유지 전극 SU1~유지 전극 SUn에, 휘도 가중치에 소정의 휘도 배율을 곱한 수의 유지 펄스를 교대로 인가한다. 이렇게 하여 표시 전극쌍(24)의 전극간에 전위차를 주는 것에 의해, 기입 기간에 있어서 기입 방전을 발생시킨 방전셀에서 유지 방전이 계속하여 발생한다.
그리고, 유지 기간에 있어서의 유지 펄스의 발생 후(유지 기간의 최후)에, 유지 전극 SU1~유지 전극 SUn 및 데이터 전극 D1~데이터 전극 Dm에는 전압 0(V)을 인가한 채로, 베이스 전위인 전압 0(V)으로부터 전압 Vers를 향해 완만하게(예컨대, 약 10V/μsec의 기울기로) 상승하는 경사 파형 전압(이하, 「소거 램프 전압 L3」이라고 적는다)을 주사 전극 SC1~주사 전극 SCn에 인가한다.
주사 전극 SC1~주사 전극 SCn에 인가하는 소거 램프 전압 L3이 방전 개시 전압을 넘어 상승하는 동안에, 유지 방전을 발생시킨 방전셀에 미약한 방전이 지속하여 발생한다. 이 미약한 방전으로 발생한 하전 입자는, 유지 전극 SUi와 주사 전극 SCi의 사이의 전압차를 완화하도록, 유지 전극 SUi상 및 주사 전극 SCi상에 벽전하가 되어 축적되어 간다. 이에 의해, 데이터 전극 Dk상의 정의 벽전압을 남긴 채로, 주사 전극 SCi 및 유지 전극 SUi상의 벽전압이 약해진다. 즉, 방전셀 내에 있어서의 불필요한 벽전하가 소거된다.
주사 전극 SC1~주사 전극 SCn에 인가하는 전압이 전압 Vers에 도달하면, 주사 전극 SC1~주사 전극 SCn으로의 인가 전압을 전압 0(V)까지 하강시킨다. 이렇게 하여, 서브필드 SF1의 유지 기간에 있어서의 유지 동작이 종료된다.
이상에 의해, 서브필드 SF1이 종료된다.
선택 초기화 동작을 행하는 서브필드 SF2의 초기화 기간에는, 서브필드 SF1에 있어서의 초기화 기간의 전반부를 생략한 구동 전압 파형을 각 전극에 인가하는 선택 초기화 동작을 행한다.
서브필드 SF2의 초기화 기간에는, 유지 전극 SU1~유지 전극 SUn에는 전압 Ve1을, 데이터 전극 D1~데이터 전극 Dm에는 전압 0(V)을, 각각 인가한다. 주사 전극 SC1~주사 전극 SCn에는 방전 개시 전압 미만이 되는 전압(예컨대, 전압 0(V))으로부터 부의 전압 Vi4를 향해 램프 전압 L2와 같은 기울기(예컨대, 약 -2.5V/μsec)로 하강하는 경사 파형 전압(이하, 「램프 전압 L4」라고 적는다)을 인가한다. 전압 Vi4는, 유지 전극 SU1~유지 전극 SUn에 대하여 방전 개시 전압을 넘는 전압으로 설정한다.
이 램프 전압 L4를 주사 전극 SC1~주사 전극 SCn에 인가하는 동안에, 직전의 서브필드(도 4에서는, 서브필드 SF1)의 유지 기간에 유지 방전을 발생시킨 방전셀에서는 미약한 초기화 방전이 발생한다. 그리고, 이 초기화 방전에 의해, 주사 전극 SCi상 및 유지 전극 SUi상의 벽전압이 약해진다. 또한, 데이터 전극 Dk상에는, 직전의 서브필드의 유지 기간에 발생한 유지 방전에 의해 충분한 정의 벽전압이 축적되어 있으므로, 이 벽전압의 과잉 부분이 방전되어, 데이터 전극 Dk상의 벽전압은 기입 동작에 적합한 벽전압으로 조정된다.
한편, 직전의 서브필드(서브필드 SF1)의 유지 기간에 유지 방전을 발생시키지 않은 방전셀에서는, 초기화 방전은 발생하지 않고, 그 이전의 벽전압이 유지된다.
이와 같이, 서브필드 SF2에 있어서의 초기화 동작은, 직전의 서브필드의 기입 기간에 기입 동작을 행한 방전셀, 즉, 직전의 서브필드의 유지 기간에 유지 방전을 발생시킨 방전셀에서 선택적으로 초기화 방전을 발생시키는 선택 초기화 동작이 된다.
이상에 의해, 서브필드 SF2의 초기화 기간에 있어서의 초기화 동작, 즉, 선택 초기화 동작이 종료된다.
서브필드 SF2의 기입 기간에는, 서브필드 SF1의 기입 기간과 같은 구동 전압 파형을 각 전극에 인가하고, 발광해야 할 방전셀의 각 전극상에 벽전압을 축적하는 기입 동작을 행한다.
후속하는 유지 기간도, 서브필드 SF1의 유지 기간과 같이, 휘도 가중치에 따른 수의 유지 펄스를 주사 전극 SC1~주사 전극 SCn과 유지 전극 SU1~유지 전극 SUn에 교대로 인가하고, 기입 기간에 있어서 기입 방전을 발생시킨 방전셀에 유지 방전을 발생시킨다.
서브필드 SF3 이후의 각 서브필드의 초기화 기간 및 기입 기간에는, 각 전극에 대하여 서브필드 SF2의 초기화 기간 및 기입 기간과 같은 구동 전압 파형을 인가한다. 또한, 서브필드 SF3 이후의 각 서브필드의 유지 기간에는, 유지 기간에 발생하는 유지 펄스의 수를 제외하고, 서브필드 SF2와 같은 구동 전압 파형을 각 전극에 인가한다.
이상이, 본 실시의 형태에 있어서 패널(10)의 각 전극에 인가하는 구동 전압 파형의 개요이다.
또, 본 실시의 형태에 있어서 각 전극에 인가하는 전압치는, 예컨대, 전압 Vi1=145(V), 전압 Vi2=335(V), 전압 Vi3=190(V), 전압 Vi4=-160(V), 전압 Va=-180(V), 전압 Vs=190(V), 전압 Vers=190(V), 전압 Ve1=125(V), 전압 Ve2=130(V), 전압 Vd=60(V)으로 설정하고 있다. 또한, 전압 Vc는, 부의 전압 Va=-180(V)에 정의 전압 Vscn=145(V)를 중첩하는(Vc=Va+Vscn) 것에 의해 발생시킬 수 있고, 그 경우, 전압 Vc=-35(V)가 된다.
또, 상술한 전압치나 경사 파형 전압에 있어서의 기울기 등의 구체적인 수치는 단순한 일례에 지나지 않고, 본 발명은, 각 전압치나 기울기가 상술한 수치로 한정되는 것은 아니다. 각 전압치나 기울기 등은, 패널의 방전 특성이나 플라즈마 디스플레이 장치의 사양 등에 근거하여 최적으로 설정하는 것이 바람직하다.
다음으로, 3D 화상 신호가 플라즈마 디스플레이 장치(40)에 입력되었을 때에 패널(10)의 각 전극에 인가하는 구동 전압 파형을, 셔터 안경(50)에 있어서의 셔터의 개폐 동작을 섞어 설명한다.
도 5는 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치(40)에 이용하는 패널(10)의 각 전극에 인가하는 구동 전압 파형 및 셔터 안경(50)의 개폐 동작을 개략적으로 나타내는 파형도이다.
도 5에는, 기입 기간에 있어서 최초로 기입 동작을 행하는 주사 전극 SC1, 기입 기간에 있어서 최후에 기입 동작을 행하는 주사 전극 SCn, 유지 전극 SU1~유지 전극 SUn, 및 데이터 전극 D1~데이터 전극 Dm의 각각에 인가하는 구동 전압 파형을 나타낸다. 또한, 도 5에는, 우안용 셔터(52R) 및 좌안용 셔터(52L)의 개폐 동작을 나타낸다.
3D 화상 신호는, 우안용 화상 신호와 좌안용 화상 신호를 필드마다 교대로 반복하는 입체시용의 화상 신호이다. 그리고, 플라즈마 디스플레이 장치(40)는, 3D 화상 신호가 입력되었을 때에는, 우안용 화상 신호를 표시하는 우안용 필드와, 좌안용 화상 신호를 표시하는 좌안용 필드를 교대로 반복하여 우안용 화상과 좌안용 화상을 교대로 패널(10)에 표시한다. 예컨대, 도 5에 나타내는 3개의 필드(필드 F1~필드 F3) 중, 필드 F1, 필드 F3은 우안용 필드이며, 우안용 화상 신호를 패널(10)에 표시한다. 필드 F2는 좌안용 필드이며, 좌안용 화상 신호를 패널(10)에 표시한다. 이렇게 하여, 플라즈마 디스플레이 장치(40)는, 우안용 화상 및 좌안용 화상으로 이루어지는 입체시용의 3D 화상을 패널(10)에 표시한다.
셔터 안경(50)을 통해 패널(10)에 표시되는 3D 화상을 감상하는 사용자에게는, 2필드로 표시되는 화상(우안용 화상 및 좌안용 화상)이 1매의 3D 화상으로서 인식된다. 그 때문에, 사용자에게는, 단위 시간(예컨대, 1초간)에 패널(10)에 표시되는 3D 화상의 매수는, 필드 주파수(1초간에 발생하는 필드의 수)의 반의 수로서 관측된다.
예컨대, 패널에 표시되는 3D 화상의 필드 주파수(1초간에 발생하는 필드의 수)가 60㎐이면, 1초간에 패널(10)에 표시되는 우안용 화상 및 좌안용 화상은 각각 30매씩이 되기 때문에, 사용자에게는, 1초간에 30매의 3D 화상이 관측되게 된다. 따라서, 1초간에 60매의 3D 화상을 표시하기 위해서는, 필드 주파수를 60㎐의 2배인 120㎐로 설정해야 한다. 그래서, 본 실시의 형태에서는, 사용자에게 3D 화상의 동화상이 부드럽게 관측되도록, 필드 주파수를 통상의 2배(예컨대, 120㎐)로 설정하고, 필드 주파수가 낮은 화상을 표시할 때에 발생하기 쉬운 화상의 깜박임(플리커)을 저감하고 있다.
그리고, 사용자는, 패널(10)에 표시되는 3D 화상을, 우안용 필드 및 좌안용 필드에 동기하여 우안용 셔터(52R) 및 좌안용 셔터(52L)를 각각 독립적으로 개폐하는 셔터 안경(50)을 통해 감상한다. 이에 의해, 사용자는, 우안용 화상을 우안만으로 관측하고, 좌안용 화상을 좌안만으로 관측할 수 있으므로, 패널(10)에 표시되는 3D 화상을 입체시할 수 있다.
또, 우안용 필드와 좌안용 필드는, 표시하는 화상 신호가 다를 뿐이며, 1개의 필드를 구성하는 서브필드의 수, 각 서브필드의 휘도 가중치, 서브필드의 배열 등, 필드의 구성은 서로 같다. 그래서, 이하, 「우안용」과 「좌안용」의 구별이 필요가 없는 경우에는, 우안용 필드 및 좌안용 필드를 간단히 필드라고 약기한다. 또한, 우안용 화상 신호 및 좌안용 화상 신호를 간단히 화상 신호라고 약기한다. 또한, 필드의 구성을, 서브필드 구성이라고도 적는다.
상술한 것처럼, 본 실시의 형태에 있어서의 플라즈마 디스플레이 장치(40)는, 3D 화상 신호에 의해 패널(10)을 구동할 때에, 플리커(표시 화상이 깜박여 보이는 현상)를 저감하기 위해, 필드 주파수를, 2D 화상 신호를 패널(10)에 표시할 때의 2배(예컨대, 120㎐)로 하고 있다. 그 때문에, 3D 화상 신호를 패널(10)에 표시할 때의 1필드의 기간(예컨대, 8.3msec)은, 2D 화상 신호를 패널(10)에 표시할 때의 1필드의 기간(예컨대, 16.7msec)의 반이 된다.
그래서, 본 실시의 형태에 있어서의 플라즈마 디스플레이 장치(40)는, 3D 화상 신호에 의해 패널(10)을 구동할 때에는, 2D 화상 신호에 의해 패널(10)을 구동할 때보다, 1필드를 구성하는 서브필드의 수를 적게 한다. 본 실시의 형태에서는, 우안용 필드 및 좌안용 필드를 각각 6개의 서브필드(서브필드 SF1, 서브필드 SF2, 서브필드 SF3, 서브필드 SF4, 서브필드 SF5, 서브필드 SF6)로 구성하는 예를 설명한다. 각 서브필드는, 2D 화상 신호에 의해 패널(10)을 구동할 때와 같이, 초기화 기간, 기입 기간, 유지 기간을 갖는다. 그리고, 서브필드 SF1의 초기화 기간에는 전체 셀 초기화 동작을 행하고, 다른 서브필드의 초기화 기간에는 선택 초기화 동작을 행한다.
또한, 서브필드 SF1~서브필드 SF6의 각 서브필드는 각각 1, 16, 8, 4, 2, 1의 휘도 가중치를 갖는다. 이와 같이, 본 실시의 형태에서는, 필드의 최초로 발생하는 서브필드 SF1을 휘도 가중치가 가장 작은 서브필드로 하고, 2번째로 발생하는 서브필드 SF2를 휘도 가중치가 가장 큰 서브필드로 하고, 그 이후는 휘도 가중치가 순차적으로 작아지도록 각 서브필드에 휘도 가중치를 설정한다.
본 실시의 형태에서는, 각 필드를 이와 같이 구성하는 것에 의해, 우안용 화상으로부터 좌안용 화상으로의 발광의 누설, 및 좌안용 화상으로부터 우안용 화상으로의 발광의 누설(이하, 「크로스토크」라고 호칭한다)을 저감함과 아울러, 기입 동작을 안정화하고 있다. 이 상세한 것에 대해서는 후술한다.
또, 각 서브필드에 있어서 각 전극에 인가하는 구동 전압 파형은, 유지 기간에 발생하는 유지 펄스수가 다른 것 외에는 2D 화상 신호를 패널(10)에 표시할 때와 같으므로, 설명을 생략한다.
이와 같이, 본 실시의 형태에서는, 3D 화상 신호를 패널(10)에 표시할 때에, 1필드를 구성하는 각 서브필드를, 서브필드 SF1을 제외하고, 서브필드의 발생순으로 휘도 가중치를 순차적으로 작게 하고, 각 서브필드의 휘도 가중치를, 시간적으로 뒤에 발생하는 서브필드일수록 작게 하고 있다. 이것은, 다음과 같은 이유에 따른다.
패널(10)에서 이용되고 있는 형광체층(35)은, 그 형광체를 형성하는 재료에 의존한 잔광 특성을 갖는다. 이 잔광이란, 방전 종료 후에도 형광체가 발광을 지속하는 현상이다. 그리고, 잔광의 강도는, 형광체의 발광시의 휘도에 비례하고, 형광체가 발광했을 때의 휘도가 높을수록, 잔광도 강해진다. 또한, 잔광은, 형광체의 특성에 따른 시정수로 감쇠하고, 시간의 경과와 함께 서서히 휘도가 저하되지만, 유지 방전을 종료한 후에도 수 msec 동안은 잔광이 지속된다고 하는 특성을 갖는 형광체 재료도 존재한다. 또한, 형광체가 발광했을 때의 휘도가 높을수록, 잔광이 충분히 감쇠되기까지 요하는 시간도 길어진다.
휘도 가중치가 큰 서브필드에서 생기는 발광은 휘도 가중치가 작은 서브필드에서 생기는 발광보다 휘도가 높다. 따라서, 휘도 가중치가 큰 서브필드에서 생긴 발광에 의한 잔광은, 휘도 가중치가 작은 서브필드에서 생긴 발광에 의한 잔광보다, 휘도가 높아져, 감쇠에 요하는 시간도 길어진다.
그 때문에, 1필드의 최종 서브필드를 휘도 가중치가 큰 서브필드로 하면, 최종 서브필드를 휘도 가중치가 작은 서브필드로 할 때와 비교하여, 후속하는 필드에 누설되는 잔광이 증가한다.
우안용 필드와 좌안용 필드를 교대로 발생시켜 패널(10)에 3D 화상을 표시하는 플라즈마 디스플레이 장치(40)에 있어서는, 1개의 필드에서 발생한 잔광이 후속하는 필드에 누설되면, 그 잔광은, 화상 신호와는 관계가 없는 불필요한 발광으로서 사용자에게 관측되게 된다. 이 현상을, 본 실시의 형태에서는, 「크로스토크」라고 호칭한다.
따라서, 1개의 필드로부터 다음 필드에 누설되는 잔광이 증가할수록, 크로스토크는 악화되고, 3D 화상의 입체시는 저해되어, 플라즈마 디스플레이 장치(40)에 있어서의 화상 표시 품질은 열화된다. 또, 이 화상 표시 품질이란, 셔터 안경(50)을 통해 3D 화상을 감상하는 사용자에 있어서의 화상 표시 품질이다.
1개의 필드로부터 다음 필드에 누설되는 잔광을 약하게 하고, 크로스토크를 저감하기 위해서는, 휘도 가중치가 큰 서브필드를 1필드의 빠른 시기에 발생시켜 강한 잔광을 가능한 한 그 필드 내에서 수속시키고, 또한 1필드의 최종 서브필드를 휘도 가중치가 작은 서브필드로 하여 다음 필드로의 잔광의 누설을 가능한 한 저감하면 된다.
즉, 3D 화상 신호를 패널(10)에 표시할 때의 크로스토크를 억제하기 위해서는, 필드의 초기에 휘도 가중치가 비교적 큰 서브필드를 발생시키고, 이후, 서브필드의 발생순으로 휘도 가중치를 작게 하고, 필드의 최후의 서브필드를 휘도 가중치가 비교적 작은 서브필드로 하여, 다음 필드로의 잔광의 누설을 가능한 한 저감하는 것이 바람직하다.
이것이, 1필드를 구성하는 복수의 서브필드에 있어서, 서브필드 SF1을 제외한 각 서브필드의 휘도 가중치를, 시간적으로 뒤에 발생하는 서브필드일수록 작아지도록 설정한 이유이다. 또, 본 실시의 형태는, 1필드를 구성하는 서브필드의 수나 각 서브필드의 휘도 가중치가 상기의 값으로 한정되는 것은 아니다. 예컨대, 서브필드 SF1을 가장 휘도 가중치가 작은 서브필드로 함과 아울러 서브필드 SF2를 가장 휘도 가중치가 큰 서브필드로 하고, 서브필드 SF3 이후, 순차적으로 휘도 가중치를 작게 하고, 필드의 최후의 서브필드를 휘도 가중치가 2번째로 작은 서브필드로 하는 구성이더라도 좋다.
한편, 본 실시의 형태에 있어서는, 서브필드 SF1을 전체 셀 초기화 서브필드로 하고 있다. 따라서, 서브필드 SF1의 초기화 기간에는, 모든 방전셀에 있어서, 초기화 방전을 발생시키고, 기입 동작에 필요한 벽전하 및 프라이밍 입자를 발생시킬 수 있다.
그렇지만, 서브필드 SF1의 초기화 기간에 있어서 전체 셀 초기화 동작에 의해 발생한 벽전하 및 프라이밍 입자는, 시간의 경과와 함께 서서히 없어져 간다. 그리고, 벽전하 및 프라이밍 입자가 부족하면, 기입 동작이 불안정하게 된다.
예컨대, 서브필드 SF1의 전체 셀 초기화 동작으로 초기화 방전이 발생한 후, 도중의 서브필드에서는 기입 동작이 행해지지 않고, 최종 서브필드에서만 기입 동작이 행해지는 방전셀에서는, 시간의 경과와 함께 벽전하 및 프라이밍 입자가 서서히 없어져, 최종 서브필드에 있어서의 기입 동작이 불안정하게 될 우려가 있다.
따라서, 1필드의 기간이 3D 구동시와 비교하여 긴 2D 구동시에 있어서는, 1필드의 최종 서브필드에서만 기입 동작을 행하는 방전셀에 있어서, 기입 동작이 불안정하게 되기 쉽다.
그러나, 벽전하 및 프라이밍 입자는 유지 방전의 발생에 의해 보충된다. 예컨대, 서브필드 SF1의 유지 기간에 유지 방전이 발생한 방전셀에서는, 그 유지 방전에 의해 벽전하 및 프라이밍 입자가 보충된다.
또한, 일반적으로 시청되는 동영상에 있어서는, 휘도 가중치가 비교적 작은 서브필드가, 휘도 가중치가 비교적 큰 서브필드보다 유지 방전이 발생하는 빈도가 높은 것이 확인되고 있다.
그 때문에, 1필드의 기간이 3D 구동시와 비교하여 긴 2D 구동시에 있어서는, 유지 방전의 발생 빈도가 높은 휘도 가중치가 작은 서브필드를 1필드의 최초로 발생시키고, 1필드 중 시간적으로 뒤에 발생하는 서브필드일수록 휘도 가중치를 크게 하고 있다. 이렇게 하는 것에 의해, 2D 구동시에 있어서, 1필드의 초기에 있어서의 유지 방전의 발생 확률을 높여 1필드의 초기에 유지 방전에 의해 벽전하 및 프라이밍 입자가 보충되는 방전셀의 수를 증가시켜, 1필드의 최종 서브필드에 있어서의 기입 동작을 안정하게 행할 수 있도록 하고 있다.
한편, 3D 구동시에 있어서는, 상술한 것처럼, 크로스토크의 저감을 위해, 각 서브필드의 휘도 가중치를, 1필드 중 시간적으로 뒤에 발생하는 서브필드일수록 작아지도록 설정하는 것이 바람직하다. 그렇지만, 휘도 가중치가 가장 큰 서브필드를 선두 서브필드로 하면, 필드의 최초의 서브필드에 있어서 유지 방전에 의해 벽전하 및 프라이밍 입자가 보충되는 방전셀의 수가 감소한다. 또한, 휘도 가중치가 큰 서브필드는, 유지 기간의 길이도 길어진다. 그 때문에, 후속의 서브필드에서 기입 동작이 불안정하게 될 우려가 있다.
크로스토크의 저감과, 1필드의 최종 서브필드에 있어서의 기입 동작의 안정화를 양립하기 위해서는, 각 서브필드의 휘도 가중치를, 1필드 중 시간적으로 뒤에 발생하는 서브필드일수록 작아지도록 설정하여 휘도 가중치가 큰 서브필드를 1필드의 빠른 시기에 발생시키는 것과 아울러, 필드의 초기에 유지 방전을 발생시켜 벽전하 및 프라이밍 입자를 보충할 수 있는 서브필드 구성으로 하는 것이 바람직하다.
그래서, 본 실시의 형태에서는, 서브필드 SF1을, 후속의 서브필드에 있어서의 기입 동작의 안정화를 목적으로 한 보조 서브필드로 한다. 구체적으로는, 서브필드 SF1을, 화상 표시 영역 내의 모든 방전셀에 있어서, 유지 기간에 유지 방전을 발생시키는 서브필드로 한다. 따라서, 서브필드 SF1을, 계조의 표시에는 기여하지 않는 서브필드로 한다. 그리고, 서브필드 SF2를 휘도 가중치가 가장 큰 서브필드로 하고, 서브필드 SF3 이후의 각 서브필드는 휘도 가중치를 순차적으로 작게 하는 구성으로 한다. 이에 의해, 다음 필드로의 잔광의 누설을 저감하여 크로스토크를 저감함과 아울러, 서브필드 SF1의 유지 기간에 발생하는 유지 방전에 의해 벽전하 및 프라이밍 입자를 방전셀 내에 보충하고, 최종 서브필드에 있어서의 기입 동작의 안정화를 도모하는 것이 가능해진다.
단, 본 실시의 형태에 있어서는, 서브필드 SF1에 있어서, 화상 표시 영역 내의 모든 방전셀에서 항상 유지 방전에 의한 발광이 발생하게 된다. 이 발광에 의해 흑휘도가 상승하면, 표시 화상에 있어서의 콘트라스트비가 나빠져 버린다. 그래서, 본 실시의 형태에서는, 다음에 설명하는 바와 같이 셔터 안경(50)을 제어하는 것에 의해, 이 발광을, 우안용 셔터(52R) 및 좌안용 셔터(52L)에 의해 차단하여, 사용자가 눈에 들어오지 않도록 하여, 흑휘도의 상승을 방지하고 있다.
다음으로, 셔터 안경(50)의 제어에 대하여 설명한다. 셔터 안경(50)의 우안용 셔터(52R) 및 좌안용 셔터(52L)는, 타이밍 신호 출력부(46)로부터 출력되어 셔터 안경(50)에서 수신되는 셔터 개폐용 타이밍 신호(우안 셔터 개폐용 타이밍 신호 및 좌안 셔터 개폐용 타이밍 신호)의 온ㆍ오프에 근거하여, 셔터의 개폐 동작이 제어된다.
제어 신호 발생 회로(45)는, 플라즈마 디스플레이 장치(40)의 구동 회로가 3D 구동을 행하고 있을 때는, 우안용 필드 및 좌안용 필드 모두, 서브필드 SF1의 사이, 즉, 서브필드 SF1의 전체 셀 초기화 기간으로부터 유지 기간까지의 사이는, 우안 셔터 개폐용 타이밍 신호 및 좌안 셔터 개폐용 타이밍 신호가 모두 오프가 되도록, 셔터 개폐용 타이밍 신호를 발생시킨다.
즉, 우안용 필드(도 5에 나타내는 예에서는, 필드 F1 및 필드 F3)에서는, 우안용 셔터(52R)는, 선두 서브필드인 서브필드 SF1의 유지 기간이 종료될 때까지는 닫히고, 서브필드 SF2의 유지 기간이 개시되기 전에 열리고, 최종 서브필드(예컨대, 서브필드 SF6)의 유지 기간에 있어서의 모든 유지 펄스의 발생이 종료된 후에 닫히도록 셔터 개폐용 타이밍 신호(우안 셔터 개폐용 타이밍 신호)를 발생시킨다.
좌안용 필드(도 5에 나타내는 예에서는, 필드 F2)에서는, 좌안용 셔터(52L)는, 서브필드 SF1의 유지 기간이 종료될 때까지는 닫히고, 서브필드 SF2의 유지 기간이 개시되기 전에 열리고, 최종 서브필드(예컨대, 서브필드 SF6)의 유지 기간에 있어서의 모든 유지 펄스의 발생이 종료된 후에 닫히도록 셔터 개폐용 타이밍 신호(좌안 셔터 개폐용 타이밍 신호)를 발생시킨다. 이하, 각 필드에서 같은 동작을 반복한다.
따라서, 본 실시의 형태에 있어서, 셔터 안경(50)은, 우안용 필드 및 좌안용 필드의 어느 필드에 있어서도, 전체 셀 초기화 서브필드(서브필드 SF1)의 초기화 기간(전체 셀 초기화 기간) 및 유지 기간의 사이는, 우안용 셔터(52R) 및 좌안용 셔터(52L)는 모두 닫힌 상태가 된다.
이에 의해, 전체 셀 초기화 동작 및 서브필드 SF1의 유지 동작에 의해 발생하는 발광은, 우안용 셔터(52R) 및 좌안용 셔터(52L)에 의해 차단되어, 사용자의 눈에 들어오지 않는 상태가 된다. 따라서, 셔터 안경(50)을 통해 3D 화상을 감상하는 사용자에게는, 전체 셀 초기화 동작 및 서브필드 SF1의 유지 동작에 의한 발광이 보이지 않게 되어, 그 발광만큼의 휘도가 흑휘도에 있어서 저감되게 된다.
이에 의해, 본 실시의 형태에서는, 서브필드 SF1을 보조 서브필드로 할 수 있다. 즉, 서브필드 SF1을, 벽전하 및 프라이밍 입자를 보충하기 위한 유지 방전은 항상 화상 표시 영역 내의 모든 방전셀에서 발생하지만, 셔터 안경(50)을 통해 3D 화상을 감상하는 사용자에 대해서는, 흑휘도에 영향을 주지 않는 서브필드로 할 수 있다.
또한, 우안용 셔터(52R) 및 좌안용 셔터(52L)를 모두 닫힌 상태로 하는 기간을, 전체 셀 초기화 서브필드(서브필드 SF1)의 초기화 기간(전체 셀 초기화 기간)으로부터 유지 기간까지의 기간으로 하는 것에 의해, 우안용 셔터(52R) 및 좌안용 셔터(52L)를 모두 닫힌 상태로 하는 기간을 비교적 길게 할 수 있어, 그 사이에, 잔광을 보다 많이 감쇠시킬 수 있다. 따라서, 셔터 안경(50)을 통해 3D 화상을 감상하는 사용자에 대하여, 서브필드 SF1의 유지 방전에 의한 발광을 차단할 뿐만 아니라, 이전 필드로부터의 잔광을 보다 보이기 어렵게 할 수 있다. 이에 의해, 크로스토크를 저감하는 효과를 보다 높일 수 있다.
이렇게 하여, 본 실시의 형태에서는, 패널(10)에 3D 화상을 표시할 때에, 크로스토크의 저감과, 최종 서브필드에 있어서의 기입 동작의 안정화를 양립하는 것이 가능해진다.
또, 셔터 개폐용 타이밍 신호를 어느 타이밍에 온으로부터 오프로 하고, 오프로부터 온으로 할지는, 셔터 안경(50)의 특성 및 필드의 구성에 따라 미리 설정하고, 제어 신호 발생 회로(45)는, 미리 설정된 그 타이밍에 따라 셔터 개폐용 타이밍 신호를 발생시킨다.
또, 본 실시의 형태에 있어서, 상술한 「셔터를 닫은」 상태란, 우안용 셔터(52R) 및 좌안용 셔터(52L)가 완전하게 닫힌 상태로 한정되는 것은 아니다. 또한, 상술한 「셔터를 연」 상태란, 우안용 셔터(52R) 및 좌안용 셔터(52L)가 완전하게 열린 상태로 한정되는 것은 아니다.
도 6은 본 발명의 일 실시의 형태에 있어서의 플라즈마 디스플레이 장치(40)에 3D 화상을 표시할 때의 서브필드 구성과 우안용 셔터(52R) 및 좌안용 셔터(52L)의 개폐 상태를 개략적으로 나타내는 도면이다. 도 6에는, 주사 전극 SC1에 인가하는 구동 전압 파형과, 셔터 안경(50)의 우안용 셔터(52R) 및 좌안용 셔터(52L)의 개폐 상태를 나타낸다. 또한, 도 6에는 2개의 필드(우안용 필드 F1, 좌안용 필드 F2)를 나타낸다.
도 6의 셔터 안경(50)의 개폐 상태를 나타내는 도면에서는, 투과율을 이용하여 우안용 셔터(52R) 및 좌안용 셔터(52L)의 개폐 상태를 나타내고 있다. 투과율이란, 셔터가 완전하게 열린 상태를 투과율 100%(투과율이 최대)로 하고, 셔터가 완전하게 닫힌 상태를 투과율 0%(투과율이 최소)로 하여, 가시광을 투과시키는 비율을 백분율로 나타낸 것이다. 도 6의 셔터의 개폐를 나타내는 도면에 있어서, 세로축은 셔터의 투과율을 상대적으로 나타내고 있고, 가로축은 시간을 나타내고 있다.
본 실시의 형태에 있어서, 셔터 안경(50)의 셔터를 닫을 때에는, 필드 F1의 전체 셀 초기화 동작의 개시 직전의 시각 t1에 있어서, 그때까지 열려 있던 좌안용 셔터(52L)가 완전하게 닫히고, 좌안용 셔터(52L) 및 우안용 셔터(52R)가 모두 투과율이 0%가 되도록, 셔터를 닫는 타이밍을 설정하는 것이 바람직하다. 또한, 필드 F2의 전체 셀 초기화 동작의 개시 직전의 시각 t5에 있어서, 그때까지 열려 있던 우안용 셔터(52R)가 완전하게 닫히고, 좌안용 셔터(52L) 및 우안용 셔터(52R)가 모두 투과율이 0%가 되도록, 셔터를 닫는 타이밍을 설정하는 것이 바람직하다.
또한, 셔터 안경(50)의 셔터를 열 때에는, 필드 F1의 서브필드 SF2의 유지 기간의 개시 직전의 시각 t3에 있어서, 우안용 셔터(52R)가 완전하게 열리고, 우안용 셔터(52R)의 투과율이 100%가 되도록, 셔터를 여는 타이밍을 설정하는 것이 바람직하다. 또한, 필드 F2의 서브필드 SF2의 유지 기간의 개시 직전의 시각 t7에 있어서, 좌안용 셔터(52L)가 완전하게 열리고, 좌안용 셔터(52L)의 투과율이 100%가 되도록, 셔터를 여는 타이밍을 설정하는 것이 바람직하다.
그러나, 본 발명은 셔터의 개폐 동작이 조금도 이 구성으로 한정되는 것은 아니다.
셔터 안경(50)에 있어서는, 셔터를 닫기 시작하고 나서 완전하게 닫힐 때까지, 또는, 셔터를 열기 시작하고 나서 완전하게 열릴 때까지, 셔터를 구성하는 재료(예컨대, 액정)의 특성에 따른 시간이 걸린다. 예컨대, 액정으로 셔터를 구성하는 셔터 안경의 경우, 셔터를 닫기 시작하고 나서 완전하게 닫힐 때까지 0.5msec 정도의 시간이 걸리고, 셔터를 열기 시작하고 나서 완전하게 열릴 때까지 2msec 정도의 시간이 걸리는 경우가 있다.
그래서, 본 실시의 형태에서는, 셔터를 닫을 때에는, 전체 셀 초기화 동작의 개시 직전에 있어서, 셔터의 투과율이 30% 이하가 되도록, 바람직하게는 10% 이하가 되도록, 셔터를 닫는 타이밍을 설정한다. 예컨대, 도 6에 나타내는 예에서는, 우안용 필드 F1의 선두 서브필드인 서브필드 SF1에 있어서의 전체 셀 초기화 동작의 개시 직전의 시각 t1(시각 t9도 동일)에 있어서, 좌안용 셔터(52L)의 투과율이 30% 이하가 되도록, 바람직하게는 10% 이하가 되도록, 셔터를 닫는 타이밍을 설정한다. 또한, 좌안용 필드 F2의 선두 서브필드인 서브필드 SF1에 있어서의 전체 셀 초기화 동작의 개시 직전의 시각 t5에 있어서, 우안용 셔터(52R)의 투과율이 30% 이하가 되도록, 바람직하게는 10% 이하가 되도록, 셔터를 닫는 타이밍을 설정한다.
이때, 셔터를 닫기 시작하고 나서 완전하게 닫힐 때까지 요하는 시간을 고려하여, 최종 서브필드의 유지 기간에 있어서의 유지 펄스의 발생 종료로부터 선두 서브필드의 전체 셀 초기화 동작 개시까지의 시간을 설정하는 것이 바람직하다. 예컨대, 도 6에 나타내는 예에서는, 적어도, 우안용 필드 F1의 최종 서브필드인 서브필드 SF6의 유지 펄스 발생 종료 직후의 시각 t4에 우안용 셔터(52R)를 닫기 시작했을 때에, 시각 t5에 우안용 셔터(52R)의 투과율이 30% 이하가 되도록, 바람직하게는 10% 이하가 되도록, 시각 t4로부터 시각 t5까지의 간격을 마련한다.
마찬가지로, 적어도, 좌안용 필드 F2의 최종 서브필드인 서브필드 SF6의 유지 펄스 발생 종료 직후의 시각 t8에 좌안용 셔터(52L)를 닫기 시작했을 때에, 후속하는 우안용 필드의 서브필드 SF1에 있어서의 전체 셀 초기화 동작의 개시 직전의 시각 t9에 좌안용 셔터(52L)의 투과율이 30% 이하가 되도록, 바람직하게는 10% 이하가 되도록, 시각 t8로부터 시각 t9까지의 간격을 마련한다.
또한, 셔터를 열 때에는, 서브필드 SF2의 유지 기간의 개시 직전에 있어서, 셔터의 투과율이 70% 이상이 되도록, 바람직하게는 90% 이상이 되도록, 셔터를 여는 타이밍을 설정한다. 예컨대, 도 6에 나타내는 예에서는, 우안용 필드 F1의 서브필드 SF2에 있어서의 유지 펄스의 발생 직전의 시각 t3에 있어서, 우안용 셔터(52R)의 투과율이 70% 이상이 되도록, 바람직하게는 90% 이상이 되도록, 셔터를 여는 타이밍을 설정한다. 또한, 좌안용 필드 F2의 서브필드 SF2에 있어서의 유지 펄스의 발생 직전의 시각 t7에 있어서, 좌안용 셔터(52L)의 투과율이 70% 이상이 되도록, 바람직하게는 90% 이상이 되도록, 셔터를 여는 타이밍을 설정한다.
이때, 셔터를 열기 시작하고 나서 완전하게 열릴 때까지 요하는 시간을 고려하여, 서브필드 SF1의 종료로부터 서브필드 SF2에 있어서의 유지 펄스의 발생 개시까지의 시간을 설정하는 것이 바람직하다.
예컨대, 도 6에 나타내는 예에서는, 적어도, 우안용 필드 F1의 서브필드 SF1의 종료 후의 시각 t2에 우안용 셔터(52R)를 열기 시작했을 때에, 시각 t3에 우안용 셔터(52R)의 투과율이 70% 이상이 되도록, 바람직하게는 90% 이상이 되도록, 시각 t2로부터 시각 t3까지의 간격을 마련한다.
마찬가지로, 적어도, 좌안용 필드 F2의 서브필드 SF1의 종료 후의 시각 t6에 좌안용 셔터(52L)를 열기 시작했을 때에, 시각 t7에 좌안용 셔터(52L)의 투과율이 70% 이상이 되도록, 바람직하게는 90% 이상이 되도록, 시각 t6으로부터 시각 t7까지의 간격을 마련한다.
이와 같이, 본 실시의 형태에서는, 셔터를 닫기 시작하고 나서 완전하게 닫힐 때까지 요하는 시간, 및, 셔터를 열기 시작하고 나서 완전하게 열릴 때까지 요하는 시간을 고려하여, 셔터의 개폐 동작을 제어한다.
이상 나타낸 바와 같이, 본 실시의 형태에 있어서는, 3D 화상 신호에 근거하여 패널(10)을 구동할 때에, 1필드의 선두 서브필드를, 전체 셀 초기화 동작을 행하는 전체 셀 초기화 서브필드로 한다. 또한, 1필드의 선두 서브필드를, 그 유지 기간에 패널(10)의 화상 표시 영역에 있어서의 모든 방전셀에서 항상 유지 방전을 발생시키는 보조 서브필드로 한다. 그리고, 2번째의 서브필드를 휘도 가중치가 가장 큰 서브필드로 하고, 3번째 이후의 서브필드는 휘도 가중치를 순차적으로 작게 하는 구성으로 한다.
이에 의해, 3D 화상 신호에 근거하여 패널(10)을 구동할 때에, 다음 필드에 누설되는 잔광을 저감하여 크로스토크를 억제함과 아울러, 1필드의 최종 서브필드에 있어서의 기입 동작의 안정화를 도모하는 것이 가능해진다.
그리고, 우안용 필드 및 좌안용 필드 모두, 서브필드 SF1의 전체 셀 초기화 기간으로부터 유지 기간까지는 우안용 셔터(52R) 및 좌안용 셔터(52L)가 모두 닫힌 상태가 되도록, 셔터 안경(50)을 제어한다. 이에 의해, 패널(10)에 표시되는 3D 화상을 셔터 안경(50)을 통해 감상하는 사용자에게, 서브필드 SF1의 전체 셀 초기화 동작 및 유지 동작에 의해 발생하는 발광이 관측되지 않도록 할 수 있어, 이러한 방전에 의한 발광만큼의 휘도를 저감한 양호한 흑휘도로 하여 콘트라스트를 높인 3D 화상을 사용자에게 제공하는 것이 가능해진다.
또, 본 실시의 형태에 있어서, 서브필드 SF1은, 벽전하 및 프라이밍 입자를 방전셀 내에 보충하는 것을 목적으로 한 서브필드이므로, 유지 기간에 발생하는 유지 펄스의 수는 그 목적을 달성하는 정도이면 되고, 불필요하게 유지 펄스의 수를 많게 할 필요는 없다. 본 발명자가 행한 실험에서는, 주사 전극(22) 및 유지 전극(23)에 각각 1회씩 유지 펄스를 인가하는 것에 의해, 최종 서브필드에 있어서의 기입 동작의 안정화를 도모하는 효과를 얻을 수 있는 것이 확인되었다. 그래서, 본 실시의 형태에서는, 서브필드 SF1의 휘도 가중치를 「1」로 하고 있다. 단, 서브필드 SF1의 유지 기간에 발생하는 유지 펄스의 수는, 패널의 특성이나 플라즈마 디스플레이 장치의 사양 등에 따라 최적으로 설정하는 것이 바람직하다.
또한, 각 서브필드의 유지 기간에 있어서는 휘도 가중치에 소정의 휘도 배율을 곱한 수의 유지 펄스를 발생시키지만, 서브필드 SF1의 유지 기간에 있어서는, 휘도 배율에 관계없이, 소정의 횟수(예컨대, 주사 전극(22), 유지 전극(23)의 각각에 1회씩)의 유지 펄스를 발생시키는 구성으로 하더라도 좋다.
또, 본 실시의 형태에서는, 3D 구동시의 전체 셀 초기화 동작에 있어서 주사 전극(22)에 인가하는 구동 전압 파형과, 2D 구동시의 전체 셀 초기화 동작에 있어서 주사 전극(22)에 인가하는 구동 전압 파형을 서로 같은 파형 형상으로 하는 구성을 설명했지만, 본 발명은 조금도 이 구성으로 한정되는 것은 아니다. 예컨대, 3D 구동시의 전체 셀 초기화 동작에 있어서의 상승 경사 파형 전압의 기울기를 2D 구동시의 전체 셀 초기화 동작에 있어서의 상승 경사 파형 전압의 기울기보다 급하게 하고, 혹은, 3D 구동시의 전체 셀 초기화 동작에 있어서의 하강 경사 파형 전압의 기울기를 2D 구동시의 전체 셀 초기화 동작에 있어서의 하강 경사 파형 전압의 기울기보다 급하게 하여, 3D 구동시의 전체 셀 초기화 동작을 행하는 구성으로 하더라도 좋다.
또, 본 실시의 형태에서는, 3D 구동시에 있어서의 전압 Vi2와 2D 구동시에 있어서의 전압 Vi2를 서로 같은 전압치로 설정하는 구성을 설명했지만, 이러한 전압치는 서로 다른 값이더라도 좋다.
또, 본 실시의 형태에서는, 3D 구동시에 있어서의 서브필드 SF1의 기입 기간에 있어서, 화상 표시 영역 내의 모든 방전셀에 기입 방전을 발생시키는 것에 의해, 후속하는 유지 기간에 있어서, 모든 방전셀에 유지 방전을 발생시키는 것으로 한다. 그러나, 본 발명은 조금도 이 구성으로 한정되는 것은 아니다. 예컨대, 초기화 기간에 발생하는 램프 전압 L1의 기울기를 급하게 하여 강방전을 발생시키고, 기입 동작이 불필요하게 되는 정도의 벽전하 및 프라이밍 입자를 발생시키면, 기입 동작을 행하지 않고 유지 방전을 발생시키는 것도 가능하다. 따라서, 3D 구동시에 있어서의 서브필드 SF1의 초기화 기간에 있어서, 모든 방전셀에, 기입 동작이 불필요하게 되는 정도의 강한 초기화 방전을 발생시키는 것에 의해, 기입 기간을 생략하는 구성으로 하는 것도 가능하다. 이 경우, 3D 구동시에 있어서의 서브필드 SF1에 관하여, 기입 기간만큼의 시간 단축을 도모할 수 있다.
또, 도 4, 도 5, 도 6에 나타낸 구동 전압 파형은 본 발명의 실시의 형태에 있어서의 일례를 나타낸 것에 지나지 않고, 본 발명은 조금도 이러한 구동 전압 파형으로 한정되는 것은 아니다. 또한, 도 3에 나타낸 회로 구성도 본 발명의 실시의 형태에 있어서의 일례를 나타낸 것에 지나지 않고, 본 발명은 조금도 이 회로 구성으로 한정되는 것은 아니다.
또, 도 5에는, 서브필드 SF6의 종료 후로부터 서브필드 SF1의 개시 전까지의 사이에, 하강 경사 파형 전압을 발생시켜 주사 전극 SC1~주사 전극 SCn에 인가하는 예를 나타냈지만, 이러한 전압은 발생시키지 않더라도 좋다. 예컨대, 서브필드 SF6의 종료 후로부터 서브필드 SF1의 개시 전까지의 사이는, 주사 전극 SC1~주사 전극 SCn, 유지 전극 SU1~유지 전극 SUn, 데이터 전극 D1~데이터 전극 Dm을 모두 0(V)으로 유지하는 구성이더라도 좋다.
또, 본 발명의 실시의 형태에 있어서는, 2D 구동시에 있어서는 1개의 필드를 8개의 서브필드로 구성하고, 3D 구동시에 있어서는 1개의 필드를 6개의 서브필드로 구성하는 예를 설명했다. 그러나, 본 발명은 1필드를 구성하는 서브필드의 수가 조금도 상기의 수로 한정되는 것은 아니다. 예컨대, 서브필드의 수를 보다 많게 하는 것에 의해, 패널(10)에 표시할 수 있는 계조의 수를 더 증가시킬 수 있다.
또한, 본 발명의 실시의 형태에 있어서는, 서브필드의 휘도 가중치를 「2」의 거듭제곱으로 하고, 예컨대, 2D 구동시에 있어서는 서브필드 SF1~서브필드 SF8의 각 서브필드의 휘도 가중치를 1, 2, 4, 8, 16, 32, 64, 128로 설정하고, 3D 구동시에 있어서는 서브필드 SF1~서브필드 SF6의 각 서브필드의 휘도 가중치를 1, 16, 8, 4, 2, 1로 설정하는 예를 설명했다. 그러나, 각 서브필드에 설정하는 휘도 가중치는, 조금도 상기의 수치로 한정되는 것은 아니다. 예컨대, 3D 구동시에 있어거 서브필드 SF1~서브필드 SF6의 각 서브필드의 휘도 가중치를 1, 12, 7, 3, 2, 1 등으로 하여 계조를 결정하는 서브필드의 조합에 용장성(flexibility)을 갖게 하는 것에 의해, 동영상 의사 윤곽(moving image false contour)의 발생을 억제한 코딩이 가능해진다. 1필드를 구성하는 서브필드의 수나, 각 서브필드의 휘도 가중치 등은, 패널(10)의 특성이나 플라즈마 디스플레이 장치(40)의 사양 등에 따라 적당히 설정하면 된다.
또, 본 발명에 있어서의 실시의 형태에 나타낸 각 회로 블록은, 실시의 형태에 나타낸 각 동작을 행하는 전기 회로로서 구성되더라도 좋고, 혹은, 같은 동작을 하도록 프로그래밍된 마이크로컴퓨터 등을 이용하여 구성되더라도 좋다.
또, 본 실시의 형태에서는, 1화소를 R, G, B의 3색의 방전셀로 구성하는 예를 설명했지만, 1화소를 4색 혹은 그 이상의 색의 방전셀로 구성하는 패널에 있어서도, 본 실시의 형태에 나타낸 구성을 적용하는 것은 가능하며, 같은 효과를 얻을 수 있다.
또, 본 발명의 실시의 형태에 있어서 나타낸 구체적인 수치는, 화면 사이즈가 50인치, 표시 전극쌍(24)의 수가 1024인 패널(10)의 특성에 근거하여 설정한 것이며, 단지 실시의 형태에 있어서의 일례를 나타낸 것에 지나지 않는다. 본 발명은 이러한 수치로 조금도 한정되는 것이 아니고, 각 수치는 패널의 특성이나 플라즈마 디스플레이 장치의 사양 등에 맞추어 최적으로 설정하는 것이 바람직하다. 또한, 이러한 각 수치는, 상술한 효과를 얻을 수 있는 범위에서의 격차를 허용하는 것으로 한다. 또한, 1필드를 구성하는 서브필드의 수나 각 서브필드의 휘도 가중치 등도 본 발명에 있어서의 실시의 형태에 나타낸 값으로 한정되는 것이 아니고, 또한, 화상 신호 등에 근거하여 서브필드 구성을 전환하는 구성이더라도 좋다.
(산업상이용가능성)
본 발명은, 3D 화상 표시 장치로서 사용 가능한 플라즈마 디스플레이 장치에 있어서, 기입 동작을 안정하게 하는 것과 아울러, 셔터 안경을 통해 표시 화상을 감상하는 사용자에 대하여 크로스토크를 저감하면서 양호한 콘트라스트의 3D 화상을 실현할 수 있으므로, 플라즈마 디스플레이 장치나 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법으로서 유용하다.
10 : 패널 21 : 전면 기판
22 : 주사 전극 23 : 유지 전극
24 : 표시 전극쌍 25, 33 : 유전체층
26 : 보호층 31 : 배면 기판
32 : 데이터 전극 34 : 격벽
35 : 형광체층 40 : 플라즈마 디스플레이 장치
41 : 화상 신호 처리 회로 42 : 데이터 전극 구동 회로
43 : 주사 전극 구동 회로 44 : 유지 전극 구동 회로
45 : 제어 신호 발생 회로 46 : 타이밍 신호 출력부
50 : 셔터 안경 52R : 우안용 셔터
52L : 좌안용 셔터 L1, L2, L4 : 램프 전압
L3 : 소거 램프 전압

Claims (5)

  1. 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍을 갖는 방전셀을 복수 구비한 플라즈마 디스플레이 패널과,
    초기화 기간과 기입 기간과 유지 기간을 갖는 서브필드를 복수 이용하여 1필드를 구성하고, 상기 초기화 기간에 있어서 상승 경사 파형 전압을 상기 주사 전극에 인가함과 아울러 상기 유지 기간에 있어서 모든 방전셀에 유지 방전을 발생시키는 서브필드를 1필드의 선두 서브필드로 하고, 우안용 화상 신호 및 좌안용 화상 신호를 갖는 화상 신호에 근거하여 상기 우안용 화상 신호를 표시하는 우안용 필드와 상기 좌안용 화상 신호를 표시하는 좌안용 필드를 교대로 반복하여 상기 플라즈마 디스플레이 패널에 화상을 표시하는 구동 회로와,
    상기 플라즈마 디스플레이 패널에 상기 우안용 필드를 표시할 때에 온이 되고 상기 좌안용 필드를 표시할 때에 오프가 되는 우안용 타이밍 신호와, 상기 좌안용 필드를 표시할 때에 온이 되고 상기 우안용 필드를 표시할 때에 오프가 되는 좌안용 타이밍 신호로 이루어지는 셔터 개폐용 타이밍 신호를 발생시키는 제어 신호 발생 회로
    를 구비하고,
    상기 제어 신호 발생 회로는, 상기 선두 서브필드의 기간은 상기 우안용 타이밍 신호 및 상기 좌안용 타이밍 신호가 모두 오프가 되는 상기 셔터 개폐용 타이밍 신호를 발생시키는
    것을 특징으로 하는 플라즈마 디스플레이 장치.
  2. 제 1 항에 있어서,
    상기 구동 회로는, 상기 선두 서브필드를 제외한 서브필드의 유지 기간에 있어서는 휘도 가중치에 휘도 배율을 곱한 수의 유지 펄스를 발생시키고, 상기 선두 서브필드의 유지 기간에 있어서는 휘도 배율에 관계없이 일정한 수의 유지 펄스를 발생시키는 것을 특징으로 하는 플라즈마 디스플레이 장치.
  3. 제 1 항에 있어서,
    상기 구동 회로는, 상기 선두 서브필드의 기입 기간에 있어서 기입 동작을 행하지 않는 것을 특징으로 하는 플라즈마 디스플레이 장치.
  4. 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍을 갖는 방전셀을 복수 구비한 플라즈마 디스플레이 패널과,
    초기화 기간과 기입 기간과 유지 기간을 갖는 서브필드를 복수 이용하여 1필드를 구성하고, 상기 초기화 기간에 있어서 상승 경사 파형 전압을 상기 주사 전극에 인가함과 아울러 상기 유지 기간에 있어서 모든 방전셀에 유지 방전을 발생시키는 서브필드를 1필드의 선두 서브필드로 하고, 우안용 화상 신호 및 좌안용 화상 신호를 갖는 화상 신호에 근거하여 상기 우안용 화상 신호를 표시하는 우안용 필드와 상기 좌안용 화상 신호를 표시하는 좌안용 필드를 교대로 반복하여 상기 플라즈마 디스플레이 패널에 화상을 표시하는 구동 회로와,
    상기 플라즈마 디스플레이 패널에 상기 우안용 필드를 표시할 때에 온이 되고 상기 좌안용 필드를 표시할 때에 오프가 되는 우안용 타이밍 신호와, 상기 좌안용 필드를 표시할 때에 온이 되고 상기 우안용 필드를 표시할 때에 오프가 되는 좌안용 타이밍 신호로 이루어지는 셔터 개폐용 타이밍 신호를 발생시키는 제어 신호 발생 회로
    를 갖는 플라즈마 디스플레이 장치와,
    각각 독립적으로 셔터의 개폐가 가능한 우안용 셔터 및 좌안용 셔터를 갖고, 상기 제어 신호 발생 회로에서 발생한 상기 셔터 개폐용 타이밍 신호로 셔터의 개폐가 제어되는 셔터 안경
    을 구비하고,
    상기 셔터 안경은, 상기 선두 서브필드의 기간은 상기 우안용 셔터 및 상기 좌안용 셔터가 모두 닫힌 상태가 되는
    것을 특징으로 하는 플라즈마 디스플레이 시스템.
  5. 주사 전극과 유지 전극으로 이루어지는 표시 전극쌍을 갖는 방전셀을 복수 구비한 플라즈마 디스플레이 패널과,
    초기화 기간과 기입 기간과 유지 기간을 갖는 서브필드를 복수 이용하여 1필드를 구성하고, 상기 초기화 기간에 있어서 상승 경사 파형 전압을 상기 주사 전극에 인가함과 아울러 상기 유지 기간에 있어서 모든 방전셀에 유지 방전을 발생시키는 서브필드를 1필드의 선두 서브필드로 하고, 우안용 화상 신호 및 좌안용 화상 신호를 갖는 화상 신호에 근거하여 상기 우안용 화상 신호를 표시하는 우안용 필드와 상기 좌안용 화상 신호를 표시하는 좌안용 필드를 교대로 반복하여 상기 플라즈마 디스플레이 패널에 화상을 표시하는 구동 회로와,
    상기 플라즈마 디스플레이 패널에 상기 우안용 필드를 표시할 때에 온이 되고 상기 좌안용 필드를 표시할 때에 오프가 되는 우안용 타이밍 신호와, 상기 좌안용 필드를 표시할 때에 온이 되고 상기 우안용 필드를 표시할 때에 오프가 되는 좌안용 타이밍 신호로 이루어지는 셔터 개폐용 타이밍 신호를 발생시키는 제어 신호 발생 회로
    를 구비한 플라즈마 디스플레이 장치에 표시되는 화상의 관측에 이용되고, 각각 독립적으로 셔터의 개폐가 가능한 우안용 셔터 및 좌안용 셔터를 갖는 셔터 안경의 제어 방법으로서,
    상기 선두 서브필드의 기간은 상기 우안용 셔터 및 상기 좌안용 셔터가 모두 닫힌 상태가 되도록 상기 셔터 안경을 제어하는
    것을 특징으로 하는 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법.
KR1020127020279A 2010-03-10 2011-03-10 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법 KR20120098954A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2010-052675 2010-03-10
JP2010052675 2010-03-10

Publications (1)

Publication Number Publication Date
KR20120098954A true KR20120098954A (ko) 2012-09-05

Family

ID=44563220

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127020279A KR20120098954A (ko) 2010-03-10 2011-03-10 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법

Country Status (5)

Country Link
US (1) US20120327070A1 (ko)
JP (1) JPWO2011111389A1 (ko)
KR (1) KR20120098954A (ko)
CN (1) CN102714010A (ko)
WO (1) WO2011111389A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320015A1 (en) * 2010-03-09 2012-12-20 Yuya Shiozaki Plasma display device and plasma display system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174850A1 (en) * 2000-01-26 2002-01-23 Deutsche Thomson-Brandt Gmbh Method for processing video pictures for display on a display device
JP3784967B2 (ja) * 1998-07-21 2006-06-14 日本放送協会 立体画像表示方法および装置
JP2002199416A (ja) * 2000-12-25 2002-07-12 Nippon Hoso Kyokai <Nhk> 立体画像表示方法及び立体画像表示装置
WO2002069647A1 (en) * 2001-02-22 2002-09-06 Thomson Licensing S.A. Stereoscopic plasma display with interlacing of fields
EP1271965A1 (en) * 2001-06-23 2003-01-02 Deutsche Thomson-Brandt Gmbh Method and device for processing video frames for stereoscopic display
JP2004212559A (ja) * 2002-12-27 2004-07-29 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの駆動方法及びプラズマディスプレイ装置
JP4669226B2 (ja) * 2004-01-14 2011-04-13 日立プラズマディスプレイ株式会社 プラズマディスプレイ装置の駆動方法
JP4415217B2 (ja) * 2004-01-16 2010-02-17 株式会社日立プラズマパテントライセンシング プラズマディスプレイパネルの駆動方法
KR20050078444A (ko) * 2004-01-29 2005-08-05 삼성에스디아이 주식회사 플라즈마 표시 패널의 구동 방법 및 플라즈마 표시 장치
KR100667540B1 (ko) * 2005-04-07 2007-01-12 엘지전자 주식회사 플라즈마 디스플레이 장치 및 그의 구동 방법
KR100890292B1 (ko) * 2006-02-28 2009-03-26 파나소닉 주식회사 플라즈마 디스플레이 패널의 구동 방법 및 플라즈마디스플레이 장치
KR20080023933A (ko) * 2006-09-12 2008-03-17 삼성에스디아이 주식회사 플라즈마 표시 장치 및 이의 구동 방법
JP4248572B2 (ja) * 2006-09-12 2009-04-02 日立プラズマディスプレイ株式会社 ガス放電表示装置
CN101542563B (zh) * 2006-11-28 2011-12-07 松下电器产业株式会社 等离子体显示装置及其驱动方法
US20080122749A1 (en) * 2006-11-28 2008-05-29 Yong Duk Kim Method of driving plasma display panel
JP2009152897A (ja) * 2007-12-20 2009-07-09 Toshiba Corp 立体映像表示装置、立体映像表示方法及び液晶ディスプレイ
JP2009181105A (ja) * 2008-02-01 2009-08-13 Hitachi Ltd プラズマディスプレイ装置
JP4792054B2 (ja) * 2008-03-24 2011-10-12 株式会社東芝 立体映像表示装置、立体映像表示方法及び液晶ディスプレイ
US8643707B2 (en) * 2009-09-07 2014-02-04 Panasonic Corporation Image signal processing apparatus, image signal processing method, recording medium, and integrated circuit
US8896676B2 (en) * 2009-11-20 2014-11-25 Broadcom Corporation Method and system for determining transmittance intervals in 3D shutter eyewear based on display panel response time
JPWO2011108310A1 (ja) * 2010-03-02 2013-06-24 キヤノン株式会社 立体映像制御装置(3Dimagecontrolapparatus)及び方法
JP2012105013A (ja) * 2010-11-09 2012-05-31 Canon Inc 立体映像制御装置及び方法

Also Published As

Publication number Publication date
US20120327070A1 (en) 2012-12-27
WO2011111389A1 (ja) 2011-09-15
CN102714010A (zh) 2012-10-03
JPWO2011111389A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2011108261A1 (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
KR20120112701A (ko) 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 플라즈마 디스플레이 패널의 구동 방법 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법
WO2011045923A1 (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
JP5263451B2 (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
KR20120101578A (ko) 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 패널의 구동 방법
WO2011045924A1 (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
WO2011074227A1 (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
KR101331276B1 (ko) 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템 및 플라즈마 디스플레이 패널의 구동 방법
WO2011132431A1 (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
KR20120098954A (ko) 플라즈마 디스플레이 장치, 플라즈마 디스플레이 시스템, 및 플라즈마 디스플레이 장치용 셔터 안경의 제어 방법
JP5267679B2 (ja) プラズマディスプレイ装置、プラズマディスプレイシステムおよびプラズマディスプレイ装置用シャッタ眼鏡の制御方法
WO2011111337A1 (ja) プラズマディスプレイ装置およびプラズマディスプレイシステム
JP2011191467A (ja) プラズマディスプレイ装置、プラズマディスプレイシステム、およびプラズマディスプレイ装置用シャッタ眼鏡の制御方法
JP5263447B2 (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
JP2011099990A (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
KR20130073958A (ko) 플라즈마 디스플레이 패널의 구동 방법 및 플라즈마 디스플레이 장치
JP2011099989A (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム
JP2013088741A (ja) 画像表示装置と画像表示装置の駆動方法、画像表示装置を使用する画像表示システム
JP2011164441A (ja) プラズマディスプレイ装置の駆動方法、プラズマディスプレイ装置およびプラズマディスプレイシステム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application