KR20120096125A - Fabrication method of 1,3-butadiene and 2-butanone from 2,3-butanediol - Google Patents

Fabrication method of 1,3-butadiene and 2-butanone from 2,3-butanediol Download PDF

Info

Publication number
KR20120096125A
KR20120096125A KR1020110015327A KR20110015327A KR20120096125A KR 20120096125 A KR20120096125 A KR 20120096125A KR 1020110015327 A KR1020110015327 A KR 1020110015327A KR 20110015327 A KR20110015327 A KR 20110015327A KR 20120096125 A KR20120096125 A KR 20120096125A
Authority
KR
South Korea
Prior art keywords
catalyst
calcium
butadiene
butanediol
butanone
Prior art date
Application number
KR1020110015327A
Other languages
Korean (ko)
Other versions
KR101287167B1 (en
Inventor
한요한
김형록
홍주형
조한아
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020110015327A priority Critical patent/KR101287167B1/en
Publication of KR20120096125A publication Critical patent/KR20120096125A/en
Application granted granted Critical
Publication of KR101287167B1 publication Critical patent/KR101287167B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/16Phosphorus; Compounds thereof containing oxygen
    • C07C2527/18Phosphorus; Compounds thereof containing oxygen with metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A manufacturing method of 1,3-butadiene and 2-butanone is provided to have excellent conversion rate and yield, maintaining extremely high catalytic activity, and to able to long term stably manufacture 1,3-butadiene and 2-butanol. CONSTITUTION: A manufacturing method of 1,3-butadiene and 2-butanone comprises a step of manufacture 1,3-butadine from 2,3-butandiol under the presence of a catalyst selected from hydroxyapatite, calcium pyrophosphate, or a mixture thereof. The dehydration of the 2,3-butanediol is conducted under a condition of 2,3-butane diol liquid hour space velocity(LHSV), 340-450 °C, and 1-6 atm. The catalyst is a functional catalyst manufacturing 1,3-butadiene and 2-butanone from 2,3-butandiol.

Description

2,3-부탄디올로부터 1,3-부타디엔 및 2-부탄온을 제조하는 방법{Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol}Method for producing 1,3-butadiene and 2-butanone from 2,3-butanediol {Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol}

본 발명은 2,3-부탄디올(2,3-butanediol)로부터 1,3-부타디엔(1,3-Butadiene) 및 2-부탄온(2-Butanone, Methyl Ethyl Ketone)을 제조하는 방법에 관한 것으로, 상세하게는 바이오 플랫폼 화합물인 2,3-부탄디올로부터 장기간 안정하게 고수율로 1,3-부타디엔 및 2-부탄온을 얻을 수 있는 새로운 제조방법에 관한 것이다.
The present invention relates to a method for preparing 1,3-butadiene and 2-butanone (2-Butanone, Methyl Ethyl Ketone) from 2,3-butanediol, In detail, the present invention relates to a new method for obtaining 1,3-butadiene and 2-butanone in a high yield from a bioplatform compound, 2,3-butanediol, over a long period of time.

2,3-부탄디올(BDO; 2,3-butanediol)은 일반적으로 발효에 의해 생산되는 방법으로 제조된다. 특히 2차 세계 대전시 생고무대신, 합성고무의 수요급등으로 인해, 부타디엔의 원료로 대량생산되기도 하였으나, 석유로부터 부타디엔을 대량으로 저가로 공급하게 됨에 따라서 2,3-부탄디올의 생산은 일부 정밀화학제품 사용으로 제한되면서 크게 줄어들었다. 2,3-butanediol (BDO; 2,3-butanediol) is generally prepared by methods produced by fermentation. In particular, due to the surge in demand for synthetic rubber instead of raw rubber during World War II, it was mass-produced as raw material of butadiene.However, as 2,3-butanediol is produced at a low price by supplying butadiene from petroleum in bulk, some fine chemicals are used. Restricted to, greatly reduced.

최근 고유가로 인한 부타디엔의 원료인 납사 가격의 상승으로 납사 분해설비 가동률을 10~15% 정도 줄이고 있고, 최근 중동지역에서 에틸렌 분해설비 증설에 따른 납사 분해설비의 채산성 악화로 인해 가동률이 더욱 감소될 것이므로, 이로 인해 부타디엔의 수급에 큰 차질이 예상되어 부타디엔과 2-부탄온 및 2,3-디메틸옥시란 등의 생산에서 석유 의존도를 줄이기 위해 석유 대체자원인 바이오매스(2,3-부탄디올)로부터 부타디엔, 2-부탄온 및 2,3-디메틸옥시란을 제조하는 연구개발이 추진되고 있다.As the price of naphtha, a raw material of butadiene due to high oil prices, is increasing, the utilization rate of naphtha cracking facilities is reduced by about 10-15%, and the utilization rate will decrease further due to deterioration in the profitability of naphtha cracking facilities due to the recent expansion of ethylene cracking facilities in the Middle East. As a result, butadiene, 2-butanone, and 2,3-dimethyloxirane are expected to have a big disruption in the supply and demand of butadiene, butadiene from biomass (2,3-butanediol), an petroleum substitute, is used to reduce the dependence on petroleum. R & D for preparing 2-butanone and 2,3-dimethyloxirane is being promoted.

2,3-부탄디올(BDO)을 생산하는 방법으로, 박테리아인 Klebsiella pneumoniae, Bacillus polymyxa 또는 Enterobacter aerogenes 등의 발효균주를 사용하며, 펜토스(Pentoses), 자일로스(Xylose) 및 아라비노스(Arabinose) 등을 원료로 하고 배양조건(온도, pH, 배지조성, 탄소원 등)을 최적화하여 합성하고, 발효액으로부터는 다단계 감압분별증류, 용매추출 및 미세기공 테프론멤브레인 막분리 등의 방법으로 분리 정제하는 방법이 알려져 있다(Syu, M.-J. Appl. Microbiol. Biotechnol(2001)55:10-18). As a method for producing 2,3-butanediol (BDO), fermented strains such as bacteria Klebsiella pneumoniae, Bacillus polymyxa or Enterobacter aerogenes are used, and pentoses, xylose and arabinose, etc. Is synthesized by optimizing the culture conditions (temperature, pH, medium composition, carbon source, etc.), and separating and purifying from the fermentation broth using multistage vacuum distillation, solvent extraction, and micropore Teflon membrane separation. (Syu, M.-J. Appl. Microbiol. Biotechnol (2001) 55: 10-18).

2,3-부탄디올(BDO)은 용도에 따라서 Dry BDO와 Wet BDO로 구분되며, Dry BDO는 수분함량이 5%이하이고, Wet BDO는 수분함량이 5-80%이다. 탈수반응에는 Dry BDO와 수분함량이 20% 이하인 Wet BDO가 주로 사용되는 데, 이는 탈수반응에서 물이 많이 함유될수록 탈수역반응으로 탈수생성물이 반응물로 역반응되어 전환율이 감소하고, 증발에너지 손실도 있어서 반응에너지 소비가 크기 때문이다. 2,3-butanediol (BDO) is classified into dry BDO and wet BDO according to the use. Dry BDO has a moisture content of 5% or less and wet BDO has a water content of 5-80%. In the dehydration reaction, dry BDO and Wet BDO with water content of 20% or less are mainly used.The more water is contained in the dehydration reaction, the more the water is dehydrated, the dehydration product is reversely reacted with the reactant, so that the conversion rate is reduced and the evaporation energy is lost. This is because the energy consumption is large.

부타디엔(Butadiene)은 합성고무의 원료로서 중요한 물질이며, 뷰타다이엔스타이렌고무(SBR)ㆍ뷰타다이엔아크릴로나이트릴고무(NBR)ㆍ폴리뷰타다이엔 등의 원료가 된다. 또 클로로프렌ㆍ아디포나이트릴ㆍ말레산무수물 등의 원료로도 사용된다.Butadiene is an important material as a raw material of synthetic rubber, and it becomes a raw material of butadiene styrene rubber (SBR), butadiene acrylonitrile rubber (NBR), and polybutadiene. It is also used as a raw material for chloroprene, adiponitryl, maleic anhydride and the like.

2-부탄온(2-Butanone, Methyl Ethyl Ketone)은 정밀화학산업에서 합성용매와 연료첨가제, 분산제와 용제로 사용되고 있다.2-Butanone (Methyl Ethyl Ketone) is used in the fine chemical industry as a synthetic solvent, fuel additive, dispersant and solvent.

부탄디올의 탈수반응으로 부타디엔을 제조하는 방법이 미국특허 제 2,444,538호에 제시되었다. 부탄디올로서는 1,3-부탄디올을 사용하였고, 촉매로서는 인산나트륨-인산칼슘-인산부틸아민 혼합물촉매를 사용하여, 반응온도 250~300℃ 상압에서 80%의 1,3-부탄디올 수용액을 공간속도(LHSV, Liquid Hour Space Velocity) 0.28로 공급하여 반응한 결과, 반응시간 20시간에서 순도 97%인 부타디엔의 수율은 77%이었고, 42시간이 경과시 수율은 61%로 감소하였다.A method for preparing butadiene by dehydration of butanediol is disclosed in US Pat. No. 2,444,538. As butanediol, 1,3-butanediol was used, and as a catalyst, a mixture of sodium phosphate-calcium phosphate-butyl phosphate mixture catalyst was used, and 80% of 1,3-butanediol aqueous solution was reacted at a reaction temperature of 250 to 300 ° C at atmospheric pressure (LHSV). , Liquid Hour Space Velocity) was supplied as 0.28, the yield of butadiene with a purity of 97% was 77% at the reaction time 20 hours, the yield was reduced to 61% after 42 hours.

2,3-부탄디올의 탈수반응으로 부타디엔을 제조하는 방법이 미국특허 제 2,527,120호에 제시되었다. 촉매로서는 카오린, 실리카겔 및 활성탄소등을 촉매로 사용하며, 반응온도 500~580℃, 상압에서 50%의 1,3-부탄디올-초산무수물 용액을 공급하여 반응하여 부타디엔을 합성하였다. 그러나 반응수율과 반응시간에 대해서는 상세한 반응결과를 제시하지 않았다.A method for preparing butadiene by dehydration of 2,3-butanediol is disclosed in US Pat. No. 2,527,120. As a catalyst, kaolin, silica gel, activated carbon, and the like were used as catalysts, and a butadiene was synthesized by supplying a 50% 1,3-butanediol-acetic anhydride solution at a reaction temperature of 500 to 580 ° C and atmospheric pressure. However, the reaction yield and reaction time were not presented in detail.

디올로부터 디올레핀을 제조하는 방법으로 미국특허 제 3,758,612호에서는 리튬/인 비가 2.2~3인 인산리튬촉매를 사용하였다. 디올로는 메틸-2,3-부탄디올을 사용하여 생성물로는 디올레핀인 이소프렌과 케톤화합물인 메틸이소프로필케톤을 주 생성물로 합성하였다. 반응온도 400℃ 상압에서 메틸-2,3-부탄디올을 공간속도(LHSV, Liquid Hour Space Velocity) 1.0으로 공급하여 반응한 결과, 전환율 100%, 이소프렌의 수율은 62-64%이었고, 메틸이소프로필케톤의 수율은 29-30%이였다. 그러나 반응시간에 따른 활성변화 결과는 제시하지 않고 있어 촉매 안정성은 개선되어야 하는 것으로 보인다. As a method for preparing diolefin from diols, US Pat. No. 3,758,612 used a lithium phosphate catalyst having a lithium / phosphorus ratio of 2.2 to 3. Methyl-2,3-butanediol was used as the diol, and isoprene, a diolefin, and methyl isopropyl ketone, a ketone compound, were synthesized as products. When methyl-2,3-butanediol was reacted by supplying liquid hour space velocity (LHSV) 1.0 at a reaction temperature of 400 ° C., the yield was 100% and the yield of isoprene was 62-64%, and methyl isopropyl ketone The yield of was 29-30%. However, the results of the change in activity according to the reaction time are not presented, and the catalyst stability seems to be improved.

또한 미국특허 제 3,957,900호에서는 리튬, 나트륨, 스트론튬 및 바륨의 오르토인산과 피로인산의 혼합촉매를 사용하였다. 디올로는 메틸-2,3-부탄디올을 사용하여 생성물로는 디올레핀인 이소프렌과 케톤화합물인 메틸이소프로필케톤을 주 생성물로 합성하였다. Li3NaP2O7촉매를 사용하며 반응온도 400℃ 상압에서 메틸-2,3-부탄디올을 공간속도(LHSV, Liquid Hour Space Velocity) 1.0으로 공급하여 반응한 결과, 반응 1시간후, 전환율 100%, 이소프렌의 수율은 86%이었고, 메틸이소프로필케톤의 수율은 12%이였다. 촉매의 강도가 약하고, 활성감소가 크므로, 피로인산나트륨을 혼합한 Li3NaP2O7- Na2HP2O7촉매를 사용하였다. 반응온도 400℃ 상압에서 메틸-2,3-부탄디올을 공간속도(LHSV) 1.0으로 공급하여 반응한 결과, 촉매의 강도는 증가하였으나, 반응 1시간후, 전환율 91%, 이소프렌의 수율은 30%이었고, 메틸이소프로필케톤의 수율은 18%이였다. 14시간에서는 전환율 85%, 이소프렌의 수율은 16%이었고, 메틸이소프로필케톤의 수율은 19%로 활성감소와 디올레핀인 이소프렌의 수율감소가 확인되었다. In addition, US Patent No. 3,957,900 uses a mixed catalyst of orthophosphoric acid and pyrophosphoric acid of lithium, sodium, strontium, and barium. Methyl-2,3-butanediol was used as the diol, and isoprene, a diolefin, and methyl isopropyl ketone, a ketone compound, were synthesized as products. The reaction was carried out by using Li 3 NaP 2 O 7 catalyst and supplying methyl-2,3-butanediol at 1.0 ° C atmospheric pressure at room temperature (LHSV, Liquid Hour Space Velocity) 1.0, and after 1 hour, 100% conversion. The yield of isoprene was 86% and the yield of methyl isopropyl ketone was 12%. Since the strength of the catalyst was weak and the activity was large, a Li 3 NaP 2 O 7 -Na 2 HP 2 O 7 catalyst mixed with sodium pyrophosphate was used. When methyl-2,3-butanediol was reacted with a space velocity (LHSV) of 1.0 at a reaction temperature of 400 ° C, the strength of the catalyst was increased. However, after 1 hour, the conversion was 91% and the yield of isoprene was 30%. , The yield of methyl isopropyl ketone was 18%. At 14 hours, the yield was 85%, the yield of isoprene was 16%, and the yield of methyl isopropyl ketone was 19%, indicating a decrease in activity and a decrease in yield of isoprene, a diolefin.

알데히드의 탈수반응으로 디올레핀을 합성하는 방법이 미국특허 제 4,628, 140에 제안되었다. 알데히드로는 2-메틸부틸알데하이드이며 탈수생성물은 이소프렌이고, 촉매로는 인산/보론비가 0.8인 인산보론을 사용하였다. 특히 방향족화합물인 부틸카테콜을 활성감소억제제로 2.5% 첨가하여 반응온도 275℃ 상압에서 2-메틸부틸알데하이드를 공간속도(LHSV) 2.25로 공급하여 반응한 결과, 반응 2시간후, 전환율 33%, 이소프렌의 수율은 23%이었고, 32시간에서는 전환율 18%, 이소프렌의 수율은 14%이었다. 활성감소의 정도가 완만하여졌으나, 초기 활성이 낮으며, 활성이 감소되고 있다. A method for synthesizing diolefins by dehydration of aldehydes has been proposed in US Pat. No. 4,628,140. Aldehydro is 2-methylbutylaldehyde, dehydration product isoprene and boron phosphate having a phosphoric acid / boron ratio of 0.8 was used as a catalyst. In particular, 2.5% of butylcatechol, an aromatic compound, was added as an activity-inhibiting agent, and 2-methylbutylaldehyde was reacted with a space velocity (LHSV) of 2.25 at a reaction temperature of 275 ° C. After 2 hours, the conversion rate was 33%, The yield of isoprene was 23%, the conversion was 18% and the yield of isoprene was 14% at 32 hours. Although the degree of deactivation is gentle, the initial activity is low, and the activity is decreasing.

다이알콜에서 탈수반응으로 2-부탄온(2-Butanone, Methyl Ethyl Ketone)을 합성하는 방법으로는 고체산촉매로 알루미나[Kannan, s. V.; Pillai, c. N. Indian J. Chem. 1969, 7, 1164-66]와 벤토나이트[Bourns, a. N.; Nicholls, R. V. Can. J. Res. 1947, 25B, 80-89] 또는 오산화인을 사용하는 방법과 액체산인 황산이나 인산을 사용하는 방법이 보고되었다[Furhhaski, S.; Ohara, K. J. Agri. Chem. Soc. Jpn. 1948, 17, 315-20]. 그러나 디올에서 탈수하여 부탄온으로만 수율 91%로 제조하는 촉매는 산성촉매만 사용되고 있고, 디올레핀으로 한분자에서 2개의 물을 탈수하는 촉매로는 산-염기복합촉매가 주로 사용되고 있다. 산염기복합촉매의 경우에는 상용생산하기에는 활성이 낮으며, 열안정성, 수열안정성, 반응안정성 등에서 개선이 요구되고 있다.A method of synthesizing 2-butanone (2-Butanone, Methyl Ethyl Ketone) by dehydration in dialcohol is carried out using alumina [Kannan, s. V .; Pillai, c. N. Indian J. Chem. 1969, 7, 1164-66 and bentonite [Bourns, a. N .; Nicholls, R. V. Can. J. Res. 1947, 25B, 80-89] or the use of phosphorus pentoxide and the use of liquid acids sulfuric acid or phosphoric acid [Furhhaski, S .; Ohara, K. J. Agri. Chem. Soc. Jpn. 1948, 17, 315-20]. However, only acidic catalyst is used for the catalyst which is dehydrated in diol and yields only 91% in butanone, and acid-base complex catalyst is mainly used as a catalyst for dehydrating two waters in one molecule with diolefin. In the case of acid-base complex catalysts, the activity is low for commercial production, and improvements in thermal stability, hydrothermal stability, and reaction stability are required.

본 발명은 2,3-부탄디올의 탈수 반응에 의해 1,3-부타디엔 및 2-부탄온을 제조하는 방법을 제공하는 것이며, 매우 높은 활성을 유지하여 우수한 전환율 및 수율을 가지며, 안정성이 극히 우수하여 장기 반응이 가능한 제조방법을 제공하는 것이다. The present invention provides a method for preparing 1,3-butadiene and 2-butanone by dehydration of 2,3-butanediol, maintains very high activity, has excellent conversion and yield, and is extremely stable. It is to provide a production method capable of long-term reaction.

또한, 본 발명은 2,3-부탄디올의 탈수 반응에 의해 1,3-부타디엔 및 2-부탄온을 제조하는 촉매 및 이의 제조방법을 제공하는 것이며, 제조가 용이하고, 반응 안정성이 우수하며, 매우 높은 활성과 높은 선택성을 가지며, 촉매 수명이 연장된 촉매 및 이의 제조방법을 제공하는 것이다.
In addition, the present invention provides a catalyst for producing 1,3-butadiene and 2-butanone by dehydration of 2,3-butanediol, and a method for preparing the same, which is easy to prepare, has excellent reaction stability, and It is to provide a catalyst having a high activity and a high selectivity, and an extended catalyst life and a method for preparing the same.

이하 본 발명의 1,3-부타디엔 및 2-부탄온의 제조방법, 상기 방법에 사용되는 촉매 및 상기 촉매의 제조방법을 상세히 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Hereinafter, a method for preparing 1,3-butadiene and 2-butanone of the present invention, a catalyst used in the method, and a method for preparing the catalyst will be described in detail. Hereinafter, the technical and scientific terms used herein will be understood by those skilled in the art without departing from the scope of the present invention. Descriptions of known functions and configurations that may be unnecessarily blurred are omitted.

본 출원인은 2,3-부탄디올(2,3-butanediol)로부터 1,3-부타디엔(1,3-Butadiene) 및 2-부탄온(2-Butanone, Methyl Ethyl Ketone)을 제조하기 위해 다양한 촉매를 이용하여 실험을 수행한 결과, 하이드록시아파타이트 및 피로인산칼슘을 촉매로 사용하는 경우, 탈수 반응의 활성, 선택성 및 반응안정성이 크게 증대되는 것을 확인하고, 본 발명을 완성하게 되었다.Applicant uses various catalysts to prepare 1,3-butadiene and 2-butanone (2-Butanone, Methyl Ethyl Ketone) from 2,3-butanediol As a result of the experiment, it was confirmed that when hydroxyapatite and calcium pyrophosphate were used as catalysts, the activity, selectivity, and reaction stability of the dehydration reaction were greatly increased, thereby completing the present invention.

또한, 본 출원인은 인산전구체와 칼슘전구체를 이용한 인산칼슘염(하이드록시아파타이트, 피로인산칼슘)의 합성 시, 전구체의 종류, 침전액 pH, 교반 조건, 열처리 온도등을 자세하게 검토한 결과, 특정의 조건과 방법으로 합성된 인산칼슘염이 탈수반응의 활성과 선택성 및 반응안정성을 보다 증가시키는 것을 확인하고, 본 발명을 완성하게 되었다. In addition, the Applicant has examined in detail the kind of precursor, precipitate pH, stirring condition, heat treatment temperature, etc., in the synthesis of calcium phosphate salts (hydroxyapatite, calcium pyrophosphate) using the phosphate precursor and calcium precursor. It was confirmed that the calcium phosphate salt synthesized under the conditions and methods further increased the activity, selectivity, and reaction stability of the dehydration reaction, thereby completing the present invention.

이하, 본 발명에 따른 1,3-부타디엔 및 2-부탄온의 제조방법을 상술한다.Hereinafter, a method for preparing 1,3-butadiene and 2-butanone according to the present invention will be described in detail.

본 발명에 따른 제조방법은 하이드록시아파타이트, 피로인산칼슘, 또는 이들의 혼합물에서 선택되는 촉매의 존재 하에 2,3-부탄디올로부터 1,3-부타디엔을 제조하는 특징이 있으며, 하이드록시아파타이트, 피로인산칼슘, 또는 이들의 혼합물에서 선택되는 촉매의 존재 하에 2,3-부탄디올로부터 2-부탄온을 제조하는 특징이 있다.The preparation method according to the invention is characterized in that 1,3-butadiene is prepared from 2,3-butanediol in the presence of a catalyst selected from hydroxyapatite, calcium pyrophosphate, or mixtures thereof, hydroxyapatite, pyrophosphate It is characterized by the preparation of 2-butanone from 2,3-butanediol in the presence of a catalyst selected from calcium, or mixtures thereof.

상기 촉매는 2,3-부탄디올의 탈수 반응 촉매로 고기능성 촉매인 특징이 있다. 상기 하이드록시아파타이트(Ca5(PO4)3(OH)) 또는 상기 피로인산칼슘(Ca2(P2O7))이 촉매로 사용될 수 있으며, 상기 촉매가 하이드록시아파타이트(Ca5(PO4)3(OH)) 및 피로인산칼슘(Ca2(P2O7))을 모두 함유하는 경우, 상기 촉매의 하이드록시아파타이트(Ca5(PO4)3(OH)) : 피로인산칼슘(Ca2(P2O7))의 중량비는 1 : 0.5 내지 1.5인 것이 바람직하다. 상기 촉매는 분말 또는 다공성 소결체 형상을 포함하며, 상기 다공성 소결체 형상은 펠렛(pellet) 형상을 포함한다. The catalyst is a dehydration catalyst of 2,3-butanediol and is characterized by a high functional catalyst. The hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)) or the calcium pyrophosphate (Ca 2 (P 2 O 7 )) may be used as a catalyst, the catalyst is hydroxyapatite (Ca 5 (PO 4 Hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)) of the catalyst when both ( 3 ) (OH)) and calcium pyrophosphate (Ca 2 (P 2 O 7 )) are contained: calcium pyrophosphate (Ca) The weight ratio of 2 (P 2 O 7 )) is preferably 1: 0.5 to 1.5. The catalyst includes a powder or porous sintered body shape, and the porous sintered body shape includes a pellet shape.

상술한 바와 같이, 본 발명에 따른 제조방법은 하이드록시아파타이트(Ca5(PO4)3(OH)), 피로인산칼슘(Ca2(P2O7)) 또는 이들의 혼합물을 촉매로 채택함으로써, 장기간의 탈수 반응에도 촉매가 극히 높은 활성을 유지하여 장기간 연속 반응이 가능한 특징이 있으며, 장기간의 반응에도 2,3-부탄디올의 전환율이 매우 높고, 1,3-부타디엔 및 2-부탄온이 높은 수율로 제조되는 장점이 있다.As described above, the preparation method according to the present invention is achieved by employing hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)), calcium pyrophosphate (Ca 2 (P 2 O 7 )) or a mixture thereof as a catalyst. The catalyst maintains extremely high activity even in the long-term dehydration reaction, so that the long-term continuous reaction is possible. The long-term reaction has a high conversion rate of 2,3-butanediol, and high 1,3-butadiene and 2-butanone. It has the advantage of being produced in yield.

본 발명에 따른 1,3-부타디엔 및 2-부탄온의 제조방법은 고정식(Fixed bed) 반응기를 사용하는 연속식 반응 또는 회분식 반응일 수 있다. 고정식 반응기를 사용하는 반응방법으로는 고정식 반응기에 본 발명에 따른 촉매 펠렛(pellet)을 충진하고 반응물인 2,3-부탄다이올을 연속적으로 반응기에 공급하여 반응시킴으로 생성물을 연속적으로 제조한다. 이때, 고정식 반응기 내 상기 촉매의 충진율은 30내지 70 부피%인 것이 바람직하다. 연속 회분식 반응일 경우에는 촉매를 반응물의 1 내지 10중량% 사용하는 것이 바람직하다.The method for preparing 1,3-butadiene and 2-butanone according to the present invention may be a continuous reaction or a batch reaction using a fixed bed reactor. As a reaction method using a fixed reactor, a catalyst pellet (pellet) according to the present invention is charged to a fixed reactor and the reactant 2,3-butanediol is continuously supplied to the reactor to produce a product. At this time, the filling rate of the catalyst in the fixed reactor is preferably 30 to 70% by volume. In the case of a continuous batch reaction, it is preferable to use 1 to 10% by weight of the catalyst.

상기 하이드록시아파타이트(Ca5(PO4)3(OH)), 피로인산칼슘(Ca2(P2O7)) 또는 이들의 혼합물인 촉매의 안정성이 매우 우수하고 높은 활성이 장기간 동안 유지됨에 따라, 본 발명의 제조방법은 2,3-부탄디올을 연속적으로 탈수 반응하여 1,3-부타디엔 및 2-부탄온을 연속적으로 제조하는 연속식 반응인 것이 바람직하다.The stability of the catalyst which is hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)), calcium pyrophosphate (Ca 2 (P 2 O 7 )) or a mixture thereof is very excellent and high activity is maintained for a long time. It is preferable that the manufacturing method of this invention is a continuous reaction which continuously produces 1, 3- butadiene and 2-butanone by continuously dehydrating 2, 3- butanediol.

상술한 바와 같이, 본 발명의 제조방법은 하이드록시아파타이트(Ca5(PO4)3(OH)) 및 피로인산칼슘(Ca2(P2O7))으로 이루어진 군으로부터 선택되는 하나 이상 선택되는 촉매의 존재 하에 2,3-부탄디올을 탈수반응하여 1,3-부타디엔 및 2-부탄온을 제조하는 특징이 있으며, 상기 탈수 반응은 340 내지 450℃의 반응온도, 1 내지 6 atm의 반응압력 및 0.3 내지 1.5 h-1의 2,3-부탄디올 액상공간속도(LHSV)의 조건에서 수행되는 특징이 있다. As described above, the production method of the present invention is selected from at least one selected from the group consisting of hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)) and calcium pyrophosphate (Ca 2 (P 2 O 7 )). Dehydration of 2,3-butanediol in the presence of a catalyst to produce 1,3-butadiene and 2-butanone, the dehydration reaction is a reaction temperature of 340 to 450 ℃, reaction pressure of 1 to 6 atm and It is characterized in that it is carried out under the conditions of 2,3-butanediol liquid space velocity (LHSV) of 0.3 to 1.5 h -1 .

상기 반응온도, 반응압력 및 액상공간속도는 1,3-부타디엔 및 2-부탄온을 70 몰%이상의 선택도로 제조할 수 있는 조건으로, 반응온도가 450℃를 초과하거나, 반응압력이 1 atm 미만, 반응물의 공급속도가 0.3hr-1 미만이면 촉매의 활성이 과도하게 증가되어 수소화 분해 부반응이 진행되고 이에 선택성이 감소한다. 그리고 반응온도가 340℃ 미만이거나, 반응압력이 6atm 이상, 2,3-부탄디올의 공급속도가 1.5hr-1 를 초과하면, 전환율이 낮아져서 다른 반응조건을 가혹하게 높여야 하고 생성물의 분리 회수단계에서 비용이 증가하게 된다. The reaction temperature, the reaction pressure and the liquid phase space velocity are conditions for producing 1,3-butadiene and 2-butanone with a selectivity of 70 mol% or more. When the feed rate of the reactants is less than 0.3 hr −1, the activity of the catalyst is excessively increased, so that hydrocracking side reactions proceed and the selectivity decreases. And if the reaction temperature is less than 340 ℃, or if the reaction pressure is more than 6atm, the feed rate of 2,3-butanediol exceeds 1.5hr -1 , the conversion rate is lowered, the other reaction conditions must be severely increased and the cost in the separation and recovery stage of the product Will increase.

이하, 본 발명에 따른 1,3-부타디엔 및 2-부탄온 제조용 촉매 및 이의 제조방법에 대해 상술한다.Hereinafter, a catalyst for preparing 1,3-butadiene and 2-butanone according to the present invention and a method for preparing the same will be described in detail.

본 발명에 따른 촉매는 2,3-부탄디올로부터 1,3-부타디엔 및 2-부탄온을 제조하는 촉매인 특징이 있으며, 상기 촉매는 하이드록시아파타이트(Ca5(PO4)3(OH)) 및 피로인산칼슘(Ca2(P2O7))으로 이루어진 군으로부터 하나 이상 선택된 촉매인 특징이 있다.The catalyst according to the invention is characterized in that it is a catalyst for preparing 1,3-butadiene and 2-butanone from 2,3-butanediol, the catalyst is hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)) and Calcium pyrophosphate (Ca 2 (P 2 O 7 )) is characterized in that at least one catalyst selected from the group consisting of.

상세하게, 상기 촉매는 2,3-부탄디올을 연속적으로 탈수 반응시켜 1,3-부타디엔 및 2-부탄온을 연속적으로 제조하는 촉매인 특징이 있으며, 100시간의 연속 적 탈수반응에서도 95몰%이상의 전환율을 가지며, 70 몰%이상의 1,3-부타디엔 및 2-부탄온의 수율(1,3-부타디엔의 수율 및 2-부탄온 수율의 합)을 갖는 촉매인 특징이 있다.Specifically, the catalyst is characterized in that the catalyst for continuously producing 1,3-butadiene and 2-butanone by continuously dehydrating 2,3-butanediol, even in 100 hours of continuous dehydration reaction of more than 95 mol% It is characterized by a catalyst having a conversion rate and having a yield of 1,3-butadiene and 2-butanone of at least 70 mol% (sum of yield of 1,3-butadiene and 2-butanone yield).

본 발명에 따른 2,3-부탄디올로부터 1,3-부타디엔 및 2-부탄온을 제조하는 촉매의 제조방법은 (a) 인산을 함유하는 수용액에 알칼리염을 혼합하여 인산염 수용액을 제조하는 단계; (b) 상기 인산염 수용액에 칼슘전구체 수용액을 혼합, 교반하여 인산칼슘염을 제조하는 단계; 및 (c) 제조된 인산칼슘염을 300 내지 700℃로 열처리 하여 하이드록시아파타이트(Ca5(PO4)3(OH)), 피로인산칼슘(Ca2(P2O7)) 또는 이들의 혼합물인 촉매를 제조하는 단계;를 포함하여 수행되는 특징이 있다.A method for preparing a catalyst for preparing 1,3-butadiene and 2-butanone from 2,3-butanediol according to the present invention comprises the steps of: (a) preparing an aqueous solution of phosphate by mixing an alkali salt with an aqueous solution containing phosphoric acid; (b) preparing a calcium phosphate salt by mixing and stirring the aqueous solution of calcium precursor to the aqueous solution of phosphate; And (c) hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)), calcium pyrophosphate (Ca 2 (P 2 O 7 )) or a mixture thereof by heat-treating the prepared calcium phosphate salt at 300 to 700 ° C. Preparing a phosphorus catalyst; and there is a feature performed.

상기 (a) 단계의 인산은 오르토인산(H3PO4), 피로인산(H4P2O7), 트리폴리인산(H5P3O10) 및 테트라폴리인산(H6P4O13)에서 하나 이상 선택된 특징이 있으며, 상기 알칼리염은 가성소다(수산화나트륨, NaOH), 수산화칼륨(KOH) 및 수산화리튬(LiOH)이 바람직하며, 이들 중 가성소다(NaOH) 경우가 가장 바람직하게 사용된다.The phosphoric acid of step (a) is orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), tripolyphosphoric acid (H 5 P 3 O 10 ) and tetrapolyphosphoric acid (H 6 P 4 O 13 ) In the at least one selected feature, the alkali salt is preferably caustic soda (sodium hydroxide, NaOH), potassium hydroxide (KOH) and lithium hydroxide (LiOH), of which caustic soda (NaOH) is most preferably used. .

상기 (a) 단계에서 상기 알칼리염은 상기 인산염 수용액의 pH가 10.0 내지 12.0이 되도록 첨가되며, 이에 따라, 상기 인산염 수용액은 인산염이 완전히 용해되며 안정하도록 pH가 10.0 내지 12.0인 특징이 있다. In the step (a), the alkali salt is added so that the pH of the aqueous solution of phosphate is 10.0 to 12.0. Accordingly, the aqueous solution of phosphate is characterized in that the pH is 10.0 to 12.0 so that the phosphate is completely dissolved and stable.

상기 알칼리염의 혼합은 알칼리염을 함유하는 수용액(알칼리염 수용액)의 점적에 의해 수행되는 것이 바람직하며, 상기 알칼리염 수용액의 점적은 20분 내지 2시간에 걸쳐 수행되는 것이 바람직하다. 이때, 상기 알칼리염 수용액과 인산 수용액과의 혼합시 교반이 수행될 수 있음은 물론이다. The mixing of the alkali salts is preferably carried out by dropping an aqueous solution containing an alkali salt (alkali salt aqueous solution), and the dropping of the aqueous alkali salt solution is preferably performed over 20 minutes to 2 hours. At this time, the mixing may be performed when the alkali salt solution and the phosphoric acid solution is mixed.

상기 (b) 단계의 칼슘전구체는 염화칼슘, 질산칼슘, 황산칼슘 및 초산칼슘에서 하나 이상 선택된 물질이 바람하며, 상기 (b) 단계의 인산염 수용액의 인산 농도는 0.1 내지 0.4노르말이며, 칼슘 전구체 수용액의 칼슘 농도는 1.0 내지 4.0노르말이며, 상기 칼슘 전구체 수용액은 인 : 칼슘의 몰비가 1: 0.7 내지 1.5가 되도록 상기 인산염 수용액에 혼합되는 특징이 있다.The calcium precursor of step (b) is one or more materials selected from calcium chloride, calcium nitrate, calcium sulfate and calcium acetate, the phosphoric acid concentration of the aqueous solution of phosphate of step (b) is 0.1 to 0.4 normal, the calcium precursor aqueous solution of The calcium concentration is 1.0 to 4.0 normal, and the calcium precursor aqueous solution is characterized in that it is mixed with the aqueous phosphate solution so that the molar ratio of phosphorus: calcium is 1: 0.7 to 1.5.

상기 (b) 단계의 혼합시, 상기 칼슘 전구체 수용액은 상기 인산염 수용액에 3 내지 10ml/min의 속도로 점적되는 특징이 있다. 상기 칼슘 전구체 수용액을 3 내지 10ml/min의 속도로 점적함으로써, 원치 않는 이상의 생성을 방지 할 수 있으며, 상기 (c) 단계의 열처리시 매우 큰 비표면적을 가지며, 장기간 동안 우수한 활성이 유지되는 인산칼슘염(하이드록시아파타이트(Ca5(PO4)3(OH)), 피로인산칼슘(Ca2(P2O7) 또는 이들의 혼합물) 촉매가 제조된다.In the mixing of the step (b), the calcium precursor aqueous solution is characterized in that the drop of the phosphate solution at a rate of 3 to 10ml / min. By dropping the calcium precursor aqueous solution at a rate of 3 to 10ml / min, it is possible to prevent the formation of unwanted abnormalities, has a very large specific surface area during the heat treatment of the step (c), calcium phosphate to maintain excellent activity for a long time Salt (hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)), calcium pyrophosphate (Ca 2 (P 2 O 7 ) or mixtures thereof) catalysts are prepared.

상기 (b) 단계의 교반은 60 내지 90℃에서 수행되는 특징이 있다. 60℃ 이하에서 교반을 하면 인산칼슘염의 결합이 충분하지 않아서 하이드록시아파타이트나 피로인산칼슘의 균일한 분산성과 입자의 생성이 낮으므로 활성이 감소되고, 90℃ 이상에서 가열을 하면 하이드록시아파타이트와 이인산이나트륨칼슘의 결합이 강하게 되어 인산나트륨(Tri-Sodium Phosphate, Na3PO4) 과 인산나트륨칼슘(CaNa2(P2O7)) 등으로 전환되는 인산칼슘염의 부산물을 생성하게 되어 활성의 감소와 선택성 감소가 발생하는 위험이 있다.The stirring of the step (b) is characterized in that it is carried out at 60 to 90 ℃. When the mixture is stirred below 60 ° C, the binding of calcium phosphate salt is not sufficient, so the uniform dispersibility of hydroxyapatite or calcium pyrophosphate and the formation of particles are low. Therefore, the activity decreases. When heating at 90 ° C or higher, hydroxyapatite and diphosphate The strong binding of disodium calcium acid leads to the formation of byproducts of calcium phosphate salts, which are converted to sodium phosphate (Tri-Sodium Phosphate, Na 3 PO 4 ) and sodium calcium phosphate (CaNa 2 (P 2 O 7 )). There is a risk of reduced selectivity.

상기 (c) 단계의 열처리는 공기 중에서 300 내지 700℃로 수행되는 특징이 있으며, 바람직하게는 400 내지 600℃로 3 내지 10시간 열처리한다. 열처리 온도가 700℃를 초과하는 경우 인산칼슘염 입자(하이드록시아파타이트, 피로인산칼슘, 또는 이들의 혼합물 입자)가 치밀화되어 촉매활성이 떨어지고, 열처리 온도가 300℃ 미만인 경우 하이드록시아파타이트 또는 피로인산칼슘 입자가 불완전하게 생성되어 전환율이 떨어진다.The heat treatment of step (c) is characterized in that it is carried out at 300 to 700 ℃ in air, preferably 400 to 600 ℃ heat treatment for 3 to 10 hours. Calcium phosphate salt particles (hydroxyapatite, calcium pyrophosphate, or mixtures thereof) are densified when the heat treatment temperature exceeds 700 ° C., and the catalytic activity is lowered. When the heat treatment temperature is lower than 300 ° C., hydroxyapatite or calcium pyrophosphate is used. Incomplete particles are produced, resulting in a lower conversion.

상기 제조방법은 (b) 단계 후 및 (c) 단계 전, (b2) 제조된 인산칼슘염을 회수 건조하고 5 내지 100㎛ 크기로 분쇄하는 단계; 및 (b3) 분쇄된 인산칼슘염을 펠렛(pellet)으로 성형하는 단계;를 더 포함하여 수행될 수 있다.The preparation method includes the steps of (b) and before (c) step, (b2) recovering the prepared calcium phosphate salt and drying it to a size of 5 to 100 μm; And (b3) shaping the pulverized calcium phosphate salt into pellets.

상기 (b) 단계에 의해 인산칼슘염의 슬러리가 제조되는데, 상기 인산칼슘염의 회수는 상기 슬러리의 여과에 의해 수행될 수 있으며, 여과에 의해 얻어진 인산칼슘염을 증류수와 혼합한 후 여과하는 세척 단계가 더 수행되는 것이 바람직하다.The slurry of calcium phosphate salt is prepared by the step (b), and the recovery of the calcium phosphate salt may be performed by filtration of the slurry, and the washing step of filtering the calcium phosphate salt obtained by filtration with distilled water and then filtering It is preferable to carry out more.

바람직하게 여과 및 세척에 의해 얻어진 인산칼슘염 케익은 80 내지 120℃에서 5내지 30시간 건조되는 것이 바람직하며, 건조된 케익은 분쇄기를 이용하여 5에서 100㎛ 크기의 분말로 분쇄되는 것이 바람직하다. 이때, 분무 건조기(Spray dryer)를 이용하여 상기 인산칼슘염 케익을 5 내지 100㎛ 크기의 입자로 분무 건조할 수 있음은 물론이다. Preferably, the calcium phosphate salt cake obtained by filtration and washing is preferably dried at 80 to 120 ° C. for 5 to 30 hours, and the dried cake is preferably ground to a powder of 5 to 100 μm size using a grinder. At this time, the calcium phosphate salt cake may be spray dried into particles having a size of 5 to 100 μm using a spray dryer.

이어, 분쇄된 분말을 타정기(Tabletter)에서 펠렛으로 성형한다. 이때, 상기 분말에 윤활제와 기공조절제로 사용되는 흑연(Graphite)을 0.5 내지 5중량% 혼합하여 펠렛으로 성형할 수도 있다. 이후, 상술한 (c) 단계의 열처리에 의해 펠렛형 촉매가 제조된다. Then, the pulverized powder is molded into pellets in a tablet machine. In this case, 0.5 to 5% by weight of the graphite (Graphite) used as a lubricant and pore control agent to the powder may be mixed into a pellet. Thereafter, a pellet catalyst is prepared by the heat treatment in step (c).

상기 펠렛 형상의 촉매는 연속식 반응으로 1,3-부타디엔 및 2-부탄온의 제조시 바람직한 것이며, 회분식(Batch) 반응으로 1,3-부타디엔 및 2-부탄온을 제조하는 경우, 상기 (b3) 단계를 거치지 않고 (b2) 단계의 분쇄된 분말을 열처리 하여 얻어진 분말 형상의 촉매를 사용할 수 있다.
The pellet catalyst is preferable for the production of 1,3-butadiene and 2-butanone in a continuous reaction, and when producing 1,3-butadiene and 2-butanone in a batch reaction, the (b3 A powdery catalyst obtained by heat-treating the pulverized powder of step (b2) may be used without passing through the step).

본 발명에 따른 1,3-부타디엔 및 2-부탄온의 제조방법은 1,3-부타디엔과 2-부탄온을 고수율로 제조할 수 있는 장점이 있으며, 장기간 안정적으로 1,3-부타디엔과 2-부탄온을 제조할 수 있는 장점이 있다. The manufacturing method of 1,3-butadiene and 2-butanone according to the present invention has the advantage of producing high yields of 1,3-butadiene and 2-butanone, and stably 1,3-butadiene and 2 -There is an advantage to prepare butanone.

본 발명에 따른 1,3-부타디엔 및 2-부탄온 제조용 촉매는 고활성 및 고선택성의 탈수 촉매인 장점이 있으며, 반응 안정성이 우수하여 장기반응에서도 높은 활성이 유지되는 장점이 있으며, 연장된 수명을 갖는 장점이 있다. The catalyst for preparing 1,3-butadiene and 2-butanone according to the present invention has the advantage of being a high activity and high selectivity dehydration catalyst, has excellent reaction stability, and has the advantage of maintaining high activity even in long-term reactions, and has an extended lifetime. There is an advantage to having.

본 발명에 따른 1,3-부타디엔 및 2-부탄온 제조용 촉매의 제조방법은 제조가 용이하고, 반응 안정성이 우수하며, 매우 높은 활성과 높은 선택성을 가지며, 수명이 연장된 촉매가 제조되는 장점이 있다.
The production method of the catalyst for producing 1,3-butadiene and 2-butanone according to the present invention is easy to manufacture, has excellent reaction stability, has very high activity and high selectivity, and has the advantage of producing a catalyst having an extended lifetime. have.

도 1은 본 발명의 실시예 1에서 제조된 촉매에 대한 X-선 회절 분석 결과를 도시한 것이며,
도 2는 본 발명의 실시예 2에서 제조된 촉매에 대한 X-선 회절 분석 결과를 도시한 것이며,
도 3은 본 발명의 실시예 3에서 제조된 촉매에 대한 X-선 회절 분석 결과를 도시한 것이며,
도 4는 본 발명의 비교예 1에서 제조된 촉매에 대한 X-선 회절 분석 결과를 도시한 것이다.
1 shows the results of X-ray diffraction analysis on the catalyst prepared in Example 1 of the present invention,
2 shows the results of X-ray diffraction analysis for the catalyst prepared in Example 2 of the present invention,
3 shows the results of X-ray diffraction analysis for the catalyst prepared in Example 3 of the present invention,
4 shows the results of X-ray diffraction analysis for the catalyst prepared in Comparative Example 1 of the present invention.

아래의 실시예를 통하여 본 발명을 구체적으로 설명한다. 단, 하기 실시예는 본 발명의 예시에 불과한 것으로서 본 발명의 특허 청구 범위가 이에 따라 한정되는 것은 아니다. The present invention will be described in detail through the following examples. However, the following examples are merely examples of the present invention, and the claims of the present invention are not limited thereto.

(실시예 1)(Example 1)

하이드록시아파타이트(CaHydroxyapatite (Ca 55 (PO(PO 44 )) 33 (OH)) 촉매의 제조(OH)) Preparation of Catalyst

50중량%의 테트라폴리인산(H6P4O13) 수용액 67.58g을 탈이온수에 녹여 500ml의 인산 수용액을 제조하였다. 가성소다(NaOH) 36.0g을 상기 인산 수용액에 30분간 가하고 교반하여 인산나트륨 수용액(pH 11.1)을 제조하였다. 염화칼슘(CaCl2ㆍ2H2O) 48.52g을 탈이온수에 녹여 200ml의 칼슘전구체 수용액을 제조하고 상기 인산나트륨 수용액에 칼슘전구체 수용액을 실온에서 7ml/min 속력으로 30분간 첨가하고, 80℃에서 2시간 교반하여 인산칼슘 슬러리를 생성하였다(pH 5.7). 교반 완료 후, 슬러리용액을 여과하고, 탈이온수 600ml를 가하여 분산, 20분간 교반하고 여과하여 하이드록시아파타이트(Ca5(PO4)3OH) 인산칼슘 케익을 얻었다.67.58 g of 50 wt% tetrapolyphosphoric acid (H 6 P 4 O 13 ) aqueous solution was dissolved in deionized water to prepare an aqueous 500 ml phosphoric acid solution. 36.0 g of caustic soda (NaOH) was added to the aqueous solution of phosphoric acid for 30 minutes and stirred to prepare an aqueous solution of sodium phosphate (pH 11.1). 48.52 g of calcium chloride (CaCl 2 · 2H 2 O) was dissolved in deionized water to prepare a 200 ml aqueous solution of calcium precursor, and an aqueous solution of calcium precursor was added to the aqueous solution of sodium phosphate at a rate of 7 ml / min at room temperature for 30 minutes and at 80 ° C. for 2 hours. Stirring produced a calcium phosphate slurry (pH 5.7). After stirring was complete, the slurry solution was filtered, 600 ml of deionized water was added, dispersed, stirred for 20 minutes, and filtered to obtain a hydroxyapatite (Ca 5 (PO 4 ) 3 OH) calcium phosphate cake.

여과된 인산칼슘 케익을 80℃에서 6시간이상 건조하였다. 건조물을 20-40메쉬 크기로 분쇄하고, 500℃에서 6시간 동안 공기 중에 소성하였다. 공기 중에서 소성된 촉매를 XRD로 분석한 결과, 도 1과 같이 하이드록시아파타이트(Ca5(PO4)3OH) 구조를 확인할 수 있었고, BET분석에 의한 비표면적은 37.4㎡/g이었다. The filtered calcium phosphate cake was dried at 80 ° C. for at least 6 hours. The dry matter was ground to a size of 20-40 mesh and calcined in air at 500 ° C. for 6 hours. As a result of XRD analysis of the calcined catalyst in air, the structure of hydroxyapatite (Ca 5 (PO 4 ) 3 OH) was confirmed as shown in FIG. 1, and the specific surface area by BET analysis was 37.4 m 2 / g.

1,3-부타디엔 및 2-부탄온의 제조Preparation of 1,3-butadiene and 2-butanone

내경이 6mm인 파이렉스 스테인레스 관형반응기에 실시예1에서 제조한 촉매 6ml(4.32g)를 충진하고, 반응온도 380℃, 압력 2기압에서 2,3-부탄디올을 액상공간속도(LHSV, Liquid Hour Space Velocity) 0.50hr-1(유량 3ml/hr)로 공급하여 탈수반응 시켰다. 생성물을 얼음물 냉각 포집기를 이용하여 액상시료로 회수하였고, 액체로 응축되지 않는 가스는 별도로 가스시료를 가스포집 주사기로 샘플링하여 DB-WAX컬럼을 장착한 GC(Gas Chromatography, 가스 크로마토그래피)로 정량분석을 하였다. 분석결과 반응 생성물로는 1,3-부타디엔과 2-부탄온이 주된 생성물이며, 그 외에 2,3-디메틸옥시란, 아세토인, 1-부텐-3-올 등이 일부 생성되었다. 하기의 표 1의 결과는 반응 100시간에서의 반응 결과를 정리한 것으로, mol%로 표시하였다.
6 ml (4.32 g) of the catalyst prepared in Example 1 was charged to a Pyrex stainless tubular reactor having an internal diameter of 6 mm, and 2,3-butanediol was reacted at a reaction temperature of 380 ° C. and 2 atm pressure of liquid hour space velocity (LHSV). ) It was supplied to 0.50hr -1 (flow rate 3ml / hr) and dehydrated. The product was recovered as a liquid sample using an ice-cold collector, and the gas that did not condense into liquid was quantitatively analyzed by gas chromatography (GC) equipped with a DB-WAX column by sampling the gas sample with a gas collection syringe. Was done. As a result of analysis, 1,3-butadiene and 2-butanone were the main products, and in addition, 2,3-dimethyloxirane, acetoin, 1-butene-3-ol and the like were produced. The results in Table 1 below summarize the reaction results in 100 hours of reaction, and are expressed in mol%.

(실시예 2)(Example 2)

피로인산칼슘(CaCalcium Pyrophosphate (Ca 22 (P(P 22 OO 77 )) 촉매의 제조 및 1,3-부타디엔 및 2-부탄온의 제조)) Preparation of Catalysts and Preparation of 1,3-butadiene and 2-butanone

피로인산(H4P2O7) 35.6g을 탈이온수에 녹여 500ml 인산 수용액을 제조하였다. 가성소다(NaOH) 36.0g을 상기 인산 수용액에 30분간 가하여 교반하여 인산나트륨 수용액(pH 11.2)을 생성하였다. 염화칼슘(CaCl2ㆍ2H2O) 52.9g을 탈이온수에 녹여 200ml 칼슘전구체 수용액을 제조하고, 상기 인산나트륨 수용액에 칼슘전구체 수용액을 실온에서 7ml/min 속력으로 30분간 첨가하고, 80℃에서 2시간 교반하여 인산칼슘 슬러리를 생성하였다. 교반 완료 후, 슬러리용액을 여과하고, 탈이온수 600ml를 가하여 분산, 20분간 교반하고 여과하였으며, 여과된 인산칼슘 케익을 80℃에서 6시간이상 건조하였다. 건조물을 20-40메쉬 크기로 분쇄하고, 500℃에서 6시간 동안 공기 중에 소성하였다.35.6 g of pyrophosphate (H 4 P 2 O 7 ) was dissolved in deionized water to prepare an aqueous 500 ml phosphoric acid solution. 36.0 g of caustic soda (NaOH) was added to the aqueous solution of phosphoric acid for 30 minutes and stirred to produce an aqueous solution of sodium phosphate (pH 11.2). 52.9 g of calcium chloride (CaCl 2 · 2H 2 O) was dissolved in deionized water to prepare a 200 ml aqueous solution of calcium precursors. An aqueous solution of calcium precursors was added to the aqueous solution of sodium phosphate at a rate of 7 ml / min at room temperature for 30 minutes and at 80 ° C. for 2 hours. Stirring produced a calcium phosphate slurry. After the stirring was completed, the slurry solution was filtered, 600 ml of deionized water was added thereto, dispersed, stirred for 20 minutes, and filtered, and the filtered calcium phosphate cake was dried at 80 ° C. for at least 6 hours. The dry matter was ground to a size of 20-40 mesh and calcined in air at 500 ° C. for 6 hours.

소성까지 처리된 촉매를 XRD로 분석한 결과, 도2와 같이 피로인산칼슘(Ca2(P2O7)) 구조를 확인할 수 있었고, 실시예2에서 제조된 촉매를 이용한 것으로 제외하고 실시예 1과 유사하게 1,3-부타디엔 및 2-부탄온을 제조하였으며, 그 반응 100시간에서의 결과를 하기의 표1에 정리하였다.
As a result of analyzing the catalyst treated by XRD with XRD, calcium pyrophosphate (Ca 2 ( P 2 O 7 )) structure was confirmed as shown in FIG. 2, except that the catalyst prepared in Example 2 was used. Similarly, 1,3-butadiene and 2-butanone were prepared, and the results at 100 hours of the reaction are summarized in Table 1 below.

(실시예 3) (Example 3)

하이드록시아파타이트(CaHydroxyapatite (Ca 55 (PO(PO 44 )) 33 (OH)) 촉매의 제조 및 1,3-부타디엔 및 2-부탄온의 제조(OH)) Preparation of Catalysts and Preparation of 1,3-butadiene and 2-butanone

84중량% 오르토인산(H3PO4) 수용액 35.0g을 탈이온수에 녹여 500ml 인산 수용액을 제조하였다. 가성소다(NaOH) 36.0g을 상기 인산 수용액에 30분간 가하여 교반하여 인산나트륨 수용액(pH 11.2)을 생성하였다. 염화칼슘(CaCl2ㆍ2H2O) 52.9g을 탈이온수에 녹여 200ml 칼슘전구체 수용액을 제조하고, 상기 인산나트륨 수용액에 칼슘전구체 수용액을 실온에서 7ml/min 속력으로 30분간 첨가하고, 80℃에서 2시간 교반하여 인산칼슘 슬러리를 생성하였다. 교반 완료 후, 슬러리용액을 여과하고, 탈이온수 600ml를 가하여 분산, 20분간 교반하고 여과하였으며, 여과된 인산칼슘 케익을 80℃에서 6시간이상 건조하였다. 건조물을 20-40메쉬 크기로 분쇄하고, 500℃에서 6시간 동안 공기 중에 소성하였다.35.0 g of an aqueous 84 wt% orthophosphoric acid (H 3 PO 4 ) solution was dissolved in deionized water to prepare an aqueous 500 ml phosphoric acid solution. 36.0 g of caustic soda (NaOH) was added to the aqueous solution of phosphoric acid for 30 minutes and stirred to produce an aqueous solution of sodium phosphate (pH 11.2). 52.9 g of calcium chloride (CaCl 2 · 2H 2 O) was dissolved in deionized water to prepare a 200 ml aqueous solution of calcium precursors. An aqueous solution of calcium precursors was added to the aqueous solution of sodium phosphate at a rate of 7 ml / min at room temperature for 30 minutes and at 80 ° C. for 2 hours. Stirring produced a calcium phosphate slurry. After the stirring was completed, the slurry solution was filtered, 600 ml of deionized water was added thereto, dispersed, stirred for 20 minutes, and filtered, and the filtered calcium phosphate cake was dried at 80 ° C. for at least 6 hours. The dry matter was ground to a size of 20-40 mesh and calcined in air at 500 ° C. for 6 hours.

소성까지 처리된 촉매를 XRD로 분석한 결과, 도3과 같이 하이드록시아파타이트(Ca5(PO4)3OH) 구조를 확인할 수 있었고, 실시예3에서 제조된 촉매를 이용한 것으로 제외하고 실시예 1과 유사하게 1,3-부타디엔 및 2-부탄온을 제조하였으며, 그 반응 100시간에서의 결과를 하기의 표1에 정리하였다.
As a result of analyzing the catalyst treated to XRD by XRD, hydroxyapatite (Ca 5 (PO 4 ) 3 OH) structure was confirmed as shown in FIG. 3, except that the catalyst prepared in Example 3 was used. Similarly, 1,3-butadiene and 2-butanone were prepared, and the results at 100 hours of the reaction are summarized in Table 1 below.

(표 1)(Table 1)

Figure pat00001

Figure pat00001

(비교예 1)(Comparative Example 1)

피로인산나트륨칼슘(CaNaSodium pyrophosphate (CaNa) 22 (P(P 22 OO 77 )) 촉매의 제조 및 1,3-부타디엔 및 2-부탄온의 제조)) Preparation of Catalysts and Preparation of 1,3-butadiene and 2-butanone

피로인산(H4P2O7) 대신 피로인산나트륨(Na4(P2O7)) 26.6g을 탈이온수 500ml에 녹인 인산나트륨 수용액을 사용하고, 상기 인산나트륨 수용액에 칼슘전구체 수용액을 실온에서 7ml/min 속력으로 30분간 첨가하고, 95℃에서 2시간 교반하여 인산칼슘 슬러리를 생성한 것을 제외하고, 실시예 2와 동일한 방법으로 촉매를 제조하였다. 소성까지 처리된 촉매를 XRD로 분석한 결과, 피로인산나트륨칼슘(CaNa2(P2O7)) 구조를 확인할 수 있었고, 비교예 1에서 제조된 촉매를 이용한 것으로 제외하고 실시예 1과 유사하게 1,3-부타디엔 및 2-부탄온을 제조하였으며, 그 반응 50시간에서의 결과를 하기의 표 2에 정리하였다. 이때, 하기의 표 2에서 %는 mol%를 의미한다.Instead of pyrophosphate (H 4 P 2 O 7 ), 26.6 g of sodium pyrophosphate (Na 4 (P 2 O 7 )) was dissolved in 500 ml of deionized water, and an aqueous solution of calcium precursor was added to the aqueous solution of sodium phosphate at room temperature. A catalyst was prepared in the same manner as in Example 2, except that the mixture was added at a rate of 7 ml / min for 30 minutes and stirred at 95 ° C. for 2 hours to produce a calcium phosphate slurry. As a result of analyzing the catalyst treated by XRD with XRD, the structure of sodium pyrophosphate (CaNa 2 (P 2 O 7 )) was confirmed, and it was similar to Example 1 except that the catalyst prepared in Comparative Example 1 was used. 1,3-butadiene and 2-butanone were prepared, and the results at 50 hours of the reaction are summarized in Table 2 below. In this case,% in Table 2 means mol%.

(표 2)(Table 2)

Figure pat00002
Figure pat00002

표 1 내지 표 2에서 알 수 있듯이, 본 발명에 따른 하이드록시아파타이트(Ca5(PO4)3(OH))와 피로인산칼슘(Ca2(P2O7)) 촉매에 비해 피로인산나트륨칼슘(CaNa2(P2O7)) 촉매의 경우, 전환율이 매우 낮고, 1,3-부타디엔과 2-부탄온의 선택도 또한 낮은 것을 알 수 있다.
As can be seen from Tables 1 to 2, sodium pyrophosphate calcium compared to hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)) and calcium pyrophosphate (Ca 2 (P 2 O 7 )) catalyst according to the present invention In the case of the (CaNa 2 (P 2 O 7 )) catalyst, the conversion rate is very low, and the selectivity of 1,3-butadiene and 2-butanone is also low.

(실시예 4 내지 9)(Examples 4 to 9)

1,3-부타디엔 및 2-부탄온의 제조Preparation of 1,3-butadiene and 2-butanone

실시예 1의 촉매를 사용하되, 2,3-부탄디올 탈수 반응시의 반응온도, 반응압력, 반응물공간속도를 하기의 표 3의 조건으로 변화하여 실시예 1과 유사하게 1,3-부타디엔 및 2-부탄온을 제조하였으며, 반응 50 시간에서의 반응 결과를 하기의 표 3에 정리하였다. 이때, 하기의 표 3에서 %는 mol%를 의미한다.Using the catalyst of Example 1, the reaction temperature, reaction pressure, reactant space velocity during 2,3-butanediol dehydration reaction was changed to the conditions shown in Table 3 below to 1,3-butadiene and 2 -Butanone was prepared and reacted The reaction results at 50 hours are summarized in Table 3 below. In this case,% in Table 3 means mol%.

(표 3)(Table 3)

Figure pat00003
Figure pat00003

상기 반응온도와 반응압력 및 반응물 공간속도의 범위에서 반응온도가 높을수록 부타디엔의 선택도가 높아지고, 반응온도가 낮으면 부타디엔의 선택도는 낮아지고 부타디엔으로 전환되는 중간물질인 1-부텐-3-올의 선택도가 증가하는 것을 알 수 있다. 또한, 반응 압력이 높을수록 부타디엔의 선택도가 높아지고, 전환율도 증가하는 것으로 나타났다. 반응물의 공간속도가 증가하면 전환율이 감소되지만 크게 감소되지 않았고, 부타디엔의 선택도가 조금 줄어들고, 1-부텐-3-올의 선택도가 증가하였다. 그러나 상기의 반응조건에서 부탄디올의 높은 전환율과 부타디엔 및 부탄온의 선택도가 합하여 약 80 ~ 88%로 높은 것으로 나타났다.
In the range of the reaction temperature, the reaction pressure and the reactant space velocity, the higher the reaction temperature, the higher the selectivity of butadiene, and the lower the reaction temperature, the lower the selectivity of butadiene and the intermediate 1-butene-3- which is converted into butadiene. It can be seen that the selectivity of the ol increases. The higher the reaction pressure, the higher the selectivity of butadiene and the higher the conversion rate. Increasing the space velocity of the reactants reduced the conversion, but did not decrease significantly, butadiene selectivity slightly decreased, 1-butene-3-ol selectivity increased. However, the high conversion of butanediol and the selectivity of butadiene and butanone were found to be high at about 80-88% under the above reaction conditions.

(비교예 2 내지 7) (Comparative Examples 2 to 7)

1,3-부타디엔 및 2-부탄온의 제조Preparation of 1,3-butadiene and 2-butanone

실시예 1의 촉매를 사용하되, 2,3-부탄디올 탈수 반응시의 반응온도, 반응압력, 반응물공간속도를 하기의 표 4의 조건으로 변화하여 실시예 1과 유사하게 1,3-부타디엔 및 2-부탄온을 제조하였으며, 반응 50 시간에서의 반응 결과를 하기의 표 4에 정리하였다. 이때, 하기의 표 4에서 %는 mol%를 의미한다.Using the catalyst of Example 1, the reaction temperature, reaction pressure, reactant space velocity during 2,3-butanediol dehydration reaction was changed to the conditions shown in Table 4 to 1,3-butadiene and 2 -Butanone was prepared, and the reaction result in 50 hours of reaction was summarized in Table 4 below. In this case,% in Table 4 means mol%.

(표 4)(Table 4)

Figure pat00004
Figure pat00004

표 4에서 알 수 있듯이, 반응온도 340 내지 450℃ 범위 밖의 반응온도에서 반응을 수행하는 경우, 부타디엔의 선택도가 낮아지고, 반응압력 1 내지 6 atm, 범위 밖의 반응 압력에서 반응을 수행하는 경우, 부타디엔과 부탄온의 선택도가 낮아지는 것을 알 수 있다. 또한, 반응물인 2,3-부탄디올의 공급속도(LHSV)가 0.3 내지 1.5 h-1의 범위에서 벗어나면 부타디엔과 부탄온의 선택도가 크게 줄어드는 것을 알 수 있다. As can be seen from Table 4, when the reaction is carried out at a reaction temperature outside the range of the reaction temperature 340 ~ 450 ℃, butadiene selectivity is lowered, the reaction pressure 1 to 6 atm, when the reaction is carried out at a reaction pressure outside the range, It can be seen that the selectivity of butadiene and butanone is lowered. In addition, it can be seen that the selectivity of butadiene and butanone is greatly reduced when the feed rate (LHSV) of the reactant 2,3-butanediol is outside the range of 0.3 to 1.5 h −1 .

상기 실시예 및 비교예의 결과로부터 인산칼슘의 성분이나 반응조건이 본 발명의 범위에서 벗어나는 경우에는 2,3-부탄디올을 연속적으로 탈수하여 1,3-부타디엔과 2-부탄온을 고 수율로 제조할 수 없으며, 본 발명에 따른 촉매와 반응방법으로 2,3-부탄디올을 연속적으로 탈수하여 1,3-부타디엔과 2-부탄온을 고 수율로 제조할 수 있음을 알 수 있다.When the calcium phosphate component or reaction condition is out of the scope of the present invention from the results of the above examples and comparative examples, 2,3-butanediol is continuously dehydrated to prepare 1,3-butadiene and 2-butanone in high yield. It can be seen that it is possible to produce 2,3-butanediol and 2-butanone in high yield by continuously dehydrating 2,3-butanediol by the catalyst and reaction method according to the present invention.

이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Those skilled in the art will recognize that many modifications and variations are possible in light of the above teachings.

따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
Accordingly, the spirit of the present invention should not be construed as being limited to the embodiments described, and all of the equivalents or equivalents of the claims, as well as the following claims, belong to the scope of the present invention .

Claims (11)

하이드록시아파타이트, 피로인산칼슘, 또는 이들의 혼합물에서 선택되는 촉매의 존재 하에 2,3-부탄디올로부터 1,3-부타디엔을 제조하는 방법.A process for preparing 1,3-butadiene from 2,3-butanediol in the presence of a catalyst selected from hydroxyapatite, calcium pyrophosphate, or mixtures thereof. 하이드록시아파타이트, 피로인산칼슘, 또는 이들의 혼합물에서 선택되는 촉매의 존재 하에 2,3-부탄디올로부터 2-부탄온을 제조하는 방법.A process for preparing 2-butanone from 2,3-butanediol in the presence of a catalyst selected from hydroxyapatite, calcium pyrophosphate, or mixtures thereof. 제 1항 또는 제 2항에 있어서,
상기 2,3-부탄디올의 탈수 반응은 340 내지 450℃의 반응온도, 1 내지 6 atm의 반응압력 및 0.3 내지 1.5 h-1의 2,3-부탄디올 액상공간속도(LHSV)의 조건에서 수행되는 방법.
3. The method according to claim 1 or 2,
The dehydration reaction of 2,3-butanediol is carried out under the conditions of reaction temperature of 340 to 450 ℃, reaction pressure of 1 to 6 atm and 2,3-butanediol liquid space velocity (LHSV) of 0.3 to 1.5 h -1 .
2,3-부탄디올로부터 1,3-부타디엔 및 2-부탄온을 제조하는 촉매이며, 상기 촉매는 하이드록시아파타이트, 피로인산칼슘, 또는 이들의 혼합물에서 선택되는 고기능성 촉매.A catalyst for producing 1,3-butadiene and 2-butanone from 2,3-butanediol, wherein the catalyst is selected from hydroxyapatite, calcium pyrophosphate, or mixtures thereof. 2,3-부탄디올로부터 1,3-부타디엔 및 2-부탄온을 제조하는 고기능성 촉매의 제조방법으로,
(a) 인산을 함유하는 수용액에 알칼리염을 혼합하여 인산염 수용액을 제조하는 단계;
(b) 상기 인산염 수용액에 칼슘전구체 수용액을 혼합, 교반하여 인산칼슘염을 제조하는 단계; 및
(c) 제조된 인산칼슘염을 공기중에서 300 내지 700℃로 열처리하여 하이드록시아파타이트(Ca5(PO4)3(OH)), 피로인산칼슘(Ca2(P2O7)) 또는 이들의 혼합물인 촉매를 제조하는 단계;
를 포함하는 고기능성 촉매의 제조방법.
In a method for producing a high functional catalyst for producing 1,3-butadiene and 2-butanone from 2,3-butanediol,
(a) mixing an alkali salt with an aqueous solution containing phosphoric acid to prepare an aqueous phosphate solution;
(b) preparing a calcium phosphate salt by mixing and stirring the aqueous solution of calcium precursor to the aqueous solution of phosphate; And
(c) Calcium Phosphate Salt was prepared by heat treatment at 300 to 700 ° C. in air to form hydroxyapatite (Ca 5 (PO 4 ) 3 (OH)), calcium pyrophosphate (Ca 2 (P 2 O 7 )) or their Preparing a catalyst that is a mixture;
Method for producing a high functional catalyst comprising a.
제 5항에 있어서,
상기 (a) 단계의 인산염 수용액의 pH는 10.0 내지 12.0인 고기능성 촉매의 제조방법.
6. The method of claim 5,
PH of the aqueous solution of phosphate of step (a) is 10.0 to 12.0 method of producing a high functional catalyst.
제 5항에 있어서,
상기 (b) 단계의 교반은 60 내지 90℃에서 수행되는 고기능성 촉매의 제조방법.
6. The method of claim 5,
Stirring the step (b) is a method for producing a high functional catalyst is carried out at 60 to 90 ℃.
제 5항에 있어서,
상기 (a) 단계의 인산은 오르토인산(H3PO4), 피로인산(H4P2O7), 트리폴리인산(H5P3O10) 및 테트라폴리인산(H6P4O13)에서 하나 이상 선택되는 고기능성 촉매의 제조방법.
6. The method of claim 5,
The phosphoric acid of step (a) is orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), tripolyphosphoric acid (H 5 P 3 O 10 ) and tetrapolyphosphoric acid (H 6 P 4 O 13 ) Method for producing a high functional catalyst at least one selected from.
제 5항에 있어서,
상기 (b) 단계의 인산염 수용액의 인산 농도는 0.1 내지 0.4노르말이며, 칼슘 전구체 수용액의 칼슘 농도는 1.0 내지 4.0노르말이며, 상기 칼슘 전구체 수용액은 인산 : 칼슘의 몰비가 1: 0.7 내지 1.5가 되도록 혼합되는 고기능성 촉매의 제조방법.
6. The method of claim 5,
The phosphoric acid concentration of the aqueous solution of phosphate in step (b) is 0.1 to 0.4 normal, the calcium concentration of the calcium precursor aqueous solution is 1.0 to 4.0 normal, and the calcium precursor aqueous solution is mixed so that the molar ratio of phosphoric acid: calcium is 1: 0.7 to 1.5. Method for producing a high functional catalyst.
제 9항에 있어서,
상기 칼슘 전구체 수용액은 상기 인산염 수용액에 3 내지 10ml/min의 속도로 점적되는 고기능성 촉매의 제조방법.
The method of claim 9,
The calcium precursor aqueous solution is a method for producing a high functional catalyst is dripping in the aqueous solution of phosphate at a rate of 3 to 10ml / min.
제 5항에 있어서,
상기 제조방법은 (b) 단계 후 및 (c) 단계 전,
(b2) 제조된 인산칼슘염을 회수 건조하고 5 내지 100㎛ 크기로 분쇄하는 단계; 및
(b3) 분쇄된 인산칼슘염을 펠렛(pellet)으로 성형하는 단계;
를 더 포함하는 고기능성 촉매의 제조방법.
6. The method of claim 5,
The preparation method is after step (b) and before step (c),
(b2) recovering the dried calcium phosphate salt and pulverizing to a size of 5 to 100 μm; And
(b3) forming the pulverized calcium phosphate salt into pellets;
Method for producing a high functional catalyst further comprising.
KR1020110015327A 2011-02-22 2011-02-22 Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol KR101287167B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110015327A KR101287167B1 (en) 2011-02-22 2011-02-22 Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110015327A KR101287167B1 (en) 2011-02-22 2011-02-22 Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol

Publications (2)

Publication Number Publication Date
KR20120096125A true KR20120096125A (en) 2012-08-30
KR101287167B1 KR101287167B1 (en) 2013-07-16

Family

ID=46886198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110015327A KR101287167B1 (en) 2011-02-22 2011-02-22 Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol

Country Status (1)

Country Link
KR (1) KR101287167B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320532B1 (en) * 2011-12-01 2013-10-22 지에스칼텍스 주식회사 Preparation method of methyl ethyl ketone using 2-phase reaction system
DE102013109026A1 (en) 2012-08-31 2014-03-06 Samsung Electro-Mechanics Co., Ltd Multichannel light quantity detection module, light quantity detection device for measuring the amount of light of an exposure device and method for channel-resolved measurement of a quantity of light
WO2015037556A1 (en) * 2013-09-10 2015-03-19 東レ株式会社 Method for producing 1,3-butadiene and/or 3-buten-2-ol
KR20150069478A (en) * 2013-12-13 2015-06-23 지에스칼텍스 주식회사 Preparing method of lithium phosphate catalyst for dehydration of 2,3-butanediol
WO2015190622A1 (en) * 2014-06-09 2015-12-17 한국화학연구원 Method for preparing 1,3-butadiene and methyl ethyl ketone from 2,3-butandiol
KR20160061508A (en) * 2014-11-21 2016-06-01 한국화학연구원 Calcium-Manganase-Phosphoric acid apatite catalyst for manufacturing of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol and Its fabrication method
KR20160063703A (en) * 2014-11-27 2016-06-07 에스케이이노베이션 주식회사 Amorphous calcium phosphate catalyst used for 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol and preparation method thereof
CN105873885A (en) * 2014-02-03 2016-08-17 巴特尔纪念研究院 Conversion of 2,3-butanediol to butadiene
KR20170132603A (en) * 2016-05-24 2017-12-04 에스케이이노베이션 주식회사 Method for preparing 1,3-butadiene and methylethylketone from 2,3-Butanediol using an adiabatic reactor
WO2022114519A1 (en) * 2020-11-27 2022-06-02 주식회사 엘지화학 Method for producing catalyst for dehydrogenation of 3-hydroxypropionic acid, catalyst for dehydrogenation of 3-hydroxypropionic acid, and method for producing acrylic acid using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957900A (en) * 1970-04-16 1976-05-18 Compagnie Francaise De Raffinage Method for the dehydration of diols
JPS57140730A (en) * 1981-02-24 1982-08-31 Nippon Zeon Co Ltd Preparation of 1,3-butadiene
JPH11217343A (en) * 1998-01-30 1999-08-10 Sangi Co Ltd Synthesis of chemical industrial feedstock and high-octane fuel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320532B1 (en) * 2011-12-01 2013-10-22 지에스칼텍스 주식회사 Preparation method of methyl ethyl ketone using 2-phase reaction system
DE102013109026A1 (en) 2012-08-31 2014-03-06 Samsung Electro-Mechanics Co., Ltd Multichannel light quantity detection module, light quantity detection device for measuring the amount of light of an exposure device and method for channel-resolved measurement of a quantity of light
US9452963B2 (en) 2013-09-09 2016-09-27 Toray Industries, Inc. Method for producing 1,3-butadiene and/or 3-buten-2-ol
WO2015037556A1 (en) * 2013-09-10 2015-03-19 東レ株式会社 Method for producing 1,3-butadiene and/or 3-buten-2-ol
JP2015054818A (en) * 2013-09-10 2015-03-23 東レ株式会社 Method for producing 1,3-butadiene and/or 3-butene-2-ol
KR20150069478A (en) * 2013-12-13 2015-06-23 지에스칼텍스 주식회사 Preparing method of lithium phosphate catalyst for dehydration of 2,3-butanediol
CN105873885A (en) * 2014-02-03 2016-08-17 巴特尔纪念研究院 Conversion of 2,3-butanediol to butadiene
CN105873885B (en) * 2014-02-03 2018-07-13 巴特尔纪念研究院 Conversion of the 2,3- butanediols to butadiene
WO2015190622A1 (en) * 2014-06-09 2015-12-17 한국화학연구원 Method for preparing 1,3-butadiene and methyl ethyl ketone from 2,3-butandiol
KR20160061508A (en) * 2014-11-21 2016-06-01 한국화학연구원 Calcium-Manganase-Phosphoric acid apatite catalyst for manufacturing of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol and Its fabrication method
KR20160063703A (en) * 2014-11-27 2016-06-07 에스케이이노베이션 주식회사 Amorphous calcium phosphate catalyst used for 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol and preparation method thereof
KR20170132603A (en) * 2016-05-24 2017-12-04 에스케이이노베이션 주식회사 Method for preparing 1,3-butadiene and methylethylketone from 2,3-Butanediol using an adiabatic reactor
US9884800B2 (en) 2016-05-24 2018-02-06 Sk Innovation Co., Ltd. Method of preparing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol using adiabatic reactor
WO2022114519A1 (en) * 2020-11-27 2022-06-02 주식회사 엘지화학 Method for producing catalyst for dehydrogenation of 3-hydroxypropionic acid, catalyst for dehydrogenation of 3-hydroxypropionic acid, and method for producing acrylic acid using same
CN115427145A (en) * 2020-11-27 2022-12-02 株式会社Lg化学 Method for producing catalyst for dehydrogenation of 3-hydroxypropionic acid, and method for producing acrylic acid using the catalyst
EP4108327A4 (en) * 2020-11-27 2023-10-18 Lg Chem, Ltd. Method for producing catalyst for dehydrogenation of 3-hydroxypropionic acid, catalyst for dehydrogenation of 3-hydroxypropionic acid, and method for producing acrylic acid using same

Also Published As

Publication number Publication date
KR101287167B1 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
KR101287167B1 (en) Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol
KR101283999B1 (en) Fabrication Method of 1,3-Butadiene from 2,3-Butanediol
JP6804300B2 (en) Method for producing alkenol and its use for the production of 1,3-butadiene
WO2011021232A1 (en) Catalyst and alcohol synthesis method
Gan et al. Gas phase dehydration of glycerol to acrolein catalyzed by zirconium phosphate
KR101298672B1 (en) Fabrication method of 1,3-butadiene from 2,3-butanediol
CN109982989B (en) Process for producing dienes
WO2011031928A1 (en) Conversion of ethanol to a reaction product comprising 1-butanol using hydroxyapatite catalysts
KR101472535B1 (en) Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol
Cao et al. Lactic acid production from glucose over a novel Nb 2 O 5 nanorod catalyst
CN107108397B (en) Process for producing diolefins
JP5849259B2 (en) Catalyst and alcohol synthesis
Talebian-Kiakalaieh et al. Coke-tolerant SiW20-Al/Zr10 catalyst for glycerol dehydration to acrolein
US8431753B2 (en) Conversion of butanol to a reaction product comprising 2-ethylhexanol using hydroxyapatite catalysts
KR101187804B1 (en) Process for the preparation of acrylic acid and acrylates from lactates
Zhang et al. Enhanced selectivity in the conversion of glycerol to pyridine bases over HZSM-5/11 intergrowth zeolite
CN111375418A (en) Hydrogenation catalyst and preparation method thereof
KR101033660B1 (en) Calcium phosphate-silica catalysts for dehydration reaction of lactates, preparation thereof, and Process for the preparation of acrylic compounds from lactates
CN110105190B (en) Method for producing acrylic acid based on aqueous lactate solution
JP2015048336A (en) Method for producing butadiene and/or 3-butene-2-ol
CN109422638B (en) Method for preparing ketone compound by ABE fermentation liquor conversion
US9259718B1 (en) Method for preparing catalyst for glycerin dehydration, and method for preparing acrolein
KR101633730B1 (en) Calcium-Manganase-Phosphoric acid apatite catalyst for manufacturing of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol and Its fabrication method
KR101093819B1 (en) Calcium phosphate catalysts for dehydration reaction of lactates, preparation thereof, and Process for the preparation of acrylic compounds from lactates
WO2015190622A1 (en) Method for preparing 1,3-butadiene and methyl ethyl ketone from 2,3-butandiol

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 6