KR101472535B1 - Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol - Google Patents

Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol Download PDF

Info

Publication number
KR101472535B1
KR101472535B1 KR1020130026786A KR20130026786A KR101472535B1 KR 101472535 B1 KR101472535 B1 KR 101472535B1 KR 1020130026786 A KR1020130026786 A KR 1020130026786A KR 20130026786 A KR20130026786 A KR 20130026786A KR 101472535 B1 KR101472535 B1 KR 101472535B1
Authority
KR
South Korea
Prior art keywords
calcium
acid
butadiene
vanadium
catalyst
Prior art date
Application number
KR1020130026786A
Other languages
Korean (ko)
Other versions
KR20140112261A (en
Inventor
한요한
김형록
박정우
조한아
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020130026786A priority Critical patent/KR101472535B1/en
Publication of KR20140112261A publication Critical patent/KR20140112261A/en
Application granted granted Critical
Publication of KR101472535B1 publication Critical patent/KR101472535B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/86Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/10Methyl-ethyl ketone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides

Abstract

본 발명은 2,3-부탄디올(2,3-Butanediol)로부터 1,3-부타디엔(1,3-Butadiene)과 메틸에틸케톤(Methyl Ethyl Ketone)을 제조하는 방법에 관한 것으로, 본 발명에 따른 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)]; 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]);이되, 상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 촉매를 사용함에 따라서, 2,3-부탄디올의 전환율 및 1,3-부타디엔과 메틸에틸케톤의 선택도가 현저히 향상되고, 상기 촉매의 반응 안정성이 우수하여 장기간 동안 높은 활성이 유지되는 효과가 있다.The present invention relates to a process for the production of 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol, , A method for producing 1,3-butadiene and methyl ethyl ketone from 3-butanediol is calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (OH)]; Or calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH)]; wherein X is in a molar ratio of 0.01-0.30. The conversion of 2,3-butanediol and the selectivity of 1,3-butadiene and methyl ethyl ketone are remarkably improved, the reaction stability of the catalyst is excellent, and high activity is maintained for a long period of time.

Description

2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법{Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol}(Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol)

본 발명은 2,3-부탄디올(2,3-Butanediol)로부터 1,3-부타디엔(1,3-Butadiene)과 메틸에틸케톤(Methyl Ethyl Ketone)을 제조하는 방법에 관한 것으로, 상세하게는 바이오 플랫폼 화합물인 2,3-부탄디올로부터 장기간 안정하게 고수율로 1,3-부타디엔과 메틸에틸케톤을 얻을 수 있는 새로운 제조방법에 관한 것이다.
The present invention relates to a process for producing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol, and more particularly, Butadiene and 1,3-butadiene at a high yield over a long period of time.

2,3-부탄디올(BDO; 2,3-butanediol)은 일반적으로 발효에 의해 생산되는 방법으로 제조된다. 특히 2차 세계 대전시 생고무대신, 합성고무의 수요급등으로 인해, 부타디엔의 원료로 대량생산되기도 하였으나, 석유로부터 부타디엔을 대량으로 저가로 공급하게 됨에 따라서 2,3-부탄디올의 생산은 일부 정밀화학제품 사용으로 제한되면서 크게 줄어들었다.
2,3-butanediol (BDO) is generally produced by a process produced by fermentation. In particular, instead of the raw materials of the Second World War, due to the surge in demand for synthetic rubber, butadiene has been mass produced as a raw material. However, since a large amount of butadiene is supplied at low cost from petroleum, the production of 2,3- As well as in the US.

최근 고유가로 인한 부타디엔의 원료인 납사 가격의 상승으로 납사 분해설비 가동률을 10~15% 정도 줄이고 있고, 최근 중동지역에서 에틸렌 분해설비 증설에 따른 납사 분해설비의 채산성 악화로 인해 가동률이 더욱 감소될 것이므로, 이로 인해 부타디엔의 수급에 큰 차질이 예상되어 부타디엔과 메틸에틸케톤 및 2,3-디메틸옥시란 등의 생산에서 석유 의존도를 줄이기 위해 석유 대체자원인 바이오매스(2,3-부탄디올)로부터 부타디엔, 메틸에틸케톤 및 2,3-디메틸옥시란을 제조하는 연구개발이 추진되고 있다.
Due to higher oil prices, naphtha cracking capacity utilization rate has been reduced by 10 ~ 15% due to rising naphtha raw material prices, and the utilization rate of the naphtha cracking facility will deteriorate further due to the recent expansion of ethylene cracking facilities in the Middle East. (2,3-butanediol) as a substitute for petroleum to reduce petroleum dependency in the production of butadiene, methyl ethyl ketone and 2,3-dimethyloxirane, butadiene, butadiene, Methyl ethyl ketone and 2,3-dimethyloxirane are being developed.

2,3-부탄디올(BDO)을 생산하는 방법으로, 박테리아인 크렙시엘라 뉴모니아(Klebsiella pneumoniae), 바실러스 폴리믹사(Bacillus polymyxa) 또는 엔테로박터 애로젠(Enterobacter aerogenes) 등의 발효균주를 사용하며, 펜토스(Pentoses), 자일로스(Xylose) 및 아라비노스(Arabinose) 등을 원료로 하고 배양조건(온도, pH, 배지조성, 탄소원 등)을 최적화하여 합성하고, 발효액으로부터는 다단계 감압분별증류, 용매추출 및 미세기공 테프론멤브레인 막분리 등의 방법으로 분리 정제하는 방법이 알려져 있다(Syu, M.-J. Appl. Microbiol. Biotechnol(2001)55:10-18).
As a method for producing 2,3-butanediol (BDO), a fermentation strain such as bacteria such as Klebsiella pneumoniae, Bacillus polymyxa or Enterobacter aerogenes is used (Pentos), Xylose and Arabinose, and optimizing the culture conditions (temperature, pH, medium composition, carbon source, etc.). From the fermentation broth, a multi-stage pressure- (Syu, M.-J. Appl. Microbiol. Biotechnol (2001) 55: 10-18) is known to separate and purify by solvent extraction and microporous Teflon membrane separation.

2,3-부탄디올(BDO)은 용도에 따라서 Dry BDO와 Wet BDO로 구분되며, Dry BDO는 수분함량이 5%이하이고, Wet BDO는 수분함량이 5-80%이다. 탈수반응에는 Dry BDO와 수분함량이 20% 이하인 Wet BDO가 주로 사용되는 데, 이는 탈수반응에서 물이 많이 함유될수록 탈수역반응으로 탈수생성물이 반응물로 역반응되어 전환율이 감소하고, 증발에너지 손실도 있어서 반응에너지 소비가 크기 때문이다.
2,3-Butanediol (BDO) is classified into Dry BDO and Wet BDO depending on the application. Dry BDO has a moisture content of 5% or less and Wet BDO has a moisture content of 5-80%. Dry BDO and Wet BDO having a moisture content of 20% or less are mainly used in the dehydration reaction because the dehydration product is reacted to the reactant as a dehydration reverse reaction as the water content in the dehydration reaction decreases and the conversion rate decreases, This is because the energy consumption is large.

부타디엔(Butadiene)은 합성고무의 원료로서 중요한 물질이며, 부타디엔스타이렌고무(SBR), 부타디엔아크릴로나이트릴고무(NBR), 폴리부타디엔 등의 원료가 된다. 또 클로로프렌, 아디포나이트릴, 말레산무수물 등의 원료로도 사용된다.
Butadiene is an important raw material for synthetic rubber, and it is a raw material for butadiene styrene rubber (SBR), butadiene acrylonitrile rubber (NBR), and polybutadiene. It is also used as a raw material for chloroprene, adiponitrile, maleic anhydride and the like.

또한, 메틸에틸케톤(Methyl Ethyl Ketone)은 정밀화학산업에서 합성용매와 연료첨가제, 분산제와 용제로 사용되고 있다.
In addition, Methyl Ethyl Ketone is used as a synthetic solvent, fuel additive, dispersant and solvent in the fine chemicals industry.

부탄디올의 탈수반응으로 부타디엔을 제조하는 방법이 미국특허 제 2,444,538호에 제시되었다. 부탄디올로서는 1,3-부탄디올을 사용하였고, 촉매로서는 인산나트륨-인산칼슘-인산부틸아민 혼합물촉매를 사용하여, 반응온도 250~300 ℃ 상압에서 80%의 1,3-부탄디올 수용액을 공간속도(LHSV, Liquid Hour Space Velocity) 0.28로 공급하여 반응한 결과, 반응시간 20시간에서 순도 97%인 부타디엔의 수율은 77%이었고, 42시간이 경과시 수율은 61%로 감소하였다.
A method for preparing butadiene by dehydration reaction of butanediol is disclosed in U.S. Patent No. 2,444,538. 1,3-butanediol was used as the butanediol, and 80% of 1,3-butanediol aqueous solution at a reaction temperature of 250 to 300 캜 at normal pressure was injected at a space velocity (LHSV) using a sodium phosphate-calcium phosphate- , And Liquid Hour Space Velocity) of 0.28. As a result, the yield of butadiene having a purity of 97% was 77% at a reaction time of 20 hours, and the yield was reduced to 61% after 42 hours.

2,3-부탄디올의 탈수반응으로 부타디엔을 제조하는 방법이 미국특허 제 2,527,120호에 제시되었다. 촉매로서는 카오린, 실리카겔 및 활성탄소 등을 촉매로 사용하며, 반응온도 500~580 ℃, 상압에서 50%의 1,3-부탄디올-초산무수물 용액을 공급하여 반응하여 부타디엔을 합성하였다. 그러나 반응수율과 반응시간에 대해서는 상세한 반응결과를 제시하지 않았다.
A method for preparing butadiene by dehydration reaction of 2,3-butanediol is disclosed in U.S. Patent No. 2,527,120. Butadiene was synthesized by reacting 1,3-butanediol-acetic anhydride solution at a reaction temperature of 500 to 580 ° C and 50% at normal pressure using kaolin, silica gel and activated carbon as catalysts. However, detailed reaction results are not presented for reaction yield and reaction time.

디올로부터 디올레핀을 제조하는 방법으로 미국특허 제 3,758,612호에서는 리튬/인 비가 2.2~3인 인산리튬촉매를 사용하였다. 디올로는 메틸-2,3-부탄디올을 사용하여 생성물로는 디올레핀인 이소프렌과 케톤화합물인 메틸이소프로필케톤을 주 생성물로 합성하였다. 반응온도 400℃ 상압에서 메틸-2,3-부탄디올을 공간속도(LHSV, Liquid Hour Space Velocity) 1.0으로 공급하여 반응한 결과, 전환율 100%, 이소프렌의 수율은 62-64%이었고, 메틸이소프로필케톤의 수율은 29-30%이였다. 그러나 반응시간에 따른 활성변화 결과는 제시하지 않고 있어 촉매 안정성은 개선되어야 하는 것으로 보인다.
As a method for preparing diolefins from diols, US Pat. No. 3,758,612 uses a lithium phosphate catalyst with a lithium / phosphorus ratio of 2.2-3. As diol, methyl-2,3-butanediol was used. As a product, diolefin, isoprene, and methyl isopropyl ketone, a ketone compound, were synthesized as main products. Methylene-2,3-butanediol was supplied at a reaction temperature of 400 ° C and an atmospheric pressure of 1.0 at a space hour (LHSV, LHSV) of 1.0, and the conversion was 100%, the yield of isoprene was 62-64%, and methyl isopropyl ketone Yield was 29-30%. However, the results of the activity change with reaction time are not presented, and the catalyst stability should be improved.

또한 미국특허 제 3,957,900호에서는 리튬, 나트륨, 스트론튬 및 바륨의 오르토인산과 피로인산의 혼합촉매를 사용하였다. 디올로는 메틸-2,3-부탄디올을 사용하여 생성물로는 디올레핀인 이소프렌과 케톤화합물인 메틸이소프로필케톤을 주 생성물로 합성하였다. Li3NaP2O7 촉매를 사용하며 반응온도 400 ℃ 상압에서 메틸-2,3-부탄디올을 공간속도(LHSV, Liquid Hour Space Velocity) 1.0으로 공급하여 반응한 결과, 반응 1시간후, 전환율 100%, 이소프렌의 수율은 86%이었고, 메틸이소프로필케톤의 수율은 12%이였다. 촉매의 강도가 약하고, 활성감소가 크므로, 피로인산나트륨을 혼합한 Li3NaP2O7- Na2HP2O7 촉매를 사용하였다. 반응온도 400 ℃ 상압에서 메틸-2,3-부탄디올을 공간속도(LHSV) 1.0으로 공급하여 반응한 결과, 촉매의 강도는 증가하였으나, 반응 1시간후, 전환율 91%, 이소프렌의 수율은 30%이었고, 메틸이소프로필케톤의 수율은 18%이였다. 14시간에서는 전환율 85%, 이소프렌의 수율은 16%이었고, 메틸이소프로필케톤의 수율은 19%로 활성감소와 디올레핀인 이소프렌의 수율감소가 확인되었다.
U.S. Patent No. 3,957,900 uses a mixed catalyst of lithium, sodium, strontium and barium orthophosphoric acid and pyrophosphoric acid. As diol, methyl-2,3-butanediol was used. As a product, diolefin, isoprene, and methyl isopropyl ketone, a ketone compound, were synthesized as main products. Methyl 3,3-butanediol was supplied at a reaction temperature of 400 ° C and a liquid hour space velocity (LHSV) of 1.0 using a Li 3 NaP 2 O 7 catalyst. As a result, the conversion was 100% , The yield of isoprene was 86%, and the yield of methyl isopropyl ketone was 12%. Li 3 NaP 2 O 7 - Na 2 HP 2 O 7 catalyst mixed with sodium pyrophosphate was used because the strength of the catalyst was weak and the activity decreased greatly. The reaction was carried out by feeding methyl-2,3-butanediol at a space velocity (LHSV) of 1.0 at a reaction temperature of 400 ° C. and at an atmospheric pressure. As a result, the catalyst strength was increased, but after 1 hour of the reaction, the conversion was 91% and the yield of isoprene was 30% , And the yield of methyl isopropyl ketone was 18%. At 14 hours, the conversion was 85%, the yield of isoprene was 16%, the yield of methyl isopropyl ketone was 19%, and the decrease in the yield of isoprene, which is a diolefin, was confirmed.

모노알콜의 탈수소와 축합 및 수소화반응으로 아세트알데히드 중간화합물을 경유하는 방법으로 디올레핀을 합성하는 공정이 개발되었다. 특히 에탄올 또는 아세트알데히드로부터 부타디엔을 합성하는 촉매로는 탄탈럼 및 지르코니아 등의 전이금속 산화물이 담지된 실리카계 촉매가 사용되었다. 최근 한국특허 공개 10-2011-0117953호에서는 하프니아, 지르코니아, 탄탈럼 및 나이오븀 산화물을 0.1-10중량% 함유한 나노실리카 촉매를 사용하여 반응온도 350 ℃ 상압에서 에탄올을 공간속도(LHSV) 1.0으로 공급하여 반응한 결과, 전환율 40%, 부타디엔의 수율은 32%이었다. 바이오 에탄올을 사용하는 장점이 있지만, 촉매의 활성이 4-5일 내에 크게 감소되어 1주일 마다 촉매 재생처리를 해야하는 단점이 있다.
A process for synthesizing diolefins has been developed by a process involving the dehydrogenation of monoalcohols and the condensation and hydrogenation of the monoalcohols via intermediates of acetaldehyde. Particularly, as a catalyst for synthesizing butadiene from ethanol or acetaldehyde, a silica-based catalyst carrying a transition metal oxide such as tantalum and zirconia has been used. Recently, Korean Patent Laid-Open Publication No. 10-2011-0117953 discloses a nanosilica catalyst containing 0.1-10% by weight of hafnia, zirconia, tantalum, and niobium oxide at a reaction temperature of 350 ° C and an atmospheric pressure of 1.0 (LHSV) . As a result, the conversion was 40% and the yield of butadiene was 32%. Although bioethanol is advantageous, the activity of the catalyst is greatly reduced within 4-5 days, and catalyst regeneration treatment is required every week.

알데히드의 탈수반응으로 디올레핀을 합성하는 방법이 미국특허 제 4,628, 140호에 제안되었다. 알데히드로는 2-메틸부틸알데하이드이며 탈수생성물은 이소프렌이고, 촉매로는 인산/보론비가 0.8인 인산보론을 사용하였다. 특히 방향족화합물인 부틸카테콜을 활성감소억제제로 2.5% 첨가하여 반응온도 275 ℃ 상압에서 2-메틸부틸알데하이드를 공간속도(LHSV) 2.25로 공급하여 반응한 결과, 반응 2시간후, 전환율 33%, 이소프렌의 수율은 23%이었고, 32시간에서는 전환율 18%, 이소프렌의 수율은 14%이었다. 활성감소의 정도가 완만하여졌으나, 초기 활성이 낮으며, 활성이 감소되고 있다.
A method of synthesizing diolefins by dehydration reaction of aldehydes is proposed in U.S. Patent No. 4,628,140. The aldehyde used was 2-methylbutylaldehyde, the dehydration product used was isoprene, and the catalyst used was phosphoric acid boron having a phosphoric acid / boron ratio of 0.8. In particular, 2.5% of butyl catechol, an aromatic compound, was added as an inhibitor of activity reduction, and 2-methylbutyl aldehyde was fed at a reaction temperature of 275 ° C at a space velocity (LHSV) of 2.25. As a result, The yield of isoprene was 23%, the conversion was 18% at 32 hours, and the yield of isoprene was 14%. Although the degree of activity reduction is gentle, the initial activity is low and the activity is decreasing.

다이알콜에서 탈수반응으로 메틸에틸케톤(Methyl Ethyl Ketone)을 합성하는 방법으로는 고체산촉매로 알루미나[Kannan, s. V.; Pillai, c. N. Indian J. Chem. 1969, 7, 1164-66]와 벤토나이트[Bourns, a. N.; Nicholls, R. V. Can. J. Res. 1947, 25B, 80-89] 또는 오산화인을 사용하는 방법과 액체산인 황산이나 인산을 사용하는 방법이 보고되었다[Furhhaski, S.; Ohara, K. J. Agri. Chem. Soc. Jpn. 1948, 17, 315-20]. 그러나 디올에서 탈수하여 메틸에틸케톤으로만 수율 91%로 제조하는 촉매는 산성촉매만 사용되고 있고, 디올레핀으로 한 분자에서 2개의 물을 탈수하는 촉매로는 산-염기복합촉매가 주로 사용되고 있다. 기존의 산염기복합촉매의 경우에는 상용생산하기에는 활성이 낮으며, 고온과 높은 수증기 반응조건에서 촉매의 구조적 열안정성이 낮아서 생성물의 선택성과 촉매 수명이 낮아서 상업생산을 위해서는 촉매의 성능개선이 요구되고 있다.
As a method for synthesizing methyl ethyl ketone by dehydration reaction in di alcohols, alumina (Kannan, s. V .; Pillai, c. N. Indian J. Chem. 1969, 7, 1164-66] and bentonite [Bourns, a. N .; Nicholls, RV Can. J. Res. 1947, 25B, 80-89] or a method using phosphorus pentoxide and a method using liquid sulfuric acid or phosphoric acid [Furhhaski, S .; Ohara, KJ Agri. Chem. Soc. Jpn. 1948, 17, 315-20]. However, only the acid catalyst is used as a catalyst for dehydration in diol with a yield of 91% as methyl ethyl ketone, and an acid-base complex catalyst is mainly used as a catalyst for dewatering two water in one molecule with a diolefin. In the case of the existing acid-base complex catalyst, the activity is low for commercial production, and the structural and thermal stability of the catalyst is low at high temperature and high steam reaction conditions. Therefore, product selectivity and catalyst life are low, have.

이에, 본 발명자들은 1,3-부타디엔과 메틸에틸케톤을 장기간 동안 고수율로 제조할 수 있는 방법에 대하여 연구하던 중, 본 발명에 따른 촉매를 이용하는 1,3-부타디엔과 메틸에틸케톤의 제조방법이 2,3-부탄디올의 전환율 및 1,3-부타디엔과 메틸에틸케톤의 선택도가 높고, 상기 촉매의 반응 안정성이 우수하여 장기간 동안 높은 활성이 유지되는 것을 알아내고 본 발명을 완성하였다.
Accordingly, the inventors of the present invention have been studying a process for producing 1,3-butadiene and methyl ethyl ketone at a high yield over a long period of time. In the process for producing 1,3-butadiene and methyl ethyl ketone using the catalyst according to the present invention The conversion of 2,3-butanediol and the selectivity of 1,3-butadiene and methyl ethyl ketone are high, and the reaction stability of the catalyst is excellent and high activity is maintained for a long period of time.

미국특허 제 2,444,538호U.S. Patent No. 2,444,538 미국특허 제 2,527,120호U.S. Patent No. 2,527,120 미국특허 제 3,758,612호U.S. Patent No. 3,758,612 미국특허 제 3,957,900호U.S. Patent No. 3,957,900 한국특허 공개 10-2011-0117953호Korean Patent Publication No. 10-2011-0117953 미국특허 제 4,628, 140호US Patent No. 4,628, 140

Syu, M.-J. Appl. Microbiol. Biotechnol(2001)55:10-18Syu, M.-J. Appl. Microbiol. Biotechnol (2001) 55: 10-18 Kannan, s. V.; Pillai, c. N. Indian J. Chem. 1969, 7, 1164-66Kannan, p. V .; Pillai, c. N. Indian J. Chem. 1969, 7, 1164-66 Bourns, a. N.; Nicholls, R. V. Can. J. Res. 1947, 25B, 80-89Bourns, a. N .; Nicholls, R. V. Can. J. Res. 1947, 25B, 80-89 Furhhaski, S.; Ohara, K. J. Agri. Chem. Soc. Jpn. 1948, 17, 315-20Furhhaski, S .; Ohara, K. J. Agri. Chem. Soc. Jpn. 1948, 17, 315-20

본 발명의 목적은 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법을 제공하는 것이다.
An object of the present invention is to provide a process for producing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol.

본 발명의 다른 목적은 상기 방법에 사용되는 촉매를 제공하는 것이다.
It is another object of the present invention to provide a catalyst for use in the process.

본 발명의 또 다른 목적은 상기 촉매의 제조방법을 제공하는 것이다.
It is still another object of the present invention to provide a method for producing the catalyst.

상기의 목적을 달성하기 위하여, 본 발명은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매의 존재 하에서 2,3-부탄디올을 340-440 ℃의 반응온도, 2-10 atm의 반응압력 및 0.3-1.5 h-1의 부탄디올 액상공간속도(LHSV)의 조건으로 탈수반응시키는 방법에 있어서, 상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법을 제공한다.
In order to achieve the above object, the present invention provides a calcium-vanadium-acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3-x (OH)] , or calcium-age O byumsan-phosphate apatite [Ca 5 ( NbO 4) x (PO 4) 3-x (OH]) of 2,3-butanediol the reaction temperature of 340-440 ℃ in the presence of a catalyst, 2-10 atm and the reaction pressure 0.3-1.5 h -1 in liquid-butanediol (LHSV), wherein X is in a molar ratio of 0.01 to 0.30. The present invention also provides a process for producing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol .

또한, 본 발명은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)]; 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]);이되, 상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하기 위한 촉매를 제공한다.
The present invention also relates to a calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (OH)]; Or calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH)], wherein X is in a molar ratio of 0.01 to 0.30. A catalyst for producing 1,3-butadiene and methyl ethyl ketone is provided.

나아가, 본 발명은 바나듐산(또는 나이오븀산) 전구체와 인산전구체를 녹여 바나듐산(또는 나이오븀산)-인산 혼합수용액을 제조하는 단계(단계 1); Further, the present invention provides a process for preparing a vanadium acid (or niobic acid) -phosphoric acid mixed aqueous solution by dissolving a vanadium (or niobic acid) precursor and a phosphoric acid precursor (Step 1);

칼슘전구체를 녹여 칼슘 수용액을 제조하는 단계(단계 2); A step of dissolving the calcium precursor to prepare an aqueous calcium solution (step 2);

상기 단계 1에서 준비한 바나듐산(또는 나이오븀산)-인산 혼합수용액과 상기 단계 2에서 준비한 칼슘 수용액을 혼합하고, 교반하여 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 제조하는 단계(단계 3);(Or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 1 is mixed with the calcium aqueous solution prepared in step 2 and stirred to prepare a calcium-vanadium acid (or niobic acid) -phosphoric acid slurry aqueous solution Step 3);

상기 단계 3에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 여과하고, 얻어진 칼슘-바나듐산(또는 나이오븀산)-인산 케익을 건조, 분쇄, 성형하여 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 제조하는 단계(단계 4); 및The calcium-vanadium (or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 3 is filtered and the obtained calcium-vanadic acid (or niobic acid) -phosphoric acid cake is dried, crushed, Niobic acid) -phosphate apatite pellets (step 4); And

상기 단계 4에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 300-700 ℃로 열처리하여 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매를 제조하는 단계(단계 5);를 포함하는 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매의 제조방법을 제공한다.
The calcium-vanadate-phosphate apatite pellet prepared in step 4 was heat-treated at 300-700 ° C to form calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (Step 5) of preparing a calcium-naphthalic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH) Of the catalysts of apatite [Ca 5 (VO 4 ) x (PO 4 ) 3-x (OH)] or calcium-sodium niobate-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x And a manufacturing method thereof.

본 발명에 따른 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)]; 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]);이되, 상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 촉매를 사용함에 따라서, 2,3-부탄디올의 전환율 및 1,3-부타디엔과 메틸에틸케톤의 선택도가 현저히 향상되고, 상기 촉매의 반응 안정성이 우수하여 장기간 동안 높은 활성이 유지되는 효과가 있다.
The method for producing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol according to the present invention is a method for producing calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (OH) ; Or calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH)]; wherein X is in a molar ratio of 0.01-0.30. The conversion of 2,3-butanediol and the selectivity of 1,3-butadiene and methyl ethyl ketone are remarkably improved, the reaction stability of the catalyst is excellent, and high activity is maintained for a long period of time.

도 1은 본 발명의 실시예 1에서 제조된 촉매에 대한 X-선 회절 분석 결과를 도시한 그래프이다.
도 2는 본 발명의 실시예 2에서 제조된 촉매에 대한 X-선 회절 분석 결과를 도시한 그래프이다.
1 is a graph showing the results of X-ray diffraction analysis of the catalyst prepared in Example 1 of the present invention.
2 is a graph showing the results of X-ray diffraction analysis of the catalyst prepared in Example 2 of the present invention.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명자들은 2,3-부탄디올(2,3-Butanediol)로부터 1,3-부타디엔(1,3-Butadiene)과 메틸에틸케톤(Methyl Ethyl Ketone)의 제조하기 위해 다양한 촉매를 이용하여 실험을 수행한 결과, 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH)] 촉매를 사용하는 경우, 탈수반응의 활성, 선택성 및 촉매 수명이 크게 증대되는 것을 확인하였다. 또한, 본 발명자들은 상기 촉매의 합성 시, 칼슘과 인산 및 바나듐산(또는 나이오븀산)의 몰비, 용액 농도, 교반 조건, 열처리 온도 등을 자세하게 검토한 결과, 특정의 조건과 방법으로 합성된 촉매가 탈수반응의 활성과 선택성 및 반응안정성을 보다 증가시키는 것을 확인하고, 본 발명을 완성하게 되었다.
The present inventors have conducted experiments using various catalysts for the production of 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol result, the calcium-vanadium-acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3-x (OH)] , or calcium-age O byumsan-phosphate apatite [Ca 5 (NbO 4) x (PO 4) 3 -x (OH)] catalyst, the activity, selectivity and catalyst life of the dehydration reaction were greatly increased. Further, the present inventors have studied in detail the molar ratio of calcium, phosphoric acid and vanadium acid (or niobic acid), solution concentration, stirring conditions, heat treatment temperature and the like at the time of synthesizing the above catalyst. As a result, Confirmed that the activity, selectivity and reaction stability of the dehydration reaction were further increased, and the present invention was completed.

본 발명은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매의 존재 하에서 2,3-부탄디올을 340-440 ℃의 반응온도, 2-10 atm의 반응압력 및 0.3-1.5 h-1의 부탄디올 액상공간속도(LHSV)의 조건으로 탈수반응시키는 방법에 있어서,The present invention is a calcium-vanadium-acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3-x (OH)] , or calcium-age O byumsan-phosphate apatite [Ca 5 (NbO 4) x (PO 4) 3-x (OH)) catalyst, 2,3-butanediol is reacted at a reaction temperature of 340-440 ° C, a reaction pressure of 2-10 atm and a butanediol liquid space velocity (LHSV) of 0.3-1.5 h -1 In the dehydration reaction,

상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법을 제공한다.
And X is in a molar ratio of 0.01 to 0.30. The present invention also provides a process for producing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol.

이하, 본 발명에 따른 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법을 상세히 설명한다.
Hereinafter, a method for preparing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol according to the present invention will be described in detail.

본 발명에 따른 방법은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH)] 촉매의 존재 하에 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 것으로, 상기 촉매는 2,3-부탄디올의 탈수반응 촉매로 고기능성 촉매인 것을 특징으로 한다. The process according to the invention, calcium-vanadium-acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3-x (OH)] , or calcium-age O byumsan-phosphate apatite [Ca 5 (NbO 4) x ( PO 4) 3-x (OH )] in the presence of a catalyst from 2,3-butanediol by preparing a 1, 3-butadiene and methyl ethyl ketone, wherein the catalyst is a high functional catalyst in the dehydration catalyst in 2,3-butanediol .

여기서, 상기 촉매의 X는 몰비로서 0.01-0.30인 것이 바람직하다. 만약, 상기 X의 몰비가 0.01 미만이거나 0.30을 초과할 경우에는 2,3-부탄디올의 전환율이 낮아지거나 1,3-부타디엔과 메틸에틸케톤의 선택도가 낮아지는 문제가 있다(실시예 1-7 및 비교예 1-4 참조).
Here, X of the catalyst is preferably 0.01 to 0.30 as a molar ratio. If the molar ratio of X is less than 0.01 or more than 0.30, the conversion of 2,3-butanediol becomes low or the selectivity of 1,3-butadiene and methyl ethyl ketone becomes low (Examples 1-7 And Comparative Example 1-4).

또한, 상기 촉매는 분말 또는 다공성 소결체 형상을 포함하며, 상기 다공성 소결체 형상은 펠렛(pellet) 형상을 포함한다.
Further, the catalyst includes a powder or porous sintered body shape, and the porous sintered body shape includes a pellet shape.

본 발명에 따른 1,3-부타디엔과 메틸에틸케톤의 제조방법은 고정식(Fixed bed) 반응기를 사용하는 연속식 반응 또는 회분식 반응일 수 있다. 고정식 반응기를 사용하는 반응방법으로는 고정식 반응기에 본 발명에 따른 촉매 펠렛(pellet)을 충진하고 반응물인 2,3-부탄다이올을 연속적으로 반응기에 공급하여 반응시킴으로 생성물을 연속적으로 제조한다. 이때, 고정식 반응기 내 상기 촉매의 충진율은 30-70 부피%인 것이 바람직하다. 연속 회분식 반응일 경우에는 촉매를 반응물의 1-10 중량% 사용하는 것이 바람직하다.The process for preparing 1,3-butadiene and methyl ethyl ketone according to the present invention may be a continuous reaction or a batch reaction using a fixed bed reactor. As a reaction method using a stationary reactor, a catalyst pellet according to the present invention is filled in a stationary reactor, and 2,3-butanediol, which is a reactant, is continuously supplied to the reactor to produce a product continuously. At this time, the filling rate of the catalyst in the fixed reactor is preferably 30-70 vol%. In the case of a continuous batch reaction, the catalyst is preferably used in an amount of 1-10% by weight of the reaction product.

상기 칼슘-바나듐산-인산아파타이트 또는 칼슘-나이오븀산-인산아파타이트 촉매의 안정성이 매우 우수하고 높은 활성이 장기간 동안 유지됨에 따라, 본 발명의 제조방법은 2,3-부탄디올을 연속적으로 탈수반응하여 1,3-부타디엔과 메틸에틸케톤을 연속적으로 제조하는 연속식 반응인 것이 바람직하다.
Since the stability of the calcium-vanadate-phosphate apatite or calcium-niobate-phosphate apatite catalyst is excellent and the high activity is maintained for a long period of time, the production method of the present invention is characterized by continuous dehydration reaction of 2,3- Butadiene and methyl ethyl ketone are continuously produced.

상술한 바와 같이, 본 발명의 제조방법은 칼슘-바나듐산-인산아파타이트 또는 칼슘-나이오븀산-인산아파타이트 촉매의 존재 하에 2,3-부탄디올을 탈수반응하여 1,3-부타디엔과 메틸에틸케톤을 제조하는 특징이 있으며, 상기 탈수반응은 340-440℃의 반응온도, 2-10 atm의 반응압력 및 0.3-1.5 h-1의 2,3-부탄디올 액상공간속도(LHSV)의 조건에서 수행되는 것이 바람직하다.As described above, the production method of the present invention dehydrates 2,3-butanediol in the presence of calcium-vanadate-phosphate apatite or calcium-niobate-phosphate apatite catalyst to produce 1,3-butadiene and methyl ethyl ketone and characterized by manufacturing, it is the dehydration reaction is carried out under the conditions of a reaction temperature of 340-440 ℃, 2,3- butanediol, liquid space velocity of 2-10 atm and a reaction pressure of 0.3-1.5 h -1 (LHSV) desirable.

만약, 상기 반응온도, 반응압력 및 액상공간속도 조건의 범위를 벗어날 경우에는 2,3-부탄디올의 전환율이 낮아지거나 1,3-부타디엔과 메틸에틸케톤의 선택도가 낮아지는 문제가 있다(실시예 8-10 및 비교예 5-7 참조).If the reaction temperature, the reaction pressure, and the liquid-phase space velocity condition are out of the range, the conversion of 2,3-butanediol becomes low or the selectivity of 1,3-butadiene and methyl ethyl ketone becomes low 8-10 and Comparative Examples 5-7).

구체적으로, 상기 반응온도, 반응압력 및 액상공간속도는 1,3-부타디엔과 메틸에틸케톤을 80 몰%이상의 선택도로 제조할 수 있는 조건으로, 반응온도가 440 ℃를 초과하거나, 반응압력이 2 atm 미만, 반응물의 공급속도가 0.3 hr-1 미만이면 촉매의 활성이 과도하게 증가되어 수소화 분해 부반응이 진행되고 이에 따라서 선택성이 감소한다. 그리고 반응온도가 340℃ 미만이거나, 반응압력이 11atm 이상, 2,3-부탄디올의 공급속도가 1.5 hr-1를 초과하면, 2,3-부탄디올의 전환율이 낮아져서 다른 반응조건을 가혹하게 높여야 하고 생성물의 분리 회수단계에서 비용이 증가하게 된다.
Specifically, the reaction temperature, the reaction pressure, and the liquid-phase space velocity are conditions in which 1,3-butadiene and methyl ethyl ketone can be prepared at a selectivity of 80 mol% or more, and the reaction temperature is more than 440 ° C., atm and the feed rate of the reactant is less than 0.3 hr -1, the activity of the catalyst is excessively increased, so that the side reaction for hydrocracking proceeds and the selectivity decreases accordingly. When the reaction temperature is lower than 340 ° C, the reaction pressure is higher than 11 atm and the feeding rate of 2,3-butanediol is higher than 1.5 hr -1 , the conversion of 2,3-butanediol is lowered, The cost is increased in the step of separating and collecting.

또한, 본 발명은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)]; 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]);이되, 상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하기 위한 촉매를 제공한다.The present invention also relates to a calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (OH)]; Or calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH)], wherein X is in a molar ratio of 0.01 to 0.30. A catalyst for producing 1,3-butadiene and methyl ethyl ketone is provided.

본 발명에 따른 촉매는 2,3-부탄디올을 연속적으로 탈수반응시켜 1,3-부타디엔과 메틸에틸케톤을 연속적으로 제조하는 촉매인 특징이 있으며, 300시간의 연속적 탈수반응에서도 95몰% 이상의 전환율을 가지며, 80몰% 이상의 1,3-부타디엔과 메틸에틸케톤의 수율(1,3-부타디엔의 수율 및 메틸에틸케톤 수율의 합)과 50% 이상의 1,3-부타디엔 선택도를 갖는 것을 특징으로 한다.
The catalyst according to the present invention is characterized by continuous dehydration reaction of 2,3-butanediol to continuously produce 1,3-butadiene and methyl ethyl ketone. In the continuous dehydration reaction for 300 hours, the conversion of 95 mol% or more , And has a yield of 1,3-butadiene and methyl ethyl ketone of 80 mol% or more (sum of 1,3-butadiene yield and methyl ethyl ketone yield) and 1,3-butadiene selectivity of 50% or more .

나아가, 본 발명은 바나듐산(또는 나이오븀산) 전구체와 인산전구체를 녹여 바나듐산(또는 나이오븀산)-인산 혼합수용액을 제조하는 단계(단계 1); Further, the present invention provides a process for preparing a vanadium acid (or niobic acid) -phosphoric acid mixed aqueous solution by dissolving a vanadium (or niobic acid) precursor and a phosphoric acid precursor (Step 1);

칼슘전구체를 녹여 칼슘 수용액을 제조하는 단계(단계 2); A step of dissolving the calcium precursor to prepare an aqueous calcium solution (step 2);

상기 단계 1에서 준비한 바나듐산(또는 나이오븀산)-인산 혼합수용액과 상기 단계 2에서 준비한 칼슘 수용액을 혼합하고, 교반하여 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 제조하는 단계(단계 3);(Or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 1 is mixed with the calcium aqueous solution prepared in step 2 and stirred to prepare a calcium-vanadium acid (or niobic acid) -phosphoric acid slurry aqueous solution Step 3);

상기 단계 3에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 여과하고, 얻어진 칼슘-바나듐산(또는 나이오븀산)-인산 케익을 건조, 분쇄, 성형하여 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 제조하는 단계(단계 4); 및The calcium-vanadium (or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 3 is filtered and the obtained calcium-vanadic acid (or niobic acid) -phosphoric acid cake is dried, crushed, Niobic acid) -phosphate apatite pellets (step 4); And

상기 단계 4에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 300-700 ℃로 열처리하여 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매를 제조하는 단계(단계 5);를 포함하는 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매의 제조방법을 제공한다.
The calcium-vanadate-phosphate apatite pellet prepared in step 4 was heat-treated at 300-700 ° C to form calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (Step 5) of preparing a calcium-naphthalic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH) Of the catalysts of apatite [Ca 5 (VO 4 ) x (PO 4 ) 3-x (OH)] or calcium-sodium niobate-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x And a manufacturing method thereof.

이하, 본 발명에 따른 1,3-부타디엔과 메틸에틸케톤 제조용 촉매의 제조방법에 대해 상세히 설명한다.
Hereinafter, a method of preparing 1,3-butadiene and methyl ethyl ketone according to the present invention will be described in detail.

본 발명에 따른 촉매의 제조방법에 있어서, 상기 단계 1의 인산 전구체는 오르토인산나트륨(Na3PO4), 피로인산나트륨(Na4P2O7), 트리폴리인산나트륨(Na5P3O10), 테트라폴리인산나트륨(Na6P4O13), 오르토인산암모늄((NH4)3PO4), 피로인산암모늄((NH4)4P2O7), 오르토인산(H3PO4), 피로인산(H4P2O7), 트리폴리인산(H5P3O10), 테트라폴리인산(H6P4O13) 등을 사용할 수 있고, 오르토인산나트륨(Na3PO4), 오르토인산암모늄((NH4)3PO4) 또는 오르토인산(H3PO4)을 사용하는 것이 바람직하다.In the method for producing a catalyst according to the present invention, the phosphoric acid precursor of the step 1 is selected from the group consisting of sodium orthophosphate (Na 3 PO 4 ), sodium pyrophosphate (Na 4 P 2 O 7 ), sodium tripolyphosphate (Na 5 P 3 O 10 ), tetra-sodium polyphosphate (Na 6 P 4 O 13) , ammonium orthophosphate ((NH 4) 3 PO 4 ), pyrophosphoric acid, ammonium ((NH 4) 4 P 2 O 7), orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7) , tripolyphosphoric acid (H 5 P 3 O 10) , tetra polyphosphoric acid (H 6 P 4 O 13), and the like, ortho-phosphate, sodium (Na 3 PO 4) , Ammonium orthophosphate ((NH 4 ) 3 PO 4 ) or orthophosphoric acid (H 3 PO 4 ).

상기 단계 1의 바나듐산 전구체는 바나듐산나트륨(NaVO3), 바나듐산암모늄((NH4)VO3) 등을 사용할 수 있고, 나이오븀산 전구체는 나이오븀산나트륨(NaNbO3), 나이오븀산암모늄((NH4)NbO3) 등을 사용할 수 있다.The vanadium acid precursor of step 1 may be sodium vanadate (NaVO 3 ), ammonium vanadium ((NH 4 ) VO 3 ), and the niobate precursor may be sodium niobate (NaNbO 3 ) Ammonium ((NH 4 ) NbO 3 ) and the like can be used.

상기 단계 1에서 상기 바나듐산(또는 나이오븀산)과 인산몰비는 [Ca5(VO4)x(PO4)3-x(OH)] 또는 [Ca5(NbO4)x(PO4)3-x(OH])에서 X가 0.01-0.30인 것이 바람직하다. 만약, 상기 X의 몰비가 0.01 미만이거나 0.30을 초과할 경우에는 2,3-부탄디올의 전환율이 낮아지거나 1,3-부타디엔과 메틸에틸케톤의 선택도가 낮아지는 문제가 있다(실시예 1-7 및 비교예 1-4 참조).In the first step of the vanadium-acid (or age o byumsan) and phosphoric acid molar ratio [Ca 5 (VO 4) x (PO 4) 3-x (OH)] or [Ca 5 (NbO 4) x (PO 4) 3 -X (OH)), X is preferably 0.01 to 0.30. If the molar ratio of X is less than 0.01 or more than 0.30, the conversion of 2,3-butanediol becomes low or the selectivity of 1,3-butadiene and methyl ethyl ketone becomes low (Examples 1-7 And Comparative Example 1-4).

또한, 상기 단계 1에서 상기 바나듐산(또는 나이오븀산)과 인산의 전구체를 용해하기 위해서는 40-90℃로 가열하고 교반할 수 있고, 바나듐산(또는 나이오븀산)과 인산의 농도의 합은 0.2-2.0 몰랄 농도로 사용하는 것이 바람직하다.
In order to dissolve the precursor of vanadium (or niobic acid) and phosphoric acid in step 1, the mixture may be heated to 40-90 ° C and stirred. The sum of the concentrations of vanadium (or niobium) and phosphoric acid It is preferred to use a molar concentration of 0.2-2.0.

본 발명에 따른 촉매의 제조방법에 있어서, 상기 단계 2의 칼슘 전구체는 염화칼슘(CaCl2), 질산칼슘(Ca(NO3)2) 탄산칼슘(CaCO3), 초산칼슘(Ca(CH3COO)2) 등을 사용할 수 있고, 이들 중 염화칼슘과 질산칼슘을 사용하는 것이 바람직하다.In the production method of the catalyst according to the present invention, the calcium precursor of the second stage of calcium chloride (CaCl 2), calcium nitrate (Ca (NO 3) 2) calcium carbonate (CaCO 3), calcium acetate (Ca (CH 3 COO) 2 ) may be used, and among them, calcium chloride and calcium nitrate are preferably used.

또한, 상기 단계 2의 칼슘수용액에서 칼슘 농도는 0.5-3.0몰랄 농도가 바람직하고, 칼슘의 함량은 단계 1의 바나듐산(또는 나이오븀산)과 인산의 총합에 대해 [바나듐(또는 나이오븀)+인:칼슘]의 몰비가 2-4:5인 것이 바람직하다.
The calcium concentration in the calcium aqueous solution of step 2 is preferably 0.5-3.0 molar, and the calcium content is preferably [vanadium (or niobium) + calcium) for the sum of vanadium (or niobium) Phosphorus: calcium] is 2-4: 5.

본 발명에 따른 촉매의 제조방법에 있어서, 상기 단계 3의 혼합시, 상기 바나듐산(또는 나이오븀산)-인산 혼합수용액과 칼슘 수용액을 동시에 5-15 ml/min의 속도로 점적하는 것이 바람직하다. 상기 수용액을 5-15 ml/min의 속도로 점적함으로써, 칼슘-바나듐산(또는 나이오븀산)-인산의 균일한 조성의 아파타이트 입자를 생성할 수 있으며, 다음의 단계 4에서 열처리시 매우 큰 비표면적을 가지며, 장기간 동안 우수한 활성이 유지되는 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매가 제조된다.In the method for preparing a catalyst according to the present invention, it is preferable that the aqueous solution of the vanadium (or niobium) -phosphate mixture and the aqueous solution of calcium are simultaneously sprayed at a rate of 5-15 ml / min during the mixing of the step 3 . The aqueous solution is dripped at a rate of 5-15 ml / min to produce apatite particles of a uniform composition of calcium-vanadium acid (or niobic acid) -phosphoric acid. In the subsequent step 4, (Ca 5 (VO 4 ) x (PO 4 ) 3-x (OH)] or Ca-Na barium-Phosphate Apatite [Ca 5 NbO 4 ) x (PO 4 ) 3-x (OH) catalyst.

또한, 상기 단계 3의 교반은 40-90℃에서 수행되는 것이 바람직하다. 만약, 40℃ 이하에서 교반을 하면 칼슘-바나듐산(또는 나이오븀산)-인산의 결합이 충분하지 않아서 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH])의 균일한 분산성과 미세 슬러리입자의 생성이 낮으므로 활성이 감소되고, 90℃ 이상에서 교반을 하면 칼슘-바나듐산(또는 나이오븀산)-인산의 표면의 일부에서만 결합이 강하게 되어 일부 표면만 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 미세입자로 전환되고 입자의 내부는 칼슘-바나듐산(또는 나이오븀산)아파타이트와 칼슘-인산아파타이트로 존재하는 등으로 불균일한 입자가 생성되어 활성의 감소와 선택성 감소가 발생하는 문제가 있다.
Further, the stirring of step 3 is preferably carried out at 40-90 占 폚. If, when calcium was stirred at below 40 ℃ - vanadium acid (or age o byumsan) because the combination of phosphoric acid is not sufficient calcium-vanadium acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3-x ( OH)] or calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH)] and the production of fine slurry particles is low, (Or niobic acid) -phosphate is converted into calcium-vanadate (or niobic acid) -phosphate apatite microparticles only on some of the surfaces of the calcium-vanadium acid Inside, there is a problem that non-uniform particles are formed due to existence of calcium-vanadium acid (or niobic acid) apatite and calcium-phosphate apatite, resulting in decrease of activity and decrease of selectivity.

본 발명에 따른 제조방법에 있어서, 상기 단계 4에서는 상기 단계 3의 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 슬러리를 증류수와 혼합한 후 여과하는 세척 단계가 더 수행되는 것이 바람직하다. 여과 및 세척에 의해 얻어진 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 케익은 80-120 ℃에서 5-30시간 건조하며, 건조된 케익은 분쇄기를 이용하여 5-100 ㎛ 크기의 분말로 분쇄되는 것이 바람직하다. 이때, 분무 건조기(Spray dryer)를 이용하여 상기 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 케익을 5-100㎛ 크기의 입자로 분무 건조할 수 있다. In the manufacturing method according to the present invention, it is preferable that the step 4 further comprises a cleaning step of mixing the calcium-vanadate (or NaBa) -phosphatriate slurry of step 3 with distilled water and filtering. The calcium-vanadium acid (or niobic acid) -phosphate apatite cake obtained by filtration and washing is dried at 80-120 ° C. for 5-30 hours, and the dried cake is pulverized into powders of 5-100 μm size using a pulverizer . At this time, the calcium-vanadium acid (or niobic acid) -phosphate apatite cake can be spray-dried into particles having a size of 5-100 μm by using a spray dryer.

이어서, 분쇄된 분말을 타정기(Tabletter)에서 펠렛으로 성형한다. 이때, 상기 분말에 윤활제와 기공조절제로 사용되는 흑연(Graphite)을 0.5-5 중량% 혼합하여 펠렛으로 성형할 수도 있다. 이후, 단계 5의 열처리에 의해 펠렛형 촉매가 제조된다.
The pulverized powder is then pelletized in a Tablet. At this time, graphite which is used as a lubricant and a pore regulator may be mixed with 0.5 to 5% by weight of the powder and molded into pellets. Thereafter, the pellet type catalyst is produced by the heat treatment in step 5.

상기 펠렛 형상의 촉매는 연속식 반응으로 1,3-부타디엔과 메틸에틸케톤의 제조시 바람직한 것이며, 회분식(Batch) 반응으로 1,3-부타디엔과 메틸에틸케톤을 제조하는 경우, 상기 단계 3에서 성형을 하지 않고 분쇄된 분말을 열처리하여 얻어진 분말 형상의 촉매를 사용할 수 있다.
The catalyst in the form of a pellet is preferable for the production of 1,3-butadiene and methyl ethyl ketone by a continuous reaction. In the case of producing 1,3-butadiene and methyl ethyl ketone by a batch reaction, A powdery catalyst obtained by heat-treating the pulverized powder can be used.

본 발명에 따른 촉매의 제조방법에 있어서, 상기 단계 5의 열처리는 공기 중에서 300-700℃로 수행할 수 있고, 바람직하게는 400-600℃로 3-10시간 열처리할 수 있다. 만약, 열처리 온도가 700 ℃를 초과하는 경우 칼슘-바나듐(또는 나이오븀)인산염 입자(칼슘-바나듐-인산아파타이트 또는 칼슘-나이오븀-인산아파타이트)가 치밀화되어 촉매활성이 떨어지고, 열처리 온도가 300℃ 미만인 경우 칼슘-바나듐-인산아파타이트 또는 칼슘-나이오븀-인산아파타이트 입자가 불완전하게 생성되어 전환율이 떨어지는 문제가 있다.
In the method for preparing a catalyst according to the present invention, the heat treatment in step 5 may be performed at 300-700 ° C in air, preferably at 400-600 ° C for 3-10 hours. If the heat treatment temperature exceeds 700 ° C., the calcium-vanadium (or niobium) phosphate particles (calcium-vanadium-phosphate apatite or calcium-niobium-phosphate apatite) become densified to lower the catalytic activity and the heat treatment temperature becomes 300 ° C. , There arises a problem that incidence of calcium-vanadium-phosphate apatite or calcium-niobium-phosphate apatite particles is incomplete and conversion rate is lowered.

상술한 바와 같이, 본 발명에 따른 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법은 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)]; 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]);이되, 상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 촉매를 사용함에 따라서, 2,3-부탄디올의 전환율 및 1,3-부타디엔과 메틸에틸케톤의 선택도가 현저히 향상되고, 상기 촉매의 반응 안정성이 우수하여 장기간 동안 높은 활성이 유지되는 효과가 있다.
As described above, the process for preparing a 1, 3-butadiene and methyl ethyl ketone from 2,3-butanediol according to the invention are calcium-vanadium acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3- x (OH)]; Or calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH)]; wherein X is in a molar ratio of 0.01-0.30. The conversion of 2,3-butanediol and the selectivity of 1,3-butadiene and methyl ethyl ketone are remarkably improved, the reaction stability of the catalyst is excellent, and high activity is maintained for a long period of time.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<< 실시예Example 1> 칼슘- 1> Calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.10.1 (( POPO 44 )) 2.92.9 (( OHOH )] 촉매를 이용한 1,3-부타디엔과 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.10.1 (( POPO 44 )) 2.92.9 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 바나듐나트륨과With vanadium sodium and 오르토인산나트륨Sodium orthophosphate 전구체) Precursor)

바나듐산나트륨(NaVO3) 1.22g(0.01몰)과 인산나트륨(Na3PO412H2O) 110.2g(0.29몰)을 80 ℃의 탈이온수에 가하고 교반하여 500 ml의 바나듐산-인산 수용액을 제조하였다. 또한, 염화칼슘(CaCl22H2O) 73.5g(0.50몰)을 탈이온수에 가하고 교반하여 500 ml의 칼슘수용액을 제조하였다(바나듐+인 : 칼슘의 몰비가 3:5). 다음으로, 2,000 ml 비이커에 탈이온수 100 ml를 가하고, 상기에서 준비한 바나듐산-인산 수용액과 칼슘수용액을 60 ℃에서 10 ml/min 속력으로 50분간 동시에 첨가하고, 60 ℃에서 20시간 동안 교반하여 칼슘-바나듐산-인산아파타이트 슬러리 용액을 제조하였다(용액의 pH 6.3). 교반이 완료된 후, 상기 슬러리 용액을 여과하고, 탈이온수 600 ml를 가하여 분산, 20분간 교반하고 여과하는 과정을 2회 실시하여 칼슘-바나듐산-인산아파타이트[Ca5(VO4)0.1(PO4)2.9(OH)] 케익을 얻었다.1.22 g (0.01 mol) of sodium vanadate (NaVO 3 ) and 110.2 g (0.29 mol) of sodium phosphate (Na 3 PO 4 12 H 2 O) were added to deionized water at 80 ° C. and stirred to obtain 500 ml of vanadium- . Further, 73.5 g (0.50 mole) of calcium chloride (CaCl 2 2H 2 O) was added to deionized water and stirred to prepare 500 ml of an aqueous calcium solution (molar ratio of vanadium + phosphorus: calcium = 3: 5). Next, 100 ml of deionized water was added to a 2,000 ml beaker, and the vanadium-phosphoric acid aqueous solution and the calcium aqueous solution prepared above were simultaneously added at 60 ° C at a rate of 10 ml / min for 50 minutes and stirred at 60 ° C for 20 hours, -Vanidic acid-phosphate &lt; / RTI &gt; slurry solution was prepared (pH 6.3 of the solution). After stirring is complete, the calcium in the process of the slurry solution was filtered, distributed, stirred for 20 minutes, filtered, added to deionized water, 600 ml conducted twice-vanadium acid-phosphate apatite [Ca 5 (VO 4) 0.1 (PO 4 ) 2.9 (OH)] cake.

상기 여과된 칼슘-바나듐산-인산아파타이트 케익을 80 ℃에서 10시간 이상 건조하고, 건조물을 5-100 ㎛ 크기의 분말로 분쇄하고, 분말을 타정기에서 직경 5 mm 길이 3 mm의 펠렛으로 성형하고, 20-40 메쉬 크기로 분쇄 선별하였다. 선별된 입자를 500 ℃에서 6시간 동안 공기 중에 소성하였다. 공기 중에서 소성된 촉매를 XRD로 분석한 결과, 도 1과 같이 아파타이트(Ca5(PO4)3OH) 구조를 확인할 수 있었고, BET분석에 의한 비표면적은 59.6 ㎡/g이었다.
The dried calcium-vanadate-phosphate apatite cake was dried at 80 ° C. for 10 hours or more, the dried product was pulverized into powders having a size of 5-100 μm, the powders were molded into pellets having a diameter of 5 mm and a length of 3 mm, 20-40 mesh size. The selected particles were calcined in air at 500 DEG C for 6 hours. As a result of XRD analysis of the calcined catalyst in the air, the structure of apatite (Ca 5 (PO 4 ) 3 OH) was confirmed as shown in FIG. 1, and the specific surface area by BET analysis was 59.6 m 2 / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

내경이 12 mm인 스테인레스 관형반응기에 상기에서 제조한 칼슘-바나듐산-인산아파타이트[Ca5(VO4)0.1(PO4)2.9(OH)] 촉매 6 ml(4.64g)를 충진하고, 반응온도 370 ℃, 압력 4기압에서 2,3-부탄디올을 액상공간속도(LHSV, Liquid Hour Space Velocity) 0.50 hr-1(유량 3 ml/hr)로 공급하여 탈수반응시켰다. 생성물을 2 ℃ 냉각 포집기를 이용하여 액상시료로 회수하였고, 액체로 응축되지 않는 가스는 별도로 가스시료를 가스포집 주사기로 샘플링하여 DB-WAX컬럼을 장착한 GC(Gas Chromatography, 가스 크로마토그래피)로 정량분석을 하였다. 분석결과 반응 생성물로는 1,3-부타디엔과 메틸에틸케톤이 주된 생성물이며, 그 외에 2,3-디메틸옥시란, 아세토인, 1-부텐-3-올 등이 일부 생성되었다. 생성물의 분석결과를 하기 표 1에 나타내었으며, 이 결과는 반응 300시간에서의 반응 결과를 정리한 것으로, mol%로 표시하였다.
6 ml (4.64 g) of the calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) 0.1 (PO 4 ) 2.9 (OH)] catalyst prepared above was charged into a stainless steel tubular reactor having an inner diameter of 12 mm, 2,3-butanediol was supplied at a liquid hourly space velocity (LHSV) of 0.50 hr &lt; -1 &gt; (flow rate: 3 ml / hr) at 370 DEG C under a pressure of 4 atm. The product was recovered as a liquid sample using a 2 ° C cooling collector. The gas which was not condensed with liquid was sampled separately with a gas collecting syringe and quantified by GC (Gas Chromatography) equipped with a DB-WAX column Respectively. As a result of the analysis, 1,3-butadiene and methyl ethyl ketone were the major products, and 2,3-dimethyloxirane, acetone and 1-butene-3-ol were partially produced as reaction products. The results of the analysis of the products are shown in Table 1 below, and the results are summarized in mol% as a result of the reaction at 300 hours of reaction.

<< 실시예Example 2> 칼슘- 2> Calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.10.1 (( POPO 44 )) 2.92.9 (( OHOH )] 촉매를 이용한 1,3-부타디엔과 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.10.1 (( POPO 44 )) 2.92.9 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 나이오븀삼나트륨과Sodium iodide and sodium 오르토인산나트륨Sodium orthophosphate 전구체) Precursor)

나이오븀산나트륨(NaNbO3) 1.64g(0.01몰)과 인산나트륨(Na3PO412H2O) 110.2g(0.29몰)을 80 ℃의 탈이온수에 가하고 교반하여 500 ml의 나이오븀산-인산 수용액을 제조하였다. 또한, 염화칼슘(CaCl22H2O) 73.5g(0.50몰)을 탈이온수에 가하고 교반하여 500 ml의 칼슘수용액을 제조하였다(나이오븀+인 : 칼슘의 몰비가 3:5). 다음으로, 2,000 ml 비이커에 탈이온수 100 ml를 가하고, 상기에서 준비한 나이오븀산-인산 수용액과 칼슘수용액을 60 ℃에서 10 ml/min 속력으로 50분간 동시에 첨가하고, 60 ℃에서 20시간 교반하여 칼슘-나이오븀산-인산아파타이트 슬러리 용액을 제조하였다(용액의 pH 6.4). 교반 완료 후, 슬러리 용액을 여과하고, 탈이온수 600 ml를 가하여 분산, 20분간 교반하고 여과하는 과정을 2회 실시하여 칼슘-나이오븀산-인산아파타이트[Ca5(VO4)0.1(PO4)2.9(OH)] 케익을 얻었다.1.64 g (0.01 mol) of sodium niobate (NaNbO 3 ) and 110.2 g (0.29 mol) of sodium phosphate (Na 3 PO 4 12 H 2 O) were added to deionized water at 80 ° C. and stirred to obtain 500 ml of NaBO- Aqueous solution. Further, 73.5 g (0.50 mol) of calcium chloride (CaCl 2 2H 2 O) was added to deionized water and stirred to prepare 500 ml of an aqueous calcium solution (molar ratio of Na + to phosphorus: Ca: 3: 5). Subsequently, 100 ml of deionized water was added to a 2,000 ml beaker, and the NaBa-Phosphoric acid aqueous solution and the Ca aqueous solution prepared above were simultaneously added thereto at 60 ° C at a rate of 10 ml / min for 50 minutes and stirred at 60 ° C for 20 hours, -Naphthalic acid-phosphate apatite slurry solution (pH 6.4 of the solution). After stirring is completed, the process of the slurry solution was filtered, added to deionized water, 600 ml dispersion, stirred for 20 minutes, filtered twice carried out by calcium-age O byumsan-phosphate apatite [Ca 5 (VO 4) 0.1 (PO 4) 2.9 (OH)] cake.

상기 여과된 칼슘-나이오븀산-인산아파타이트 케익을 80 ℃에서 10시간 이상 건조하고, 건조물을 5-100 ㎛ 크기의 분말로 분쇄하고, 분말을 타정기에서 직경 5 mm 길이 3 mm의 펠렛으로 성형하고, 20-40 메쉬 크기로 분쇄 선별하였다. 선별된 입자를 500 ℃에서 6시간 동안 공기 중에 소성하였다. 공기 중에서 소성된 촉매를 XRD로 분석한 결과, 도 2와 같이 아파타이트(Ca5(PO4)3OH) 구조를 확인할 수 있었고, BET분석에 의한 비표면적은 56.8 ㎡/g이었다.
The filtered calcium-niobate-phosphate apatite cake was dried at 80 ° C. for 10 hours or more, the dried material was pulverized into powder having a size of 5-100 μm, the powder was molded into a pellet having a diameter of 5 mm and a length of 3 mm , 20-40 mesh size. The selected particles were calcined in air at 500 DEG C for 6 hours. As a result of XRD analysis of the calcined catalyst in the air, the structure of apatite (Ca 5 (PO 4 ) 3 OH) was confirmed as shown in FIG. 2, and the specific surface area by BET analysis was 56.8 m 2 / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 실시예 2에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 1에 나타내었다.
Except that the catalyst prepared in Example 2 was used instead of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared. The results of the analysis of the products are shown in Table 1 below.

<< 실시예Example 3> 칼슘- 3> Calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.10.1 (( POPO 44 )) 2.92.9 (( OHOH )] 촉매를 이용한 1,3-부타디엔과 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.10.1 (( POPO 44 )) 2.92.9 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 바나듐vanadium 산암모늄과 With ammonium ammonium 오르토인산암모늄Ammonium orthophosphate 전구체) Precursor)

실시예 1에서의 촉매 제조방법과 동일하게 수행하되, 바나듐산 전구체로서 바나듐산암모늄((NH4)VO3) 1.17g(0.01몰)을, 인산전구체로서는 인산암모늄((NH4)3PO4) 43.24g(0.29몰)을 사용하였다(바나듐+인 : 칼슘의 몰비가 3:5). 이후의 제조방법은 실시예 1과 동일하게 실시하여 촉매를 제조하였다. 촉매의 BET분석에 의한 비표면적은 56.5 ㎡/g이었다.
1.17 g (0.01 mol) of ammonium vanadium oxide ((NH 4 ) VO 3 ) was used as a vanadium acid precursor, and ammonium phosphate ((NH 4 ) 3 PO 4 ) (43.24 g, 0.29 mol) was used (molar ratio of vanadium + phosphorus: calcium = 3: 5). The subsequent production process was carried out in the same manner as in Example 1 to prepare a catalyst. The specific surface area of the catalyst by BET analysis was 56.5 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 실시예 2에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 1에 나타내었다.Except that the catalyst prepared in Example 2 was used instead of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared. The results of the analysis of the products are shown in Table 1 below.

촉매catalyst 전환율
(%)
Conversion Rate
(%)
선택도(%) Selectivity (%)
1,3-
부타디엔
1,3-
butadiene
2,3-디메틸옥시란 2,3-dimethyloxirane 메틸에틸케톤 Methyl ethyl ketone 1-부텐
-3-올
1-butene
3-ol
아세토인Acetone 기타Etc
실시예 1Example 1 Ca5(VO4)0.1(PO4)2.9(OH), 바나듐산나트륨과 오르토인산 나트륨전구체Ca 5 (VO 4 ) 0.1 (PO 4 ) 2.9 (OH), sodium vanadate and sodium orthophosphate precursor 99.099.0 59.059.0 4.14.1 33.233.2 2.22.2 0.50.5 1.01.0 실시예 2Example 2 Ca5(NbO4)0.1(PO4)2.9(OH), 나이오븀산나트륨과 오르토인산 나트륨전구체Ca 5 (NbO 4 ) 0.1 (PO 4 ) 2.9 (OH), sodium sodiumbioxide and sodium orthophosphate precursor 98.998.9 58.158.1 4.74.7 32.932.9 2.42.4 0.60.6 1.31.3 실시예 3Example 3 Ca5(VO4)0.1(PO4)2.9(OH), 바나듐산암모늄과 오르토인산암모늄전구체Ca 5 (VO 4 ) 0.1 (PO 4 ) 2.9 (OH), ammonium vanadate and ammonium orthophosphate precursor 98.698.6 57.257.2 4.64.6 33.933.9 2.82.8 0.50.5 1.01.0

시판용 트리인산칼슘(Ca3(PO4)2; 제조사: 대정화금사), 또는 인산과 칼슘으로부터 합성된 아파타이트 촉매의 부탄디올 전환율(%), 1,3-부타디엔과 메틸에틸케톤의 선택도(%)를 알아보기 위하여 다음과 같이 비교실시예를 실시하였다.
Butadiene conversion (%) of a commercially available apatite catalyst synthesized from calcium triphosphate (Ca 3 (PO 4 ) 2 (manufacturer: purified gold) or phosphoric acid and calcium, selectivity of 1,3-butadiene and methyl ethyl ketone (% ), The following comparative examples were carried out.

<< 비교예Comparative Example 1> 칼슘- 1> Calcium- 인산아파타이트Phosphate Apatite (( CaCa 55 (( POPO 44 )) 33 (OH)) 촉매를 이용한 1,3-부타디엔과 메틸에틸케톤의 제조(OH)) catalyst to prepare 1,3-butadiene and methyl ethyl ketone

칼슘-calcium- 인산아파타이트Phosphate Apatite (( CaCa 55 (( POPO 44 )) 33 (OH)) 촉매의 제조((OH)) &lt; / RTI &gt; catalyst 트리인산칼슘Calcium triphosphate 시약) reagent)

칼슘-인산아파타이트 분말로 트리인산칼슘(Ca3(PO4)2; 제조사: 대정화금사) 66.8g(0.10몰)을 80 ℃에서 10시간 이상 건조하였다. 건조물을 5-100 ㎛ 크기의 분말로 분쇄하고, 분말을 타정기에서 직경 5 mm 길이 3 mm의 펠렛으로 성형하고, 20-40 메쉬 크기로 분쇄 선별하였다. 선별된 입자를 500 ℃에서 6시간 동안 공기 중에 소성하였다. 공기 중에서 소성된 촉매의 BET분석에 의한 비표면적은 29.6 ㎡/g이었다.
66.8 g (0.10 mole) of calcium trisphosphate (Ca 3 (PO 4 ) 2 ; manufacturer: purified gold) as a calcium-phosphate apatite powder was dried at 80 ° C for 10 hours or more. The dried material was pulverized into powder having a size of 5-100 mu m and the powder was molded into a pellet having a diameter of 5 mm and a length of 3 mm in a tabletting machine and pulverized and sorted into a size of 20-40 mesh. The selected particles were calcined in air at 500 DEG C for 6 hours. The specific surface area of the catalyst calcined in air by BET analysis was 29.6 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 비교예 1에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 2에 나타내었다.
Except that the catalyst prepared in Comparative Example 1 was used in place of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 2 below.

<< 비교예Comparative Example 2> 칼슘- 2> Calcium- 인산아파타이트Phosphate Apatite (( CaCa 55 (( POPO 44 )) 33 (OH)) 촉매를 이용한 1,3-부타디엔과 메틸에틸케톤의 제조(OH)) catalyst to prepare 1,3-butadiene and methyl ethyl ketone

칼슘-calcium- 인산아파타이트Phosphate Apatite (( CaCa 55 (( POPO 44 )) 33 (OH)) 촉매의 제조(인산나트륨 전구체)(OH)) catalyst (sodium phosphate precursor)

실시예 1의 촉매 제조방법에서 바나듐산나트륨(NaVO3)은 사용하지 않고, 인산나트륨(Na3PO412H2O) 114.0g(0.30몰)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 칼슘-인산아파타이트(Ca5(PO4)3(OH)) 촉매를 제조하였다(인 : 칼슘의 몰비가 5: 3). 제조된 촉매의 BET분석에 의한 비표면적은 50.5 ㎡/g이었다.
The procedure of Example 1 was repeated except that sodium vanadium oxide (NaVO 3 ) was not used and 114.0 g (0.30 mol) of sodium phosphate (Na 3 PO 4 12 H 2 O) was used in the catalyst preparation method of Example 1 Calcium-phosphate apatite (Ca 5 (PO 4 ) 3 (OH)) catalyst was prepared (phosphorus: calcium molar ratio 5: 3). The specific surface area of the prepared catalyst by BET analysis was 50.5 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 비교예 2에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 2에 나타내었다.Except that the catalyst prepared in Comparative Example 2 was used instead of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 2 below.

촉매catalyst 전환율
(%)
Conversion Rate
(%)
선택도(%) Selectivity (%)
1,3-
부타디엔
1,3-
butadiene
2,3-디메틸옥시란 2,3-dimethyloxirane 메틸에틸케톤 Methyl ethyl ketone 1-부텐
-3-올
1-butene
3-ol
아세토인Acetone 기타Etc
비교예1Comparative Example 1 Ca5(PO4)3(OH), 트리인산칼슘Ca 5 (PO 4 ) 3 (OH), calcium triphosphate 24.324.3 15.315.3 10.110.1 40.940.9 32.232.2 0.50.5 1.01.0 비교예2Comparative Example 2 Ca5(PO4)3(OH), 오르토인산 나트륨전구체Ca 5 (PO 4 ) 3 (OH), sodium orthophosphate precursor 32.232.2 27.327.3 8.18.1 40.240.2 22.422.4 0.70.7 1.31.3

상기 표 1 및 표 2에 나타난 바와 같이, 실시예 1-3의 경우 부탄디올 전환율이 평균 98.8%로 매우 높게 나타났고, 1,3-부타디엔 및 메틸에틸케톤에 대한 선택도의 합은 평균 91.4%로 나타났다. 반면에, 비교예 1-2의 경우 부탄디올의 전환율이 평균 28.25%로 나타났고, 1,3-부타디엔 및 메틸에틸케톤에 대한 선택도의 합은 평균 68.7%로 나타났다.
As shown in Tables 1 and 2, the conversion of butanediol in Examples 1 to 3 was 98.8%, and the selectivity to 1,3-butadiene and methyl ethyl ketone was 91.4% appear. On the other hand, the conversion of butanediol was 28.25% in Comparative Example 1-2, and the selectivity to 1,3-butadiene and methyl ethyl ketone was 68.7% on average.

<< 실시예Example 4> 칼슘- 4> Calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.020.02 (( POPO 44 )) 2.982.98 (( OHOH )] 촉매를 이용한 1,3-부타디엔 및 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.020.02 (( POPO 44 )) 2.982.98 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 바나듐산나트륨과Sodium vanadate and 오르토인산 나트륨전구체) Sodium orthophosphate precursor)

칼슘-바나듐산-인산아파타이트 촉매를 제조하되 바나듐산과 인산의 몰비가 0.02와 2.98인 촉매를 실시예 1과 동일한 방법으로 제조하였다. 촉매의 BET분석에 의한 비표면적은 59.3 ㎡/g이었다.
Calcium-vanadium acid-phosphate apatite catalyst was prepared and the molar ratio of vanadium acid to phosphoric acid was 0.02 and 2.98, respectively. The BET specific surface area of the catalyst was 59.3 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 실시예 4에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 3에 나타내었다.
Except that the catalyst prepared in Example 4 was used instead of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 3 below.

<< 실시예Example 5> 칼슘- 5> Calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.300.30 (( POPO 44 )) 2.702.70 (( OHOH )] 촉매를 이용한 1,3-부타디엔 및 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.300.30 (( POPO 44 )) 2.702.70 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 바나듐산나트륨과Sodium vanadate and 오르토인산 나트륨전구체) Sodium orthophosphate precursor)

칼슘-바나듐산-인산아파타이트 촉매를 제조하되 바나듐산과 인산의 몰비가 0.30와 2.70인 촉매를 실시예 1과 동일한 방법으로 제조하였다. 촉매의 BET분석에 의한 비표면적은 58.1 ㎡/g이었다.
Calcium-vanadate-phosphate apatite catalyst was prepared and the molar ratio of vanadium acid to phosphoric acid was 0.30 and 2.70, respectively. The BET specific surface area of the catalyst was 58.1 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 실시예 5에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 3에 나타내었다.
Except that the catalyst prepared in Example 5 was used in place of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 3 below.

<< 비교예Comparative Example 3> 칼슘- 3> Calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.550.55 (( POPO 44 )) 2.452.45 (( OHOH )] 촉매를 이용한 1,3-부타디엔 및 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 바나듐산Vanadium acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( VOVO 44 )) 0.550.55 (( POPO 44 )) 2.452.45 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 바나듐산나트륨과Sodium vanadate and 오르토인산 나트륨전구체) Sodium orthophosphate precursor)

칼슘-바나듐산-인산아파타이트 촉매를 제조하되 바나듐산과 인산의 몰비가 0.55와 2.45인 촉매를 실시예 1과 동일한 방법으로 제조하였다. 촉매의 BET분석에 의한 비표면적은 55.1 ㎡/g이었다.
Calcium-vanadium acid-phosphate apatite catalyst was prepared and the molar ratio of vanadium acid to phosphoric acid was 0.55 and 2.45, respectively. The specific surface area by the BET analysis of the catalyst was 55.1 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 비교예 3에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 3에 나타내었다.
Except that the catalyst prepared in Comparative Example 3 was used in place of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 3 below.

<< 실시예Example 6> 칼슘- 6> Calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.020.02 (( POPO 44 )) 2.982.98 (( OHOH )] )] 촉매를이용한Catalyzed 1,3-부타디엔 및 메틸에틸케톤의 제조 Preparation of 1,3-butadiene and methyl ethyl ketone

칼슘-calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.020.02 (( POPO 44 )) 2.982.98 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 나이오븀나트륨과Sodium niobium and 오르토인산 나트륨전구체) Sodium orthophosphate precursor)

칼슘-나이오븀산-인산아파타이트 촉매를 제조하되 나이오븀산과 인산의 몰비가 0.02와 2.98인 촉매를 실시예 1과 동일한 방법으로 제조하였다. 촉매의 BET분석에 의한 비표면적은 각각 57.5 ㎡/g이었다.
Calcium-niobic acid-phosphate apatite catalysts were prepared and the catalysts having a molar ratio of sodium oleate to phosphoric acid of 0.02 and 2.98 were prepared in the same manner as in Example 1. The BET specific surface area of the catalyst was 57.5 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 실시예 6에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 3에 나타내었다.
Except that the catalyst prepared in Example 6 was used instead of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 3 below.

<< 실시예Example 7> 칼슘- 7> Calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.250.25 (( POPO 44 )) 2.752.75 (( OHOH )] 촉매를 이용한 1,3-부타디엔 및 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.250.25 (( POPO 44 )) 2.752.75 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 나이오븀나트륨과Sodium niobium and 오르토인산 나트륨전구체) Sodium orthophosphate precursor)

칼슘-나이오븀산-인산아파타이트 촉매를 제조하되 나이오븀산과 인산의 몰비가 0.25와 2.75인 촉매를 실시예 1과 동일한 방법으로 제조하였다. 촉매의 BET분석에 의한 비표면적은 각각 56.1 ㎡/g이었다.
Calcium-niobic acid-phosphate apatite catalysts were prepared and the catalysts in which the mole ratio of niobic acid to phosphoric acid was 0.25 and 2.75 were prepared in the same manner as in Example 1. The specific surface area of the catalyst by BET analysis was 56.1 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 실시예 7에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 3에 나타내었다.
Except that the catalyst prepared in Example 7 was used instead of the catalyst prepared in Example 1, 1,3-butadiene and methyl ethyl ketone were obtained in the same manner as in the production of 1,3-butadiene and methyl ethyl ketone in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 3 below.

<< 비교예Comparative Example 4> 칼슘- 4> Calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.600.60 (( POPO 44 )) 2.402.40 (( OHOH )] 촉매를 이용한 1,3-부타디엔 및 메틸에틸케톤의 제조)] Preparation of 1,3-butadiene and methyl ethyl ketone using a catalyst

칼슘-calcium- 나이오븀산Niobic acid -인산아파타이트[- Phosphate apatite [ CaCa 55 (( NbONbO 44 )) 0.600.60 (( POPO 44 )) 2.402.40 (( OHOH )] 촉매의 제조()] Preparation of Catalyst ( 나이오븀나트륨과Sodium niobium and 오르토인산 나트륨전구체) Sodium orthophosphate precursor)

칼슘-나이오븀-인산아파타이트 촉매를 제조하되 나이오븀과 인산의 몰비가 0.60와 2.40인 촉매를 실시예 1과 동일한 방법으로 제조하였다. 촉매의 BET분석에 의한 비표면적은 52.1 ㎡/g이었다.
Calcium-niobium-phosphate apatite catalysts were prepared and the catalysts having molar ratios of niobium and phosphoric acid of 0.60 and 2.40 were prepared in the same manner as in Example 1. The BET specific surface area of the catalyst was 52.1 m &lt; 2 &gt; / g.

1,3-부타디엔과 메틸에틸케톤의 제조Preparation of 1,3-butadiene and methyl ethyl ketone

실시예 1에서 준비한 촉매 대신에 본 비교예 4에서 준비한 촉매를 사용한 것을 제외하고는 상기 실시예 1의 1,3-부타디엔과 메틸에틸케톤의 제조방법과 동일한 방법으로 1,3-부타디엔과 메틸에틸케톤을 제조하였고, 생성물의 분석결과를 하기 표 3에 나타내었다.Butadiene and methyl ethyl ketone were prepared in the same manner as in the preparation of 1,3-butadiene and methyl ethyl ketone in Example 1, except that the catalyst prepared in Comparative Example 4 was used instead of the catalyst prepared in Example 1, Ketones were prepared, and the analysis results of the products are shown in Table 3 below.

촉매catalyst 전환율
(%)
Conversion Rate
(%)
선택도(%)Selectivity (%)
1,3-
부타디엔
1,3-
butadiene
2,3-디메틸옥시란 2,3-dimethyloxirane 메틸에틸케톤Methyl ethyl ketone 1-부텐
-3-올
1-butene
3-ol
아세토인Acetone 기타Etc
실시예4Example 4 Ca5(VO4)0.02(PO4)2.98(OH), 바나듐산나트륨과 오르토인산 나트륨전구체Ca 5 (VO 4 ) 0.02 (PO 4 ) 2.98 (OH), sodium vanadate and sodium orthophosphate precursor 98.198.1 57.057.0 4.04.0 35.235.2 2.32.3 0.50.5 1.01.0 실시예5Example 5 Ca5(VO4)0.30(PO4)2.70(OH), 바나듐산나트륨과 오르토인산 나트륨전구체Ca 5 (VO 4 ) 0.30 (PO 4 ) 2.70 (OH), sodium vanadate and sodium orthophosphate precursor 98.298.2 56.156.1 4.74.7 34.934.9 2.52.5 0.50.5 1.31.3 비교예3Comparative Example 3 Ca5(VO4)0.55(PO4)2.45(OH), 바나듐산나트륨과 오르토인산 나트륨전구체Ca 5 (VO 4 ) 0.55 (PO 4 ) 2.45 (OH), sodium vanadate and sodium orthophosphate precursor 63.263.2 31.031.0 9.19.1 26.226.2 21.221.2 11.511.5 1.01.0 실시예6Example 6 Ca5(NbO4)0.02(PO4)2.98(OH), 나이오븀산나트륨과 오르토인산 나트륨전구체Ca 5 (NbO 4 ) 0.02 (PO 4 ) 2.98 (OH), sodium sodium niobate and sodium orthophosphate precursor 98.398.3 56.056.0 4.24.2 35.035.0 4.34.3 0.50.5 1.01.0 실시예7Example 7 Ca5(NbO4)0.25(PO4)2.75(OH), 나이오븀산나트륨과 오르토인산 나트륨전구체Ca 5 (NbO 4 ) 0.25 (PO 4 ) 2.75 (OH), sodium sodium niobate and sodium orthophosphate precursor 97.297.2 53.153.1 4.74.7 33.933.9 6.56.5 0.50.5 1.31.3 비교예4Comparative Example 4 Ca5(NbO4)0.60(PO4)2.40(OH), 나이오븀산나트륨과 오르토인산 나트륨전구체Ca 5 (NbO 4 ) 0.60 (PO 4 ) 2.40 (OH), sodium sodium niobate and sodium orthophosphate precursor 60.260.2 33.033.0 9.19.1 24.224.2 20.220.2 12.512.5 1.01.0

상기 표 3에 나타난 바와 같이, 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트 [Ca5(NbO4)x(PO4)3-x(OH)] 촉매 성분의 혼합 조건이 본 발명의 범위에서 벗어나는 경우에는 2,3-부탄디올을 연속적으로 탈수하여 1,3-부타디엔과 메틸에틸케톤을 높은 수율로 제조할 수 없음을 알 수 있었다.
As shown in Table 3 above, calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (OH)] or calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3-x (OH)] catalyst component deviates from the range of the present invention, 2,3-butanediol is continuously dehydrated to produce 1,3-butadiene and methyl ethyl ketone in high yield It can not be done.

<< 실시예Example 8-10 및  8-10 and 비교예Comparative Example 5-7>  5-7> 실시예Example 1의 촉매를 이용한 1,3-부타디엔과 메틸에틸케톤의 제조 Preparation of 1,3-Butadiene and Methyl Ethyl Ketone by Catalyst

실시예 1의 촉매를 사용하되, 2,3-부탄디올 탈수반응시의 반응온도, 반응압력, 반응물공간속도를 하기의 표 4의 조건으로 변화하여 실시예 1과 유사하게 1,3-부타디엔과 메틸에틸케톤을 제조하였으며, 반응 100 시간에서의 반응 결과를 하기의 표 4에 정리하였다. 이때, 하기의 표 4에서 %는 mol%를 의미한다.
Using the catalyst of Example 1, the reaction temperature, the reaction pressure, and the space velocity of the reaction product in the dehydration reaction of 2,3-butanediol were varied according to the conditions shown in Table 4 below, and 1,3-butadiene and methyl Ethyl ketone was prepared, and the reaction The reaction results at 100 hours are summarized in Table 4 below. In the following Table 4,% means mol%.

반응 온도 (℃)Reaction temperature (캜) 반응 압력 (atm)Reaction pressure (atm) 공간 속도 (hr-1)Space velocity (hr -1 ) 전환율
(%)
Conversion Rate
(%)
선택도(%)Selectivity (%)
1,3-부타디엔1,3-butadiene 2,3-디메틸옥시란 2,3-dimethyloxirane 메틸에틸케톤 Methyl ethyl ketone 1-부텐-3-올1-butene-3-ol 아세토인Acetone 기타Etc 실시예8Example 8 340340 77 0.40.4 98.398.3 57.257.2 4.94.9 33.733.7 2.22.2 1.01.0 1.01.0 실시예9Example 9 390390 44 1.01.0 100.0100.0 55.355.3 7.87.8 33.133.1 1.81.8 0.70.7 1.31.3 실시예10Example 10 370370 22 0.50.5 98.498.4 58.658.6 5.85.8 31.431.4 2.02.0 0.30.3 1.91.9 비교예5Comparative Example 5 320320 44 0.50.5 53.453.4 22.822.8 15.915.9 34.934.9 20.020.0 3.73.7 2.72.7 비교예6Comparative Example 6 450450 44 1.21.2 100.0100.0 22.322.3 5.85.8 35.235.2 0.80.8 4.94.9 31.031.0 비교예7Comparative Example 7 370370 0.20.2 0.50.5 97.297.2 31.731.7 6.16.1 40.340.3 7.77.7 11.211.2 3.03.0

상기 표 4에 나타난 바와 같이, 하기의 반응온도와 반응압력 및 반응물공간속도의 범위에서 평균 98.9%의 높은 부탄디올의 전환율과 1,3-부타디엔 및 메틸에틸케톤에 대한 선택도의 합은 평균 89.7%로 높게 나타났다. 또한, 반응온도 340-440 ℃ 범위 밖의 반응온도에서 반응을 수행하는 경우, 부탄디올의 전환율이 낮아지거나 1,3-부타디엔과 메틸에틸케톤의 선택도가 낮아지고, 반응압력 2-10 atm 범위 밖의 반응압력에서 반응을 수행하는 경우, 1,3-부타디엔과 메틸에틸케톤의 선택도가 낮아지는 것을 알 수 있다.
As shown in Table 4, the conversion of the butanediol having an average of 98.9% and the selectivity to 1,3-butadiene and methyl ethyl ketone in the range of the reaction temperature, the reaction pressure and the reactant space velocity were 89.7% Respectively. In addition, when the reaction is carried out at a reaction temperature outside the range of 340-440 ° C, the conversion of butanediol is lowered, the selectivity of 1,3-butadiene and methyl ethyl ketone is lowered, and the reaction outside the range of 2-10 atm When the reaction is carried out under pressure, the selectivity of 1,3-butadiene and methyl ethyl ketone is lowered.

이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Those skilled in the art will recognize that many modifications and variations are possible in light of the above teachings.

Claims (10)

칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매의 존재 하에서 2,3-부탄디올을 340-440 ℃의 반응온도, 2-10 atm의 반응압력 및 0.3-1.5 h-1의 부탄디올 액상공간속도(LHSV)의 조건으로 탈수반응시키는 방법에 있어서,
상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법.
Calcium-vanadium acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3-x (OH)] , or calcium-age O byumsan-phosphate apatite [Ca 5 (NbO 4) x (PO 4) 3-x (OH]) conditions of a reaction temperature of 340-440 ℃ 2,3-butanediol in the presence of a catalyst, reaction pressure of 2-10 atm and a space velocity of 0.3-1.5 h -1 butanediol liquid (LHSV) of the dehydration reaction with In the method,
Wherein X is in a molar ratio of from 0.01 to 0.30, and wherein 1,3-butadiene is 1,3-butadiene.
제1항에 있어서,
상기 촉매는 하기의 단계를 포함하여 제조되는 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법:
바나듐산(또는 나이오븀산) 전구체와 인산전구체를 교반하여 바나듐산(또는 나이오븀산)-인산 혼합수용액을 제조하는 단계(단계 1);
칼슘전구체를 녹여 칼슘 수용액을 제조하는 단계(단계 2);
상기 단계 1에서 준비한 바나듐산(또는 나이오븀산)-인산 혼합수용액과 상기 단계 2에서 준비한 칼슘 수용액을 혼합하고, 교반하여 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 제조하는 단계(단계 3);
상기 단계 3에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 여과하고, 얻어진 칼슘-바나듐산(또는 나이오븀산)-인산 케익을 건조, 분쇄, 성형하여 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 제조하는 단계(단계 4); 및
상기 단계 4에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 300-700 ℃로 열처리하여 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매를 제조하는 단계(단계 5).
The method according to claim 1,
Butadiene and methyl ethyl ketone from 2,3-butanediol, characterized in that the catalyst is prepared comprising the steps of:
(Step 1) of preparing a vanadium (or niobic acid) -phosphoric acid mixed aqueous solution by stirring a vanadium (or niobic acid) precursor and a phosphoric acid precursor;
A step of dissolving the calcium precursor to prepare an aqueous calcium solution (step 2);
(Or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 1 is mixed with the calcium aqueous solution prepared in step 2 and stirred to prepare a calcium-vanadium acid (or niobic acid) -phosphoric acid slurry aqueous solution Step 3);
The calcium-vanadium (or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 3 is filtered and the obtained calcium-vanadic acid (or niobic acid) -phosphoric acid cake is dried, crushed, Niobic acid) -phosphate apatite pellets (step 4); And
The calcium-vanadate-phosphate apatite pellet prepared in step 4 was heat-treated at 300-700 ° C to form calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (Step 5) to prepare a calcium-niobic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH)] catalyst.
제2항에 있어서,
상기 단계 1의 바나듐산(또는 나이오븀산)과 인산의 농도의 합은 0.2-2.0 몰랄농도이고, 상기 교반은 40-90 ℃에서 수행하는 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법.
3. The method of claim 2,
Wherein the sum of the concentrations of vanadium (or niobic acid) and phosphoric acid in step 1 is in the range of 0.2-2.0 molar, and the stirring is carried out at 40-90 ° C. Butadiene and methyl ethyl ketone.
제2항에 있어서,
상기 단계 2의 칼슘수용액에서 칼슘 농도는 0.5-3.0 몰랄농도이고, 칼슘의 함량은 단계 1의 바나듐산(또는 나이오븀산)과 인산의 총합에 대해 [바나듐(또는 나이오븀)+인:칼슘]의 몰비가 2-4:5인 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법.
3. The method of claim 2,
Wherein the calcium concentration in the aqueous calcium solution of step 2 is 0.5-3.0 molar and the calcium content is [calcium (vanadium (or niobium) + calcium) in relation to the sum of the vanadium (or niobium) Wherein the molar ratio of 2,3-butanediol is 2: 4: 5.
제2항에 있어서,
상기 단계 3에서 바나듐산(또는 나이오븀산)-인산 혼합수용액과 칼슘 수용액을 혼합하는 조건은 이들 각각을 동시에 5-15 ml/min의 속도로 점적하는 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법.
3. The method of claim 2,
In step 3, the conditions for mixing the aqueous vanadium (or niobium) -phosphate mixed solution and the aqueous calcium solution are that they are simultaneously dripped at a rate of 5-15 ml / min. , 3-butadiene and methyl ethyl ketone.
제2항에 있어서,
상기 단계 3에서의 교반 조건은 40-90 ℃에서 수행하는 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법.
3. The method of claim 2,
Butadiene and methyl ethyl ketone are prepared from 2,3-butanediol by stirring in the step 3 at 40-90 ° C.
제2항에 있어서,
상기 단계 5의 열처리는 공기 중에서 300-700 ℃에서 3-10시간 동안 열처리하는 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법.
3. The method of claim 2,
Wherein the heat treatment in step 5 is a heat treatment at 300-700 ° C for 3 to 10 hours in the air, thereby producing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol.
칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)]; 또는
칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]);이되,
상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하기 위한 촉매.
Calcium-vanadium acid-phosphate apatite [Ca 5 (VO 4) x (PO 4) 3-x (OH)]; or
Ca-O byumsan age-phosphate apatite [Ca 5 (NbO 4) x (PO 4) 3-x (OH]); provided that,
Wherein X is in a molar ratio of 0.01-0.30. 2. A catalyst for the production of 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol.
바나듐산(또는 나이오븀산) 전구체와 인산전구체를 녹여 바나듐산(또는 나이오븀산)-인산 혼합수용액을 제조하는 단계(단계 1);
칼슘전구체를 녹여 칼슘 수용액을 제조하는 단계(단계 2);
상기 단계 1에서 준비한 바나듐산(또는 나이오븀산)-인산 혼합수용액과 상기 단계 2에서 준비한 칼슘 수용액을 혼합하고, 교반하여 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 제조하는 단계(단계 3);
상기 단계 3에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산 슬러리 수용액을 여과하고, 얻어진 칼슘-바나듐산(또는 나이오븀산)-인산 케익을 건조, 분쇄, 성형하여 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 제조하는 단계(단계 4); 및
상기 단계 4에서 준비한 칼슘-바나듐산(또는 나이오븀산)-인산아파타이트 펠렛을 300-700 ℃로 열처리하여 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매를 제조하는 단계(단계 5);를 포함하는 칼슘-바나듐산-인산아파타이트[Ca5(VO4)x(PO4)3-x(OH)] 또는 칼슘-나이오븀산-인산아파타이트[Ca5(NbO4)x(PO4)3-x(OH]) 촉매의 제조방법.
Preparing a vanadium (or niobic acid) - phosphoric acid mixed aqueous solution by dissolving a vanadium (or niobic acid) precursor and a phosphoric acid precursor (step 1);
A step of dissolving the calcium precursor to prepare an aqueous calcium solution (step 2);
(Or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 1 is mixed with the calcium aqueous solution prepared in step 2 and stirred to prepare a calcium-vanadium acid (or niobic acid) -phosphoric acid slurry aqueous solution Step 3);
The calcium-vanadium (or niobic acid) -phosphoric acid slurry aqueous solution prepared in step 3 is filtered and the obtained calcium-vanadic acid (or niobic acid) -phosphoric acid cake is dried, crushed, Niobic acid) -phosphate apatite pellets (step 4); And
The calcium-vanadate-phosphate apatite pellet prepared in step 4 was heat-treated at 300-700 ° C to form calcium-vanadate-phosphate apatite [Ca 5 (VO 4 ) x (PO 4 ) 3 -x (Step 5) of preparing a calcium-naphthalic acid-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x (OH) Of the catalysts of apatite [Ca 5 (VO 4 ) x (PO 4 ) 3-x (OH)] or calcium-sodium niobate-phosphate apatite [Ca 5 (NbO 4 ) x (PO 4 ) 3 -x Gt;
제9항에 있어서,
상기 X는 몰비로 0.01-0.30인 것을 특징으로 하는 제조방법.
10. The method of claim 9,
Wherein X is in a molar ratio of 0.01 to 0.30.
KR1020130026786A 2013-03-13 2013-03-13 Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol KR101472535B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130026786A KR101472535B1 (en) 2013-03-13 2013-03-13 Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130026786A KR101472535B1 (en) 2013-03-13 2013-03-13 Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol

Publications (2)

Publication Number Publication Date
KR20140112261A KR20140112261A (en) 2014-09-23
KR101472535B1 true KR101472535B1 (en) 2014-12-16

Family

ID=51757303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130026786A KR101472535B1 (en) 2013-03-13 2013-03-13 Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol

Country Status (1)

Country Link
KR (1) KR101472535B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790140B2 (en) 2013-09-12 2017-10-17 Toray Industries, Inc. Method for producing butadiene
WO2015190622A1 (en) * 2014-06-09 2015-12-17 한국화학연구원 Method for preparing 1,3-butadiene and methyl ethyl ketone from 2,3-butandiol
KR101633730B1 (en) * 2014-11-21 2016-06-28 한국화학연구원 Calcium-Manganase-Phosphoric acid apatite catalyst for manufacturing of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol and Its fabrication method
KR101631387B1 (en) * 2014-11-27 2016-06-16 에스케이이노베이션 주식회사 Amorphous calcium phosphate catalyst used for 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol and preparation method thereof
KR101706449B1 (en) * 2015-04-01 2017-02-15 지에스칼텍스 주식회사 Poly Sodium phosphate supported catalyst with improved activity and method of preparing methylethylketone and 1,3-butadiene from 2,3-butanediol using the same
KR102467394B1 (en) * 2016-05-24 2022-11-15 에스케이이노베이션 주식회사 Method for preparing 1,3-butadiene and methylethylketone from 2,3-Butanediol using an adiabatic reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231385B1 (en) 2008-05-30 2013-02-07 미츠비시 쥬고교 가부시키가이샤 Apparatus and process for the production of nanocarbon material
KR101335179B1 (en) 2009-07-07 2013-12-02 가부시키가이샤 구라레 Process for producing calcium phosphate-based particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231385B1 (en) 2008-05-30 2013-02-07 미츠비시 쥬고교 가부시키가이샤 Apparatus and process for the production of nanocarbon material
KR101335179B1 (en) 2009-07-07 2013-12-02 가부시키가이샤 구라레 Process for producing calcium phosphate-based particles

Also Published As

Publication number Publication date
KR20140112261A (en) 2014-09-23

Similar Documents

Publication Publication Date Title
KR101472535B1 (en) Fabrication Method of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol
KR101287167B1 (en) Fabrication Method of 1,3-Butadiene and 2-Butanone from 2,3-Butanediol
KR840000738B1 (en) Improved mixed vanadium phosphorus oxide catalysts
US4092269A (en) Phosphorus-vanadium-oxygen catalysts having a specific pore volume
WO2011021232A1 (en) Catalyst and alcohol synthesis method
EP3529227B1 (en) Process for producing dienes
JP6672325B2 (en) Diene production method
JP5849259B2 (en) Catalyst and alcohol synthesis
KR101283999B1 (en) Fabrication Method of 1,3-Butadiene from 2,3-Butanediol
JP2008000709A (en) Manufacturing method of heteropoly-acid based catalyst for manufacturing methacrylic acid
US20210104442A1 (en) Stable mixed oxide catalysts for direct conversion of ethanol to isobutene and process for making
KR101298672B1 (en) Fabrication method of 1,3-butadiene from 2,3-butanediol
KR20080028808A (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
KR101187804B1 (en) Process for the preparation of acrylic acid and acrylates from lactates
US20120022291A1 (en) Catalyst for production of acrolein and acrylic acid by means of dehydration reaction of glycerin, and process for producing same
US4276222A (en) Method of producing maleic anhydride
KR101633730B1 (en) Calcium-Manganase-Phosphoric acid apatite catalyst for manufacturing of 1,3-Butadiene and Methyl Ethyl Ketone from 2,3-Butanediol and Its fabrication method
US4253988A (en) Conditioning phosphorus-vanadium-oxygen catalyst
CA1159811A (en) Solvent conditioning of phosphorus-vanadium-oxygen catalysts
US4386215A (en) Maleic anhydride production with high crush strength catalysts
KR101606191B1 (en) Catalyst for dehydration of glycerin, method of preparing the same, and preparing method of acrolein
KR101504673B1 (en) Acidic Oxide Nanoparticles having 3-Dimensional Open Pores, Method for Preparing the Same and Method for Producing Acrolein or Acrylic Acid from Glycerol Using the Same
US3142712A (en) Method of manufacture of conjugate diolefins from metadioxanes
CN105392766A (en) Integrated process for the production of acrylic acids and acrylates
EP3053650B1 (en) Method for preparing an amorphous calcium phosphate catalyst, and its use in production of 1,3-butadiene and methyl ethyl ketone starting from 2,3-butanediol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6