KR20120078235A - Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same - Google Patents

Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20120078235A
KR20120078235A KR1020100140465A KR20100140465A KR20120078235A KR 20120078235 A KR20120078235 A KR 20120078235A KR 1020100140465 A KR1020100140465 A KR 1020100140465A KR 20100140465 A KR20100140465 A KR 20100140465A KR 20120078235 A KR20120078235 A KR 20120078235A
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
lewis acid
polymer electrolyte
lithium secondary
Prior art date
Application number
KR1020100140465A
Other languages
Korean (ko)
Inventor
류상욱
윤근영
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020100140465A priority Critical patent/KR20120078235A/en
Publication of KR20120078235A publication Critical patent/KR20120078235A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A Lewis acid complex-based polymer electrolyte for lithium secondary battery is provided to obtain excellent solubility to solvent by accepting Lewis acid in to a monomer, and to have excellent physical stability thereby capable of reducing thickness of a battery, and to improve degree of freedom of shape. CONSTITUTION: A Lewis acid complex-based polymer electrolyte for lithium secondary battery is formed by combination of Lewis acids and monomeric lithium salt. A singular ionic polymer electrolyte is formed from the complex and a polymer-formable monomer. The Lewis acids are selected from aprotic acid of one or more kinds selected from BF3, ZnCl2. The addition ratio of the monomer and the Lewis acid is 1:1-1:2. The lithium salt is one or more kinds selected from lithium methacrylate, lithium acrylate, and lithium styrenesulfonate. A lithium secondary battery comprises the polymer electrolyte, a negative electrode active material, and a positive electrode active material.

Description

리튬이차전지용 루이스산 착화합물 기반의 고분자 전해질 및 이를 포함하는 리튬이차전지{Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same}Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same}

본 발명은 리튬이차전지용 루이스산 착화합물 기반의 고분자 전해질 및 이를 포함하는 리튬이차전지에 관한 것으로서, 더욱 상세하게는 루이스산 착화합물을 이용하여 높은 전기화학적 안정성과 이온전도도를 동시에 확보할 수 있는 고분자 전해질 및 이를 포함하는 리튬이차전지에 관한 것이다. The present invention relates to a polymer electrolyte based on a Lewis acid complex for a lithium secondary battery and a lithium secondary battery including the same. More specifically, the present invention relates to a polymer electrolyte capable of simultaneously securing high electrochemical stability and ion conductivity using a Lewis acid complex. It relates to a lithium secondary battery comprising the same.

리튬이차전지는 휴대용 전자기기의 전원으로 가장 많이 사용되고 있으며 하이브리드 전기자동차, 순수 전기자동차의 개발에 따라 대용량, 고출력화를 목표로 활발하게 연구되고 있다. 하지만 리튬이차전지의 고에너지 밀도화는 동시에 전지의 안전성을 크게 위협하는 요소가 되어 이를 해결하기 위한 다각적인 방안들이 강구되고 있다.Lithium secondary batteries are most commonly used as a power source for portable electronic devices, and are being actively researched for high capacity and high output according to the development of hybrid electric vehicles and pure electric vehicles. However, the high energy density of lithium secondary batteries has been a major threat to battery safety, and various measures have been taken to solve them.

고체 고분자 전해질은 액체전해질에 비해 이온전도도가 낮지만 휘발성 유기용매를 함유하고 있지 않아 리튬이차전지의 안전성을 크게 향상시킬 수 있다. 특히 박막으로 제조할 경우 이온전도도의 문제를 극복할 수 있는 차세대 전지 시스템이다.The solid polymer electrolyte has a lower ion conductivity than a liquid electrolyte but does not contain a volatile organic solvent, thereby greatly improving the safety of a lithium secondary battery. In particular, it is a next-generation battery system that can overcome the problem of ion conductivity when manufactured in a thin film.

일반적으로 고체 고분자 전해질에는 리튬이온의 이동을 위해 리튬염을 첨가시키는데, 음이온의 활발한 이동은 양극산화와 함께, 분극현상의 원인이 되어 전지성능을 감소시키게 된다. 이를 해결하기 위해 단량체형 단일 이온 전도성 고분자 전해질이 연구되고 있지만 단일이온을 형성할 수 있는 단량체들이 용매에 녹지 않아, 고분자의 합성, 정제, 용매교환, 리튬치환의 4가지 단계를 통해서 합성되고 있다. In general, a lithium salt is added to the solid polymer electrolyte to transfer lithium ions. Active movement of anions, together with anodization, causes polarization and decreases battery performance. In order to solve this problem, a monomeric single ion conductive polymer electrolyte has been studied, but monomers capable of forming a single ion are not dissolved in a solvent, and thus are synthesized through four stages of polymer synthesis, purification, solvent exchange, and lithium substitution.

또한 루이스산을 이용한 것은 루이스산 촉진 전이알루미나 촉매를 공개하고 있는 공개특허 1993-7002067호가 있으나 본 발명과는 전혀 다른 분야이다. In addition, the use of Lewis acid is disclosed in Patent Publication No. 1993-7002067, which discloses a Lewis acid-promoted transition alumina catalyst, is a completely different field from the present invention.

상기와 같은 문제점을 해결하기 위해서, 본 발명의 목적은 단일이온성 단량체에 루이스산을 도입하여 용매에 대한 우수한 용해성을 확보, 간단한 한번의 중합공정으로 단일이온성 고분자 전해질 제조가 가능하도록 하고, 전기화학적 안정성 및 이온전도도가 우수한 리튬이차전지용 고분자 전해질을 제공함에 있다. In order to solve the above problems, an object of the present invention is to introduce a Lewis acid to the monoionic monomer to ensure excellent solubility in the solvent, to enable the production of a monoionic polymer electrolyte in a simple polymerization process, The present invention provides a polymer electrolyte for a lithium secondary battery having excellent chemical stability and ion conductivity.

본 발명의 다른 목적은 상기 고분자 전해질을 포함하는 리튬이차전지를 제공함에 있다.Another object of the present invention to provide a lithium secondary battery comprising the polymer electrolyte.

상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면 루이스산 착화합물을 형성하는 단일이온성 단량체 : 고분자 형성 화합물로 구성된 리튬이차전지용 고분자 전해질을 제공한다. 여기서 착화합물은 고분자 형성 단량체 중량에 대하여 5~50중량%인 것이 바람직한데, 상기에서 착화합물의 함량이 5% 이하일 경우 리튬이온의 농도가 너무 낮아 이온전도도가 나타나지 않으며, 50% 이상일 경우 전체 고분자 전해질의 물성이 딱딱해지기 때문에 전지에 대한 응용이 어렵기 때문이다.In order to achieve the above object, according to an embodiment of the present invention provides a polymer electrolyte for a lithium secondary battery composed of a monoionic monomer: polymer forming compound for forming a Lewis acid complex. The complex compound is preferably 5 to 50% by weight based on the weight of the polymer-forming monomer. When the content of the complex compound is 5% or less, the concentration of lithium ions is too low to show ionic conductivity. It is because the application of the battery is difficult because the physical properties become hard.

상기에서 루이스산은 BF3, ZnCl2 등이 될 수 있으며, 단일이온성 단량체와 착체를 형성할 수 있는 것이 바람직하다.The Lewis acid may be BF 3 , ZnCl 2, or the like, and it is preferable that the Lewis acid may form a complex with a monoionic monomer.

상기 단일이온성 단량체는 리튬염으로 리튬메타크릴레이트, 리튬아크릴레이트, 리튬스타이렌설포네이트 등으로 구성된 군에서 선택되는 1종 이상을 사용할 수 있다. 여기서 리튬염을 사용하는 이유는, 리튬염(리튬양이온과 중합이 가능한 상대음이온으로 구성)이 포함된 단량체를 사용하여 고분자로 합성시키면 단량체가 고분자사슬로 사용되어 움직임이 떨어지기 때문에 전해질 내에 움직임이 가능한 이온은 리튬밖에 없기 때문이고, 이것을 단일이온성 고분자 전해질이라고 부르며, 음이온의 이동이 불가능하여 양극에서의 음이온 분해가 원초적으로 차단되며(전기화학적 안정성 향상), 음이온 이동에 의한 분극현상도 막을 수 있다. 결과적으로 리튬염이 포함된 단량체를 사용하는 이유는 전기화학적 안정성 향상과 분극현상 억제에 따른 전지성능향상이 목적이다.The monoionic monomer may be at least one selected from the group consisting of lithium methacrylate, lithium acrylate, lithium styrene sulfonate, and the like as a lithium salt. The reason why the lithium salt is used is that when the polymer is synthesized using a monomer containing a lithium salt (composed of lithium cations and a relative anion that can be polymerized), the monomer is used as a polymer chain, and thus the movement in the electrolyte is reduced. The only possible ion is lithium, which is called a monoionic polyelectrolyte. It is not possible to move anions and thus prevents anion decomposition at the anode (improving electrochemical stability) and prevents polarization due to anion migration. have. As a result, the purpose of using a monomer containing a lithium salt is to improve the battery performance by improving the electrochemical stability and suppressing the polarization phenomenon.

또한, 상기 단일이온성 단량체와 상기 루이스산 첨가비율은 1:1 몰비가 바람직하며 1:2까지도 사용할 수 있는데, 정량적인 착체를 형성하기 위해서는 단량체 1에 대해 루이스산 1 몰비가 첨가되어야 하며, 루이스산이 2배 과량(단량체 1: 루이스산 2)으로 사용되어도 전기화학적 안정성과 이온전도도에 큰 문제가 발생하지 않기 때문에 1:1~1:2까지의 범위까지 사용할 수 있다.In addition, the monoionic monomer and the Lewis acid addition ratio are preferably 1: 1 molar ratio, and may be used up to 1: 2. To form a quantitative complex, a 1 molar ratio of Lewis acid to monomer 1 should be added and Lewis. Even if the acid is used in double excess (monomer 1: Lewis acid 2), it can be used in the range of 1: 1 ~ 1: 2 because there is no big problem in electrochemical stability and ionic conductivity.

상기 루이스산 착체가 형성된 단일이온성 단량체는 하기 화학식 1로 표기될 수 있다.The monoionic monomer in which the Lewis acid complex is formed may be represented by the following Chemical Formula 1.

Figure pat00001
Figure pat00001

상기 루이스산과 단일이온성 단량체가 상온에서 결합하여 만들어지는 착체는 이온 결합력이 감소되어 용해도가 크게 증가되며 이를 녹일 수 있는 용매로는 에칠렌카보네이트, 다이에칠카보네이트, 테트라하이드로퓨란, 메탄올 등에서 선택되는 1종 이상일 수 있다. 상기 용매에서 에칠렌카보네이트, 다이에칠카보네이트는 전지에 많이 사용되는 액체전해액이며 테트라하이드로퓨란, 메탄올은 증발이 간편하게 진행되는 범용 용매로서 고분자 중합에 그대로 사용이 가능하고, 리튬메타크릴레이트를 사용할 경우 위의 용매에 녹지 않으나 일단 착체를 형성하게 되면 이온결합력이 감소되어 상온에서도 용매에 즉시 녹으며 간단한 교반을 통해 용해속도를 더욱 증가시킬 수 있다.The complex formed by combining the Lewis acid and the monoionic monomer at room temperature has a decrease in ionic binding force, so that the solubility is greatly increased. It may be more than one species. In the solvent, ethylene carbonate and die carbonate are liquid electrolytes that are frequently used in batteries, and tetrahydrofuran and methanol are general solvents for easy evaporation, and can be used as they are for polymer polymerization. It does not dissolve in the solvent, but once the complex is formed, the ionic bond strength is reduced, so that it immediately dissolves in the solvent even at room temperature, and can be further increased by simple stirring.

상기 용매에서 루이스산 착체와 고분자를 형성하는 단량체는 아크릴레이트, 폴리(에틸렌글리콜) 메타크릴레이트, 폴리(에치엘글리콜) 디메타크릴레이트, 폴리(에틸렌글리콜) 디아크릴레이트 및 이들의 조합으로 이루어진 군에서 선택되는 것이 바람직하다.The monomer forming the Lewis acid complex and the polymer in the solvent is composed of acrylate, poly (ethylene glycol) methacrylate, poly (ethglycol) dimethacrylate, poly (ethylene glycol) diacrylate, and combinations thereof. It is preferably selected from the group.

상기 단량체인 아크릴레이트, 폴리(에틸렌글리콜) 디메타크릴레이트, 폴리(에틸렌글리콜) 디아크릴레이트 등은 고체고분자 전해질에 일반적으로 많이 사용하는 단량체로서 질긴 분자특성으로 인해 기계적 강도를 유지할 수 있고, 낮은 유리전이온도를 가지고 있어서 분자 사슬운동이 활발하게 일어나 리튬이온 전달에 유리하기 때문에 사용한다.The monomers acrylate, poly (ethylene glycol) dimethacrylate, poly (ethylene glycol) diacrylate, and the like are monomers commonly used in solid polymer electrolytes, and can maintain mechanical strength due to their tough molecular properties. It is used because it has a glass transition temperature and molecular chain movement is active, which is advantageous for lithium ion transfer.

상기 루이스산 착체가 형성된 단일이온성 고분자 전해질의 대표적인 구조는 아래의 화학식 2와 같다.A typical structure of the monoionic polymer electrolyte in which the Lewis acid complex is formed is shown in Chemical Formula 2 below.

Figure pat00002
Figure pat00002

본 발명의 또 다른 실시예에 따르면, 상기 고분자 전해질; 양극 활물질; 음극 활물질을 포함하는 리튬이차전지를 제공한다.According to another embodiment of the present invention, the polymer electrolyte; Positive electrode active material; It provides a lithium secondary battery comprising a negative electrode active material.

본 발명의 루이스산 착체가 형성된 단일이온성 단량체는 일반적 용매에 잘 녹기 때문에 간단한 중합으로 고분자 전해질 합성이 가능하다.Since the monoionic monomer in which the Lewis acid complex of the present invention is formed is soluble in a general solvent, the polymer electrolyte can be synthesized by simple polymerization.

본 발명의 리튬이차전지용 고분자 전해질은 단일이온성 리튬염을 사용하기 때문에 전기화학적 안정성이 높고 이온 해리도가 크기 때문에 이온 전도도가 높다.Since the polymer electrolyte for lithium secondary batteries of the present invention uses a monoionic lithium salt, the electrochemical stability is high and the ion dissociation degree is high, thus the ion conductivity is high.

본 발명의 리튬이차전지용 고분자 전해질은 우수한 물리적 안정성을 가지면 전지의 박형화를 가능하게 하고 형상 자유도를 향상시킨다.When the polymer electrolyte for lithium secondary batteries of the present invention has excellent physical stability, it is possible to thin the battery and improve the shape freedom.

도 1은 리튬이차전지의 절개 사시도.
도 2는 본 발명의 실시예에 따른 조성물 전위 측정그래프.
1 is a cutaway perspective view of a lithium secondary battery.
2 is a composition potential measurement graph according to an embodiment of the present invention.

이하에서는 실시예를 통해서 본 발명을 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples are for illustrative purposes only and are not intended to limit the scope of the invention.

실시예 1Example 1

아르곤 가스가 충만한 글로브박스에서 리튬메타크릴레이트 10 mmol에 보론트리풀루오라이드 테트라하이드로퓨란 컴플렉스 10 mmol을 첨가하여 상온에서 5분간 교반시켜 투명한 착화합물을 수득하였다.In a glove box filled with argon gas, 10 mmol of borontripulolide tetrahydrofuran complex was added to 10 mmol of lithium methacrylate and stirred at room temperature for 5 minutes to obtain a clear complex.

실시예 2Example 2

리튬메타크릴레이트 10 mmol과 보론트리풀루오라이드 테트라하이드로퓨란 컴플렉스 20 mmol을 사용하여 상기 실시예 1과 동일하게 투명한 착화합물을 수득하였다. Using 10 mmol of lithium methacrylate and 20 mmol of borontripulolide tetrahydrofuran complex, a transparent complex was obtained in the same manner as in Example 1.

실시예 3Example 3

테트라하이드로퓨란 50 g에 착화합물 2 mmol 및 폴리(에틸렌글리콜) 메타크릴레이트 7.6 mmol을 첨가하고, 라디칼 중합 개시제로서 벤조일 퍼옥사이드(BPO)를 첨가하여 65℃에서 9시간 동안 반응시켜 착화합물과 폴리(에틸렌글리콜) 메타크릴레이트의 공중합체를 수득하였다. 이 때, 착화합물과 폴리(에틸렌글리콜) 메타크릴레이트 공중합체의 수평균분자량은 51,000 g/mol이었다. To 50 g of tetrahydrofuran, 2 mmol of a complex compound and 7.6 mmol of a poly (ethylene glycol) methacrylate were added, and benzoyl peroxide (BPO) was added as a radical polymerization initiator and reacted at 65 ° C. for 9 hours to react the complex with poly (ethylene Glycol) methacrylates were obtained. At this time, the number average molecular weight of the complex compound and the poly (ethylene glycol) methacrylate copolymer was 51,000 g / mol.

상기 혼합물을 80℃에서 72시간 동안 진공 건조시켜 리튬 이차 전지용 고분자 조성물을 제조하였다. The mixture was vacuum dried at 80 ° C. for 72 hours to prepare a polymer composition for a lithium secondary battery.

실시예 4Example 4

착화합물 2 mmol 및 폴리(에틸렌글리콜) 메타크릴레이트 4.6 mmol을 이용하여 상기 실시예 3과 동일하게 리튬 이차 전지용 고분자 조성물을 제조하였다. 착화합물과 폴리(에틸렌글리콜) 메타크릴레이트 공중합체의 수평균분자량은 74,000 g/mol이었다.A polymer composition for a lithium secondary battery was prepared in the same manner as in Example 3 using 2 mmol of a complex compound and 4.6 mmol of poly (ethylene glycol) methacrylate. The number average molecular weight of the complex compound and the poly (ethylene glycol) methacrylate copolymer was 74,000 g / mol.

실시예 5Example 5

착화합물 2 mmol 및 폴리(에틸렌글리콜) 메타크릴레이트 4.4 mmol을 이용하여 상기 실시예 3과 동일하게 리튬 이차 전지용 고분자 조성물을 제조하였다. 착화합물과 폴리(에틸렌글리콜) 메타크릴레이트 공중합체의 수평균분자량은 53,000 g/mol이었다.
A polymer composition for a lithium secondary battery was prepared in the same manner as in Example 3 using 2 mmol of a complex compound and 4.4 mmol of a poly (ethylene glycol) methacrylate. The number average molecular weight of the complex compound and the poly (ethylene glycol) methacrylate copolymer was 53,000 g / mol.

산화 전위 측정(linear sweep voltammetry)Linear sweep voltammetry

상기 실시예 1에 따라 제조된 고분자 조성물의 산화 전위를 다음과 같은 방법으로 측정하였다. 작동 전극(Working electrode)은 스테인레스 스틸을 사용하고, 참조 전극 및 대극을 리튬 금속을 사용하여, 1 mV/sec 스캔 속도, 60℃ 조건으로 선형 스윕 볼타메트리(linear sweep voltammetry)법으로 측정하여, 그 결과를 도 2에 나타내었다.The oxidation potential of the polymer composition prepared according to Example 1 was measured by the following method. The working electrode is made of stainless steel, and the reference electrode and the counter electrode are measured by linear sweep voltammetry at 1 mV / sec scan rate and 60 ° C using lithium metal. The results are shown in FIG.

도 2에 나타낸 바와 같이, 실시예에 따라 제조된 고분자 조성물의 경우 60℃ 조건임에도 불구하고 약 7.0V 까지의 전압에서도 급격한 분해가 일어나지 않으므로, 약 5.7V 정도에서 급격한 분해가 일어나는 액체전해액보다 우수한 전기화학적 안정성을 나타냄을 알 수 있다.As shown in FIG. 2, in the case of the polymer composition prepared according to the embodiment, the rapid decomposition does not occur even at a voltage up to about 7.0V, even though the temperature is 60 ° C., which is superior to that of the liquid electrolyte in which the rapid decomposition occurs at about 5.7V. It can be seen that the chemical stability.

이온전도도 측정Ion Conductivity Measurement

상기 실시예 3, 4, 5에 따라 제조된 고분자 조성물의 상온 이온전도도를 측정하여 결과를 하기 표 1에 기재하였다.The room temperature ion conductivity of the polymer composition prepared according to Examples 3, 4, and 5 was measured, and the results are shown in Table 1 below.

상온 이온전도도
(S/cm, 25℃)
Room temperature ion conductivity
(S / cm, 25 ℃)
상태condition
루이스산 착화합물과 폴리(에틸렌글리콜) 메타크릴레이트의 공중합체Copolymer of Lewis Acid Complex with Poly (ethylene Glycol) Methacrylate 실시예 3Example 3 1.2×10-6 1.2 × 10 -6 고체solid 실시예 4Example 4 5.6×10-6 5.6 × 10 -6 고체solid 실시예 5Example 5 1.2×10-5 1.2 × 10 -5 고체solid

표 1을 참조하면, 실시예에 따라 제조된 고분자 조성물의 경우 상온에서 고체 형태의 물성과 단일이온성 전도체의 특성을 확보하면서도, 10-5 S/㎝ 이상의 우수한 상온 이온전도도를 갖는다.Referring to Table 1, the polymer composition prepared according to the embodiment has excellent room temperature ionic conductivity of 10 −5 S / cm while securing physical properties of the solid form and the properties of the monoionic conductor at room temperature.

Claims (7)

루이스산; 단량체형 리튬염의 결합에 의해 형성된 용해성의 착화합물.Lewis acid; Soluble complex formed by bonding of monomeric lithium salts. 제 1 항의 착화합물과 고분자 형성 단량체로 만들어진 단일이온성 고분자 전해질.A monoionic polymer electrolyte made of the complex compound of claim 1 and a polymer forming monomer. 제 1 항에 있어서, 상기 루이스산은 BF3, ZnCl2 중에서 선택되는 1종이상의 비양성자성 산에서 선택됨을 특징으로 하는 착화합물.The complex of claim 1, wherein the Lewis acid is selected from at least one aprotic acid selected from BF 3 and ZnCl 2 . 제 1 항에 있어서, 상기 단량체와 상기 루이스산의 첨가비율은 1:1 내지 1:2로 반응하여 형성됨을 특징으로 하는 착화합물.The complex of claim 1, wherein an addition ratio of the monomer and the Lewis acid is formed by reacting 1: 1 to 1: 2. 제 1 항에 있어서, 상기 리튬염은 리튬메타크릴레이트, 리튬아크릴레이트, 리튬스타이렌설포네이트에서 선택되는 1종 이상임을 특징으로 하는 착화합물.The complexing compound of claim 1, wherein the lithium salt is at least one selected from lithium methacrylate, lithium acrylate, and lithium styrene sulfonate. 제 2 항에 있어서, 상기 착화합물은 고분자 형성 단량체 중량에 대해 5 내지 50중량%임을 특징으로 하는 고분자 전해질.The polymer electrolyte according to claim 2, wherein the complex compound is 5 to 50% by weight based on the weight of the polymer forming monomer. 제 1 항 내지 6 항 중 어느 하나의 항에 따른 고분자 전해질; 음극활물질; 양극활물질을 포함함을 특징으로 하는 리튬이차전지.A polymer electrolyte according to any one of claims 1 to 6; Negative electrode active material; Lithium secondary battery comprising a positive electrode active material.
KR1020100140465A 2010-12-31 2010-12-31 Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same KR20120078235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100140465A KR20120078235A (en) 2010-12-31 2010-12-31 Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100140465A KR20120078235A (en) 2010-12-31 2010-12-31 Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
KR20120078235A true KR20120078235A (en) 2012-07-10

Family

ID=46711617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100140465A KR20120078235A (en) 2010-12-31 2010-12-31 Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR20120078235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517469A (en) * 2021-04-20 2021-10-19 中国科学院宁波材料技术与工程研究所 Preparation method, product and application of single-phase compact polymer electrolyte
CN114583258A (en) * 2022-04-24 2022-06-03 浙江金羽新能源科技有限公司 Solid polymer electrolyte membrane and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517469A (en) * 2021-04-20 2021-10-19 中国科学院宁波材料技术与工程研究所 Preparation method, product and application of single-phase compact polymer electrolyte
CN113517469B (en) * 2021-04-20 2022-12-06 中国科学院宁波材料技术与工程研究所 Preparation method, product and application of single-phase compact polymer electrolyte
CN114583258A (en) * 2022-04-24 2022-06-03 浙江金羽新能源科技有限公司 Solid polymer electrolyte membrane and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Lu et al. A novel solid composite polymer electrolyte based on poly (ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries
Zhong et al. Organometallic polymer material for energy storage
JP2002100405A (en) Resin composition for gel high polymer solid electrolyte and the gel high polymer solid electrolyte
CN107771351A (en) Solid polymer electrolyte and the electrochemical appliance for including it
Chae et al. Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material
JP2012018909A (en) Electrolyte and electrolyte film
KR101458468B1 (en) Gel polymer electrolyte containing new copolymers and lithium-polymer secondary battery using the same
CN110467703B (en) Method for preparing solid polymer electrolyte film based on in-situ polymerization matrix
JP4563668B2 (en) Boron-containing compounds for electrochemical devices, ion-conducting polymers and polymer electrolytes
JP2015168754A (en) polymer, solid electrolyte and battery
EP3422463A1 (en) Aqueous polymer electrolyte
JP2003187637A (en) Element using polymer gel electrolyte
JP4701404B2 (en) High ion conductive polymer solid electrolyte
JP4403275B2 (en) Terminal hyperbranched polymer solid electrolyte
KR20120078235A (en) Lewis acid complex-based polymer electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP4830314B2 (en) Composition for ion conductive electrolyte, ion conductive electrolyte, and secondary battery using the ion conductive electrolyte
CN115775916B (en) Polymer solid electrolyte with high lithium ion conductivity at room temperature
JP2005314646A (en) Lithium ion conductive electrolyte and secondary battery using the same
KR100389713B1 (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
JP5758214B2 (en) Electrolyte and electrolyte membrane
CN116231060A (en) Preparation method and application of single lithium ion conductive fluoropolymer solid electrolyte
Xue et al. Electrochemical and mechanical properties of sodium-ion conducting cross-linked polymer gel electrolyte
KR101295678B1 (en) Polysiloxane resin containing single-ion conductor and a film for lithium secondary battery using the same
JP4389454B2 (en) Polymer solid electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application