KR20120041542A - Galvannealed steel sheet having excellent frictional property and powdering resistance, and method for manufacturing the same - Google Patents
Galvannealed steel sheet having excellent frictional property and powdering resistance, and method for manufacturing the same Download PDFInfo
- Publication number
- KR20120041542A KR20120041542A KR1020100103039A KR20100103039A KR20120041542A KR 20120041542 A KR20120041542 A KR 20120041542A KR 1020100103039 A KR1020100103039 A KR 1020100103039A KR 20100103039 A KR20100103039 A KR 20100103039A KR 20120041542 A KR20120041542 A KR 20120041542A
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- plating
- plating layer
- free energy
- hot
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 60
- 239000010959 steel Substances 0.000 title claims abstract description 60
- 238000000227 grinding Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 238000007747 plating Methods 0.000 claims description 108
- 239000010410 layer Substances 0.000 claims description 85
- 238000010438 heat treatment Methods 0.000 claims description 26
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 23
- 239000008397 galvanized steel Substances 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 19
- 238000005246 galvanizing Methods 0.000 claims description 16
- 238000005275 alloying Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 10
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 239000011247 coating layer Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 43
- 230000000052 comparative effect Effects 0.000 description 16
- 239000002344 surface layer Substances 0.000 description 14
- 229910052742 iron Inorganic materials 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
본 발명은 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 도금층의 상부에 Ni을 일정량 이상 포함시켜 도금층 표면의 마찰특성을 향상시키고, 소지강판과 도금층 계면 부근의 경도를 상대적으로 낮추어 내파우더링성을 향상시킨 합금화 용융아연도금강판 및 그 제조방법에 관한 것이다.The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent friction characteristics and powder resistance, and to a method for manufacturing the same. More specifically, Ni includes a predetermined amount or more in the upper portion of the plating layer to improve the friction characteristics of the surface of the plating layer, and The present invention relates to an alloyed hot-dip galvanized steel sheet having a relatively low hardness near the plated layer interface and improving powdering resistance, and a method of manufacturing the same.
용융아연도금강판은 내식성이 우수하여 자동차, 건축자재, 구조물 및 가전제품 등에 널리 사용되고 있다. 용융아연도금강판은 합금화 열처리를 행하지 않은 일반 용융아연도금강판(GI강판)과 합금화 용융아연도금강판(GA강판)이 있는데, 이중 GA강판은 소지강판에 용융아연을 도금한 후 합금화 열처리를 행하여 철과 아연을 상호 확산시킴으로써, 도금층을 철과 아연의 합금으로 만든 강판으로서, GI강판보다 용접성 및 도장성이 우수하여 자동차 재료로 많이 사용된다.
Hot-dip galvanized steel sheet has excellent corrosion resistance and is widely used in automobiles, building materials, structures, and home appliances. Hot-dip galvanized steel sheet includes general hot-dip galvanized steel sheet (GI steel sheet) and alloyed hot-dip galvanized steel sheet (GA steel sheet) that have not been subjected to alloying heat treatment. By diffusing the zinc with each other, the plated layer is made of an alloy of iron and zinc, and is used as an automobile material because it has better weldability and paintability than GI steel sheet.
상기 GA강판의 경우 합금화 열처리의 온도 및 시간에 따라 도금층에 포함되는 철의 양이 달라지는데, 이러한 도금층에 함유되는 철의 양에 따라 도금층의 경도가 달리지고, 이러한 도금층의 경도가 GA강판의 마찰특성 및 내파우더링성을 결정하는 중요한 요소로 작용한다. 즉, 도금층의 표층부에 합금화된 철의 양이 많을 경우 강판 표면의 경도가 높아져 강판의 성형시 다이와의 마찰을 줄일 수 있어 성형성을 높일 수 있지만, 도금층의 하부인 소지강판과 도금층의 계면 부근에 철의 양이 많을 경우에는 상기 계면 부근의 경도가 높아져 그 계면부가 파괴되는 도금층 파우더링(powdering) 현상이 발생하기 쉽다.
In the case of the GA steel sheet, the amount of iron contained in the plating layer varies depending on the temperature and time of the alloying heat treatment, and the hardness of the plating layer varies according to the amount of iron contained in the plating layer, and the hardness of the plating layer is a frictional characteristic of the GA steel sheet. And an important factor in determining the powder resistance. In other words, when the amount of alloyed iron in the surface layer of the plating layer is large, the hardness of the steel plate surface is increased to reduce the friction with the die during forming the steel sheet, thereby improving the formability, but near the interface between the base steel plate and the plated layer, When the amount of iron is large, the plating layer powdering phenomenon that the hardness near the interface is increased is likely to occur.
따라서, 무조건적으로 도금층에 함유되는 철의 양을 높이기보다는 상기 마찰특성과 내파우더링성을 적절히 고려하여 합금화 온도 및 시간을 제어할 필요가 있으나, 합금화시 소지강판에 함유되어 있던 철이 소지강판과 도금층의 계면을 거쳐 도금층의 표층부로 확산되어 가기 때문에, 도금층 표층부의 철이 많아져 경도가 높으면 계면 부근에도 경도가 높고, 도금층 표층부의 경도가 낮으면 계면 부근에도 낮아지는 모순점으로 인해, 도금층 내 철의 양을 제어하는 것만으로는 도금강판의 마찰특성과 내파우더링성을 향상시키기에는 한계가 있었다.
Therefore, it is necessary to control the alloying temperature and time in consideration of the friction characteristics and the powdering resistance, rather than unconditionally increasing the amount of iron contained in the plating layer, but the iron contained in the steel sheet during the alloying of the steel sheet and the plating layer Since it diffuses to the surface layer portion of the plating layer through the interface, the iron in the plating layer increases, and if the hardness is high, the hardness is high in the vicinity of the interface. Only control has a limit in improving the friction characteristics and the powder resistance of the plated steel sheet.
따라서, 도금층 표층부의 경도을 높게 하되 소지강판과 도금층 계면 부근의 경도를 낮춤으로써, 합금화 용융아연도금강판의 마찰특성 및 내파우더링성을 동시에 향상시킬 수 있는 기술에 대한 요구가 매우 절실한 시점이라 할 수 있다. Therefore, by increasing the hardness of the surface layer portion of the plating layer, and lowering the hardness near the interface between the base steel plate and the plated layer, it is a very urgent need for a technology that can simultaneously improve the friction characteristics and the powder resistance of the alloyed hot-dip galvanized steel sheet. .
본 발명은 마찰특성과 내파우더링성의 모순점을 해결하고, 상기 2가지 물성을 동시에 향상시킬 수 있는 합금화 용융아연도금강판 및 그 제조방법을 제공한다.The present invention provides an alloyed hot-dip galvanized steel sheet and a method of manufacturing the same that can solve the contradictions of friction characteristics and powder resistance and improve the two physical properties simultaneously.
본 발명은 Fe 5~20중량% 및 깁스자유에너지가 Fe보다 큰 금속 0.2~2중량%로 포함하는 도금층을 가지며, 상기 도금층 표면으로부터 상기 도금층 두께의 1/2 지점까지에 포함된 상기 깁스자유에너지가 Fe보다 큰 금속의 함량이 상기 도금층 전체에 포함된 상기 깁스자유에너지가 Fe보다 큰 금속의 함량에 대해 중량비로 0.35 이상인 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판을 제공한다.
The present invention has a plating layer containing 5 to 20% by weight of Fe and 0.2 to 2% by weight of a metal having a Gibbs free energy greater than Fe, wherein the Gibbs free energy is contained from the surface of the plating layer to a half point of the thickness of the plating layer. Provides an alloyed hot-dip galvanized steel sheet having excellent friction characteristics and powdering resistance, characterized in that the metal content of greater than Fe is not less than 0.35 by weight to the content of the metal of the Gibbs free energy contained in the entire plating layer. do.
이때, 상기 깁스자유에너지가 Fe보다 큰 금속의 상기 도금층 전체의 함량에 대한 상기 도금층 표면으로부터 상기 도금층 두께의 1/2 지점까지의 함량이 중량비로 0.45 이상인 것이 보다 바람직하다.
At this time, it is more preferable that the content from the surface of the plating layer to the half point of the thickness of the plating layer to the content of the entire plating layer of the metal having the Gibbs free energy greater than Fe is 0.45 or more in weight ratio.
또한, 상기 도금층에 Al: 0.1~0.4중량%를 더 포함하는 것이 바람직하다.
In addition, it is preferable to further include Al: 0.1 to 0.4% by weight in the plating layer.
또한, 상기 깁스자유에너지가 Fe보다 큰 금속은 Ni, Co, Cu, Sn 및 Sb로 이루어진 그룹으로부터 선택된 1종 이상인 것이 바람직하다.
In addition, the metal having a Gibbs free energy greater than Fe is preferably at least one selected from the group consisting of Ni, Co, Cu, Sn, and Sb.
한편, 본 발명은 소지강판에 깁스자유에너지가 Fe보다 큰 금속을 50~3000mg/㎡로 도금하는 제1도금단계; 상기 제1도금된 강판을 환원분위기에서 가열하는 단계; 상기 가열된 강판을 냉각하는 단계; 상기 냉각된 강판을 용융아연도금욕에 침지하는 제2도금단계; 및 상기 제2도금된 강판을 제2도금 후 2초 이내에 20℃/sec 이상의 승온속도로 급속가열하는 단계를 포함하는 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판의 제조방법을 제공한다.
On the other hand, the present invention is the first plating step of plating a metal having a Gibbs free energy greater than Fe to 50 ~ 3000mg / ㎡ on the steel sheet; Heating the first plated steel sheet in a reducing atmosphere; Cooling the heated steel sheet; A second plating step of immersing the cooled steel sheet in a hot dip galvanizing bath; And rapidly heating the second plated steel sheet at a temperature rising rate of 20 ° C./sec or more within 2 seconds after the second plating. 15. A method of manufacturing an alloyed hot dip galvanized steel sheet having excellent friction characteristics and powder resistance. To provide.
이때, 상기 가열하는 단계는 700~900℃까지 행하는 것이 바람직하다.
At this time, the heating step is preferably performed to 700 ~ 900 ℃.
또한, 상기 용융아연도금욕의 온도는 440~480℃이고, 상기 용융아연도금욕에는 Al 0.12~0.14 중량%를 포함하는 것이 바람직하다.
In addition, the hot dip galvanizing bath temperature is 440 ~ 480 ℃, the hot dip galvanizing bath preferably contains 0.12 ~ 0.14% by weight of Al.
또한, 상기 냉각하는 단계는 상기 용융아연도금욕의 온도보다 10~50℃ 더 높은 온도까지 행하는 것이 보다 바람직하다.
In addition, the cooling step is more preferably performed to a
또한, 상기 깁스자유에너지가 Fe보다 큰 금속은 Ni, Fe, Co, Cu, Sn 및 Sb로 이루어진 그룹으로부터 선택된 1종 이상인 것이 바람직하다.In addition, the metal having a Gibbs free energy greater than Fe is preferably at least one selected from the group consisting of Ni, Fe, Co, Cu, Sn, and Sb.
본 발명은 합금화 용융아연도금강판에 있어서 도금층 표층부의 경도를 증가시키면서도 소지강판과 도금층의 계면의 경도를 낮추어, 마찰특성과 내파우더링성을 동시에 우수하게 확보함으로써, 합금화 용융아연도금강판의 품질향상에 기여할 수 있다.The present invention is to improve the quality of the alloyed hot-dip galvanized steel sheet by increasing the hardness of the surface layer of the plated layer in the alloyed hot-dip galvanized steel sheet while lowering the hardness of the interface between the base steel plate and the plated layer to ensure excellent friction characteristics and powder resistance at the same time. Can contribute.
도 1은 발명예에 따른 도금강판의 깊이에 대한 조성의 함량을 나타낸 그래프이다.
도 2는 비교예에 따른 도금강판의 깊이에 대한 조성의 함량을 나타낸 그래프이다.1 is a graph showing the content of the composition with respect to the depth of the plated steel sheet according to the invention example.
Figure 2 is a graph showing the content of the composition of the depth of the plated steel sheet according to the comparative example.
이하, 본 발명의 강판에 대해 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the steel plate of this invention is demonstrated in detail.
본 발명의 일측면은 Fe 5~20중량% 및 깁스자유에너지가 Fe보다 큰 금속 0.2~2중량%로 포함하는 도금층을 가지며, 상기 도금층 표면으로부터 상기 도금층 두께의 1/2 지점까지에 포함된 상기 깁스자유에너지가 Fe보다 큰 금속의 함량이 상기 도금층 전체에 포함된 상기 깁스자유에너지가 Fe보다 큰 금속의 함량에 대해 중량비로 0.35 이상인 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판을 제공한다.
One side of the present invention has a plating layer containing 5 to 20% by weight of Fe and 0.2 to 2% by weight of a metal having a Gibbs free energy greater than Fe, wherein the plating layer is included at a half point of the plating layer from the surface of the plating layer. Alloyed hot-dip galvanized zinc alloy excellent in friction properties and powder resistance, characterized in that the metal content of the Gibbs free energy is greater than Fe is 0.35 or more by weight relative to the metal content of the Gis free energy contained in the entire plating layer Provide the steel sheet.
먼저, 도금층 내의 Fe는 Zn와 합금을 만들어 도금층의 경도를 증가시키는 역할을 하는데, 상기 Fe는 도금층 내에서 5~20중량%로 포함되는 것이 바람직하고, 보다 바람직하게는 7~12중량%로 제어하는 것이 효과적이다. 만약, Fe가 도금층 내에서 5중량%에 미달하면 도금층의 경도가 너무 낮아 다른 조성을 제어하더라도 도금강판의 마찰특성을 확보하는 데에 한계가 있을 수밖에 없고, 만약 Fe가 도금층 내에서 20중량%를 초과하면 마찬가지로 다른 조성을 제어하더라도 소지강판과 도금층 계면의 경도가 너무 높아져 내파우더링성이 좋지 못한 문제가 생긴다.
First, Fe in the plating layer serves to increase the hardness of the plating layer by making an alloy with Zn, the Fe is preferably contained in 5 to 20% by weight in the plating layer, more preferably controlled to 7 to 12% by weight It is effective. If Fe is less than 5% by weight in the plated layer, the hardness of the plated layer is so low that there is a limit to securing the friction characteristics of the plated steel sheet even when controlling other compositions, if Fe exceeds 20% by weight in the plated layer Similarly, even if the other composition is controlled, the hardness of the interface between the base steel sheet and the plated layer is too high, which causes poor powdering resistance.
또한, 상기 깁스자유에너지가 Fe보다 큰 금속은 Ni와 같이 도금층 내에 포함되어 도금층의 경도를 증가시키는 성분을 말하는 것으로, Ni, Co, Cu, Sn 및 Sb로 이루어진 그룹으로부터 선택된 1종 이상인 것이 바람직하다. 상기 금속은 도금층 내에서 0.2~2중량%로 존재하는 것이 바람직한데, 만약 깁스자유에너지가 Fe보다 큰 금속의 도금층 내 함량이 0.2중량%에 미달하면 전체 함량이 너무 작아 도금층의 상부에 상기 깁스자유에너지가 Fe보다 큰 금속을 많이 분포시키더라도 표층부 경도 확보에 한계가 있어 마찰특성이 좋지 못하고, 상한은 경제성을 고려하여 2중량%로 잡을 수 있다.
In addition, the metal having the Gibbs free energy greater than Fe refers to a component included in the plating layer such as Ni to increase the hardness of the plating layer, and preferably at least one selected from the group consisting of Ni, Co, Cu, Sn, and Sb. . The metal is preferably present at 0.2 to 2% by weight in the plating layer. If the content of the plating layer of the metal having a greater Gibs free energy than Fe is less than 0.2% by weight, the total content is too small to give the cast free oil to the upper part of the plating layer. Even if a large amount of metal having a larger energy than Fe is distributed, there is a limit in securing the hardness of the surface layer, so the friction property is not good, and the upper limit can be set to 2% by weight in consideration of economical efficiency.
특히, 본 발명자들은 상기 Fe 또는 상기 금속의 도금층 내 함량을 제어하는 것뿐 아니라 도금층 내 깁스자유에너지가 Fe보다 큰 금속의 분포량을 조절하여 도금층의 상부에 일정량 이상 분포시킴으로써 도금층 표층부의 경도를 높게 확보하고, 반대로 소지강판과 도금층 계면 부근의 경도를 낮게 확보할 수 있음을 인지하고, 우수한 마찰특성과 내파우더링성을 동시에 양립시킬 수 있는 발명을 하기에 이른 것이다.
In particular, the present inventors not only control the content of the Fe or the metal in the plating layer, but also control the amount of metal in which the Gibbs free energy in the plating layer is larger than Fe to distribute a predetermined amount or more on top of the plating layer to ensure high hardness of the plating layer. On the contrary, it is recognized that the hardness of the base steel plate and the plating layer in the vicinity of the interface can be ensured to be low, and the present invention can achieve both excellent friction characteristics and powder resistance at the same time.
따라서, 상기 깁스자유에너지가 Fe보다 큰 금속의 도금층 전체의 함량에 대한 도금층 표면으로부터 1/2 지점까지의 함량이 중량비로 0.35 이상일 경우 도금층 표층부의 경도를 충분히 확보할 수 있어 강판의 성형시 마찰을 감소시킴으로써 우수한 성형성을 얻을 수 있게 된다. 또한, 동시에 소지강판과 도금층 계면의 경도를 상대적으로 낮출 수 있어 파우더링으로 인한 문제를 현저히 감소시킬 수 있다. 보다 바람직하게는, 상기 도금층 전체의 함량에 대한 도금층 표면으로부터 1/2 지점까지의 함량이 중량비로 0.45 이상일 경우 도금층 표층부의 경도 증가 효과와 계면의 경도 감소 효과를 극대화할 수 있어, 마찰특성 및 내파우더링성을 더욱 향상시킬 수 있다.
Therefore, when the content of the coating layer from the surface of the plating layer to half of the content of the entire plating layer of the metal having the Gibbs free energy greater than Fe is 0.35 or more in weight ratio, the hardness of the coating layer surface portion can be sufficiently secured to reduce friction during forming of the steel sheet. By reducing, excellent moldability can be obtained. In addition, at the same time, the hardness of the base steel plate and the plated layer can be relatively lowered, thereby significantly reducing the problems caused by powdering. More preferably, when the content from the surface of the plated layer to the 1/2 point to the content of the entire plated layer is 0.45 or more by weight ratio, the hardness increase effect and the hardness decrease effect of the surface of the plated layer may be maximized. Powdering property can be further improved.
또한, 상기 도금층에 Al: 0.1~0.4중량%를 더 포함하는 것이 바람직한데, 도금층 내에 Al이 0.1중량% 미만으로 포함되면 소지강판과 도금층의 계면에 γ상이 두껍게 형성되기 때문에 파우더링 현상을 방지하기 어렵고, 만약 Al이 0.4중량%를 초과하면 상기 계면에 Fe-Al 합금층이 너무 두꺼워져 합금화 자체를 지나치게 억제하게 되는 문제가 생긴다.
In addition, it is preferable to further include Al: 0.1 to 0.4% by weight in the plating layer, if Al is contained less than 0.1% by weight in the plating layer to prevent the powdering phenomenon because the γ phase is formed thick at the interface between the base steel plate and the plating layer. If Al exceeds 0.4% by weight, the Fe-Al alloy layer becomes too thick at the interface, resulting in excessive suppression of alloying itself.
이하, 본 발명의 강판의 제조방법에 대해 상세히 설명한다.Hereinafter, the manufacturing method of the steel plate of this invention is demonstrated in detail.
본 발명의 또다른 일측면은 소지강판에 깁스자유에너지가 Fe보다 큰 금속을 50~3000mg/㎡로 도금하는 제1도금단계; 상기 제1도금된 강판을 환원분위기에서 가열하는 단계; 상기 가열된 강판을 냉각하는 단계; 상기 냉각된 강판을 용융아연도금욕에 침지하는 제2도금단계; 및 상기 제2도금된 강판을 제2도금 후 2초 이내에 20℃/sec 이상의 승온속도로 급속가열하는 단계를 포함하는 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판의 제조방법을 제공한다.
Another aspect of the present invention is the first plating step of plating a metal having a Gibbs free energy greater than Fe to 50 ~ 3000mg / ㎡ in the steel sheet; Heating the first plated steel sheet in a reducing atmosphere; Cooling the heated steel sheet; A second plating step of immersing the cooled steel sheet in a hot dip galvanizing bath; And rapidly heating the second plated steel sheet at a temperature rising rate of 20 ° C./sec or more within 2 seconds after the second plating. 15. A method of manufacturing an alloyed hot dip galvanized steel sheet having excellent friction characteristics and powder resistance. To provide.
먼저, 소지강판에 상기 깁스자유에너지가 Fe보다 큰 금속을 50~3000mg/㎡로 제1도금하게 되는데, 만약 제1도금량이 50mg/㎡에 미달하면 도금량이 너무 작아 상기 금속의 분포 위치와 상관없이 도금강판의 마찰특성을 확보하기가 어렵고, 경제성을 고려하여 상한은 3000mg/㎡로 정할 수 있다. 또한, 제1도금 후에 소둔을 하는데, 환원분위기에서 가열하는 것이 바람직하고, 상기 가열된 강판을 냉각한 후 용융아연도금욕에 침지하여 제2도금을 거치게 된다.
First, a metal having a larger Gibs free energy than Fe is first plated at 50 to 3000 mg / m 2 on the steel sheet. If the first plating amount is less than 50 mg / m 2, the plating amount is too small, regardless of the distribution position of the metal. It is difficult to secure the friction characteristics of the plated steel sheet, and the upper limit may be set to 3000 mg / m 2 in consideration of economic efficiency. In addition, after annealing after the first plating, it is preferable to heat in a reducing atmosphere, and after the heated steel sheet is cooled, it is immersed in a molten zinc plating bath to undergo a second plating.
특히, 본 발명자들은 제2도금 후 매우 짧은 시간 내에 높은 승온속도로 급속가열하여야만 상기 금속을 도금층 표층부로 충분히 확산할 수 있음을 인지하고, 제2도금 후 가열까지의 시간 및 승온속도를 제어하여 상기 깁스자유에너지가 Fe보다 큰 금속을 소지강판과 도금층 계면 부근보다는 도금층 표층부에 충분히 분포시키는 발명을 하기에 이른 것이다.
In particular, the present inventors recognize that the metal can be sufficiently diffused to the surface layer of the plating layer only by rapidly heating at a high temperature rising rate within a very short time after the second plating, and controlling the time and temperature rising rate until heating after the second plating. The invention in which the Gibbs free energy is larger than Fe is sufficiently distributed in the plating layer surface layer rather than near the interface between the base steel plate and the plating layer.
따라서, 상기 제2도금된 강판을 제2도금 후 2초 이내에 20℃/sec 이상의 승온속도로 급속가열하는 단계를 포함하는 것이 매우 중요하다. 만약, 제2도금을 행한 후 2초 이상의 시간이 지나거나 승온속도가 20℃/sec 미만이면 상기 금속의 확산이 활발하지 않아 표층부에 충분히 분포시키는 것이 어렵게 된다.
Therefore, it is very important to include the step of rapidly heating the second plated steel sheet at a temperature rising rate of 20 ° C./sec or more within 2 seconds after the second plating. If, after the second plating has elapsed for 2 seconds or more, or the temperature increase rate is less than 20 ° C / sec, the diffusion of the metal is not active and it is difficult to sufficiently distribute the surface layer.
또한, 상기 제1도금 후 소둔단계에서 가열온도는 700~900℃로 하는 것이 바람직한데, 만약 상기 가열온도가 700℃ 미만이면 충분히 재결정이 일어나지 않아 강판의 재질특성이 열등한 문제가 있고, 경제성 및 효과의 포화를 고려하여 상한은 900℃로 정할 수 있다.
In addition, in the annealing step after the first plating, the heating temperature is preferably 700 to 900 ° C. If the heating temperature is less than 700 ° C., there is a problem that the material properties of the steel sheet are inferior due to insufficient recrystallization. In consideration of the saturation of, the upper limit may be set at 900 ° C.
또한, 상기 용융아연도금욕의 온도는 440~480℃이고, 상기 용융아연도금욕에는 Al 0.12~0.14 중량%를 포함하는 것이 바람직하다. 만약, 도금욕의 온도가 440℃ 미만이면 도금욕의 점도가 하락하여 도금욕 중에 있는 롤의 구동이 어려워 슬립(Slip)이 일어나 강판에 스크래치를 유발할 수 있고, 상기 온도가 480℃를 초과하면 아연의 증발이 커져 설비를 오염시키고 증발된 아연재가 강판에 묻어 결함을 일으킬 수 있다. 또한, 상기 용융아연도금욕에 Al이 0.12중량% 이상이면 도금욕의 유동성을 확보하여 표면품질 향상에 유리하고 도금균일성에 영향을 주는 Fe-Al 합금층을 충분히 형성할 수 있고, 다만 0.14중량%를 초과하면 상기 합금층의 두께가 너무 두꺼워져 합금화가 잘 되지 않는 문제가 생길 수 있다.
In addition, the hot dip galvanizing bath temperature is 440 ~ 480 ℃, the hot dip galvanizing bath preferably contains 0.12 ~ 0.14% by weight of Al. If the temperature of the plating bath is less than 440 ° C., the viscosity of the plating bath decreases, making it difficult to drive the rolls in the plating bath, which may cause slippage, which may cause scratches on the steel sheet. The evaporation of contaminants may increase and contaminate the installation, and the evaporated zinc material may be buried in the steel sheet and cause defects. In addition, when Al is 0.12% by weight or more in the hot dip galvanizing bath, it is possible to form a Fe-Al alloy layer that is advantageous in improving the surface quality and affects the plating uniformity by securing the fluidity of the plating bath, but 0.14% by weight. If it exceeds the thickness of the alloy layer is too thick may cause a problem that the alloying is not good.
또한, 상기 냉각하는 단계는 상기 용융아연도금욕의 온도보다 10~50℃ 더 높은 온도까지 행하는 것이 보다 바람직하다. 만약, 상기 냉각온도가 도금욕 온도보다 10℃ 미만으로 높거나 도금욕 온도보다 낮은 경우 Fe-Al 합금층이 충분히 균일하게 형성되지 못하여 도금밀착성이 좋지 못한 문제가 생기고, 상기 냉각온도가 도금욕 온도보다 50℃를 초과하여 높으면 소지철이 도금욕 중에 지나치게 많이 용해되어 드로스(Dross)라 불리는 Fe-Zn 화합물을 만들어 도금강판의 품질을 저하시키게 된다.
In addition, the cooling step is more preferably performed to a
또한, 상기 깁스자유에너지가 Fe보다 큰 금속은 Ni, Co, Cu, Sn 및 Sb로 이루어진 그룹으로부터 선택된 1종 이상인 것이 바람직하다.
In addition, the metal having a Gibbs free energy greater than Fe is preferably at least one selected from the group consisting of Ni, Co, Cu, Sn, and Sb.
이하, 실시예를 통해 본 발명을 상세히 설명하지만, 이는 본 발명의 보다 완전한 이해를 위한 것이고, 하기 개별실시예에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples, which are intended for a more complete understanding of the present invention, and the scope of the present invention is not limited to the following individual examples.
(( 실시예Example ))
본 발명의 강판 소재에 제한은 없고, 본 실험에서는 두께 1.2mm의 저탄소 냉간 압연강판을 소재로 하였다. 먼저, 도금량을 달리하여 Ni 도금을 실시하였고, 상기 Ni 도금이 행해진 강판을 5% H2-N2 분위기에서 가열온도를 달리하여 가열하였고, 이를 60초 동안 유지한 뒤 냉각온도를 달리하여 냉각한 후, 상기 냉각된 온도로 강판을 인입하여 3초 동안 450℃의 도금욕 온도에서 Al 농도를 달리한 용융아연도금욕에 침지를 행하고, 상기 용융아연도금욕을 빠져나온 후 합금화 열처리하기까지의 시간 및 합금화 열처리의 승온속도를 달리하여 가열함으로써 용융아연도금강판을 제조하였고, 상기 제조조건은 표 1에 나타내었다.There is no restriction | limiting in the steel plate material of this invention, In this experiment, the low carbon cold-rolled steel sheet of thickness 1.2mm was made into the raw material. First, Ni plating was performed by varying the plating amount, and the Ni-plated steel sheet was heated at different heating temperatures in an atmosphere of 5% H 2 -N 2 , and maintained for 60 seconds and then cooled by varying the cooling temperature. Then, the steel sheet is introduced at the cooled temperature, immersed in a molten zinc plating bath having a different Al concentration at a plating bath temperature of 450 ° C. for 3 seconds, and the time until the alloy heat treatment is performed after leaving the molten zinc plating bath. And molten zinc-plated steel sheet was prepared by heating at different heating rate of the alloying heat treatment, the production conditions are shown in Table 1.
division
(g/㎡)Ni plating amount
(g / ㎡)
(℃)Heating temperature
(℃)
(℃)Cooling temperature
(℃)
(℃/sec)Temperature rise rate
(℃ / sec)
상기 제조된 용융아연도금강판에 대한 평가를 위해, 염산수용액을 사용하여 도금층을 용해한 후 ICP(Inductively Coupled Plasma)로 도금층 내 Fe 함량, Al 함량 및 Ni 함량을 측정하였고, 또한 GDS(Glow Discharge Spectrometer)로 도금층 두께 방향으로 Ni 성분의 분포를 측정하여 도금층 전체에 대한 도금층 표층부로부터 도금층 두께의 1/2 지점까지의 Ni 함량비를 측정하였다. 소지강판과 도금층의 경계, 즉 계면은 철과 아연의 함량이 교차하는 지점을 정하였다.
In order to evaluate the manufactured hot-dip galvanized steel sheet, after dissolving the plating layer using an aqueous hydrochloric acid solution, Fe content, Al content and Ni content in the plating layer were measured by ICP (Inductively Coupled Plasma), and also GDS (Glow Discharge Spectrometer) The distribution of the Ni component in the plating layer thickness direction was measured, and the Ni content ratio from the plating layer surface layer portion to the half point of the plating layer thickness with respect to the whole plating layer was measured. The boundary between the base steel plate and the plated layer, that is, the interface, set the point where the contents of iron and zinc intersect.
또한, 도금층의 내파우더링성은 60°V-Bending법에 의하였고, 도금강판의 표면 마찰특성은 강판 표면에 방청유를 도포한 후 평면 마찰시험기를 이용하여 마찰계수를 측정하였다.In addition, the powder resistance of the plated layer was 60 ° V-Bending method, and the surface friction characteristics of the plated steel sheet was measured by applying a rust preventive oil on the surface of the steel sheet using a plane friction tester.
※ 1/2지점까지의 Ni 함량비 = 도금층 전체에 대한 도금층 표층부로부터 도금층 두께의 1/2 지점까지의 Ni 함량비※ Ni content ratio up to 1/2 point = Ni content ratio up to 1/2 point of thickness of plating layer
※ 내파우더링성: ◎(극히 우수), ○(우수), △(불량), X(극히 불량)
※ Powder resistance: ◎ (Excellent), ○ (Excellent), △ (Poor), X (Extremely poor)
발명예 1 내지 9는 본 발명의 조건에 따라 실시되었으므로, 상대적으로 마찰계수도 낮아 우수한 마찰특성을 나타내었고, 내파우더링성도 매우 우수함을 알 수 있었다.
Inventive Examples 1 to 9 were carried out according to the conditions of the present invention, the friction coefficient was relatively low, and showed excellent friction characteristics, and it was found that the powdering resistance was also excellent.
그러나, 비교예 1 및 2는 Ni 도금이 되지 않아 도금층의 경도를 증가시키는 추가적인 성분이 포함되지 않았으므로, 내파우더링성은 우수하게 나타났으나 마찰계수가 0.18 이상으로 매우 높게 나타나 마찰특성이 좋지 못함을 알 수 있었다.However, Comparative Examples 1 and 2 did not contain additional components that increase the hardness of the coating layer because Ni plating was not performed, so the powder resistance was excellent, but the friction coefficient was very high as 0.18 or more, and thus the friction characteristics were not good. And it was found.
또한, 비교예 3은 Ni 도금은 본 발명의 조건에 따라 실시되었으나, 아연도금 후 가열할 때까지의 시간이 4초나 소요되어 Ni의 표층부 확산이 충분치 못해 1/2 지점까지의 Ni 함량비가 0.20으로 낮았는 바, 내파우더링성은 극히 우수하였으나 마찰계수가 상당히 높아 마찰특성이 좋지 못함을 알 수 있었다.In addition, Comparative Example 3 was carried out in accordance with the conditions of the present invention, but Ni plating takes about 4 seconds to heat up after galvanizing, so the diffusion of Ni is not sufficient, so the Ni content ratio up to 1/2 is 0.20. As it was low, the powder resistance was very good, but the friction coefficient was very high, indicating that the friction characteristics were not good.
또한, 비교예 4도 Ni 도금은 본 발명의 조건에 따라 실시되었으나, 합금화 열처리시의 승온속도가 10℃/sec로 낮아 역시 Ni의 표층부 확산이 충분치 못해 1/2 지점까지의 Ni 함량비가 0.25로 낮았는 바, 내파우더링성은 극히 우수하였으나 마찰계수가 지나치게 높게 나타났음을 확인할 수 있었다.In addition, Ni plating was also performed according to the conditions of the present invention, Comparative Example 4, but the temperature increase rate during the alloying heat treatment is 10 ℃ / sec is also low enough to diffuse the surface layer portion of Ni to Ni content ratio up to 1/2 point to 0.25 Low, the powder resistance was very good, but the friction coefficient was found to be too high.
또한, 비교예 5는 아연도금 후 가열할 때까지의 시간이 4초나 소용됨과 동시에 승온속도가 10℃/sec로 낮아 1/2 지점까지의 Ni 함량비가 0.11로서 대부분의 Ni가 소지강판과 도금층의 계면 부근에 위치했음을 알 수 있다. 이에 따라, 계면 부근의 경도가 높아 내파우더링성은 극히 불량해지고, 반대로 도금층 표층부의 경도는 매우 낮아져 마찰계수가 매우 높음을 알 수 있었다.
In addition, in Comparative Example 5, the time required for heating after galvanizing was 4 seconds, and the temperature increase rate was 10 ° C./sec, so that the Ni content ratio up to 1/2 was 0.11. It can be seen that it is located near the interface. As a result, the hardness near the interface is extremely poor, and the powdering resistance is extremely poor. On the contrary, the hardness of the surface layer of the plating layer is very low, and the friction coefficient is very high.
도 1은 아연도금 후 가열할 때까지의 시간이 2초를 초과하거나 합금화 열처리시의 승온속도가 20℃/sec 미만인 비교예의 조건에 따라 실험한 결과를 나타난 그래프이고, 도 2는 아연도금 후 가열할 때까지의 시간이 2초 이내이고 합금화 열처리시의 승온속도가 20℃/sec 이상인 발명예의 조건에 따라 실험한 결과를 나타낸 그래프이다.1 is a graph showing the results of experiments in accordance with the conditions of the comparative example in which the time until heating after galvanization exceeds 2 seconds or the temperature increase rate during the alloying heat treatment is less than 20 ° C./sec. It is a graph showing the results of experiments in accordance with the conditions of the invention example that the time until the within 2 seconds and the temperature increase rate during the alloying heat treatment is 20 ℃ / sec or more.
도 1을 보면, Ni이 도금층 표층부로 확산이 잘 일어나지 않아, 대부분의 Ni가 소지강판과 도금층의 계면 부근에 위치해 있음을 확인할 수 있다. 이에 반해, 도 2를 보면, 아연도금 후 빠른 시간 내에 급속가열을 하여 Ni를 표층부로 충분히 확산시킴에 따라 대부분의 Ni가 계면보다는 표층부에 가깝게 위치해 있음을 확인할 수 있다.1, it is confirmed that Ni does not easily diffuse into the plating layer surface layer portion, so that most of Ni is located near the interface between the base steel sheet and the plating layer. On the contrary, as shown in FIG. 2, as Ni is rapidly heated within a rapid time after galvanizing, Ni is sufficiently diffused into the surface layer, and thus, most of Ni is located closer to the surface layer rather than the interface.
Claims (9)
5-20% by weight of Fe and 0.2-2% by weight of a metal having a Gibbs free energy greater than Fe, and having a plating layer, wherein the Gibbs free energy contained in a half of the thickness of the plating layer is greater than Fe. The alloyed hot-dip galvanized steel sheet having excellent friction characteristics and powdering resistance, characterized in that a large metal content of the Gibbs free energy contained in the entire plating layer is 0.35 or more by weight relative to the metal content of Fe.
상기 도금층 표면으로부터 상기 도금층 두께의 1/2 지점까지에 포함된 상기 깁스자유에너지가 Fe보다 큰 금속의 함량이 상기 도금층 전체에 포함된 상기 깁스자유에너지가 Fe보다 큰 금속의 함량에 대해 중량비로 0.45 이상인 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판.
The method according to claim 1,
The Gibbs free energy contained in the coating layer from the surface of the plating layer up to 1/2 of the thickness of the plating layer is greater than Fe, and the Gibbs free energy contained in the entire plating layer is 0.45 in weight ratio. Alloyed hot-dip galvanized steel sheet excellent in friction characteristics and powder resistance, characterized in that the above.
상기 도금층에 Al: 0.1~0.4중량%를 더 포함하는 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판.
The method according to claim 1,
Al: 0.1 to 0.4% by weight in the plating layer, the alloying hot-dip galvanized steel sheet excellent in friction characteristics and powder resistance.
상기 깁스자유에너지가 Fe보다 큰 금속은 Ni, Co, Cu, Sn 및 Sb로 이루어진 그룹으로부터 선택된 1종 이상인 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판.
The method according to any one of claims 1 to 3,
The metal having a higher Gibbs free energy than Fe is at least one selected from the group consisting of Ni, Co, Cu, Sn and Sb. The alloyed hot-dip galvanized steel sheet having excellent friction and powdering resistance.
를 포함하는 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판의 제조방법.
A first plating step of plating a metal having a Gibbs free energy greater than Fe to 50 to 3000 mg / m 2 on the steel sheet; Heating the first plated steel sheet in a reducing atmosphere; Cooling the heated steel sheet; A second plating step of immersing the cooled steel sheet in a hot dip galvanizing bath; And rapidly heating the second plated steel sheet at a temperature rising rate of 20 ° C./sec or more within 2 seconds after the second plating.
Method for producing an alloyed hot-dip galvanized steel sheet excellent friction characteristics and powdering resistance comprising a.
상기 가열하는 단계는 700~900℃까지 행하는 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판의 제조방법.
The method according to claim 5,
The heating step is a method of producing an alloyed hot-dip galvanized steel sheet excellent in friction characteristics and powder resistance, characterized in that performed to 700 ~ 900 ℃.
상기 용융아연도금욕의 온도는 440~480℃이고, 상기 용융아연도금욕에는 Al 0.12~0.14 중량%를 포함하는 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 용융아연도금강판의 제조방법.
The method according to claim 5,
The hot dip galvanizing bath is a temperature of 440 ~ 480 ℃, the hot dip galvanizing bath is characterized in that it comprises 0.12 ~ 0.14% by weight of Al characterized in that the hot dip galvanized steel sheet having excellent friction characteristics and powdering resistance.
상기 냉각하는 단계는 상기 용융아연도금욕의 온도보다 10~50℃ 더 높은 온도까지 행하는 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판의 제조방법.
The method according to claim 5,
The cooling step is a method of producing an alloyed hot-dip galvanized steel sheet excellent in friction characteristics and powdering resistance, characterized in that performed to a temperature 10 ~ 50 ℃ higher than the temperature of the hot dip galvanizing bath.
상기 깁스자유에너지가 Fe보다 큰 금속은 Ni, Co, Cu, Sn 및 Sb로 이루어진 그룹으로부터 선택된 1종 이상인 것을 특징으로 하는 마찰특성 및 내파우더링성이 우수한 합금화 용융아연도금강판의 제조방법.The method according to any one of claims 5 to 8,
The metal having a Gibbs free energy greater than Fe is at least one selected from the group consisting of Ni, Co, Cu, Sn and Sb, characterized in that the alloying hot-dip galvanized steel sheet excellent friction properties and powdering resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100103039A KR20120041542A (en) | 2010-10-21 | 2010-10-21 | Galvannealed steel sheet having excellent frictional property and powdering resistance, and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100103039A KR20120041542A (en) | 2010-10-21 | 2010-10-21 | Galvannealed steel sheet having excellent frictional property and powdering resistance, and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20120041542A true KR20120041542A (en) | 2012-05-02 |
Family
ID=46262601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100103039A KR20120041542A (en) | 2010-10-21 | 2010-10-21 | Galvannealed steel sheet having excellent frictional property and powdering resistance, and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20120041542A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7060187B1 (en) * | 2020-12-03 | 2022-04-26 | 日本製鉄株式会社 | Surface-treated steel sheet |
WO2022118769A1 (en) * | 2020-12-03 | 2022-06-09 | 日本製鉄株式会社 | Surface-treated steel sheet |
KR20220088607A (en) * | 2020-12-18 | 2022-06-28 | 주식회사 포스코 | High strength hot-dip galvanized steel sheet having exceelent coating adhesion and spot weldability and method of manufacturing the same |
-
2010
- 2010-10-21 KR KR1020100103039A patent/KR20120041542A/en active Search and Examination
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7060187B1 (en) * | 2020-12-03 | 2022-04-26 | 日本製鉄株式会社 | Surface-treated steel sheet |
WO2022118769A1 (en) * | 2020-12-03 | 2022-06-09 | 日本製鉄株式会社 | Surface-treated steel sheet |
KR20220088607A (en) * | 2020-12-18 | 2022-06-28 | 주식회사 포스코 | High strength hot-dip galvanized steel sheet having exceelent coating adhesion and spot weldability and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101382910B1 (en) | Galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same | |
KR101819393B1 (en) | Hot dip zinc alloy plated steel material having excellent weldability and press formability and method for manufacturing same | |
JP2016041851A (en) | High strength hot-dip galvanized steel sheet excellent in plated surface quality and plating adhesion, and method for manufacturing the same | |
JP4837604B2 (en) | Alloy hot-dip galvanized steel sheet | |
AU2012377741A1 (en) | Steel sheet provided with a coating offering sacrificial cathodic protection, method for the production of a part using such a sheet, and resulting part | |
KR102250323B1 (en) | Plated steel sheet and method of manufacturing the same | |
KR101253869B1 (en) | Method for manufacturing high strength hot dip galvanized steel sheet having excellent coating adhesion | |
KR101543876B1 (en) | Manufacturing Method of High Strength Zn-Al-Mg Hot-dip Galvanized Steel Sheet Having Excellent Zn Adhesion Property | |
CA3064637A1 (en) | Hot dipped high manganese steel and manufacturing method therefor | |
KR101621630B1 (en) | Galvannealed steel sheet having high corrosion resistance after painting | |
KR20120041542A (en) | Galvannealed steel sheet having excellent frictional property and powdering resistance, and method for manufacturing the same | |
KR20160077571A (en) | High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same | |
KR101461710B1 (en) | High strength galvanealed steel sheet with good coatability and coating adhesion and method for manufacturing the same | |
JP5533730B2 (en) | Method for producing galvannealed steel sheet | |
KR101674771B1 (en) | Galvannealed steel sheet and method for manufacturing the same having excellent workability | |
JP5594559B2 (en) | Method for producing high-tensile hot-dip galvanized steel sheet | |
KR101143180B1 (en) | HOT DIP Zn-BASED ALLOY COATING BATH, HOT DIP Zn-BASED ALLOY COATED STEEL AND METHOD FOR MANUFACTURING THE SAME | |
JP5206114B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality | |
JP5728827B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
KR102352192B1 (en) | Galva-annealed steel sheet and the method for manufacturing the same | |
JP6089895B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent chipping resistance | |
JP5050918B2 (en) | Hot-dip galvanized steel and alloyed hot-dip galvanized steel | |
KR101359107B1 (en) | Galvanized steel sheet having excellent coatibility and coating adhesion and method for manufacturing the same | |
KR101304831B1 (en) | Galvanized steel sheet having excellent coatibility and coating adhesion and method for manufacturing the same | |
JP4855290B2 (en) | Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E601 | Decision to refuse application | ||
AMND | Amendment |