KR20120029270A - 그래핀층을 포함하는 발광 소자 - Google Patents

그래핀층을 포함하는 발광 소자 Download PDF

Info

Publication number
KR20120029270A
KR20120029270A KR1020100091260A KR20100091260A KR20120029270A KR 20120029270 A KR20120029270 A KR 20120029270A KR 1020100091260 A KR1020100091260 A KR 1020100091260A KR 20100091260 A KR20100091260 A KR 20100091260A KR 20120029270 A KR20120029270 A KR 20120029270A
Authority
KR
South Korea
Prior art keywords
layer
graphene
semiconductor layer
light emitting
conductive semiconductor
Prior art date
Application number
KR1020100091260A
Other languages
English (en)
Inventor
황성원
정훈재
손철수
Original Assignee
삼성엘이디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엘이디 주식회사 filed Critical 삼성엘이디 주식회사
Priority to KR1020100091260A priority Critical patent/KR20120029270A/ko
Publication of KR20120029270A publication Critical patent/KR20120029270A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Abstract

본 발명의 그래핀층을 포함하는 발광 소자는 기판층, 제1도전형 반도체층, 활성층 및 제2도전형 반도체층을 포함하며, 상기 층들 중에서 적어도 하나의 층 상에 마련된 그래핀층을 포함할 수 있다. 또한, 본 발명의 그래핀층을 포함하는 발광 소자는 기판층, 제1도전형 반도체층, 활성층 및 제2도전형 반도체층을 포함하며, 그래핀층이 활성층 내에 포함될 수 있다.

Description

그래핀층을 포함하는 발광 소자{Light emitting device including graphene layer}
그래핀층을 포함하는 발광 소자에 관한 것이다.
발광 다이오드(Light emitting diode, LED)와 같은 발광 소자는 반도체의 pn 접합에서 전자와 정공의 재결합을 통해서 발광원을 구성하여, 다양한 색의 빛을 구현할 수 있는 반도체 소자를 말한다. 이와 같은 발광 소자는 수명이 길고, 소형화 및 경량화가 가능하며, 빛의 지향성이 우수하여 저전압 구동이 가능하다. 그러나, 반도체 발광 소자 특히, 질화물 반도체 발광 소자는 낮은 광 추출 효율은 보이는데, 이는 질화 갈륨과 빛이 방출되는 공기 사이의 큰 굴절률 차이에 의해서, 발광 소자에서 발생된 빛의 상당 부분이 외부로 방출되지 않고 전반사되어 소멸되기 때문이다. 이러한 문제점을 해결하기 위해서, 반도체층에 요철 구조를 형성하여 전반사되는 빛의 양을 줄이고 있다. 하지만, 이런 방법은 내부에서 발생한 빛이 외부로 방출이 잘 되게 하는 외부 광 추출 효율을 향상시키는 방법일 뿐이다. 따라서, 발광 소자의 내부에서 발생하는 빛의 양을 증가시킬 수 있는 즉, 내부 양자 효율을 증가시킬 수 있는 방안이 필요하다.
그래핀층을 포함하는 발광 소자를 제공한다.
본 발명의 일 실시예에 따른 그래핀층을 포함하는 발광 소자는
기판층;
상기 기판층 상에 마련된 제1도전형 반도체층;
상기 제1도전형 반도체층 상에 마련된 활성층;
상기 활성층 상에 마련된 제2도전형 반도체층; 및
상기 기판층, 상기 제1도전형 반도체층, 상기 활성층 및 상기 제2도전형 반도체층 중에서 적어도 하나의 층 상에 마련된 그래핀층;을 포함할 수 있다.
상기 그래핀층은 그래핀 시트(sheet), 그래핀 나노메쉬 및 그래핀 나노리본 중에서 선택된 어느 하나를 포함할 수 있다.
상기 제1도전형 반도체층은 n형 반도체층이고, 상기 제2도전형 반도체층은 p형 반도체층일 수 있다.
상기 그래핀 나노메쉬는 복수 개의 홀이 형성된 그래핀일 수 있다.
상기 그래핀 나노리본은 복수 개의 그래핀 나노리본을 포함하고, 상기 복수 개의 나노리본은 서로 일정한 간격으로 이격되어 나란하게 배열될 수 있다.
상기 복수 개의 홀은 서로 일정한 간격으로 이격되어 배열될 수 있다.
본 발명의 다른 실시예에 따른 그래핀층을 포함하는 발광 소자는
기판층;
상기 기판층 상에 마련된 제1도전형 반도체층;
상기 제1도전형 반도체층 상에 마련되고, 그래핀층을 포함하는 활성층; 및
상기 활성층 상에 마련된 제2도전형 반도체층;을 포함할 수 있다.
상기 활성층은 복수 개의 양자 우물층 및 양자 장벽층이 서로 교대로 적층된 다중 양자 우물층일 수 있다.
상기 그래핀층은 상기 복수 개의 양자 우물층 및 양자 장벽층 중 적어도 하나의 층 상에 마련될 수 있다.
상기 제1도전형 반도체층은 n형 반도체층이고, 상기 제2도전형 반도체층은 p형 반도체층일 수 있다.
상기 그래핀층은 그래핀 시트(sheet), 그래핀 나노메쉬 및 그래핀 나노리본 중에서 선택된 어느 하나를 포함할 수 있다.
상기 그래핀 나노메쉬는 복수 개의 홀이 형성된 그래핀일 수 있다.
상기 그래핀 나노리본은 복수 개의 그래핀 나노리본을 포함하고, 상기 복수 개의 나노리본은 서로 일정한 간격으로 이격되어 나란하게 배열될 수 있다.
상기 복수 개의 홀은 서로 일정한 간격으로 이격되어 배열될 수 있다.
본 발명은 그래핀층을 포함하는 발광 소자로서, 그래핀층은 발광 소자의 활성층으로부터 나오는 빛을 표면 플라즈몬 효과에 의해서 강화(enhancement)시켜 발광 소자의 내부 양자 효율을 향상시킬 수 있다. 또한, 발광 소자의 그래핀층은 그래핀층 상에 에피성장되는 반도체층에 전위 등의 결정 결함이 발생하는 것을 방지하여, 양질의 결정성을 갖는 반도체층의 에피성장을 가능하게 해줄 수 있다. 따라서 발광 소자의 내부 양자 효율이 향상될 수 있다.
도 1은 본 발명의 일 실시예에 따른 그래핀층을 포함하는 발광 소자의 개략적인 단면도이다.
도 2a 내지 도 2e는 다양한 그래핀층의 개략적인 평면도를 도시한 것이다.
도 3은 그래핀 나노리본을 개략적으로 도시한 것이다.
도 4a는 본 발명의 다른 실시예에 따른 그래핀층을 포함하는 발광 소자의 개략적인 단면도이고, 도 4b는 본 실시예에 따른 그래핀층을 포함하는 다중 양자 우물층의 개략적인 단면도이다.
이하, 첨부된 도면을 참조하여, 본 발명의 일 실시예에 따른 그래핀을 포함하는 발광 소자에 대해서 상세하게 설명한다. 이하의 도면들에서, 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다.
도 1은 본 발명의 일 실시예에 따른 그래핀층(20)을 포함하는 발광 소자(100)의 개략적인 단면도이다.
도 1을 참조하면, 본 실시예에 따른 그래핀층(20)을 포함하는 발광 소자(100)는 기판층(10), 기판층(10) 상에 마련된 제1도전형 반도체층(30), 제1도전형 반도체층(30) 상에 마련된 활성층(40), 활성층(40) 상에 마련된 제2도전형 반도체층(50)과 기판층(10), 제1도전형 반도체층(30), 활성층(40) 및 제2도전형 반도체층(50) 중에서 적어도 하나의 층 상에 마련된 그래핀층(20)을 포함할 수 있다. 또한, 도면에 도시되지는 않았으나 발광 소자(100)는 제1 및 제2도전형 반도체층(30, 50)에 각각 마련된 제1 및 제2전극을 더 포함할 수 있다.
기판층(10)은 반도체 단결정 성장용 기판일 수 있으며, 예를 들어, 사파이어, Si, ZnO, GaAs, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 재료로 형성될 수 있다. 기판층(10)이 사파이어로 형성된 경우, 상기 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 방향의 요철상수가 13.001Å, a축 방향으로는 4.765Å의 요철 간 거리를 가지며, 사파이어 면방향(orientation plane)으로는 C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이러한 사파이어 기판층(10)의 C면의 경우 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 특히, 질화물 성장용 기판으로 사용될 수 있다.
제1도전형 반도체층(30)은 제1도전형 불순물로 도핑된 질화물 반도체로 형성될 수 있다. 즉, 제1도전형 반도체층(30)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 갖는 반도체 재료를 제1도전형 불순물로 도핑하여 형성될 수 있다. 제1도전형 반도체층(30)을 형성하는 상기 질화물 반도체는 예를 들어, GaN, AlGaN, InGaN 등을 포함할 수 있다. 상기 제1도전형 불순물은 n형 불순물일 수 있으며, 상기 n형 불순물은 예를 들어, Si, Ge, Se, Te 등을 포함할 수 있다. 한편, 제1도전형 반도체층(30)은 유기 금속 화학 증착법(metal-organic chemical vapor deposition, MOCVD), 수소 기상 증착법(hydride vapor phase epitaxy, HVPE), 분자빔에피택시법(molecular beam epitaxy, MBE) 등으로 성장될 수 있다.
활성층(40)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 인듐 함량에 따라 밴드갭 에너지가 조절되도록 InxGa1 - xN(0≤x≤1) 등의 반도체 재료로 형성될 수 있다. 또한, 활성층(40)은 양자 장벽층과 양자 우물층이 서로 교대로 적층된 다중 양자 우물(multi-quantumn well, MQW)층일 수 있다.
제2도전형 반도체층(50)은 제2도전형 불순물로 도핑된 질화물 반도체로 형성될 수 있다. 즉, 제2도전형 반도체층(50)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 갖는 반도체 재료를 제2도전형 불순물로 도핑하여 형성될 수 있다. 제2도전형 반도체층(50)을 형성하는 상기 질화물 반도체는 예를 들어, GaN, AlGaN, InGaN 등을 포함할 수 있다. 상기 제2도전형 불순물은 p형 불순물일 수 있으며, 상기 p형 불순물은 예를 들어, Mg, Zn, Be 등을 포함할 수 있다. 그리고, 제2도전형 반도체층(50)은 MOCVD, HVPE, MBE 등으로 성장될 수 있다. 한편, 제1 및 제2도전형 반도체층(30, 50)은 각각 n형 및 p형 반도체층이라고 설명되었으나, 이와 반대로 각각 p형 및 n형 반도체층일 수 있다.
그리고, 그래핀층(20)은 기판층(10), 제1도전형 반도체층(30), 활성층(40) 및 제2도전형 반도체층(50) 중에서 적어도 하나의 층 상에 마련될 수 있다. 즉, 그래핀층(20)은 기판층(10)과 제1도전형 반도체층(30) 사이에 마련될 수 있으며, 제1도전형 반도체층(30)과 활성층(40) 사이에도 마련될 수 있다. 또한, 그래핀층(20)은 활성층(40)과 제2도전형 반도체층(50) 사이에 마련될 수 있으며, 제2도전형 반도체층(50) 상에 마련될 수도 있다. 그래핀층(20)은 기판층(10), 제1도전형 반도체층(30), 활성층(40) 및 제2도전형 반도체층(50) 상에 화학 증기 증착법(chemical vapor deposition, CVD), 기계적 또는 화학적 박리법, 에피택시(epitaxy) 성장법 등으로 형성될 수 있다. 한편, 그래핀층(20)은 복수 개의 그래핀이 적층된 구조일 수 있다.
그래핀층(20)을 형성하는 그래핀은 탄소원자들이 2차원 상에서 벌집 모양의 배열을 이루면서 원자 한 층의 두께를 가지는 전도성 물질이다. 그래핀은 구조적, 화학적으로 매우 안정적이며, 우수한 전도체로서 실리콘보다 약 100배 정도 빠른 전하 이동도를 가지고, 구리보다 약 100배 정도 많은 전류를 흐르게 할 수 있다. 또한, 그래핀은 투명도가 우수한데, 종래에 투명 전극으로 사용되던 ITO(indium tin oxide)보다 높은 투명도를 갖는다.
그래핀층(20)이 기판층(10) 상에 마련된 경우, 그래핀층(20)은 기판층(10) 상에 제1도전형 반도체층(30)을 에피성장(epitaxial growth)시킬 때 두 층간의 격자 상수 차이에 의한 전위(dislocation) 등의 격자 결함을 방지할 수 있으며, 기판층(10)의 재료가 제1도전형 반도체층(30)으로 확산되는 것을 방지할 수 있다. 한편, 그래핀층(20)이 제1도전형 반도체층(30) 상에 마련된 경우, 그래핀층(20)은 그 하부에서 발생한 격자 결함이 활성층(40)을 에피성장시킬 때, 영향을 주지못하도록 즉, 상기 격자 결함이 활성층(40)에서도 계속 성장하는 것을 방지할 수 있다. 그래핀층(20)이 활성층(40) 상에 마련된 경우에도 마찬가지로, 그래핀층(20)은 그 하부에서 발생한 격자 결함이 제2도전형 반도체층(50)을 에피성장시킬 때, 영향을 주지못하도록 방지할 수 있다. 따라서, 그래핀층(20)은 그 위에 양질의 결정성을 갖는 반도체층의 에피성장을 가능하게 할 수 있으며, 발광 소자(100)의 내부 양자 효율을 향상시킬 수 있다.
또한, 그래핀층(20)은 활성층(40)과 상호작용(coupling)하여, 표면 플라즈몬(surface plasmon) 효과에 의해서 활성층(40)에서 방출된 빛을 강화시킬 수 있다. 표면 플라즈몬은 전도체 표면에서 일어나는 전자들의 집단적인 진동을 말한다. 활성층(40)에서 방출된 빛과 그래핀층(20)의 표면 플라즈몬은 공명에 의하여 활성층(40)에서 전자와 전공의 결합을 촉진하여 재결합 효율이 향상될 수 있다. 특히, 그래핀층(20)은 활성층(40)의 양자 우물층과 상호작용할 수 있으며, 상기 양자 우물층에서 발생한 빛이 그래핀층(20)의 표면 플라즈몬과 공명을 일으켜서 강화되어 발광 소자(100)의 내부 양자 효율을 향상시킬 수 있다. 한편, 그래핀층(20)은 다양한 형태의 그래핀으로 형성될 수 있는데, 이에 대해서는 도 2a 내지 도 2e에 대한 설명에서 자세하게 기술하기로 한다.
도 2a 내지 도 2e는 다양한 그래핀층의 개략적인 평면도를 도시한 것이다.
도 2a를 참조하면, 그래핀층(20)은 그래핀 시트(sheet)(21)를 포함할 수 있다. 그래핀 시트(21)는 탄소 원자들이 2차원 상에서 벌집 모양의 배열을 이루면서 형성된 탄소 원자들로 형성된 한 층의 박막을 의미한다. 그래핀은 2차원상에서 탄소 원자들이 배열된 구조이므로, 그래핀 시트(21)는 대면적을 갖는 통상의 그래핀을 지칭하는 것일 수 있다.
도 2b를 참조하면, 그래핀층(20)은 그래핀 나노메쉬(nano-mesh)(23)를 포함할 수 있다. 그래핀 나노메쉬(23)는 복수 개의 홀(24)을 포함하는 그래핀으로서, 복수 개의 홀(24)은 주기를 가지고, 규칙적으로 형성될 수 있다. 즉, 복수 개의 홀(24)은 서로 일정한 간격으로 이격되어 배열될 수 있다. 한편, 그래핀 나노메쉬(23)에 형성된 복수 개의 홀(24)은 규칙 없이 무작위로 배열될 수 있다. 홀(24)의 단면은 원형으로 도시되었으나, 이에 한정되는 것은 아니며 정사각형 등의 다각형 형태로 형성될 수 있다.
그리고, 도 2c를 참조하면, 그래핀층(20)은 복수 개의 그래핀 나노리본(25)을 포함할 수 있다. 복수 개의 그래핀 나노리본(25)은 y축 방향으로 연장되어 있으며, x축 방향으로 일정한 간격으로 이격되어 나란하게 배열되어 있다. 그래핀 나노리본(25)은 x 축 및 y 축을 갖는 2차원 평면에서 하나의 축 방향으로 길게 연장되고, 다른 축 방향으로 일정한 너비(width)를 갖는 띠 모양의 그래핀일 수 있다. 그래핀 나노리본(25)은 도 3에 개략적으로 도시되어 있다. 도 3에 도시된 그래핀 나노리본(25)은 가장자리가 열려있는(edge-open) 형태의 그래핀 나노리본이다. 한편, 도면에 도시되지는 않았으나 그래핀 나노리본은 가장자리가 닫혀있는(edge-closed) 형태로, 나노튜브가 납작하게 눌린 형태일 수 있다.
도 2d를 참조하면, 그래핀층(20)에 포함된 복수 개의 그래핀 나노리본(25)이 x축 방향으로 연장되어 있으며, y축 방향으로 일정한 간격으로 이격되어 나란하게 배열되어 있다.
또한, 도 2e를 참조하면, 그래핀층(20)에 포함된 복수 개의 그래핀 나노리본(25) 중 일부는 y축 방향으로 연장되어 있으며, x축 방향으로 일정한 간격으로 이격되어 나란하게 배열되어 있다. 한편, 상기 일부를 제외한 나머지 복수 개의 그래핀 나노리본(25)이 x축 방향으로 연장되어 있으며, y축 방향으로 일정한 간격으로 이격되어 나란하게 배열되어 있다. 복수 개의 그래핀 나노리본(25) 중에서 상기 일부의 y축 방향으로 연장된 길이와 상기 나머지의 x축 방향으로 연장된 길이는 서로 다를 수 있다. 그래핀층(20)에 포함된 복수 개의 그래핀 나노리본(25)의 배열은 도면에 도시된 배열 형태에 한정되는 것은 아니며, 다양한 배열 형태가 가능하다. 예를 들어, 복수 개의 그래핀 나노리본(25)은 x축 방향으로 연장된 것들과 y축 방향으로 연장된 것들이 서로 겹쳐지게 배열되어, 격자 형태로 배열될 수도 있다. 이렇게 그래핀층(20)에 마련된 패턴은 표면 플라즈몬 파가 발광 소자(100)의 외부로 방출되게 하여, 발광 소자(100)의 광 추출 효율을 향상시킬 수 있다.
도 3은 그래핀 나노리본(25)을 개략적으로 도시한 평면도이다.
도 3을 참조하면, 그래핀 나노리본(25)은 x 축 및 y 축을 갖는 2차원 평면에서 하나의 축 방향으로 길게 연장되고, 다른 축 방향으로 일정한 너비(width)를 갖는 띠 모양의 그래핀일 수 있다. 도 3에 도시된 그래핀 나노리본(25)은 가장자리가 열려있는(edge-open) 형태의 그래핀 나노리본이다. 한편, 도면에 도시되지는 않았으나 그래핀 나노리본은 가장자리가 닫혀있는(edge-closed) 형태로, 나노튜브가 납작하게 눌린 형태일 수 있다.
도 4a는 본 발명의 다른 실시예에 따른 그래핀층(20)을 포함하는 발광 소자(200)의 개략적인 단면도이고, 도 4b는 본 실시예에 따른 그래핀층(20)을 포함하는 다중 양자 우물층(40)의 개략적인 단면도이다. 도 1에서 설명된 그래핀층(20)을 포함하는 발광 소자(100)와의 차이점을 위주로 자세하게 설명하기로 한다.
도 4a를 참조하면, 본 실시예에 따른 그래핀층(20)을 포함하는 발광 소자(200)는 기판층(10), 기판층(10) 상에 마련된 제1도전형 반도체층(30), 제1도전형 반도체층(30) 상에 마련되고, 그래핀층(20)을 포함하는 활성층(40) 및 활성층(40) 상에 마련된 제2도전형 반도체층(50)을 포함할 수 있다.
본 실시예에서는 그래핀층(20)이 활성층(40) 내에 포함될 수 있는데, 이에 대해서는 도 4b를 참조하여 자세하게 설명하기로 한다. 도 4b를 참조하면, 활성층(40)은 양자 장벽층(41)과 양자 우물층(43)이 서로 교대로 적층된 다중 양자 우물층을 포함할 수 있다. 그래핀층(20)은 복수 개의 양자 장벽층(41) 및 양자 우물층(43) 중에서 적어도 하나의 층 상에 마련될 수 있다. 즉, 그래핀층(20)은 양자 장벽층(41) 및 양자 우물층(43) 사이에 마련될 수 있다.
그래핀층(20)이 양자 장벽층(41) 상에 마련된 경우, 그래핀층(20)은 그 하부에서 발생한 격자 결함이 양자 우물층(43)을 에피성장시킬 때, 영향을 주지못하도록 방지할 수 있다. 따라서, 그래핀층(20)은 그 위에 양질의 결정성을 갖는 반도체층의 에피성장을 가능하게 할 수 있으며, 발광 소자(200)의 내부 양자 효율을 향상시킬 수 있다. 그리고, 그래핀층(20)이 양자 우물층(43) 상에 마련된 경우, 마찬가지로 그래핀층(20)은 그 하부에서 발생한 격자 결함이 양자 장벽층(41)을 에피성장시킬 때, 영향을 주지못하도록 방지할 수 있다.
또한, 그래핀층(20)은 양자 우물층(43)과 상호작용(coupling)하여, 표면 플라즈몬(surface plasmon) 효과에 의해서 양자 우물층(43)에서 방출된 빛을 강화시킬 수 있다. 표면 플라즈몬은 전도체 표면에서 일어나는 전자들의 집단적인 진동을 말하는데, 양자 우물층(43)에서 방출된 빛과 그래핀층(20)의 표면 플라즈몬은 공명을 일으킬 수 있다. 이 표면 플라즈몬 공명에 의하여 양자 우물층(43)에서 전자와 전공의 결합이 촉진되어, 재결합 효율이 향상될 수 있다. 따라서, 발광 소자(200)의 내부 양자 효율이 향상될 수 있다. 한편, 그래핀층(20)은 다양한 형태의 그래핀으로 형성될 수 있는데, 도 2a 내지 도 2e에 도시된 바와 같이 그래핀 시트(21), 그래핀 나노메쉬(23) 및 복수 개의 그래핀 나노리본(25) 등을 포함할 수 있다.
이러한 본 발명인 그래핀을 포함하는 발광 소자는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.
10: 기판 20: 그래핀층
30: 제1도전형 반도체층 40: 활성층
50: 제2도전형 반도체층

Claims (14)

  1. 기판층;
    상기 기판층 상에 마련된 제1도전형 반도체층;
    상기 제1도전형 반도체층 상에 마련된 활성층;
    상기 활성층 상에 마련된 제2도전형 반도체층; 및
    상기 기판층, 상기 제1도전형 반도체층, 상기 활성층 및 상기 제2도전형 반도체층 중에서 적어도 하나의 층 상에 마련된 그래핀층;을 포함하는 발광 소자.
  2. 제 1 항에 있어서,
    상기 그래핀층은 그래핀 시트(sheet), 그래핀 나노메쉬 및 그래핀 나노리본 중에서 선택된 어느 하나를 포함하는 발광 소자.
  3. 제 1 항에 있어서,
    상기 제1도전형 반도체층은 n형 반도체층이고, 상기 제2도전형 반도체층은 p형 반도체층인 발광 소자.
  4. 제 2 항에 있어서,
    상기 그래핀 나노메쉬는 복수 개의 홀이 형성된 그래핀인 발광 소자.
  5. 제 2 항에 있어서,
    상기 그래핀 나노리본은 복수 개의 그래핀 나노리본을 포함하고, 상기 복수 개의 나노리본은 서로 일정한 간격으로 이격되어 나란하게 배열된 발광 소자.
  6. 제 4 항에 있어서,
    상기 복수 개의 홀은 서로 일정한 간격으로 이격되어 배열된 발광 소자.
  7. 기판층;
    상기 기판층 상에 마련된 제1도전형 반도체층;
    상기 제1도전형 반도체층 상에 마련되고, 그래핀층을 포함하는 활성층; 및
    상기 활성층 상에 마련된 제2도전형 반도체층;을 포함하는 발광 소자.
  8. 제 7 항에 있어서,
    상기 활성층은 복수 개의 양자 우물층 및 양자 장벽층이 서로 교대로 적층된 다중 양자 우물층인 발광 소자.
  9. 제 8 항에 있어서,
    상기 그래핀층은 상기 복수 개의 양자 우물층 및 양자 장벽층 중 적어도 하나의 층 상에 마련되는 발광 소자.
  10. 제 7 항에 있어서,
    상기 제1도전형 반도체층은 n형 반도체층이고, 상기 제2도전형 반도체층은 p형 반도체층인 발광 소자.
  11. 제 7 항에 있어서,
    상기 그래핀층은 그래핀 시트(sheet), 그래핀 나노메쉬 및 그래핀 나노리본 중에서 선택된 어느 하나를 포함하는 발광 소자.
  12. 제 11 항에 있어서,
    상기 그래핀 나노메쉬는 복수 개의 홀이 형성된 그래핀인 발광 소자.
  13. 제 11 항에 있어서,
    상기 그래핀 나노리본은 복수 개의 그래핀 나노리본을 포함하고, 상기 복수 개의 나노리본은 서로 일정한 간격으로 이격되어 나란하게 배열된 발광 소자.
  14. 제 12 항에 있어서,
    상기 복수 개의 홀은 서로 일정한 간격으로 이격되어 배열된 발광 소자.
KR1020100091260A 2010-09-16 2010-09-16 그래핀층을 포함하는 발광 소자 KR20120029270A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100091260A KR20120029270A (ko) 2010-09-16 2010-09-16 그래핀층을 포함하는 발광 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100091260A KR20120029270A (ko) 2010-09-16 2010-09-16 그래핀층을 포함하는 발광 소자

Publications (1)

Publication Number Publication Date
KR20120029270A true KR20120029270A (ko) 2012-03-26

Family

ID=46133801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100091260A KR20120029270A (ko) 2010-09-16 2010-09-16 그래핀층을 포함하는 발광 소자

Country Status (1)

Country Link
KR (1) KR20120029270A (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378234A (zh) * 2012-04-25 2013-10-30 清华大学 发光二极管
CN103378238A (zh) * 2012-04-25 2013-10-30 清华大学 发光二极管
KR101470754B1 (ko) * 2013-08-28 2014-12-09 영남대학교 산학협력단 발광 다이오드
KR101479450B1 (ko) * 2014-10-28 2015-01-06 영남대학교 산학협력단 발광 다이오드
KR101491962B1 (ko) * 2014-10-28 2015-02-11 영남대학교 산학협력단 발광 다이오드
CN106876529A (zh) * 2017-01-12 2017-06-20 华灿光电(浙江)有限公司 一种氮化镓基发光二极管的外延片及其制备方法
WO2018004088A1 (ko) * 2016-06-27 2018-01-04 신라대학교 산학협력단 그래핀 나노리본을 이용한 진공도 측정 센서
CN111613698A (zh) * 2020-05-22 2020-09-01 青岛粲耀新材料科技有限责任公司 石墨烯插层iii族氮化物半导体复合薄膜及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378234A (zh) * 2012-04-25 2013-10-30 清华大学 发光二极管
CN103378238A (zh) * 2012-04-25 2013-10-30 清华大学 发光二极管
KR101470754B1 (ko) * 2013-08-28 2014-12-09 영남대학교 산학협력단 발광 다이오드
KR101479450B1 (ko) * 2014-10-28 2015-01-06 영남대학교 산학협력단 발광 다이오드
KR101491962B1 (ko) * 2014-10-28 2015-02-11 영남대학교 산학협력단 발광 다이오드
WO2018004088A1 (ko) * 2016-06-27 2018-01-04 신라대학교 산학협력단 그래핀 나노리본을 이용한 진공도 측정 센서
CN106876529A (zh) * 2017-01-12 2017-06-20 华灿光电(浙江)有限公司 一种氮化镓基发光二极管的外延片及其制备方法
CN106876529B (zh) * 2017-01-12 2019-04-12 华灿光电(浙江)有限公司 一种氮化镓基发光二极管的外延片及其制备方法
CN111613698A (zh) * 2020-05-22 2020-09-01 青岛粲耀新材料科技有限责任公司 石墨烯插层iii族氮化物半导体复合薄膜及其制备方法
CN111613698B (zh) * 2020-05-22 2020-12-01 山西穿越光电科技有限责任公司 石墨烯插层iii族氮化物半导体复合薄膜及其制备方法

Similar Documents

Publication Publication Date Title
US8847199B2 (en) Nanorod light emitting device and method of manufacturing the same
US7763881B2 (en) Photonic crystal light emitting device
US8643037B2 (en) Nitride semiconductor light emitting device
US9257599B2 (en) Semiconductor light emitting device including hole injection layer
KR20120029270A (ko) 그래핀층을 포함하는 발광 소자
KR101552104B1 (ko) 반도체 발광소자
KR102284535B1 (ko) 발광 소자 및 그 제조 방법
KR20120055391A (ko) 나노로드 발광소자
KR101481593B1 (ko) 무분극 질화물계 발광 소자 및 그 제조방법
KR20120047107A (ko) 그래핀 광자 결정 발광 소자
US10930813B2 (en) Semiconductor light-emitting array and method of manufacturing the same
KR20110117963A (ko) 질화물 반도체 발광 소자 및 그 제조방법
KR20120046632A (ko) 그래핀층 및 나노결정층을 포함하는 발광 소자
TW201316548A (zh) 半導體發光裝置
JP2015050247A (ja) 窒化物半導体発光素子の製造方法、窒化物半導体発光素子および窒化物半導体発光素子用下地基板
KR20140071161A (ko) 결정방향 정합성을 나타내는 패턴이 형성된 기판을 포함하는 반도체 발광소자 및 이의 제조방법
KR20130071087A (ko) 질화물계 반도체 발광소자 및 그 제조방법
KR101744931B1 (ko) 반도체 발광 소자 및 그 제조방법
KR20120128961A (ko) 반도체 발광소자 및 그 제조방법
KR101784815B1 (ko) 발광 소자 및 그 제조 방법
RU2426197C1 (ru) Нитридное полупроводниковое устройство
US20140191194A1 (en) Nitride semiconductor light-emitting element
KR101285309B1 (ko) 발광소자 및 그 제조방법
KR20130011918A (ko) 반도체 발광소자
KR100988193B1 (ko) 발광 소자

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination