KR20120009820A - Method of producing forward osmosis membranes based on acetylated alkyl cellulose - Google Patents

Method of producing forward osmosis membranes based on acetylated alkyl cellulose Download PDF

Info

Publication number
KR20120009820A
KR20120009820A KR1020100070573A KR20100070573A KR20120009820A KR 20120009820 A KR20120009820 A KR 20120009820A KR 1020100070573 A KR1020100070573 A KR 1020100070573A KR 20100070573 A KR20100070573 A KR 20100070573A KR 20120009820 A KR20120009820 A KR 20120009820A
Authority
KR
South Korea
Prior art keywords
forward osmosis
composite membrane
alkyl cellulose
polyamide composite
porous support
Prior art date
Application number
KR1020100070573A
Other languages
Korean (ko)
Other versions
KR101161711B1 (en
Inventor
김인철
김범식
박유인
송두현
정보름
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020100070573A priority Critical patent/KR101161711B1/en
Publication of KR20120009820A publication Critical patent/KR20120009820A/en
Application granted granted Critical
Publication of KR101161711B1 publication Critical patent/KR101161711B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/22Specific non-solvents or non-solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A forward osmosis membrane based on acetylated alkyl cellulose and a method for manufacturing the same are provided to reduce energy consumption by implementing permeation based on osmotic pressure-based diffusion. CONSTITUTION: A forward osmosis membrane includes an acetylated alkyl cellulose porous support and a polyamide layer. The substitution degree of alkyl group in acetylated alkyl cellulose is between 0.1 and 2.9. The alkyl group in the acetylated alkyl cellulose is methyl group, ethyl group, propyl group, hydroxyethyl group, or hydroxypropyl group. The pore size of the porous support is between 1 and 1000nm. The thickness of the porous support is between 5 and 300um. The polyamide layer is formed by the reaction of multi-functional amine compound and amine reactive compound. The multi-functional amine compound is the compound of one or two selected from m-phenylene diamine, p-phenylene diamine, piperazine, and the derivative thereof.

Description

아세틸화된 알킬 셀룰로오스를 이용한 정삼투용 분리막 및 이의 제조 방법 {Method of producing forward osmosis membranes based on acetylated alkyl cellulose}Separation membrane for forward osmosis using acetylated alkyl cellulose and its preparation method {Method of producing forward osmosis membranes based on acetylated alkyl cellulose}

본 발명은 아셀틸화된 알킬 셀룰로오스를 기본으로 하여 다공성 지지체를 제조하고, 지지체 표면을 폴리아미드로 코팅한 정삼투용 폴리아미드 복합막 및 이의 제조방법에 관한 것이다.
The present invention relates to a polyamide composite membrane for forward osmosis, wherein a porous support is prepared on the basis of acetylated alkyl cellulose, and the surface of the support is coated with polyamide, and a method of manufacturing the same.

정삼투(forward osmosis)는 삼투압을 유발시킬 수 있는 용질의 농도가 진한 용액(유도용액, draw solution)과 묽은 용액 사이에 분리막을 두고 물은 묽은 용액에서 진한 용액 쪽으로 이동하고, 용질은 진한 용액에서 묽은 용액 쪽으로 이동하는 현상을 뜻한다. 이때 분리막은 친수성을 띠어서 물에 관해 친화성을 갖어야 하며 용질의 이동을 제한할 수 있는 소재가 가장 바람직하다. 정삼투용 분리막은 이러한 특수성으로 인하여 기존의 상용화된 고분자를 사용할 경우 성능을 충족시키기가 어렵다. Forward osmosis is a membrane placed between a concentrated solution (draw solution) and a dilute solution that can cause osmotic pressure, and water moves from the dilute solution to the concentrated solution, and the solute is concentrated in the thick solution. It is the phenomenon of moving to a dilute solution. At this time, the membrane is hydrophilic and should have affinity with respect to water and the material that can limit the movement of the solute is most preferred. Due to this particularity, the membrane for forward osmosis is difficult to meet the performance when using a commercially available polymer.

셀룰로오스계 고분자는 다른 상용화된 고분자에 비하여 보다 우수한 친수성을 나타내어 정삼투용 분리막 소재로서 선호되고 있다. 그러나 상용화된 셀룰로오스계 고분자 분리막 같은 경우에는 분자량이 작아서 물성이 떨어지는 문제점이 있고 또한 유도용액으로부터 용질이 투과되어 나오는 문제점이 발생하여 더 많은 연구를 필요로 한다.Cellulose-based polymers have been shown to be more hydrophilic than other commercially available polymers, and thus are preferred as a membrane material for forward osmosis. However, in the case of commercialized cellulose-based polymer membranes, there is a problem that the physical properties are low due to the low molecular weight, and the problem that the solute is permeated from the induction solution occurs, which requires more research.

정삼투막은 역삼투막과는 기본적으로 다른 구조를 갖는다. 역삼투막은 피드에 함유되어 있는 용질의 삼투압 이상으로 가압을 하여 용질을 제거하는 구조로 이루어지기 때문에 지지층의 구조와 특성에는 크게 관련성을 갖지 않고 활성층이 전체 특성을 좌우하게 된다. 이와 같은 이유로 역삼투막에서는 계면중합에 의한 폴리아미드 박막층이 활성층으로 사용이 되는데 이는 상전환법에 의해서 제조된 분리막에 비해 상대적으로 활성층이 얇고 치밀한 구조를 갖기 때문이다.The forward osmosis membrane has a fundamentally different structure from the reverse osmosis membrane. Since the reverse osmosis membrane is composed of a structure that removes the solute by pressurizing more than the osmotic pressure of the solute contained in the feed, the active layer does not have much relation to the structure and properties of the support layer, and the active layer determines the overall characteristics. For this reason, in the reverse osmosis membrane, the polyamide thin film layer by interfacial polymerization is used as the active layer, because the active layer has a thinner and dense structure than the separator prepared by the phase inversion method.

반면 정삼투막의 경우 기본적으로 분리막을 경계로 두 층이 물과 접촉하기 때문에 활성층 뿐만 아니라 지지층 역시 성능을 크게 좌우하게 된다. 이와 같은 이유로 물과 친화성이 좋은 고분자 물질이 지지층으로 사용되어야 한다. 정삼투막의 활성층은 제거되어야 할 용질의 종류에 따라서 결정이 될 수 있으며, 유도용액의 피드 쪽으로의 확산을 잘 막을수록 효율적인 분리막이 될 수 있다.On the other hand, in the case of the forward osmosis membrane, the two layers are in contact with water basically around the separation membrane, so the support layer as well as the active layer greatly influence the performance. For this reason, a polymer material having good affinity with water should be used as the support layer. The active layer of the forward osmosis membrane may be determined according to the type of solute to be removed, and the better the effective diffusion of the induced solution into the feed side, the more effective the separation membrane.

미국공개공보 제2006-0226067호에서는 셀룰로오스 고분자(cellulose acetate, cellulose triacetate, cellulose acetyl propionate, cellulose acetyl butyrate 등)를 이용하여 정삼투용 분리막을 제조하였으며, 정삼투 특성을 살펴보고 있다. 상기 특허에서는 특히 투과유량을 높이기 위하여 분리막 두께를 줄이려는 시도를 하였으며, 이를 위하여 폴리에스터 메쉬를 분리막 단면 사이에 함침시킴으로서 투과유량을 극대화시킬 수 있었지만 제거율(용질의 역확산)이 떨어지는 문제가 있었다. US Patent Publication No. 2006-0226067 prepared a membrane for forward osmosis using cellulose polymers (cellulose acetate, cellulose triacetate, cellulose acetyl propionate, cellulose acetyl butyrate, etc.) and examines the characteristics of forward osmosis. In this patent, in particular, an attempt was made to reduce the membrane thickness in order to increase the permeate flow rate. For this purpose, the permeation rate was maximized by impregnating a polyester mesh between the membrane cross-sections, but there was a problem in that the removal rate (desort diffusion of the solute) was lowered.

상용화된 셀룰로오스 고분자의 종류는 한정이 되어 있으며, 성능 향상을 위한 고분자 소재의 특성보다는 제법에 의한 성능 향상을 시도하여 왔다. 최근에 정삼투막에 관심이 높아지면서 정삼투막에 관련된 발표도 증가되고 있으며, 미국 예일(Yale)대학의 M. Elimelech 교수는 정삼투막에 관련된 논문에서 정삼투막의 성능을 발현하기 위한 연구 내용을 발표하였고, 그 이후 정삼투막 제조와 관련된 논문들이 다수 발표되고 있다.The type of commercialized cellulose polymer is limited, and has been attempted to improve the performance by the manufacturing method rather than the characteristics of the polymer material for improving the performance. Recently, as interest in forward osmosis membranes increases, announcements related to forward osmosis membranes have also increased. Professor M. Elimelech of Yale University in the United States has published a study to express the performance of forward osmosis membranes in a paper related to the osmosis membrane. Since then, a number of papers related to the manufacture of forward osmosis membranes have been published.

그러나 현재까지 발표된 대부분의 논문들은 기본적으로 상용화된 고분자를 이용하여 성능을 향상시키려는데 그치고 있어 정삼투막의 성능을 획기적으로 발전시키기에는 많은 한계점을 나타내고 있다.
However, most of the papers published until now are basically trying to improve the performance by using commercially available polymers, which shows a lot of limitations to significantly improve the performance of the forward osmosis membrane.

이에 본 발명자들은 종래 기술의 문제점을 해결하기 위하여 연구, 노력한 결과 친수성이 뛰어난 신규 셀룰로오스계 고분자 소재를 합성하여 정삼투막 지지체를 제조하고 용질의 역확산을 줄이기 위하여 계면중합에 의한 폴리아미드 층을 지지체 위에 코팅함으로서 정삼투막의 성능향상을 극대화할 수 있다는 사실을 발견함으로써 본 발명을 완성하게 되었다.Therefore, the present inventors have studied and tried to solve the problems of the prior art to produce a forward osmosis membrane support by synthesizing a novel cellulose-based polymer material with excellent hydrophilicity and to support the polyamide layer by interfacial polymerization to reduce the back diffusion of the solute The present invention has been completed by discovering that the performance of the forward osmosis membrane can be maximized by coating on it.

따라서 본 발명은 아세틸화된 알킬 셀룰로오스 다공성 지지체 및 폴리아미드 층을 포함하는 정삼투용 폴리아미드 복합막 및 이의 제조방법을 제공하는데 그 목적이 있다.
Accordingly, an object of the present invention is to provide a polyamide composite membrane for forward osmosis comprising an acetylated alkyl cellulose porous support and a polyamide layer, and a method for preparing the same.

본 발명은 아세틸화된 알킬 셀룰로오스 다공성 지지체; 및 폴리아미드 층을 포함하는 정삼투용 폴리아미드 복합막을 제공하는 것을 그 특징으로 한다.The present invention provides an acetylated alkyl cellulose porous support; And a polyamide composite membrane for forward osmosis comprising a polyamide layer.

또한 본 발명은 (a) 아세틸화된 알킬 셀룰로오스 다공성 지지체를 다관능성 아민 수용액에 침지한 후 과잉의 아민 수용액을 제거하는 단계; (b) 상기 다공성 지지체를 아민 반응성 화합물이 용해되어 있는 유기용액과 접촉시켜 계면중합 반응시키는 단계; 및 (c) 상기 계면중합에 의한 생성물을 염기성 수용액에 침지 후 수세하는 단계를 포함하는 것을 특징으로 하는 정삼투용 폴리아미드 복합막의 제조방법을 제공하는 것을 그 특징으로 한다.
In addition, the present invention (a) after immersing the acetylated alkyl cellulose porous support in the polyfunctional amine aqueous solution to remove the excess amine aqueous solution; (b) contacting the porous support with an organic solution in which an amine reactive compound is dissolved to perform an interfacial polymerization reaction; And (c) immersing the product by interfacial polymerization in a basic aqueous solution and then washing with water.

상기 제조방법으로 제조된 본 발명의 정삼투용 폴리아미드 복합막은 아세틸화된 알킬 셀룰로오스 다공성 지지체에 폴리아미드를 코팅한 것으로 다른 종류의 고분자 다공성 분리막에 폴리아미드를 코팅한 것보다 투과유량이 매우 우수하며, 역확산이 적게 일어난다는 장점이 있다. The polyamide composite membrane for forward osmosis of the present invention prepared by the above method is coated with polyamide on an acetylated alkyl cellulose porous support, and the permeation flow rate is much better than that of polyamide coated on other types of polymeric porous separators. The advantage is that less despreading occurs.

또한 본 발명에 따른 정삼투막은 삼투압에 의한 확산에 의해 투과되기 때문에 에너지가 적게 소모되고, 피드의 변성이 일어나지 않기 때문에 해수담수화, 하수?폐수 처리 및 바이오 화합물 농축 등에 효과적으로 사용이 가능하다.
In addition, the forward osmosis membrane according to the present invention can be effectively used for seawater desalination, sewage and wastewater treatment, and bio-compound concentration, because less energy is consumed and no change in feed occurs because it is permeated by diffusion by osmotic pressure.

본 발명은 아세틸화된 알킬 셀룰로오스 다공성 지지체 및 폴리아미드 코팅층을 포함하는 정삼투용 폴리아미드 복합막에 관한 것으로, 상기 정삼투용 폴리아미드 복합막의 제조방법은 (a) 아세틸화된 알킬 셀룰로오스 다공성 지지체를 다관능성 아민 수용액에 침지한 후 과잉의 아민 수용액을 제거하는 단계; (b) 상기 다공성 지지체를 아민 반응성 화합물이 용해되어 있는 유기용액과 접촉시켜 계면중합 반응시키는 단계; 및 (c) 상기 계면중합에 의한 생성물을 염기성 수용액에 침지 후 수세하는 단계를 포함하여 이루어진다.The present invention relates to a polyamide composite membrane for forward osmosis comprising an acetylated alkyl cellulose porous support and a polyamide coating layer, the method for producing a polyamide composite membrane for forward osmosis (a) an acetylated alkyl cellulose porous support Removing the excess amine aqueous solution after immersion in the polyfunctional amine aqueous solution; (b) contacting the porous support with an organic solution in which an amine reactive compound is dissolved to perform an interfacial polymerization reaction; And (c) rinsing the product by the interfacial polymerization in a basic aqueous solution and then washing with water.

기존 상용화된 친수성 고분자인 셀룰로오스계 고분자의 경우 아세틸화를 시키는 과정에서 가수분해가 많이 진행되어 분자량이 작아지게 된다는 문제점이 있었으며, 셀룰로오스계 고분자의 종류도 한정되어 있어 정삼투막의 성능을 향상시키는데 많은 어려움이 있었다. 본 발명에서는 이에 수용성 셀룰로오스 고분자인 알킬 셀룰로오스를 아세틸화시키고 이 고분자를 이용하여 정삼투막을 제조함으로써 상기 문제점을 해결하였으며, 다른 셀룰로오스계 고분자에 비해서 투과유량이 월등이 높고 또한 폴리아미드 계면중합을 통해 역확산을 효과적으로 막을 수 있는 정삼투용 폴리아미드 복합막을 제공하는 것을 특징으로 한다.
In the case of cellulose-based polymers, which are commercially available hydrophilic polymers, hydrolysis proceeds a lot in the process of acetylation, thereby decreasing molecular weight. Also, the types of cellulose-based polymers are limited. There was this. The present invention solves the above problems by acetylating alkyl cellulose, which is a water-soluble cellulose polymer, and preparing a forward osmosis membrane using the polymer, and has a higher permeation flow rate than other cellulose-based polymers and inversely through polyamide interfacial polymerization. It is characterized by providing a polyamide composite membrane for forward osmosis that can effectively prevent diffusion.

이하에서는 본 발명의 아세틸화된 알킬 셀룰로오스를 이용한 정삼투용 폴리아미드 복합막의 제조방법을 각 단계별로 나누어 보다 상세하게 설명한다.Hereinafter, the method of preparing a polyamide composite membrane for forward osmosis using the acetylated alkyl cellulose of the present invention will be described in more detail by dividing each step.

먼저 아세틸화된 알킬 셀룰로오스 다공성 지지체를 제조한다.First, an acetylated alkyl cellulose porous support is prepared.

상기 아세틸화된 알킬 셀룰로오스란 셀룰로오스의 히드록시기 중 일부를 알킬화한 것을 의미하며, 상기 알킬화는 C1 ~ C6의 알킬 또는 C1 ~ C6의 히드록시알킬 등으로 치환하는 것을 의미하며, 예를 들어, 메틸, 에틸, 프로필, 히드록시에틸 또는 히드록시프로필 등으로 치환할 수 있다. 아세틸화하기 전 셀룰로오스의 히드록시기 중 적어도 하나 이상을 알킬기로 치환한 것을 의미하며, 즉, 셀룰로오스의 히드록시기 일부는 알킬기로, 일부는 아세틸화된 것을 의미한다. 알킬기의 치환도는 (최대로 치환되면 치환도는 3이 된다.) 0.1 ~ 2.9가 된 것을 사용하는 것이 바람직하다. 치환도는 셀룰로오스 단위구조 내에 함유되어 있는 히드록시기를 다른 화합물로 치환한 정도를 의미하며, 히드록시기 3개 중에 1개가 치환되면 1, 2개가 치환되면 2, 3개 모두가 치환되면 치환도는 3이 된다. 아세틸화는 나머지 치환되지 않은 히드록시기의 5 ~ 100 %가 아세틸화된 것을 의미한다.The acetylated alkyl cellulose refers to alkylation of a part of the hydroxy group of cellulose, and the alkylation means substitution of C 1 to C 6 alkyl or C 1 to C 6 hydroxyalkyl, and the like. , Methyl, ethyl, propyl, hydroxyethyl or hydroxypropyl and the like. It means that at least one or more of the hydroxy group of the cellulose is substituted with an alkyl group before acetylation, that is, a part of the hydroxy group of the cellulose means an alkyl group, a part is acetylated. Substitution degree of an alkyl group (when substituted by the maximum, substitution degree becomes 3) It is preferable to use what became 0.1-2.9. The degree of substitution means the degree to which the hydroxy group contained in the cellulose unit structure is substituted with another compound, and when one of the three hydroxy groups is substituted, one and two are substituted, and the degree of substitution is three when all three are substituted. . Acetylation means that 5-100% of the remaining unsubstituted hydroxy groups are acetylated.

본 발명에 따른 아세틸화된 알킬 셀룰로오스를 이용한 다공성 지지체는 상기 아세틸화된 알킬 셀룰로오스를 양용매, 빈용매 및 비용매로 이루어진 군에서 선택된 1종 또는 2종 이상의 용매에 용해시킨 후 상전환법에 의해 상전환시키는 과정을 거침으로써 제조할 수 있다. 상기 상전환법으로는 비용매유도상분리법, 열유도상분리법 등의 공지된 방법을 사용할 수 있다. 예를 들어, 고분자를 양용매를 포함하는 용매계에 녹이고 비용매에 침전시켜서 기공을 형성시키는 과정을 통해 상전이 시킬 수 있다.Porous support using acetylated alkyl cellulose according to the present invention is dissolved in the acetylated alkyl cellulose in one or two or more solvents selected from the group consisting of a good solvent, poor solvent and non-solvent by a phase inversion method It can be prepared by going through a phase inversion process. As the phase inversion method, a known method such as a non-solvent induction phase separation method or a thermal induction phase separation method may be used. For example, the phase change may be performed by dissolving the polymer in a solvent system including a good solvent and precipitating the non-solvent to form pores.

상기 양용매로는 디메틸포름아마이드(dimethylformamide), 디메틸아세트아마이드(dimethylacetamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 또는 디메틸설폭사이드(dimethylsulfoxide) 등을 사용할 수 있으며, 상기 빈용매로는 아세톤(acetone), 메틸에틸케톤(methyl ethyl ketone), 감마-부틸로락톤(r-butyrolactone) 등의 알리파틱 및 환형 키톤류, 디클로로메탄(dichloromethane), 디클로에탄(dichloroethane) 등의 알킬화 할라이드류 또는 1,4-다이옥산(1,4-dioxane), 1,3-다이옥소란(1,3-dioxolane) 등의 환형 에테르류를 사용할 수 있으며, 상기 비용매로는 메탄올(methanol), 에탄올(ethanol) 등의 알콜류, 락트산(lactic acid), 벤조산(benzoic acid), 톨루엔술폰산(toluene sulfonic acid) 등의 알리파틱 카르복시산, 아로마틱 카르복시산, 알리파틱 술폰산 또는 아로마틱 술폰산 군을 사용할 수 있다. 상기와 같은 다양한 용매에 용해시킴으로써 다공성 지지체의 기공 크기를 조절할 수 있으며, 이는 정삼투막의 투과 성능에 크게 영향을 미친다. As the good solvent, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone or dimethyl sulfoxide may be used. The poor solvents include aliphatic and cyclic ketones such as acetone, methyl ethyl ketone, and gamma-butylyrolactone, dichloromethane, dichloroethane. Alkylated halides such as these, or cyclic ethers such as 1,4-dioxane, 1,3-dioxolane, and 1,3-dioxolane may be used. The non-solvent may be methanol. ), Alcohols such as ethanol, lactic acid, benzoic acid, aliphatic carboxylic acid such as toluene sulfonic acid, aromatic carboxylic acid, aliphatic sulfonic acid or aromatic sulfonic acid group can be used. By dissolving in various solvents as described above, the pore size of the porous support can be controlled, which greatly affects the permeation performance of the forward osmosis membrane.

상기 아세틸화된 알킬 셀룰로오스 다공성 지지체는 기공 크기가 1 ~ 1000 nm이며, 상기 기공 크기가 1 nm 미만인 경우 기공이 너무 작아서 계면중합층이 기공 내부로 침투하여 강도를 유지할 수 없는 문제가 있으며, 1000 nm를 초과하는 경우 기공 내부로 아민용액이 빠져나가서 계면중합이 쉽게 이루어지지 않는 문제점이 있다. 상기 아세틸화된 알킬 셀룰로오스 다공성 지지체의 두께는 5 ~ 300 ㎛가 되도록 조절해 주는 것이 좋다.The acetylated alkyl cellulose porous support has a pore size of 1 to 1000 nm, and when the pore size is less than 1 nm, the pores are too small so that the interfacial polymerization layer can not penetrate into the pores and maintain strength, 1000 nm. If it exceeds, there is a problem that the interfacial polymerization is not easily made due to the amine solution exits into the pores. The thickness of the acetylated alkyl cellulose porous support is preferably adjusted to 5 ~ 300 ㎛.

이후 상기 제조된 아세틸화된 알킬 셀룰로오스 다공성 지지체를 다관능성 아민 수용액에 침지한 후 과잉의 아민 수용액을 제거한다.Thereafter, the prepared acetylated alkyl cellulose porous support is immersed in the polyfunctional amine aqueous solution, and then the excess amine aqueous solution is removed.

상기 다관능성 아민 수용액에 사용되는 다관능성 아민 화합물은 적어도 2개 이상의 아민 관능기, 더욱 바람직하게는 2 내지 3개의 아민 관능기를 가지는 단분자성 아민이 바람직하다. 본 발명에서 상기 다관능성 아민 화합물은 특별히 한정되지는 않으나, 바람직하게는 메타-페닐렌 디아민(m-phenylene diamine), 파라-페닐렌 디아민(p-phenylene diamine), 피페라진(piperazine) 및 상기 물질들의 유도체로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물을 사용할 수 있다. 상기 다관능성 아민 화합물은 수용액 중에 0.05 ~ 10 중량%, 바람직하게는 0.1 ~ 5 중량% 범위로 사용하는 것이 바람직하다. 상기 침지 과정은 다관능성 아민 수용액에 5 초 ~ 5 분간 하는 것이 바람직하며, 더욱 바람직하게는 10 초 ~ 3 분간 침지시키는 것이 좋다.As for the polyfunctional amine compound used for the said polyfunctional amine aqueous solution, the monomolecular amine which has at least 2 or more amine functional group, More preferably, 2 to 3 amine functional group is preferable. In the present invention, the polyfunctional amine compound is not particularly limited, but preferably meta-phenylene diamine, para-phenylene diamine, p-phenylene diamine, piperazine and the substance. One or two or more compounds selected from the group consisting of derivatives thereof may be used. The polyfunctional amine compound is preferably used in an aqueous solution of 0.05 to 10% by weight, preferably 0.1 to 5% by weight. The immersion process is preferably performed for 5 seconds to 5 minutes in an aqueous polyfunctional amine solution, more preferably 10 seconds to 3 minutes.

바람직하게는 상기 다관능성 아민 수용액에 첨가제로서 캄파 설폰산(camphor sulfonic acid)과 같은 유기 술폰산, 디메틸설폭사이드(dimethylsulfoxide)와 같은 극성용매, 트리에틸렌글리콜(triethyleneglycol)과 같은 디올류 또는 소듐 도데실 설페이트(sodium dodecyl sulfate)와 같은 계면활성제류 등을 수용액 중 0.1 - 5 중량% 첨가하여 사용하는 것이 좋다. 상기 첨가제를 넣어줌으로써 표면의 거칠기 (roughness)를 증가시켜서 투과유량을 크게 향상시킬 수 있다는 장점이 있다.Preferably, an organic sulfonic acid such as camphor sulfonic acid, a polar solvent such as dimethylsulfoxide, a diol such as triethyleneglycol, or sodium dodecyl sulfate as an additive to the polyfunctional amine aqueous solution. Surfactants such as sodium dodecyl sulfate may be used by adding 0.1 to 5% by weight in aqueous solution. By adding the additive, there is an advantage that the permeation flow rate can be greatly improved by increasing the roughness of the surface.

과잉의 아민 수용액을 제거한 후 얻어진 다공성 지지체를 아민 반응성 화합물이 용해되어 있는 유기용액과 접촉시켜 계면중합 반응시킨다. 상기 과정에 의해 다공성 지지체 상에 폴리아미드 층이 형성된다.After removing the excess amine aqueous solution, the obtained porous support is brought into contact with the organic solution in which the amine-reactive compound is dissolved to perform an interfacial polymerization reaction. This process forms a polyamide layer on the porous support.

상기 아민 반응성 화합물은 다관능성 아실 할라이드, 다관능성 술포닐 할라이드, 다관능성 이소시아네이트 및 상기 물질들의 유도체로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물을 사용할 수 있으며, 상기 아민 반응성 화합물은 유기용액 중에 0.01 ~ 2 중량%로 사용하는 것이 바람직하며, 더욱 바람직하게는 0.02 ~ 1 중량%로 사용한다. 상기 계면중합 반응은 5 초 ~ 5 분 범위가 바람직하며, 더욱 바람직하게는 10 초 ~ 3 분간 계면중합 시킨다. 상기 유기용액에 사용되는 유기용매로는 탄소수 6 ~ 14의 알칸(Alkane) 이나 ISOL-C와 같은 알칸 혼합물(아이소파라핀)을 사용하는 것이 바람직하다.The amine-reactive compound may be used one or two or more compounds selected from the group consisting of polyfunctional acyl halides, polyfunctional sulfonyl halides, polyfunctional isocyanates and derivatives of the above substances, and the amine reactive compound may be used in 0.01% It is preferable to use it at -2 weight%, More preferably, it is used at 0.02-1 weight%. The interfacial polymerization reaction is preferably in the range of 5 seconds to 5 minutes, more preferably 10 seconds to 3 minutes. As the organic solvent used in the organic solution, it is preferable to use an alkane mixture (isoparaffin) such as alkanes having 6 to 14 carbon atoms or ISOL-C.

계면중합 시 발생되는 염화수소(HCl)는 이를 중화시킬 수 있는 염기성 시약 등을 통해 제거가 가능하며, 예를 들어, 트리에틸아민(triethylamine)과 같은 아민류 또는 가성소다 등을 사용할 수 있다.Hydrogen chloride (HCl) generated during interfacial polymerization can be removed using a basic reagent that can neutralize it. For example, amines such as triethylamine or caustic soda may be used.

이후 상기 생성물을 -10 ~ 90 ℃, 바람직하게는 40 ~ 70 ℃에서 0.5 ~ 10분동안 건조시키고 염기성 수용액에 침지한 후 수세한다. 상기 염기성 수용액으로는 예를 들어, 0.05 ~ 3 중량%, 바람직하게는 0.1 ~ 1 중량%의 소듐 카보네이트(sodium carbonate) 수용액을 사용할 수 있다. 상기 침지 과정을 통해 비반응된 물질을 제거할 수 있으며, 이후 증류수 등으로 세척하는 과정을 거친다.
The product is then dried at −10 to 90 ° C., preferably at 40 to 70 ° C. for 0.5 to 10 minutes, immersed in a basic aqueous solution and washed with water. As the basic aqueous solution, for example, an aqueous sodium carbonate solution of 0.05 to 3% by weight, preferably 0.1 to 1% by weight may be used. The non-reacted material may be removed through the dipping process, followed by washing with distilled water.

이하에서는 본 발명을 실시예에 의하여 더욱 자세하게 설명하나, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

제조예Manufacturing example

알킬 셀룰로오스로서 메틸 셀룰로오스(PMA, 삼성정밀화학제품, DS:1.7), 에틸 셀룰로오스, 히드록시에틸 셀룰로오스, 프로필 셀룰로오스 및 히드록시프로필 셀룰로오스 10 중량%를 각각 사용하여 피리딘 90 중량%에 첨가한 후 아세틸화도를 조절하기 위하여 무수 초산의 몰비를 알킬 셀룰로오스 단위유니트당 3으로 맞춰 90 ℃에서 3 시간 반응시킨 후, 물속에서 고형화하여 아세틸화도가 약 100 %인 고분자를 제조하였다(AMC100).
As alkyl cellulose, 10% by weight of methyl cellulose (PMA, Samsung Fine Chemicals, DS: 1.7), ethyl cellulose, hydroxyethyl cellulose, propyl cellulose, and hydroxypropyl cellulose were added to 90% by weight of pyridine, followed by acetylation degree. In order to adjust the molar ratio of acetic anhydride to 3 per unit alkyl cellulose unit was reacted for 3 hours at 90 ℃, and then solidified in water to prepare a polymer having a degree of acetylation of about 100% (AMC 100 ).

실시예Example 1 :  One : 아세틸화된Acetylated 메틸methyl 셀룰로오스( cellulose( AMCAMC )를 이용한 다공성 지지체 Porous support using

치환도 2.0의 아세틸화된 메틸 셀룰로오스 7 중량%, 아세톤 30 중량%, 1,4-다이옥산(1,4-dioxane) 59 중량%, 메탄올 2 중량%, 말레산(maleic acid) 2 중량% 용액을 50 미크론 두께의 나이프로 캐스팅한 후 물 속에서 응고시켰다. 이후 용매를 제거하였다. 기공크기는 폴리에틸렌글리콜(PEG)로 실험할 경우 분획분자량이 PEG 100,000이었다.
A solution of 7% by weight of acetylated methyl cellulose, 30% by weight of acetone, 59% by weight of 1,4-dioxane, 2% by weight of methanol, and 2% by weight of maleic acid Cast into a 50 micron thick knife and solidify in water. The solvent was then removed. The pore size was fraction 100,000 when PEG was tested with polyethylene glycol (PEG).

비교예Comparative example 1 ~ 7 : 기존 셀룰로오스를 이용한 다공성 지지체 1 to 7: porous support using conventional cellulose

상기 실시예 1의 아세틸화된 메틸 셀룰로오스 대신 셀룰로오스 트리아세테이트(CTA), 셀룰로오스 아세테이트(CA), 셀룰로오스 아세테이트 부티레이트(CAB), 셀룰로오스 아세테이트 프로피오네이트(CAP), 폴리술폰(PSf), 폴리에테르술폰(PES) 및 폴리아크릴로니트릴(PAN)를 고분자로 사용한 것 외에는 실시예 1과 동일한 방법으로 정삼투막을 제조하였다. 실시예 1과 동일 조건에서의 비교를 위해, 기공크기를 조절하기 위해 고분자 용액에 첨가제를 넣어 각각 분획분자량을 PEG 100,000으로 조절하였다.
Cellulose triacetate (CTA), cellulose acetate (CA), cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP), polysulfone (PSf), polyether sulfone (CET) instead of the acetylated methyl cellulose of Example 1 A forward osmosis membrane was prepared in the same manner as in Example 1 except that PES) and polyacrylonitrile (PAN) were used as polymers. For comparison under the same conditions as in Example 1, in order to control the pore size, an additive was added to the polymer solution to adjust the fraction molecular weight to PEG 100,000.

실험예Experimental Example 1 : 고분자 소재 차이에 따른 다공성 지지체의 투과실험 1: Permeation Experiment of Porous Support by Different Polymer Materials

본 발명의 신규한 AMC와 기존 셀룰로오스의 투과성능을 비교하기 위해 본 실험을 실시하였다. 투과실험은 분리막을 사이에 두고 양쪽에 두 종류의 용액을 채운 후 진행하였으며, 한쪽은 증류수, 다른 한쪽은 유도용액으로 20 중량%의 NaCl 수용액을 사용하였다. 물이 증류수 쪽에서 유도용액 쪽으로 이동하였으며, 투과된 용액의 질량을 측정하여 투과유량을 계산하였다. NaCl은 유도용액에서 증류수 쪽으로 이동하며, 증류수 쪽에 이동된 염은 전도도(μS/cm)로 나타내었다. 전도도는 전도도측정기(Lamotte 사)를 통해 측정하였다.This experiment was conducted to compare the permeation performance of the novel AMC and the existing cellulose of the present invention. The permeation experiment was carried out after the two membranes were filled on both sides with a separator interposed therebetween, one side of distilled water and the other side using a 20 wt% NaCl aqueous solution. Water moved from the distilled water to the induction solution, and the permeate flow rate was calculated by measuring the mass of the permeated solution. NaCl moves to the distilled water in the induction solution, and the salt transferred to the distilled water is expressed as conductivity (μS / cm). Conductivity was measured using a conductivity meter (Lamotte).

하기 표 1에 고분자 차이에 따른 결과를 나타내었다. Table 1 shows the results of the polymer difference.

실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6 비교예 7Comparative Example 7 고분자Polymer AMCAMC CTACTA CACA CABCAB CAPCAP PSfPSf PESPES PANPAN 투과유량
(L/m2hr)
Permeate flow rate
(L / m 2 hr)
9090 4242 3434 4141 2929 2.12.1 6.16.1 1.31.3
역확산염 전도도
(uS/cm)
Despread conductivity
(uS / cm)
12,00012,000 9,5009,500 8,4008,400 11,00011,000 88,00088,000 5,0005,000 7,5007,500 4,0004,000

상기 표 1에서 보듯이, 본 발명의 실시예 1의 경우 투과유량이 90 L/m2hr이고, 역확산된 염의 전도도는 12,000μS/cm로 나타났으며, 기존의 셀룰로오스 고분자를 이용한 경우보다 투과유량이 현저히 높은 것을 확인할 수 있었다.
As shown in Table 1, in Example 1 of the present invention, the permeate flow rate was 90 L / m 2 hr, and the conductivity of the despread salt was 12,000 μS / cm, and the permeation rate was higher than that of the conventional cellulose polymer. It was confirmed that the flow rate was remarkably high.

실험예Experimental Example 2 :  2 : 아세틸화된Acetylated 메틸methyl 셀룰로오스( cellulose( AMCAMC )를 이용한 다공성 지지체의 두께에 따른 투과실험Permeation experiment according to the thickness of the porous support using

실시예 1과 동일한 방법으로 정삼투막을 제조하고 캐스팅 두께를 하기 표 2와 같이 변화시키면서 실험을 하였다.The forward osmosis membrane was prepared in the same manner as in Example 1, and the experiment was performed while changing the casting thickness as shown in Table 2 below.

하기 표 2에 그 결과를 나타내었다.The results are shown in Table 2 below.

50um50um 100um100um 150um150um 200um200um 250um250um 투과유량
(L/m2hr)
Permeate flow rate
(L / m 2 hr)
9090 8181 5454 2525 1818
역확산염 전도도
(μS/cm)
Despread conductivity
(μS / cm)
12,00012,000 9,2009,200 5,8005,800 2,8002,800 2,2002,200

상기 표 2에서 보듯이, 본 발명의 AMC는 전반적인 투과유량이 우수하며, 두께를 감소시킴으로서 투과유량이 급격히 증가하는 특징이 있다.
As shown in Table 2, the AMC of the present invention has excellent overall permeate flow rate, and is characterized by a rapid increase in permeate flow rate by reducing the thickness.

실시예Example 2 :  2 : 아세틸화된Acetylated 메틸methyl 셀룰로오스를 이용한  Cellulose 정삼투용Forward osmosis 폴리아미드  Polyamide 복합막Composite membrane

실시예 1에서 제조된 아세틸화된 메틸 셀룰로오스(AMC) 다공성 지지체 위에 폴리아미드 계면중합을 실시하였다. 먼저, AMC 다공성 지지체를 메타-페닐렌 디아민(MPD) 2 중량%, 트리에틸아민 (TEA) 1 중량% 수용액에 1 분간 침지하였다. 과잉의 아민용액을 제거한 후 ISOL-C 용매에 트리메조일클로라이드(TMC) 0.1 중량%를 녹인 유기용액에 1분간 침지 후, 60 ℃에서 1 분간 건조하였다. 이후 Na2CO3 0.1 중량% 수용액에 상온에서 1시간 동안 세척하여 아세틸화된 메틸 셀룰로오스를 이용한 정삼투용 폴리아미드 복합막을 제조하였다.
Polyamide interfacial polymerization was carried out on the acetylated methyl cellulose (AMC) porous support prepared in Example 1. First, the AMC porous support was immersed in an aqueous solution of 2% by weight of meta-phenylene diamine (MPD) and 1% by weight of triethylamine (TEA) for 1 minute. After the excess amine solution was removed, it was immersed in an organic solution in which 0.1% by weight of trimezoyl chloride (TMC) was dissolved in an ISOL-C solvent for 1 minute, and then dried at 60 ° C for 1 minute. After washing for 1 hour at room temperature in Na 2 CO 3 0.1 wt% aqueous solution to prepare a polyamide composite membrane for forward osmosis using acetylated methyl cellulose.

실험예Experimental Example 3 : 사용된 폴리아미드 농도에 따른  3: depending on the polyamide concentration used 정삼투용Forward osmosis 폴리아미드  Polyamide 복합막의Of composite membrane 투과실험 Permeation Experiment

MPD, TEA 및 TMC의 농도를 변화시킬 때 MPD를 줄여나가는 비율대로 TEA와 TMC의 농도를 실시예 2와 동일한 방법으로 복합막을 제조하여 투과실험을 하였다. 예를 들어 MDP를 2중량%에서 1중량%로 50% 감소시킬 경우, TEA는 1중량%에서 0.5중량%로, TMC는 0.1중량%에서 0.05중량%로 감소시켰다. When the concentration of MPD, TEA and TMC was changed, the permeation experiment was carried out by preparing a composite membrane in the same manner as in Example 2 with the concentration of TEA and TMC at the rate of decreasing MPD. For example, when reducing MDP by 50% from 2% to 1%, TEA decreased from 1% to 0.5% by weight and TMC from 0.1% to 0.05% by weight.

결과를 하기 표 3에 나타내었다.The results are shown in Table 3 below.

MPD/TEA/TMC 농도 (중량%)MPD / TEA / TMC concentration (% by weight) 2/1/0.12/1 / 0.1 1/0.5/0.051 / 0.5 / 0.05 0.5/0.25/0.0250.5 / 0.25 / 0.025 00 투과유량
(L/m2hr)
Permeate flow rate
(L / m 2 hr)
11.311.3 13.113.1 18.918.9 9090
역확산염 전도도
(μS/cm)
Despread conductivity
(μS / cm)
220220 410410 1,0001,000 12,00012,000

상기 표 3에서 보듯이, 폴리아미드 제조시 단량체의 농도가 높아질수록 투과유량이 줄어들며, 역확산염의 전도도가 감소하는 것을 확인할 수 있다.
As shown in Table 3, as the concentration of the monomer is increased during the polyamide production, the permeate flow rate decreases, and it can be seen that the conductivity of the reverse diffusion acid decreases.

실험예Experimental Example 4 : 고분자 소재 차이에 따른  4: due to polymer material difference 정삼투용Forward osmosis 폴리아미드  Polyamide 복합막의Of composite membrane 투과실험 Permeation Experiment

계면중합 전의 지지체를 하기 표 4와 같이 변화시킨 것을 제외하고는 상기 실시예 2와 동일한 방법으로 계면중합을 실시하였다. 다만 MPD 농도는 0.5 중량%로 계면중합을 실시하였으며, 지지체는 캐스팅 두께를 50 ㎛로 고정하여 제조하였다. Interfacial polymerization was carried out in the same manner as in Example 2, except that the support before interfacial polymerization was changed as shown in Table 4 below. However, MPD concentration was carried out by interfacial polymerization at 0.5% by weight, and the support was prepared by fixing the casting thickness to 50 μm.

결과를 하기 표 4에 나타내었다. The results are shown in Table 4 below.

AMCAMC CTACTA CACA CABCAB CAPCAP PSfPSf PESPES PANPAN 투과유량
(L/m2hr)
Permeate flow rate
(L / m 2 hr)
23.123.1 13.113.1 9.19.1 10.210.2 11.111.1 0.230.23 3.83.8 0.560.56
역확산염 전도도
(μS/cm)
Despread conductivity
(μS / cm)
520520 450450 350350 370370 530530 81.181.1 150150 210210

상기 표 4에서 볼 수 있듯이, 본 발명의 정삼투용 폴리아미드 복합막은 투과유량이 23.1 L/m2hr로 다른 셀룰로오스를 이용한 복합막에 비해 우수한 값을 나타내며, 역확산을 효과적으로 막을 수 있었다.As can be seen in Table 4, the polyamide composite membrane for forward osmosis according to the present invention has an excellent permeation flow rate of 23.1 L / m 2 hr compared to the composite membrane using other cellulose, it was able to effectively prevent the back diffusion.

상기 결과들을 종합해 볼 때 본 발명의 정삼투용 폴리아미드 복합막은 아세틸화된 메틸 셀룰로오스를 지지체로 사용하여 다른 상용화된 고분자에 비해서 월등이 높은 투과유량을 나타내며, 그 위에 폴리아미드 계면중합을 함으로써 역확산되는 염의 농도를 현저하게 낮은 상태로 유지하면서도 다른 고분자에 비해서 여전히 우수한 투과유량을 유지할 수 있어, 우수한 정삼투용 분리막으로 이용될 수 있다. Taken together, the polyamide composite membrane for forward osmosis according to the present invention exhibits a higher permeation flow rate than other commercially available polymers using acetylated methyl cellulose as a support, and inversely, polyamide interfacial polymerization is performed on it. While maintaining the concentration of the salt to be diffused significantly lower than other polymers can still maintain a good permeate flow rate, it can be used as a good forward osmosis membrane.

Claims (13)

아세틸화된 알킬 셀룰로오스 다공성 지지체; 및
폴리아미드 층
을 포함하는 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
Acetylated alkyl cellulose porous support; And
Polyamide layer
Polyamide composite membrane for forward osmosis comprising a.
제 1 항에 있어서, 상기 아세틸화된 알킬 셀룰로오스는 알킬기의 치환도가 0.1 ~ 2.9 인 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
According to claim 1, wherein the acetylated alkyl cellulose polyamide composite membrane for forward osmosis, characterized in that the substitution degree of the alkyl group is 0.1 ~ 2.9.
제 1 항에 있어서, 상기 아세틸화된 알킬 셀룰로오스에서 알킬기는 메틸, 에틸, 프로필, 히드록시에틸 또는 히드록시프로필인 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
The polyamide composite membrane for forward osmosis according to claim 1, wherein the alkyl group in the acetylated alkyl cellulose is methyl, ethyl, propyl, hydroxyethyl or hydroxypropyl.
제 1항에 있어서, 상기 아세틸화된 알킬 셀룰로오스 다공성 지지체는 기공의 크기가 1 ~ 1000 nm 범위이며, 두께가 5 ~ 300 ㎛ 범위인 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
The polyamide composite membrane according to claim 1, wherein the acetylated alkyl cellulose porous support has a pore size in the range of 1 to 1000 nm and a thickness in the range of 5 to 300 μm.
제 1 항에 있어서, 상기 아세틸화된 알킬 셀룰로오스 다공성 지지체는 아세틸화된 알킬 셀룰로오스를 양용매, 빈용매 및 비용매로 이루어진 군에서 선택된 1종 또는 2종 이상의 용매에 용해시킨 후 상전환시키는 과정을 통해 형성된 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
The method of claim 1, wherein the acetylated alkyl cellulose porous support is a phase inversion of the acetylated alkyl cellulose in one or two or more solvents selected from the group consisting of a good solvent, poor solvent and non-solvent Polyamide composite membrane for forward osmosis, characterized in that formed through.
제 1 항에 있어서, 상기 폴리아미드 층은 다관능성 아민 화합물과 아민 반응성 화합물이 반응하여 형성된 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
The polyamide composite membrane according to claim 1, wherein the polyamide layer is formed by reacting a polyfunctional amine compound with an amine reactive compound.
제 6 항에 있어서, 상기 다관능성 아민 화합물은 메타-페닐렌 디아민(m-phenylene diamine), 파라-페닐렌 디아민(p-phenylene diamine), 피페라진(piperazine) 및 상기 물질들의 유도체로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물인 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
The method of claim 6, wherein the multifunctional amine compound is in the group consisting of meta-phenylene diamine (m-phenylene diamine), para-phenylene diamine (p-phenylene diamine), piperazine (piperazine) and derivatives of the above substances A polyamide composite membrane for forward osmosis, characterized in that the selected one or two or more compounds.
제 6 항에 있어서, 상기 아민 반응성 화합물은 다관능성 아실 할라이드, 다관능성 술포닐 할라이드, 다관능성 이소시아네이트 및 상기 물질들의 유도체로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물인 것을 특징으로 하는 정삼투용 폴리아미드 복합막.
7. The method of claim 6, wherein the amine reactive compound is one or two or more compounds selected from the group consisting of polyfunctional acyl halides, polyfunctional sulfonyl halides, polyfunctional isocyanates and derivatives of the above substances. Polyamide composite membrane.
(a) 아세틸화된 알킬 셀룰로오스 다공성 지지체를 다관능성 아민 수용액에 침지한 후 과잉의 아민 수용액을 제거하는 단계;
(b) 상기 다공성 지지체를 아민 반응성 화합물이 용해되어 있는 유기용액과 접촉시켜 계면중합 반응시키는 단계; 및
(c) 상기 계면중합에 의한 생성물을 염기성 수용액에 침지 후 수세하는 단계
를 포함하는 것을 특징으로 하는 정삼투용 폴리아미드 복합막의 제조방법.
(a) immersing the acetylated alkyl cellulose porous support in the polyfunctional amine aqueous solution and then removing the excess amine aqueous solution;
(b) contacting the porous support with an organic solution in which an amine reactive compound is dissolved to perform an interfacial polymerization reaction; And
(c) washing the product by the interfacial polymerization in a basic aqueous solution and then washing with water
Method for producing a polyamide composite membrane for forward osmosis comprising a.
제 9 항에 있어서, 상기 (a) 단계의 아세틸화된 알킬 셀룰로오스 다공성 지지체는 아세틸화된 알킬 셀룰로오스를 양용매, 빈용매 및 비용매로 이루어진 군에서 선택된 1종 또는 2종 이상의 용매에 용해시킨 후 상전환시키는 과정을 거쳐 제조된 것을 특징으로 하는 정삼투용 폴리아미드 복합막의 제조방법.
10. The method of claim 9, wherein the acetylated alkyl cellulose porous support of step (a) is prepared by dissolving the acetylated alkyl cellulose in one or two or more solvents selected from the group consisting of good solvents, poor solvents and nonsolvents. Method for producing a polyamide composite membrane for forward osmosis, characterized in that it was prepared through a phase inversion process.
제 10 항에 있어서, 상기 양용매는 디메틸포름아마이드(dimethylformamide), 디메틸아세트아마이드(dimethylacetamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 또는 디메틸설폭사이드(dimethylsulfoxide)인 것을 특징으로 하는 정삼투용 폴리아미드 복합막의 제조방법.
The method of claim 10, wherein the good solvent is dimethylformamide (dimethylformamide), dimethylacetamide (dimethylacetamide), N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone) or dimethyl sulfoxide (dimethylsulfoxide) Method for producing a polyamide composite membrane for forward osmosis characterized in that.
제 10 항에 있어서, 상기 빈용매는 아세톤(acetone), 메틸에틸케톤(methyl ethyl ketone), 감마-부틸로락톤(r-butyrolactone), 디클로로메탄(dichloromethane), 디클로에탄(dichloroethane), 1,4-다이옥산(1,4-dioxane) 또는 1,3-다이옥소란(1,3-dioxolane)인 것을 특징으로 하는 정삼투용 폴리아미드 복합막의 제조방법.
The method of claim 10, wherein the poor solvent is acetone (acetone), methyl ethyl ketone (methyl ethyl ketone), gamma- butyrolactone (r-butyrolactone), dichloromethane (dichloromethane), dichloroethane (1, A method for producing a polyamide composite membrane for forward osmosis, characterized in that it is 4-dioxane (1,4-dioxane) or 1,3-dioxolane (1,3-dioxolane).
제 10 항에 있어서, 상기 비용매는 메탄올(methanol), 에탄올(ethanol), 락트산(lactic acid), 벤조산(benzoic acid), 톨루엔 술폰산(toluene sulfonic acid), 아로마틱 카르복시산, 알리파틱 술폰산 또는 아로마틱 술폰산인 것을 특징으로 하는 정삼투용 폴리아미드 복합막의 제조방법.The non-solvent according to claim 10, wherein the non-solvent is methanol, ethanol, lactic acid, benzoic acid, toluene sulfonic acid, aromatic carboxylic acid, aliphatic sulfonic acid or aromatic sulfonic acid. Method for producing a polyamide composite membrane for forward osmosis characterized in that.
KR1020100070573A 2010-07-21 2010-07-21 Method of producing forward osmosis membranes based on acetylated alkyl cellulose KR101161711B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100070573A KR101161711B1 (en) 2010-07-21 2010-07-21 Method of producing forward osmosis membranes based on acetylated alkyl cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100070573A KR101161711B1 (en) 2010-07-21 2010-07-21 Method of producing forward osmosis membranes based on acetylated alkyl cellulose

Publications (2)

Publication Number Publication Date
KR20120009820A true KR20120009820A (en) 2012-02-02
KR101161711B1 KR101161711B1 (en) 2012-07-03

Family

ID=45834550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100070573A KR101161711B1 (en) 2010-07-21 2010-07-21 Method of producing forward osmosis membranes based on acetylated alkyl cellulose

Country Status (1)

Country Link
KR (1) KR101161711B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548631A1 (en) * 2011-07-22 2013-01-23 Samsung Electronics Co., Ltd. Cellulose-ether-ester support for forward osmosis membrane
KR101403277B1 (en) * 2012-06-30 2014-06-02 도레이케미칼 주식회사 Hollow fiber type forward osmosis membrane and manufacturing method thereof
KR101530432B1 (en) * 2013-09-12 2015-06-19 주식회사 효성 Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same
KR20160059266A (en) * 2014-11-18 2016-05-26 두산중공업 주식회사 Forward Osmosis Membane, Forward Osmosis Module and Forward Osmosis System
KR20180126496A (en) * 2016-04-08 2018-11-27 주식회사 다이셀 Semi-permeable membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228148B4 (en) 2002-06-24 2006-08-24 Saehan Industries Inc. Selective membrane with high fouling resistance
KR100813908B1 (en) 2005-07-27 2008-03-18 한국화학연구원 Preparation method of highly permeable composite polyamide nanofiltration membranes
KR100781625B1 (en) 2006-12-11 2007-12-05 주식회사 새 한 Producing method of the polyamide reverse osmosis membrane having fouling resistence and improved durability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548631A1 (en) * 2011-07-22 2013-01-23 Samsung Electronics Co., Ltd. Cellulose-ether-ester support for forward osmosis membrane
KR101403277B1 (en) * 2012-06-30 2014-06-02 도레이케미칼 주식회사 Hollow fiber type forward osmosis membrane and manufacturing method thereof
KR101530432B1 (en) * 2013-09-12 2015-06-19 주식회사 효성 Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same
KR20160059266A (en) * 2014-11-18 2016-05-26 두산중공업 주식회사 Forward Osmosis Membane, Forward Osmosis Module and Forward Osmosis System
KR20180126496A (en) * 2016-04-08 2018-11-27 주식회사 다이셀 Semi-permeable membrane
US10926230B2 (en) 2016-04-08 2021-02-23 Daicel Corporation Semipermeable membrane

Also Published As

Publication number Publication date
KR101161711B1 (en) 2012-07-03

Similar Documents

Publication Publication Date Title
Qiu et al. Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes
KR101132731B1 (en) Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
EP2857088B1 (en) Method for manufacturing a reverse osmosis membrane
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
KR101161711B1 (en) Method of producing forward osmosis membranes based on acetylated alkyl cellulose
KR102293090B1 (en) Composite semipermeable membrane
EP2548631A1 (en) Cellulose-ether-ester support for forward osmosis membrane
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
KR20150069422A (en) Cellulosic membrane for water treatment with good anti-fouling property and Method thereof
KR101269574B1 (en) Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
Tang et al. Ultrafiltration membranes with ultrafast water transport tuned via different substrates
KR101161709B1 (en) Method of producing porous hollow fiber membranes based on acetylated alkyl cellulose
KR20120118408A (en) Membrane, method for manufacturing the same and forward osmosis device including the same
KR101913755B1 (en) Method of Fabricating Thin Film Composite Forward Osmosis Membranes using Polyethylene Porous Supports
JP2014000533A (en) Resin composition for fine porous support membrane, fine porous support membrane using the same, and composite semipermeable membrane
JP2000061277A (en) Production of cellulosic crosslinked membrane
JP6282585B2 (en) Semipermeable membrane and method for producing the same, concentration difference power generation method using semipermeable membrane
KR102554359B1 (en) Solvent activation process for enhancing the separation performance of thin film composite membranes
KR100322235B1 (en) Fabrication of high permeable reverse osmosis membranes
KR102306426B1 (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR102182178B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR101716045B1 (en) Manufacturing method for polyamide watertreatment membranes having properies of high flux and water-treatment membranes manufactured by using the same
KR20150087579A (en) Manufacturing method for polyamide-based reverse osmosis membrane
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee