KR20110123297A - Wafer level semiconductor package and fabrication method thereof - Google Patents

Wafer level semiconductor package and fabrication method thereof Download PDF

Info

Publication number
KR20110123297A
KR20110123297A KR1020100042703A KR20100042703A KR20110123297A KR 20110123297 A KR20110123297 A KR 20110123297A KR 1020100042703 A KR1020100042703 A KR 1020100042703A KR 20100042703 A KR20100042703 A KR 20100042703A KR 20110123297 A KR20110123297 A KR 20110123297A
Authority
KR
South Korea
Prior art keywords
semiconductor chip
semiconductor
molding part
package
conductive layer
Prior art date
Application number
KR1020100042703A
Other languages
Korean (ko)
Inventor
강인수
정기조
전병율
Original Assignee
주식회사 네패스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 네패스 filed Critical 주식회사 네패스
Priority to KR1020100042703A priority Critical patent/KR20110123297A/en
Priority to JP2010137916A priority patent/JP2011233854A/en
Priority to US12/824,190 priority patent/US8421211B2/en
Priority to TW099121297A priority patent/TWI418013B/en
Publication of KR20110123297A publication Critical patent/KR20110123297A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73209Bump and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92124Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE: A wafer level semiconductor package and a manufacturing method thereof are provided to prevent an exfoliation phenomenon and cracks generated on a junction part between different materials of a semiconductor package, thereby improving reliability of the semiconductor package. CONSTITUTION: A first semiconductor chip(110) and second semiconductor chip(210) are connected to each other by a bump(150) in a face-to-face type. A first dielectric layer(120) and second dielectric layer(140) are arranged on the upper surface of the first semiconductor chip. A first redistribution conductive layer(130) is arranged between the first dielectric layer and second dielectric layer. A molding part(300) is arranged between the first semiconductor chip and second semiconductor chip. A third dielectric layer(220) and fourth dielectric layer(240) are arranged on the surface of the molding part.

Description

웨이퍼레벨 반도체 패키지 및 그 제조방법{WAFER LEVEL SEMICONDUCTOR PACKAGE AND FABRICATION METHOD THEREOF} Wafer Level Semiconductor Package and Manufacturing Method therefor {WAFER LEVEL SEMICONDUCTOR PACKAGE AND FABRICATION METHOD THEREOF}

본 발명은 웨이퍼레벨 반도체 패키지 및 그 제조방법에 관한 것으로, 상세하게는 외부 충격에 대한 내구성이 향상되며 경박단소한 웨이퍼레벨 반도체 패키지를 제안한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer level semiconductor package and a method of manufacturing the same. Specifically, the present invention proposes a light and simple wafer level semiconductor package with improved durability against external impact.

웨이퍼레벨 패키지는 웨이퍼에 인쇄된 칩들을 개별적으로 분리하지 않고 여러 칩들이 붙어 있는 상태에서 다이 본딩, 몰딩, 마킹 등 일련의 조립공정을 마친 후 이를 절단해 곧바로 완제품을 만드는 기술로서, 반도체 패키지의 크기를 줄이는 것 외에도 동작속도를 향상시켜 고속의 데이터 처리에 적합한 공정으로 평가받고 있다. Wafer-level package is a technology that makes a finished product immediately after completing a series of assembly processes such as die bonding, molding, marking, etc., without separating the chips printed on the wafer individually. In addition to reducing the speed of operation, the operation speed is improved, making it suitable for high-speed data processing.

특히, 반도체 칩과 동일한 크기로 패키지가 가능하기 때문에 동일 면적의 메모리 모듈에 보다 많은 칩의 탑재가 가능해져 대용량 메모리 모듈제작이 한층 쉬워진다.In particular, since the package can be packaged in the same size as a semiconductor chip, more chips can be mounted in a memory module having the same area, making it easier to manufacture a large-capacity memory module.

또한 웨이퍼 레벨 패키지 기술이 적용된 반도체는 외부 연결 단자가 짧아져 칩의 전기적 특성이 대폭 향상됨은 물론, 열방출 특성도 다른 패키지와 비교해 우수하기 때문에 메모리 제품 고속화에 따른 과열 현상을 완화하는 등 반도체 제품의 특성 및 신뢰도 측면에서도 혁신적인 개선이 가능하다.In addition, semiconductors with wafer-level package technology shorten external connection terminals, which greatly improves the chip's electrical characteristics and heat dissipation characteristics, compared to other packages, thereby reducing overheating caused by high-speed memory products. Innovative improvements are also possible in terms of characteristics and reliability.

도 1은 웨이퍼레벨 패키지를 구현하기 위한 웨이퍼(100)를 도시하며, 웨이퍼 상면에는 복수의 반도체칩(110)이 형성되어 있다. 각각의 반도체칩(110) 위에 전기적 부품이나 다른 반도체칩을 실장하고 몰딩을 형성하여 복수의 패키지를 한번의 공정으로 완성할 수 있다. 1 illustrates a wafer 100 for implementing a wafer level package, and a plurality of semiconductor chips 110 are formed on a top surface of the wafer. Electrical components or other semiconductor chips may be mounted on each semiconductor chip 110 to form a molding, thereby completing a plurality of packages in a single process.

복수의 반도체칩이 상호 적층되는 반도체 패키지의 경우 패키지의 크기 및 두께가 기판에 영향을 받는다. 또한, 패키지의 두께가 커질수록 칩에서 외부 접속 단자까지의 배선 경로가 길어져 고속 및 대용량 신호처리에 한계가 있다. In the case of a semiconductor package in which a plurality of semiconductor chips are stacked on each other, the size and thickness of the package are affected by the substrate. In addition, the larger the thickness of the package, the longer the wiring path from the chip to the external connection terminal, there is a limit to high-speed and large-capacity signal processing.

한편, 복수의 반도체칩을 상호 적층시키는 반도체 패키지에서 물성이 다른 이종재료, 예를 들어 반도체칩과 몰딩 재료 간의 접합 부분은 스트레스에 취약하고, 특히 패키지 외곽 표면이나 모서리에서부터 열 및 기계적 스트레스에 의해 크랙이나 박리가 발생한다. 이러한 크랙이나 박리는 웨이퍼레벨 반도체 패키지의 물리적인 내구성을 감소시키며, 패키지가 경박단소화될 수록 더욱 심각하다.On the other hand, in a semiconductor package in which a plurality of semiconductor chips are laminated to each other, heterogeneous materials having different physical properties, for example, a junction between a semiconductor chip and a molding material are vulnerable to stress, and are particularly cracked by thermal and mechanical stress from the outer surface or edge of the package. Or peeling occurs. Such cracks or delamination reduce the physical durability of the wafer-level semiconductor package and become more severe as the package becomes lighter and thinner.

본 발명은 전술한 기술적 배경하에서 창안된 것으로, 본 발명의 목적은 반도체 패키지의 이종재료 간의 접합 부분에서 발생하는 크랙 및 박리 현상을 방지하여 패키지의 신뢰성을 향상시키는 것이다.SUMMARY OF THE INVENTION The present invention has been made under the foregoing technical background, and an object of the present invention is to prevent cracks and peeling from occurring at the joints between dissimilar materials of a semiconductor package, thereby improving reliability of the package.

본 발명의 다른 목적은 웨이퍼레벨에서 경박단소한 칩사이즈 패키지를 제조하는 것이다.Another object of the present invention is to produce a light and simple chip size package at the wafer level.

본 발명의 또 다른 목적은 웨이퍼레벨 공정 시 웨이퍼의 휨을 방지하며, 신뢰성이 향상된 반도체 패키지를 제공하는 것이다.Still another object of the present invention is to provide a semiconductor package which prevents warpage of a wafer during wafer level processing and improves reliability.

기타, 본 발명의 또 다른 목적 및 기술적 특징은 이하의 상세한 설명에서 보다 구체적으로 제시될 것이다.Other objects and technical features of the present invention will be presented in more detail in the following detailed description.

상기 목적을 달성하기 위하여, 본 발명은 제1재배치도전층이 형성되어 있는 제1반도체칩과, 제1반도체칩 보다 사이즈가 작고, 제1반도체칩의 상부에 실장되는 제2반도체칩과, 상기 제2반도체칩 주변으로 제1반도체칩 위에 형성된 몰딩부와, 상기 제1재배치도전층과 전기적으로 연결되며, 상기 몰딩부를 관통하는 도전성 포스트와, 상기 몰딩부 상면에 형성되며 상기 도전성 포스트와 전기적으로 연결되는 제2재배치도전층과, 상기 제2재배치도전층과 전기적으로 연결되는 외부 접속 단자를 포함하며, 상기 제1반도체칩의 가장자리에서 제1반도체칩과 몰딩부의 접촉 계면은 제1반도체칩의 다른 부분 보다 확장되어 있는 것을 특징으로 하는 반도체 패키지를 제공한다.In order to achieve the above object, the present invention provides a semiconductor device comprising: a first semiconductor chip having a first repositioning conductive layer formed thereon, a second semiconductor chip having a smaller size than the first semiconductor chip, and mounted on the first semiconductor chip; A molding part formed on the first semiconductor chip around a second semiconductor chip, electrically connected to the first repositioning conductive layer, and a conductive post passing through the molding part, and formed on an upper surface of the molding part and electrically connected to the conductive post. And a second repositioning conductive layer connected thereto and an external connection terminal electrically connected to the second repositioning conductive layer, wherein a contact interface between the first semiconductor chip and the molding part is formed at an edge of the first semiconductor chip. Provided is a semiconductor package which is extended than other portions.

상기 제1반도체칩의 가장자리에서 제1반도체칩과 몰딩부의 접촉 계면은 제1반도체칩 표면 보다 아래로 형성되어 있는 것이 바람직하다.Preferably, the contact interface between the first semiconductor chip and the molding part at the edge of the first semiconductor chip is formed below the surface of the first semiconductor chip.

상기 제1반도체칩과 제2반도체칩은 상면이 상호 대향되고 범프로 상호 전기적으로 연결될 수 있다. 제1반도체칩의 가장자리는 단차진 구조 또는 경사진 구조로 형성될 수 있고, 가장자리에 몰딩부가 완전히 충진되어 패키지 외관상으로 반도체칩과 몰딩부 계면이 평면을 이루도록 하는 것이 바람직하다. Upper surfaces of the first semiconductor chip and the second semiconductor chip may face each other and may be electrically connected to each other by bumps. The edge of the first semiconductor chip may be formed in a stepped structure or an inclined structure, and the molding part is completely filled in the edge so that the interface between the semiconductor chip and the molding part is planar in appearance.

본 발명은 또한, 제1재배치도전층이 상면에 형성되어 있는 복수의 제1반도체칩을 포함하는 웨이퍼를 준비하고, 상기 제1반도체칩 위에 도전성 포스트를 형성하고, 상기 제1반도체칩의 가장자리에 연속적으로 연결되는 해자 형태의 만입부를 형성하고, 상기 제1반도체칩에 제2반도체칩을 실장하고, 상기 제1반도체칩 위에 몰딩부를 형성하고, 상기 몰딩부를 연마하여, 상기 도전성 포스트의 상면을 노출시키고, 상기 몰딩부 상면에 상기 도전성 포스트와 전기적으로 연결되는 제2재배치도전층을 형성하고, 상기 제2재배치도전층과 전기적으로 연결되는 외부 접속 단자를 형성하는 단계를 포함하는 웨이퍼레벨 반도체 패키지 제조 방법을 제공한다.The present invention also provides a wafer including a plurality of first semiconductor chips having a first repositioning conductive layer formed on an upper surface thereof, forming a conductive post on the first semiconductor chip, and forming an edge on the edge of the first semiconductor chip. A continuously indented shape of a moat is formed, a second semiconductor chip is mounted on the first semiconductor chip, a molding part is formed on the first semiconductor chip, and the molding part is polished to expose an upper surface of the conductive post. And forming a second relocation conductive layer electrically connected to the conductive post on the molding unit, and forming an external connection terminal electrically connected to the second relocation conductive layer. Provide a method.

본 발명에 따르면, 반도체 패키지에서 반도체칩과 몰드 재료간의 접합부 외곽에 집중되는 스트레스를 분산 시켜 계면 및 모서리에서 발생하는 불량 현상을 감소시킨다. 그 결과, 물리적인 내구성이 뛰어나고 경박단소한 칩사이즈 패키지를 완성할 수 있다. 특히, 웨이퍼레벨 공정으로 신뢰성이 우수한 복수의 패키지를 제조할 수 있고, 제조 과정에서 웨이퍼의 휨을 억제할 수 있다.According to the present invention, in the semiconductor package, stress concentrated at the outer edge of the junction between the semiconductor chip and the mold material is dispersed to reduce defects occurring at the interface and the edge. As a result, it is possible to complete a chip size package having excellent physical durability and light weight. In particular, a plurality of packages having excellent reliability can be manufactured by a wafer level process, and warping of the wafer can be suppressed in the manufacturing process.

도 1은 웨이퍼레벨 반도체 패키지를 보인 평면도.
도 2는 본 발명의 일실시예에 따른 반도체 패키지를 보인 단면도.
도 3 내지 도 9는 본 발명의 바람직한 실시예에 따른 웨이퍼레벨 반도체 패키지 제조 공정을 보인 순서도.
도 10은 본 발명의 다른 실시예에 따른 반도체 패키지를 보인 단면도.
도 11은 반도체 패키지의 응력 분포 테스트 결과를 보인 그래프.
도 12는 본 발명의 일실시예에 따른 반도체 패키지의 응력 분포 테스트 결과를 보인 그래프.
도 13은 본 발명의 다른 실시예에 따른 반도체 패키지의 응력 분포 테스트 결과를 보인 그래프.
*** 도면의 주요 부분에 대한 부호의 설명 ***
110:제1반도체칩 115:만입부
150:범프 210:제2반도체칩
300:몰딩부
1 is a plan view showing a wafer level semiconductor package.
2 is a cross-sectional view showing a semiconductor package according to an embodiment of the present invention.
3 to 9 are flow charts showing a wafer level semiconductor package manufacturing process according to a preferred embodiment of the present invention.
10 is a sectional view of a semiconductor package according to another embodiment of the present invention.
11 is a graph showing the stress distribution test results of the semiconductor package.
12 is a graph showing a stress distribution test result of a semiconductor package according to an embodiment of the present invention.
Figure 13 is a graph showing the stress distribution test results of the semiconductor package according to another embodiment of the present invention.
DESCRIPTION OF THE REFERENCE SYMBOLS
110: first semiconductor chip 115: indentation
150: bump 210: the second semiconductor chip
300: molding part

본 발명은 웨이퍼레벨 공정에 의한 반도체 패키지, 특히 시스템 인 패키지(system-in-package)에 관한 것으로, 베이스 칩의 외곽 절단 라인을 따라 단차를 형성한 새로운 구조의 반도체 패키지를 제안한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor package by a wafer level process, particularly a system-in-package, and proposes a semiconductor package having a new structure having a step formed along an outer cutting line of a base chip.

도 2를 참조하면, 본 발명의 바람직한 실시예에 따른 웨이퍼레벨 반도체 패키지가 도시되어 있다. 이 반도체 패키지는 베이스 칩에 해당하는 제1반도체칩(110)과 제1반도체칩에 전기적으로 연결되어 적층된 제2반도체칩(210)을 포함한다. 제1반도체칩(110)과 제2반도체칩(210)은 집적회로가 형성된 면(상면)이 서로 마주보는 페이스-투-페이스(face-to-face) 타입으로 범프(150)에 의해 서로 연결되어 있다. 도시된 바와 달리, 본 발명의 반도체 패키지는 제2반도체칩의 하면이 제1반도체칩의 상면을 마주보도록 연결될 수도 있다. 이 경우 제2반도체칩을 다이어태치 방식으로 제1반도체칩 상부에 실장할 수 있다.2, a wafer level semiconductor package according to a preferred embodiment of the present invention is shown. The semiconductor package includes a first semiconductor chip 110 corresponding to a base chip and a second semiconductor chip 210 electrically connected to and stacked on the first semiconductor chip. The first semiconductor chip 110 and the second semiconductor chip 210 are connected to each other by the bumps 150 in a face-to-face type in which the surfaces (top surfaces) on which the integrated circuits are formed face each other. It is. Unlike shown, the semiconductor package of the present invention may be connected such that the bottom surface of the second semiconductor chip faces the top surface of the first semiconductor chip. In this case, the second semiconductor chip may be mounted on the first semiconductor chip by a die attach method.

제1반도체칩(110)의 상면에는 제1유전층(120) 및 제2유전층(140)이 형성되어 있고, 제1유전층(120)과 제2유전층(140) 사이에 제1재배치도전층(130)이 형성되어 있다. 제1재배치도전층(130)은 범프(150)와 제1반도체칩(110)을 전기적으로 연결하는 배선 역할을 하며, 또한 제1반도체칩(110)을 도전성 포스트(160)를 통해 외부 접속 단자와 연결하는 배선 역할을 한다. 제1재배치도전층(130) 형성 시 제1유전층(120)과 제2유전층(140) 사이에 박막형 수동 소자(미도시)를 함께 형성할 수도 있다. 이러한 수동 소자는 제1반도체칩 및 제2반도체칩과 더불어 시스템 인 패키지를 구성한다.The first dielectric layer 120 and the second dielectric layer 140 are formed on the upper surface of the first semiconductor chip 110, and the first repositioned conductive layer 130 is formed between the first dielectric layer 120 and the second dielectric layer 140. ) Is formed. The first reposition conductive layer 130 serves as a wiring for electrically connecting the bump 150 and the first semiconductor chip 110, and also connects the first semiconductor chip 110 to the external connection terminal through the conductive post 160. It acts as a wiring to connect with. When the first repositioning conductive layer 130 is formed, a thin film type passive device (not shown) may be formed between the first dielectric layer 120 and the second dielectric layer 140. This passive element, together with the first semiconductor chip and the second semiconductor chip, constitutes a system in package.

제1반도체칩(110)과 제2반도체칩(210) 사이에는 몰딩부(300)가 형성되어 각 칩에 형성된 집적회로 및 각종 배선들을 외부로부터 보호함과 동시에 두 반도체칩(110, 210)과 일체화되어 하나의 물리적인 구조물을 형성한다. 몰딩부(300)는 제1반도체칩(110)의 길이만큼만 형성되어 전체적인 패키지 크기는 제1반도체칩의 크기로 제한된다. 따라서, 칩 사이즈의 패키지를 구현할 수 있다. A molding part 300 is formed between the first semiconductor chip 110 and the second semiconductor chip 210 to protect the integrated circuits and various wirings formed on each chip from the outside and simultaneously with the two semiconductor chips 110 and 210. Integrate to form one physical structure. The molding part 300 is formed only by the length of the first semiconductor chip 110 so that the overall package size is limited to the size of the first semiconductor chip. Therefore, a chip size package can be implemented.

몰딩부(300)는 제2반도체칩(210)을 완전히 커버하는 한편, 제1반도체칩(110)과는 상부 표면에서 주로 수평적으로(평행하게) 접촉하고 있다. 그러나 제1반도체칩(110)의 가장자리(A 부분)가 부분적으로 제거되어 몰딩부(300)와 제1반도체칩(110)의 계면 가장자리에서는 접촉 표면적이 확장되어 있다. 본 실시예에서 제1반도체칩은 가장자리를 따라 단차진 구조가 형성되어 있고, 이 단차진 부분에서는 몰딩부가 더 깊이 제1반도체칩 쪽으로 침투되어 있다. 제1반도체칩 가장자리의 단차진 부분에 몰딩부가 꼭 맞게 충진되어 패키지 전체적으로는 단면 구조로 볼 때 직사각형, 3차원적으로 볼 때 육면체의 구조를 형성한다. 또한, 제1반도체칩(110)의 가장자리가 단차지도록 형성됨으로써, 몰딩부와 제1반도체칩의 외곽 부분에서는 접촉 계면의 위치가 다른 부분과 비교할 때 달라진 것을 볼 수 있다. 즉, 가장자리에서의 접촉 계면이 제1반도체칩의 배선(예를 들어 제1재배치도전층) 위치 보다 칩 내부 쪽으로 이동되어 있다. The molding part 300 completely covers the second semiconductor chip 210, and is in contact with the first semiconductor chip 110 mainly horizontally (parallel) at the upper surface thereof. However, the edge (part A) of the first semiconductor chip 110 is partially removed, so that the contact surface area is extended at the interface edge between the molding part 300 and the first semiconductor chip 110. In the present embodiment, the first semiconductor chip has a stepped structure formed along the edge, and the molding portion penetrates deeper toward the first semiconductor chip in the stepped portion. The molding part fits tightly in the stepped portion of the edge of the first semiconductor chip to form a rectangular structure and a hexahedral structure in three-dimensional view of the package as a whole. In addition, since the edge of the first semiconductor chip 110 is formed to be stepped, it can be seen that the position of the contact interface is different in the molding portion and the outer portion of the first semiconductor chip compared with other portions. In other words, the contact interface at the edge is moved toward the inside of the chip rather than the wiring (for example, the first repositioning conductive layer) position of the first semiconductor chip.

이와 같이, 전체 패키지에서 외부로 노출되는 제1반도체와 몰딩부의 접촉 면적을 증가시킴으로써 패키지의 기계적 강도 및 외부 충격에 대한 내구성을 증가시킬 수 있다. 또한, 제1반도체와 몰딩부의 접촉 계면의 위치를 변화시켜 크랙 발생 및 크랙 전파에 대한 저항성을 크게 향상시킬 수 있다. 특히, 별도의 기판을 사용하거나 몰딩부의 형태를 크게 변화시키지 않은 채 경박단소한 반도체 패키지를 구현할 수 있는 장점이 있다. As such, by increasing the contact area of the first semiconductor and the molding part exposed to the outside in the entire package, the mechanical strength of the package and the durability against external impact may be increased. In addition, by changing the position of the contact interface between the first semiconductor and the molding portion, it is possible to greatly improve the resistance to crack generation and crack propagation. In particular, there is an advantage in that a light and simple semiconductor package can be implemented without using a separate substrate or greatly changing the shape of the molding part.

제1반도체칩(110)의 단차진 가장자리(A 부분)은 후술하는 바와 같이 제1반도체칩과 몰딩부의 접촉 계면을 증가시킬 수 있다면, 다른 형태(예를 들어, 이중 단차 구조, 경사진 구조 등)로 변형될 수도 있다.If the stepped edge A of the first semiconductor chip 110 can increase the contact interface between the first semiconductor chip and the molding part, as described below, for example, a double stepped structure or an inclined structure may be used. May be transformed into

몰딩부(300) 표면에는 제3유전층(220) 및 제4유전층(240)이 형성되어 있고, 제3유전층(220)과 제4유전층(240) 사이에 제2재배치도전층(230)이 형성되어 있다. 제2재배치도전층(230)은 전도성 포스트(160)와 전기적으로 연결되는 한편, 일부분이 제4유전층(240) 표면에 노출되어 외부 접속 단자(250)와 전기적으로 연결된다. 복수의 외부 접속 단자(250)는 제2재배치도전층(230)과 연결되며, 제2반도체칩(210)의 주변부에 팬아웃(fan-out) 타입으로 배치되어 있다. 상기 몰딩부(300)는 제2반도체칩(210)을 완전히 커버할 수도 있고, 제2반도체칩의 표면이 외부에 노출되도록 제2반도체칩의 주변으로 형성될 수도 있다. 이 경우, 제3유전층(220) 및 제4유전층(240)도 제2반도체칩의 노출되는 표면에서 제거되는 것이 바람직하다.The third dielectric layer 220 and the fourth dielectric layer 240 are formed on the surface of the molding part 300, and the second reposition conductive layer 230 is formed between the third dielectric layer 220 and the fourth dielectric layer 240. It is. The second reposition conductive layer 230 is electrically connected to the conductive post 160, while a part of the second reposition conductive layer 230 is exposed to the surface of the fourth dielectric layer 240 to be electrically connected to the external connection terminal 250. The plurality of external connection terminals 250 are connected to the second relocation conductive layer 230 and are disposed in a fan-out type at the periphery of the second semiconductor chip 210. The molding part 300 may completely cover the second semiconductor chip 210, or may be formed around the second semiconductor chip so that the surface of the second semiconductor chip is exposed to the outside. In this case, the third dielectric layer 220 and the fourth dielectric layer 240 may also be removed from the exposed surface of the second semiconductor chip.

본 실시예에 따른 반도체 패키지는 제1반도체칩이 베이스 칩으로서 기판 역할을 수행하여 별도의 기판을 필요로 하지 않기 때문에 두께가 얇고 크기가 작은 패키지를 구현할 수 있다. 또한, 제1반도체칩 및 제2반도체칩의 배선 길이가 짧아 고속 신호 전달이 가능하다.In the semiconductor package according to the present embodiment, since the first semiconductor chip serves as a base chip and does not require a separate substrate, a package having a small thickness and a small size can be implemented. In addition, since the wiring length of the first semiconductor chip and the second semiconductor chip is short, high-speed signal transmission is possible.

이하에서는 본 발명의 바람직한 실시예에 따른 웨이퍼레벨 반도체 패키지 제조 방법을 설명한다. Hereinafter, a method of manufacturing a wafer level semiconductor package according to a preferred embodiment of the present invention will be described.

도 1에 도시된 바와 같이 복수의 제1반도체칩(110)이 형성된 웨이퍼가 준비된다. 제1반도체칩의 상면에는 제1유전층(120)이 형성되어 있고, 제1유전층 위에는 제1재배치도전층(130)이 형성되며, 제1재배치도전층 위에 제2유전층(140)이 형성되어 제1재배치도전층을 국부적으로 노출시킨다.As shown in FIG. 1, a wafer on which a plurality of first semiconductor chips 110 are formed is prepared. A first dielectric layer 120 is formed on an upper surface of the first semiconductor chip, a first reposition conductive layer 130 is formed on the first dielectric layer, and a second dielectric layer 140 is formed on the first relocation conductive layer. Locally expose the relocation conductive layer.

웨이퍼레벨에서 제1반도체칩(110) 상면에 도전성 포스트(160)를 형성한다(도 3). 이 도전성 포스트(160)는 제1반도체칩(110) 상면에 형성된 제1재배치도전층과 전기적으로 연결된다. 도전성 포스트는 금속 재질의 범프에 해당하며, 제1반도체칩(110)의 전기적 통로 역할을 한다. 도전성 포스트(160)는 제1반도체칩 상면에 복수로 형성될 수 있다. 도전성 포스트 형성을 위한 포토리지스트, 식각 등의 공정은 당업자에게 잘 알려져 있으므로 상세한 설명을 생략한다.Conductive posts 160 are formed on the upper surface of the first semiconductor chip 110 at the wafer level (FIG. 3). The conductive post 160 is electrically connected to the first reposition conductive layer formed on the upper surface of the first semiconductor chip 110. The conductive posts correspond to metal bumps and serve as electrical passages of the first semiconductor chip 110. The conductive posts 160 may be formed in plural on the upper surface of the first semiconductor chip. Processes such as photoresist, etching and the like for forming the conductive posts are well known to those skilled in the art, and thus detailed descriptions thereof will be omitted.

도전성 포스트(160) 형성 시 별도의 구조물(162)을 동시에 또는 순차적으로 형성할 수 있다. 이 구조물(162)은 제1반도체칩(110)의 집적회로 영역 주변으로 형성되어 연속적인(또는 불연속적인) 링 형태로 형성할 수 있다. 상기 구조물(162)은 웨이퍼레벨 공정으로 대면적의 웨이퍼 상에 몰딩부를 형성할 때 칩과 몰드간 계면 스트레스를 분산시키고 몰드 커버 영역을 패키징 단위로 단절시키는 장벽 역할을 하여 웨이퍼의 휨(warpage)을 저감시킨다. When the conductive posts 160 are formed, separate structures 162 may be formed simultaneously or sequentially. The structure 162 may be formed around the integrated circuit area of the first semiconductor chip 110 to form a continuous (or discontinuous) ring shape. The structure 162 serves as a barrier to disperse the interfacial stress between the chip and the mold and to break the mold cover region into packaging units when forming a molding part on a large wafer in a wafer level process, thereby preventing warpage of the wafer. Reduce.

다음으로, 웨이퍼레벨에서 각각의 단위 유닛, 즉 제1반도체칩(110) 주변으로 만입부(115)를 형성한다(도 4). 이 만입부는 제1반도체칩 주변으로 연속적인 해자(垓子) 형태로 형성하며, 웨이퍼 전체적으로 볼 때는 격자 무늬로 배치된다. 상기 만입부(115)는 웨이퍼 상의 절단 라인(scribe lane)에 형성되며, 기계적 절단(sawing) 또는 식각(etch) 등의 방법으로 형성할 수 있다.Next, an indentation 115 is formed around each unit unit, that is, around the first semiconductor chip 110 at the wafer level (FIG. 4). This indentation is formed in a continuous moat shape around the first semiconductor chip, and is disposed in a lattice pattern when viewed throughout the wafer. The indentation 115 is formed on a scribe lane on the wafer, and may be formed by a method such as mechanical sawing or etching.

다음으로, 웨이퍼레벨에서 제2반도체칩(210)을 제1반도체칩(110)의 상부에 실장한다(도 5). 제2반도체칩(210)은 제1반도체칩(110) 보다 크기가 작으며, 범프(150)를 통해 제1반도체칩(110)의 제1재배치도전층(130)과 전기적으로 접속된다. 제2반도체칩의 실장은 상기 만입부 형성 전에 이루어져도 무방하다.Next, the second semiconductor chip 210 is mounted on the first semiconductor chip 110 at the wafer level (FIG. 5). The second semiconductor chip 210 is smaller in size than the first semiconductor chip 110 and is electrically connected to the first reposition conductive layer 130 of the first semiconductor chip 110 through the bump 150. The mounting of the second semiconductor chip may be performed before the indentation is formed.

제2반도체칩의 실장 후 웨이퍼레벨에서 제1반도체칩 상부에 몰딩부(300)를 형성한다(도 6). 이 몰딩부는 상기 만입부(115)에 충진되어 만입부를 완전히 채우며, 제2반도체칩(210)을 전체적으로 커버하여 외부로부터 보호한다. 몰딩부 형성 후 몰딩부 상면을 연마하여 도전성 포스트(160) 표면이 노출되도록 한다(도 7). 이러한 연마 과정을 통해 도전성 포스트 뿐만 아니라, 전술한 구조물(162)이나 제2반도체칩(210)의 상면을 노출시킬 수도 있다. 몰딩부의 연마 후, 또는 연마 전에 웨이퍼레벨에서 제1반도체칩(110)의 하면을 연마하여 박형화시킬 수 있다. After the mounting of the second semiconductor chip, the molding part 300 is formed on the first semiconductor chip at the wafer level (FIG. 6). The molding part is filled in the indentation 115 to completely fill the indentation, and covers the second semiconductor chip 210 as a whole to protect it from the outside. After forming the molding part, the upper surface of the molding part is polished to expose the surface of the conductive post 160 (FIG. 7). Through the polishing process, the top surface of the structure 162 or the second semiconductor chip 210 as well as the conductive post may be exposed. The lower surface of the first semiconductor chip 110 may be polished and thinned at the wafer level after the molding part is polished or before polishing.

다음으로, 웨이퍼레벨에서 몰딩부(300) 상면에 제3유전층(220), 제2재배치도전층(230) 및 제4유전층(240)을 각각 형성한다(도 8). 제2재배치도전층(230)은 도전성 포스트(160)와 전기적으로 연결되도록 패턴화된다. 필요에 따라 제2반도체칩(210) 상면의 제3유전층(220), 제2재배치도전층(230) 및 제4유전층(240)을 국부적으로 제거하여 제2반도체칩 표면을 외부에 노출시킬 수도 있다. 제2재배치도전층 형성 후 웨이퍼레벨에서 각 패키지 별로 테스트를 실시하여 양호 제품(good die)을 선별할 수 있다.Next, at the wafer level, a third dielectric layer 220, a second repositioning conductive layer 230, and a fourth dielectric layer 240 are formed on the molding unit 300, respectively (FIG. 8). The second reposition conductive layer 230 is patterned to be electrically connected to the conductive post 160. If necessary, the third dielectric layer 220, the second repositioning conductive layer 230, and the fourth dielectric layer 240 on the upper surface of the second semiconductor chip 210 may be locally removed to expose the surface of the second semiconductor chip to the outside. have. After forming the second relocation conductive layer, a test may be performed for each package at the wafer level to select a good die.

마지막으로, 웨이퍼레벨에서 외부 접속 단자(250)를 제2재배치도전층(230)과 전기적으로 연결되도록 형상한 후, 각 패키지별로 만입부가 형성된 지점을 절단하여 개별 패키지를 완성한다(도 9). 완성된 패키지는 도 2의 실시예에서와 동일한 형태를 갖게 된다. 제1반도체칩과 몰딩부의 접합부 외곽은 단차진 구조가 형성되어 이 부분에 집중되는 스트레스를 분산시켜 칩과 몰딩 사이의 계면 불량을 억제한다.Finally, the external connection terminal 250 is formed to be electrically connected to the second relocation conductive layer 230 at the wafer level, and the individual indentation is completed by cutting the point where the indentation is formed for each package (FIG. 9). The completed package has the same shape as in the embodiment of FIG. A stepped structure is formed around the junction of the first semiconductor chip and the molding part to disperse the stress concentrated on the part, thereby suppressing the interface defect between the chip and the molding.

기판 역할을 하는 제1반도체칩(110)의 배면은 외부에 노출되어 열방출 용이하며, 열분산체(heat spreader)와의 결합이 용이한 장점이 있다.The back surface of the first semiconductor chip 110 serving as a substrate is exposed to the outside, and thus is easily radiated heat, and has an advantage of being easily coupled with a heat spreader.

이와 같은 웨이퍼레벨 공정을 통해 내구성이 우수하고 경박단소한 반도체 패키지를 제조할 수 있다. Through such a wafer level process, it is possible to manufacture a highly durable and lightweight semiconductor package.

도 10은 본 발명의 다른 실시예에 관한 반도체 패키지를 보인 것으로, 앞선 실시예에서와 달리 패키지 가장자리 부분에서 제1반도체칩(110)와 몰딩부(300) 사이의 접촉 계면(A)이 경사진 형태로 형성되어 있다. 경사진 형태의 접촉 계면(A)은 앞선 도 4의 공정에서 만입부(115)를 직사각 형태가 아닌 슬릿이나 경사진 트렌치 구조로 형성하여 얻을 수 있다. 이 경우에도 제1반도체칩과 몰딩부 접촉 계면 면적이 증가하고 접촉 위치가 달라져 패키지의 내구성을 향상시킬 수 있다. FIG. 10 illustrates a semiconductor package according to another embodiment of the present invention. Unlike the previous embodiment, the contact interface A between the first semiconductor chip 110 and the molding part 300 is inclined at a package edge. It is formed in the form. The inclined contact interface A may be obtained by forming the indentation 115 in a slit or inclined trench structure instead of a rectangular shape in the process of FIG. 4. In this case, the interface area between the first semiconductor chip and the molding part may be increased and the contact position may be changed, thereby improving durability of the package.

도 11 내지 도 13은 본 발명에 따른 반도체 패키지의 내구성을 테스트한 시뮬레이션 결과로서, 도 11은 제1반도체칩과 몰딩부 사이의 접촉 계면에 변화를 주지 않은 패키지에 대한 응력 분포 테스트 결과를 보이고 있고, 도 12는 도 2와 관련된 제1실시예에 따른 패키지, 도 13은 도 10과 관련된 제2실시예에 따른 패키지의 응력 분포를 도시하고 있다. 11 to 13 are simulation results for testing the durability of the semiconductor package according to the present invention, and FIG. 11 shows stress distribution test results for a package that does not change the contact interface between the first semiconductor chip and the molding part. 12 shows a stress distribution of a package according to the first embodiment related to FIG. 2, and FIG. 13 shows a package according to the second embodiment related to FIG. 10.

본 발명의 실시예에 따른 패키지들이 응력 분포가 양호하고, 특히, 패키지 가장자리의 칩과 몰딩부 계면에서 응력이 저감되어 내구성이 우수한 것을 알 수 있다. It can be seen that the packages according to the embodiment of the present invention have a good stress distribution, and in particular, the stress is reduced at the interface between the chip and the molding part at the edge of the package, thereby providing excellent durability.

이상에서 바람직한 실시예를 통하여 본 발명을 예시적으로 설명하였으나, 본 발명은 이와 같은 특정 실시예에만 한정되는 것은 아니며 본 발명에서 제시한 기술적 사상, 구체적으로는 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있을 것이다.
The present invention has been exemplarily described through the preferred embodiments, but the present invention is not limited to such specific embodiments, and various forms within the scope of the technical idea presented in the present invention, specifically, the claims. May be modified, changed, or improved.

Claims (11)

제1재배치도전층이 형성되어 있는 제1반도체칩과,
제1반도체칩 보다 사이즈가 작고, 제1반도체칩의 상부에 실장되는 제2반도체칩과,
상기 제2반도체칩 주변으로 제1반도체칩 위에 형성된 몰딩부와,
상기 제1재배치도전층과 전기적으로 연결되며, 상기 몰딩부를 관통하는 도전성 포스트와,
상기 몰딩부 상면에 형성되며 상기 도전성 포스트와 전기적으로 연결되는 제2재배치도전층과,
상기 제2재배치도전층과 전기적으로 연결되는 외부 접속 단자를 포함하며,
상기 제1반도체칩의 가장자리에서 제1반도체칩과 몰딩부의 접촉 계면은 제1반도체칩의 다른 부분 보다 확장되어 있는 것을 특징으로 하는
반도체 패키지.
A first semiconductor chip having a first repositioning conductive layer formed thereon,
A second semiconductor chip having a smaller size than the first semiconductor chip and mounted on the first semiconductor chip;
A molding part formed on the first semiconductor chip around the second semiconductor chip;
A conductive post electrically connected to the first repositioning conductive layer and penetrating the molding part;
A second reposition conductive layer formed on an upper surface of the molding part and electrically connected to the conductive post;
An external connection terminal electrically connected to the second relocation conductive layer,
The contact interface between the first semiconductor chip and the molding part at the edge of the first semiconductor chip is extended than other portions of the first semiconductor chip.
Semiconductor package.
제1항에 있어서, 상기 제1반도체칩의 가장자리에서 제1반도체칩과 몰딩부의 접촉 계면은 제1반도체칩 표면 보다 아래로 형성되어 있는 것을 특징으로 하는 반도체 패키지.The semiconductor package of claim 1, wherein a contact interface between the first semiconductor chip and the molding part is formed below the surface of the first semiconductor chip at an edge of the first semiconductor chip. 제1항에 있어서, 상기 제1반도체칩과 제2반도체칩은 상면이 상호 대향되고 범프로 상호 전기적으로 연결되는 것을 특징으로 하는 반도체 패키지.The semiconductor package of claim 1, wherein the first semiconductor chip and the second semiconductor chip have upper surfaces facing each other and electrically connected to each other by bumps. 제1항에 있어서, 상기 제2반도체칩의 하면이 제1반도체칩의 상부에 다이어태치되는 것을 특징으로 하는 반도체 패키지.The semiconductor package of claim 1, wherein a lower surface of the second semiconductor chip is die attached to an upper portion of the first semiconductor chip. 제1항에 있어서, 상기 제2반도체칩의 일 표면은 외부에 노출되어 있는 것을 특징으로 하는 반도체 패키지.The semiconductor package of claim 1, wherein one surface of the second semiconductor chip is exposed to the outside. 제1항에 있어서, 상기 제1반도체칩과 제2반도체칩 사이에는 박막형 수동소자가 형성되어 있는 것을 특징으로 하는 반도체 패키지.The semiconductor package according to claim 1, wherein a thin film type passive element is formed between the first semiconductor chip and the second semiconductor chip. 제1항에 있어서, 상기 제1반도체칩의 가장자리는 단차진 구조로 형성되고, 단차진 부위에 몰딩부가 완전히 충진되어 있는 것을 특징으로 하는 반도체 패키지.The semiconductor package of claim 1, wherein an edge of the first semiconductor chip is formed in a stepped structure, and a molding part is completely filled in the stepped part. 제1항에 있어서, 상기 제1반도체칩의 가장자리는 경사진 구조로 형성되고, 경사진 부위에 몰딩부가 완전히 충진되어 있는 것을 특징으로 하는 반도체 패키지.The semiconductor package of claim 1, wherein an edge of the first semiconductor chip is formed to have an inclined structure, and a molding part is completely filled in the inclined portion. 제1재배치도전층이 상면에 형성되어 있는 복수의 제1반도체칩을 포함하는 웨이퍼를 준비하고,
상기 제1반도체칩 위에 도전성 포스트를 형성하고,
상기 제1반도체칩의 가장자리에 연속적으로 연결되는 해자 형태의 만입부를 형성하고,
상기 제1반도체칩에 제2반도체칩을 실장하고,
상기 제1반도체칩 위에 몰딩부를 형성하고,
상기 몰딩부를 연마하여, 상기 도전성 포스트의 상면을 노출시키고,
상기 몰딩부 상면에 상기 도전성 포스트와 전기적으로 연결되는 제2재배치도전층을 형성하고,
상기 제2재배치도전층과 전기적으로 연결되는 외부 접속 단자를 형성하는 단계를 포함하는
웨이퍼레벨 반도체 패키지 제조 방법.
Preparing a wafer including a plurality of first semiconductor chips having a first repositioning conductive layer formed on an upper surface thereof;
Forming a conductive post on the first semiconductor chip,
Forming a hat-shaped indentation continuously connected to an edge of the first semiconductor chip,
Mounting a second semiconductor chip on the first semiconductor chip,
Forming a molding part on the first semiconductor chip,
Polishing the molding to expose an upper surface of the conductive post,
Forming a second repositioning conductive layer electrically connected to the conductive post on an upper surface of the molding part,
Forming an external connection terminal electrically connected to the second relocation conductive layer;
Wafer level semiconductor package manufacturing method.
제9항에 있어서, 상기 만입부는 단차진 구조로 형성하는 것을 특징으로 하는 웨이퍼레벨 반도체 패키지 제조 방법.10. The method of claim 9, wherein the indentation portion is formed in a stepped structure. 제9항에 있어서, 상기 만입부는 경사진 구조로 형성하는 것을 특징으로 하는 웨이퍼레벨 반도체 패키지 제조 방법.
10. The method of claim 9, wherein the indentation portion is formed in an inclined structure.
KR1020100042703A 2010-04-26 2010-05-07 Wafer level semiconductor package and fabrication method thereof KR20110123297A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020100042703A KR20110123297A (en) 2010-05-07 2010-05-07 Wafer level semiconductor package and fabrication method thereof
JP2010137916A JP2011233854A (en) 2010-04-26 2010-06-17 Wafer level semiconductor package and fabrication method thereof
US12/824,190 US8421211B2 (en) 2010-04-26 2010-06-27 Wafer level semiconductor package and fabrication method thereof
TW099121297A TWI418013B (en) 2010-04-26 2010-06-29 Wafer level semiconductor package and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100042703A KR20110123297A (en) 2010-05-07 2010-05-07 Wafer level semiconductor package and fabrication method thereof

Publications (1)

Publication Number Publication Date
KR20110123297A true KR20110123297A (en) 2011-11-15

Family

ID=45393468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100042703A KR20110123297A (en) 2010-04-26 2010-05-07 Wafer level semiconductor package and fabrication method thereof

Country Status (1)

Country Link
KR (1) KR20110123297A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130103398A (en) * 2012-03-08 2013-09-23 스태츠 칩팩, 엘티디. A method of making a semiconductor device and a semiconductor device
KR101346420B1 (en) * 2011-12-29 2014-01-10 주식회사 네패스 Stacked semiconductor package and method of manufacturing the same
KR20150009667A (en) * 2013-07-16 2015-01-27 앰코 테크놀로지 코리아 주식회사 Semiconductor device and manufacturing method thereof
KR101494417B1 (en) * 2013-04-22 2015-02-17 주식회사 네패스 Semiconductor package and method of manufacturing the same
US9136236B2 (en) 2012-09-28 2015-09-15 Intel Corporation Localized high density substrate routing
KR20150107527A (en) * 2014-03-14 2015-09-23 인텔 코포레이션 Localized high density substrate routing
US9159690B2 (en) 2013-09-25 2015-10-13 Intel Corporation Tall solders for through-mold interconnect
US9171816B2 (en) 2012-12-06 2015-10-27 Intel Corporation High density substrate routing in BBUL package
US9349703B2 (en) 2013-09-25 2016-05-24 Intel Corporation Method for making high density substrate interconnect using inkjet printing
US9496196B2 (en) 2014-08-15 2016-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Packages and methods of manufacture thereof
US9502375B2 (en) 2013-07-16 2016-11-22 Amkor Technology, Inc. Semiconductor device with plated pillars and leads
US9570322B2 (en) 2014-11-26 2017-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit packages and methods of forming same
WO2019027278A1 (en) * 2017-08-04 2019-02-07 주식회사 네패스 Chip package and manufacturing method therefor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346420B1 (en) * 2011-12-29 2014-01-10 주식회사 네패스 Stacked semiconductor package and method of manufacturing the same
KR20130103398A (en) * 2012-03-08 2013-09-23 스태츠 칩팩, 엘티디. A method of making a semiconductor device and a semiconductor device
US11251154B2 (en) 2012-03-08 2022-02-15 STATS ChipPAC Pte. Ltd. Thin 3D fan-out embedded wafer level package (EWLB) for application processor and memory integration
US10692836B2 (en) 2012-03-08 2020-06-23 STATS ChipPAC Pte. Ltd. Thin 3D fan-out embedded wafer level package (EWLB) for application processor and memory integration
US9679843B2 (en) 2012-09-28 2017-06-13 Intel Corporation Localized high density substrate routing
US9136236B2 (en) 2012-09-28 2015-09-15 Intel Corporation Localized high density substrate routing
US11984396B2 (en) 2012-09-28 2024-05-14 Intel Corporation Localized high density substrate routing
US11515248B2 (en) 2012-09-28 2022-11-29 Intel Corporation Localized high density substrate routing
US10796988B2 (en) 2012-09-28 2020-10-06 Intel Corporation Localized high density substrate routing
US9269701B2 (en) 2012-09-28 2016-02-23 Intel Corporation Localized high density substrate routing
US10366951B2 (en) 2012-09-28 2019-07-30 Intel Corporation Localized high density substrate routing
US10438915B2 (en) 2012-12-06 2019-10-08 Intel Corporation High density substrate routing in package
US9171816B2 (en) 2012-12-06 2015-10-27 Intel Corporation High density substrate routing in BBUL package
US11251150B2 (en) 2012-12-06 2022-02-15 Intel Corporation High density substrate routing in package
US9437569B2 (en) 2012-12-06 2016-09-06 Intel Corporation High density substrate routing in BBUL package
US10861815B2 (en) 2012-12-06 2020-12-08 Intel Corporation High density substrate routing in package
US9929119B2 (en) 2012-12-06 2018-03-27 Intel Corporation High density substrate routing in BBUL package
US10199346B2 (en) 2012-12-06 2019-02-05 Intel Corporation High density substrate routing in package
US9190380B2 (en) 2012-12-06 2015-11-17 Intel Corporation High density substrate routing in BBUL package
KR101494417B1 (en) * 2013-04-22 2015-02-17 주식회사 네패스 Semiconductor package and method of manufacturing the same
US9502375B2 (en) 2013-07-16 2016-11-22 Amkor Technology, Inc. Semiconductor device with plated pillars and leads
KR20150009667A (en) * 2013-07-16 2015-01-27 앰코 테크놀로지 코리아 주식회사 Semiconductor device and manufacturing method thereof
US9349703B2 (en) 2013-09-25 2016-05-24 Intel Corporation Method for making high density substrate interconnect using inkjet printing
US9741664B2 (en) 2013-09-25 2017-08-22 Intel Corporation High density substrate interconnect formed through inkjet printing
US9666549B2 (en) 2013-09-25 2017-05-30 Intel Corporation Methods for solder for through-mold interconnect
US9159690B2 (en) 2013-09-25 2015-10-13 Intel Corporation Tall solders for through-mold interconnect
KR20150107527A (en) * 2014-03-14 2015-09-23 인텔 코포레이션 Localized high density substrate routing
US9496196B2 (en) 2014-08-15 2016-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Packages and methods of manufacture thereof
US9728522B2 (en) 2014-11-26 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit packages and methods of forming same
US9570322B2 (en) 2014-11-26 2017-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit packages and methods of forming same
WO2019027278A1 (en) * 2017-08-04 2019-02-07 주식회사 네패스 Chip package and manufacturing method therefor
US11264330B2 (en) 2017-08-04 2022-03-01 Nepes Co., Ltd. Chip package with connection portion that passes through an encapsulation portion

Similar Documents

Publication Publication Date Title
KR20110123297A (en) Wafer level semiconductor package and fabrication method thereof
US8421211B2 (en) Wafer level semiconductor package and fabrication method thereof
US20240222218A1 (en) 3dic packaging with hot spot thermal management features
US10734367B2 (en) Semiconductor package and method of fabricating the same
TWI649849B (en) Semiconductor package with high wiring density patch
US7327006B2 (en) Semiconductor package
TWI389183B (en) Method and apparatus for stacking semiconductor chips
TWI445152B (en) Semiconductor structure and method for manufacturing the same
KR101412718B1 (en) Semiconductor package and stacked layer type semiconductor package
TWI662667B (en) Package structure and manufacturing method thereof
KR101366455B1 (en) Semiconductor devices, packaging methods and structures
US9899307B2 (en) Fan-out chip package with dummy pattern and its fabricating method
TWI430425B (en) Integrated circuit package system employing bump technology
US20100290193A1 (en) Stacked-chip packaging structure and fabrication method thereof
JP2003086762A (en) Semiconductor device and manufacturing method therefor
KR101111425B1 (en) Fan Out type semiconductor package
CN112701088A (en) Secondary plastic package structure and manufacturing method thereof
US20220384376A1 (en) Package structure of semiconductor device with improved bonding between the substrates
KR102520346B1 (en) Warpage control of packages using embedded core frame
JP2011222738A (en) Method of manufacturing semiconductor device
KR20190056190A (en) Semiconductor package with thermal transfer plate and method manufacturing the same
KR20110138788A (en) Stack type semiconductor package
KR101605624B1 (en) Package of semiconductor and method for manufacturing the same
KR20080048311A (en) Semiconductor package and method of manufacturing the same
US10249573B2 (en) Semiconductor device package with a stress relax pattern

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application