KR20110123172A - Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same - Google Patents

Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same Download PDF

Info

Publication number
KR20110123172A
KR20110123172A KR1020100042665A KR20100042665A KR20110123172A KR 20110123172 A KR20110123172 A KR 20110123172A KR 1020100042665 A KR1020100042665 A KR 1020100042665A KR 20100042665 A KR20100042665 A KR 20100042665A KR 20110123172 A KR20110123172 A KR 20110123172A
Authority
KR
South Korea
Prior art keywords
compound
mmol
aryl
substituted
organic
Prior art date
Application number
KR1020100042665A
Other languages
Korean (ko)
Other versions
KR101218029B1 (en
Inventor
김신한
홍진석
이은정
김경수
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to KR1020100042665A priority Critical patent/KR101218029B1/en
Priority to PCT/KR2011/003416 priority patent/WO2011139129A2/en
Publication of KR20110123172A publication Critical patent/KR20110123172A/en
Application granted granted Critical
Publication of KR101218029B1 publication Critical patent/KR101218029B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

PURPOSE: A triphenylene compound is provided to improve power efficiency and luminous efficiency when using as the material for an organic electroluminescent display by high hole injection ability and hole transmission ability relative to NPB which is used as the material for hole injection and transmission. CONSTITUTION: A triphenylene compound is in the chemical formula 1. In the chemical formula 1: A is a single bond, phenyl, naphthyl, and substituted or non-substituted heteroaryl with a 6-10 nucleus atom number; B is the substituted or non-substituted C6-C10 aryl and substituted or non-substituted heteroaryl with a 6-10 nucleus atom number; X is one selected from N, O and S; each l and m is independently 0 or 1; n is integer 1 or 2; and Ar1-Ar4 are substituted or non-substituted C6-C20 aryl, substituted or non-substituted heteroaryl with a 6-10 nucleus atom number. When X is O or S, one among l and m is 0.

Description

방향족 아민을 포함하는 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자{TRIPHENYLENE-BASED COMPOUNDS THAT SUBSTITUTE ARYL AMINE COMPOUNDS AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING SAME}Triphenylene compound containing an aromatic amine, and an organic electroluminescent device comprising the same.

본 발명은 전자 수송능, 정공 주입 및/또는 수송능, 및/또는 발광능이 우수한 신규 트리페닐렌계 화합물 및 상기 트리페닐렌계 화합물을 하나 이상의 유기층에 포함함으로써 발광효율, 휘도, 열적 안정성, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.The present invention includes a novel triphenylene compound having excellent electron transport ability, hole injection and / or transport ability, and / or luminous ability, and the triphenylene compound in at least one organic layer, thereby providing luminous efficiency, brightness, thermal stability, driving voltage, The present invention relates to an organic electroluminescent device having improved characteristics such as lifetime.

일반적으로 유기 발광 현상이란 유기 물질에 전기에너지를 가했을 때 빛이 나타나는 현상을 말한다. 즉, 양극(anode)과 음극(cathode) 사이에 유기층을 위치시켰을 때 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기층에 주입되게 된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되고, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.In general, organic light emitting phenomenon refers to a phenomenon in which light appears when electric energy is applied to an organic material. That is, when the organic layer is positioned between the anode and the cathode, a voltage is applied between the two electrodes, and holes are injected into the organic layer and electrons are injected into the cathode. When the injected holes and electrons meet, excitons are formed, and when the excitons fall back to the ground, they shine.

1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광 (electroluminescent, EL) 소자(이하, 간단히 '유기 EL 소자'로 칭함)에 대한 연구는 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 EL 소자가 제시되었다. 이후 고효율, 고수명의 유기 EL 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물 층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다. The study of organic electroluminescent (EL) devices (hereinafter simply referred to as 'organic EL devices') led to the blue electroluminescence using anthracene single crystals in 1965, based on Bernanose's observation of organic thin film emission. By (Tang), an organic EL device having a laminated structure divided into a functional layer of a hole layer and a light emitting layer has been proposed. Since then, in order to make high-efficiency, high-life organic EL devices, the development has been made in the form of introducing each characteristic organic material layer in the device, leading to the development of specialized materials used therein.

이러한 유기 EL 소자는 ITO (Indium tin oxide) 기판, 양극, 선택적으로 양극으로부터 정공을 받아들이는 정공 주입층, 선택적으로 정공을 전달하는 정공 수송층, 정공과 전자가 재결합하여 빛을 내는 발광층, 선택적으로 전자를 전달하는 전자 수송층, 선택적으로 음극으로부터 전자를 받아들이는 전자 주입층 및 음극으로 이루어져 있다. 상기와 같이 유기 EL 소자를 다층으로 제작하는 이유는 정공과 전자의 이동속도가 상이하기 때문인데, 적절한 정공 주입층, 정공 수송층, 전자 수송층 및 전자 주입층을 만들어 주면 정공과 전자가 효과적으로 전달될 수 있으며, 소자 내 정공과 전자의 균형이 이루어져 발광 효율을 높일 수 있다. 전자 주입층에서 주입된 전자와 정공 주입층에서 전달된 정공은 발광층에서 재결합하여 엑시톤을 형성하게 되며 일중항 여기 상태에서 기저 상태로 떨어지며 발광하는 것을 형광이라고 하고, 삼중항 여기 상태에서 기저 상태로 떨어지는 발광을 인광이라고 한다. 이론적으로 캐리어가 발광층에서 재결합하여 엑시톤이 발생될 때 일중항과 삼중항 여기자의 비율이 1:3의 비율로 발생되게 되며, 인광을 이용할 경우 내부 양자 효율이 100%에 이를 수 있다.Such organic EL devices include an indium tin oxide (ITO) substrate, an anode, a hole injection layer that selectively receives holes from an anode, a hole transport layer that selectively transfers holes, a light emitting layer where holes and electrons recombine to emit light, and optionally an electron It consists of an electron transporting layer for transferring the electrons, optionally an electron injection layer for receiving electrons from the cathode and the cathode. The reason why the organic EL device is manufactured in a multi-layer as described above is that the movement speeds of the holes and the electrons are different. If the appropriate hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are made, the holes and the electrons can be effectively transferred. In addition, the hole and the electrons in the device are balanced to improve the luminous efficiency. Electrons injected from the electron injection layer and holes transferred from the hole injection layer recombine in the emission layer to form excitons, and fall from the singlet excited state to the ground state and are called fluorescence, and fall from the triplet excited state to the ground state. Luminescence is called phosphorescence. Theoretically, when the exciton is generated when the carrier is recombined in the emission layer, the ratio of singlet and triplet excitons is generated at a ratio of 1: 3, and when phosphorescence is used, the internal quantum efficiency may be 100%.

한편, 일반적으로 인광 호스트 재료로는 CBP (4,4-dicarbazolybiphenyl) 등의 카바졸계 화합물 등이 사용되며, 인광 도판트 재료로는 Ir, Pt 등의 중원자 (heavy atoms)가 포함된 금속 착체 화합물이 널리 사용되고 있다. 그러나 현재 사용되는 인광 호스트 재료인 CBP의 경우 유리전이온도(Tg)가 110℃ 정도로 낮으며, 소자 내의 결정화가 쉽게 일어나 유기 EL 소자의 수명이 150시간 정도로 매우 짧다는 문제점이 있다.In general, a carbazole compound such as CBP (4,4-dicarbazolybiphenyl) is used as the phosphorescent host material, and a metal complex compound containing heavy atoms such as Ir and Pt is used as the phosphorescent dopant material. This is widely used. However, CBP, which is currently used phosphorescent host material, has a low glass transition temperature (T g ) of about 110 ° C., and crystallization in the device is easy, resulting in a very short lifetime of an organic EL device of about 150 hours.

본 발명의 목적은 우수한 전자 수송능, 정공 주입 및/또는 수송능 및/또는 발광능 (형광 또는 인광)을 가진 트리페닐렌계 화합물을 하나 이상의 유기층에 포함함으로써, 발광효율, 휘도, 열적 안정성, 구동 전압, 수명 등의 제반 특성이 향상된 유기 EL 소자를 제공하는 것이다. An object of the present invention is to include a triphenylene-based compound having excellent electron transporting ability, hole injection and / or transporting ability and / or light emitting ability (fluorescence or phosphorescence) in at least one organic layer, thereby providing luminous efficiency, brightness, thermal stability, driving It is to provide an organic EL device having improved characteristics such as voltage and lifetime.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물을제공한다:In order to achieve the above object, the present invention provides a compound represented by the following formula (1):

Figure pat00001
Figure pat00001

상기 식에서, A는 단일결합, 페닐, 나프틸, 치환 또는 비치환된 핵원자수 6 내지 10의 헤테로 아릴이며, 이때 상기 헤테로 아릴에 도입되는 치환기는 할로겐 원자, 탄소수 1~3의 알킬기 및 탄소수 6 내지 10의 아릴기로 구성된 군으로부터 선택되며; Wherein A is a single bond, phenyl, naphthyl, substituted or unsubstituted heteroaryl having 6 to 10 nuclear atoms, wherein the substituent introduced into the hetero aryl is a halogen atom, an alkyl group having 1 to 3 carbon atoms, and 6 carbon atoms To 10 aryl groups;

B는 치환 또는 비치환된 C6 내지 C10 사이의 아릴, 치환 또는 비치환된 핵원자수 6 내지 10의 헤테로 아릴이며, 이때 상기 아릴 또는 헤테로 아릴에 도입되는 치환기는 할로겐 원자, 탄소수 1~3의 알킬기 및 탄소수 6 내지 10의 아릴기로 구성된 군으로부터 선택되며; B is substituted or unsubstituted aryl between C6 and C10, substituted or unsubstituted heteroaryl having 6 to 10 nuclear atoms, wherein the substituent introduced into the aryl or heteroaryl is a halogen atom, an alkyl group having 1 to 3 carbon atoms And an aryl group having 6 to 10 carbon atoms;

이때 A 와 B는 각각 독립적으로 동일하거나 상이할 수 있으며, In this case, A and B may be the same as or different from each other independently,

X 는 N, O, S 중 하나이며, X is one of N, O, S,

l, m 은 각각 독립적으로 0 또는 1이며, 이때 X가 O 또는 S인 경우 l과 m 중 하나는 0이며,l, m are each independently 0 or 1, where X is O or S, then one of l and m is 0,

n은 1 또는 2 의 정수이며, n is an integer of 1 or 2,

Ar1 내지 Ar4는 치환 또는 비치환된 C6 내지 C20의 아릴, 치환 또는 비치환된 핵원자수 5 내지 20의 헤테로 아릴이며, 이때 아릴, 헤테로 아릴에 도입되는 치환기는 중수소 또는 할로겐 원자, 탄소수 1~3의 알킬기, 탄소수 6 내지 10의 아릴기로 구성된 군으로부터 선택되며, 이들은 각각 독립적으로 동일하거나 상이할 수 있다. Ar 1 to Ar 4 is substituted or unsubstituted C6 to C20 aryl, substituted or unsubstituted heteroaryl having 5 to 20 nuclear atoms, wherein the substituents introduced into aryl, heteroaryl are deuterium or halogen atoms, carbon atoms 1 It is selected from the group consisting of an alkyl group of ˜3, an aryl group having 6 to 10 carbon atoms, each may be the same or different independently.

여기서, Ar1 및 Ar2 는 인접하는 치환기 및/또는 A와 서로 결합하여 축합환을 형성할 수 있으며, Ar3 및 Ar4는 인접하는 치환기 및/또는 B와 서로 결합하여 축합환을 형성할 수 있다. Here, Ar 1 and Ar 2 may be bonded to adjacent substituents and / or A to each other to form a condensed ring, and Ar 3 and Ar 4 may be bonded to adjacent substituents and / or B to each other to form a condensed ring. have.

이때 축합환은 치환기와 치환기가 결합하여 고리를 형성하는 것을 지칭한다.In this case, the condensed ring refers to forming a ring by combining a substituent with a substituent.

상기 헤테로 아릴에 포함되는 원자는 질소원자일 수 있으나, 이에 제한되는 것은 아니다. The atom included in the hetero aryl may be a nitrogen atom, but is not limited thereto.

또한, 본 발명은, 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 하나 이상의 유기층을 포함하는 유기 EL 소자로서, 상기 유기층 중 적어도 하나는 상술된 화학식 1의 화합물을 포함하는 것을 특징으로 하는 유기 EL 소자를 제공한다.In addition, the present invention, the anode; cathode; And at least one organic layer interposed between the anode and the cathode, wherein at least one of the organic layers includes the compound of Formula 1 described above.

본 발명에 따른 상기 화학식 1의 화합물은 유기 EL 소자용 재료로 사용되어 종래에 정공 주입 및 수송 물질로 사용되던 사용되는 NPB 에 비해 높은 정공 주입 및 수송 능력을 통하여 전력 효율 개선 및 발광 효율 향상을 발휘할 수 있다.The compound of Chemical Formula 1 according to the present invention is used as the material for the organic EL device can exhibit the power efficiency and luminous efficiency improvement through a high hole injection and transport ability compared to the conventional NPB used as a hole injection and transport material Can be.

또한, 인광 호스트 재료로 사용되던 4,4-dicarbazolybiphenyl (CBP)에 비해 저전력, 고효율, 고휘도 및 향상된 내구성과 수명을 확보할 수 있다. In addition, compared to 4,4-dicarbazolybiphenyl (CBP), which was used as a phosphorescent host material, low power, high efficiency, high brightness, and improved durability and lifetime can be obtained.

본 발명에서는 넓은 일중항 에너지 준위와 높은 삼중항 에너지 준위를 갖는 트리페닐렌 화합물에, 전자 주게 치환기 (electron donating group, EDG)인 아릴 아민 치환기와 해당 화합물의 일중항 및 삼중항 에너지 준위에 영향을 덜 미치는 연결기 (linker, A, B)를 도입하는 것을 특징으로 한다. In the present invention, the triphenylene compound having a wide singlet energy level and a high triplet energy level has an effect on the aryl amine substituent which is an electron donating group (EDG) and the singlet and triplet energy levels of the compound. It is characterized by the introduction of less influent linkers (A, B).

즉, 기존의 넓은 일중항 에너지 준위와 높은 삼중항 에너지 준위를 가지는 트리페닐렌 화합물에, 아릴 아민과 같은 작용기를 도입하여 일중항 에너지를 조절하고, 페닐 또는 나프틸, 핵원자수 6 내지 10의 헤테로 아릴(환)과 같은 작은 분자량의 방향족 연결기에 meta 결합을 통하여 비슷한 에너지 준위를 갖는 작용기를 도입함으로써, 조절된 일중항 에너지 준위와 삼중항 에너지 준위를 유지할 수 있다.That is, in the existing triphenylene compound having a wide singlet energy level and a high triplet energy level, the singlet energy is regulated by introducing a functional group such as aryl amine, and the phenyl or naphthyl, having 6 to 10 nuclear atoms. By introducing functional groups with similar energy levels through meta bonds to small molecular weight aromatic linkers such as heteroaryls (rings), controlled singlet and triplet energy levels can be maintained.

이때, 작용기가 방향족 연결기에 para 또는 ortho 위치로 치환될 경우 컨쥬게이션 효과의 증대와 파이전자 교류 효과 등에 의하여, 분자의 일중항 에너지와 삼중항 에너지에 직접적인 영향을 가지게 되지만 meta- 결합을 통하여 이를 최소화할 수 있다. At this time, when the functional group is substituted at the para or ortho position in the aromatic linkage, the conjugation effect and the pi electron exchange effect directly affect the singlet and triplet energy of the molecule, but minimize them through meta-bonding. can do.

전술한 치환기와 연결기들은 트리페닐렌의 에너지 준위를 효과적으로 조절하고, 정공 저지 능력 및 정공 주입/수송 능력을 극대화시켜 유기 EL 소자의 정공주입층, 정공 수송층 재료로 유용하게 응용될 수 있다. 또한 연결기의 변환을 통하여 인광 발광성 유기 EL 소자의 발광층 재료로써 사용하였을 경우, 향상된 발광 특성을 나타내는 화합물을 제공할 수 있다. The above-described substituents and linkers can be effectively used as a hole injection layer and hole transport layer material of an organic EL device by effectively adjusting the energy level of triphenylene, maximizing the hole blocking ability and the hole injection / transport ability. In addition, when used as a light emitting layer material of the phosphorescent organic EL device through the conversion of the linking group, it is possible to provide a compound exhibiting improved light emission characteristics.

아울러 A, B로 표현되는 연결기 도입에 의해 분자량이 증대됨으로써, 유리상 전이온도 (Tg) 향상으로 내구성 및 수명 향상을 발휘할 수 있다.In addition, by increasing the molecular weight by introducing the linking groups represented by A and B, durability and lifespan improvement can be exhibited by improving the glass phase transition temperature (T g ).

나아가, 도입되는 연결기 (linker) A 또는 B가 메타 (meta-) 위치로 치환되는 경우 트리페닐렌 화합물의 높은 삼중항 에너지 준위가 유지됨으로써, 인광 발광성 유기 EL 소자용 발광층 재료로도 향상된 효율을 나타낼 수 있다. 따라서 본 발명의 화합물을 포함하는 형광 또는 인광 발광성 유기 EL 소자는 발광성능 및 수명 면에서 크게 향상된 풀 칼라 디스플레이 패널 등을 제공할 수 있다.Furthermore, when the linker A or B to be introduced is replaced with a meta-position, the triplet energy level of the triphenylene compound is maintained, thereby exhibiting improved efficiency even as a light emitting layer material for a phosphorescent organic EL device. Can be. Accordingly, the fluorescent or phosphorescent organic EL device including the compound of the present invention can provide a full color display panel and the like which are greatly improved in light emission performance and lifetime.

본 발명의 화학식 1로 표현되는 화합물은, 각각 하기 화학식 2 내지 4로 보다 구체화하여 표현될 수 있다.Compounds represented by the general formula (1) of the present invention, may be represented by more specifically to the following formulas (2) to (4).

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

상기 화학식 2 내지 4에서, In Chemical Formulas 2 to 4,

A, B, Ar1 내지 Ar4 및 n은 각각 화학식 1에서 정의된 바와 같다.A, B, Ar 1 to Ar 4 and n are the same as defined in Chemical Formula 1.

이때 A 또는 B 가 핵원자수 6 내지 10의 헤테로 아릴일 경우, 하기 화학식 5로 구성된 치환기 군으로부터 선택될 수 있다.In this case, when A or B is a hetero aryl having 6 to 10 nuclear atoms, it may be selected from a substituent group consisting of the following Chemical Formula 5.

Figure pat00005
Figure pat00005

상기 식에서, 화학식 5의 치환기 군에 도입되는 복수 개의 Z 는 각각 독립적이며, 동일하게 표기되더라도 동일하거나 서로 상이할 수 있으며, 복수 개의 Z 중 적어도 1개 이상은 질소원자이며, 나머지는 탄소원자이다.In the above formula, a plurality of Z introduced into the substituent group of the formula (5) are each independently and may be the same or different from each other, even if they are the same, at least one of the plurality of Z is a nitrogen atom, the remainder is a carbon atom.

또한 상기 화학식 1에서, Ar1 및 Ar2 는 인접하는 치환기 및/또는 A와 서로 결합하여 축합환을 형성할 수 있으며, Ar3 및 Ar4는 인접하는 치환기 및/또는 B와 서로 결합하여 축합환을 형성할 수 있다. In addition, in Chemical Formula 1, Ar 1 and Ar 2 may be bonded to adjacent substituents and / or A to form a condensed ring, and Ar 3 and Ar 4 may be bonded to adjacent substituents and / or B to be condensed. Can be formed.

하기 화학식들은 본 발명의 화학식 1로 표시되는 화합물의 대표적인 예들이나, 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 한정되는 것은 아니다.The following formulas are representative examples of the compound represented by Formula 1 of the present invention, but the compound represented by Formula 1 of the present invention is not limited to those illustrated below.

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

Figure pat00009
Figure pat00009

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

Figure pat00013
Figure pat00013

Figure pat00014
Figure pat00014

Figure pat00015
Figure pat00015

Figure pat00016
Figure pat00016

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

Figure pat00021
Figure pat00021

Figure pat00022
Figure pat00022

Figure pat00023
Figure pat00023

Figure pat00024
Figure pat00024

Figure pat00025
Figure pat00025

Figure pat00026
Figure pat00026

Figure pat00027
Figure pat00027

Figure pat00028

Figure pat00028

본 발명의 화학식 1로 표시되는 화합물은 일반적인 합성방법에 따라 합성될 수 있다 (Chem . Rev ., 60:313 (1960); J. Chem . SOC. 4482 (1955); Chem. Rev. 95: 2457 (1995) 참조). 본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.The compound represented by general formula (I) of the present invention can be synthesized according to the general synthetic method (Chem Rev, 60: 313 ( 1960); J. Chem SOC 4482 (1955); Chem Rev. 95:..... 2457 (1995)). Detailed synthesis procedures for the compounds of the present invention will be described in detail in the synthesis examples described below.

본 발명의 다른 측면은 상기한 본 발명에 따른 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자에 관한 것이다. Another aspect of the present invention relates to an organic electroluminescent device comprising the compound represented by Formula 1 according to the present invention.

구체적으로, 본 발명은 양극(anode); 음극(cathode); 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기층을 포함하는 유기 EL 소자로서, 상기 1층 이상의 유기층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 한다. Specifically, the present invention is an anode (anode); Cathode; And at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer includes a compound represented by Chemical Formula 1.

상기 화학식 1의 화합물은 단독 또는 복수로 포함될 수 있다.The compound of Formula 1 may be included alone or in plurality.

본 발명의 화학식 1로 표기되는 화합물을 포함하는 유기층은 정공주입층, 정공수송층, 전자수송층 및 발광층 중 어느 하나 이상일 수 있다. 바람직하게는, 상기 화학식 1로 표시되는 화합물은 정공 주입층, 정공 수송층 재료로서 유기 EL 소자에 포함될 수 있고, 이 경우 유기 EL 소자는 정공 저지 능력 및 정공 주입/수송 능력을 극대화할 수 있다. 또한 상기 화학식 1로 표시되는 화합물은 유기 EL 소자의 발광층 재료로 사용됨으로써, 향상된 효율을 제공할 수 있다.The organic layer including the compound represented by Formula 1 of the present invention may be any one or more of a hole injection layer, a hole transport layer, an electron transport layer and a light emitting layer. Preferably, the compound represented by Formula 1 may be included in the organic EL device as a hole injection layer and a hole transport layer material, in which case the organic EL device may maximize the hole blocking ability and the hole injection / transport ability. In addition, the compound represented by Chemical Formula 1 may be used as a light emitting layer material of the organic EL device, thereby providing improved efficiency.

본 발명에서 발광층은 인광 도판트 재료 또는 형광 도판트 재료를 포함할 수 있다. 바람직하게는, 본 발명의 화학식 1로 표기되는 화합물은 청색, 녹색, 및/또는 적색의 인광 호스트, 형광 호스트, 정공수송 물질, 정공주입 물질 및/또는 전자수송물질로서 유기 EL 소자에 포함될 수 있다. In the present invention, the light emitting layer may include a phosphorescent dopant material or a fluorescent dopant material. Preferably, the compound represented by Formula 1 of the present invention may be included in the organic EL device as a blue, green, and / or red phosphorescent host, a fluorescent host, a hole transport material, a hole injection material, and / or an electron transport material. .

또한 본 발명에 따른 화학식 1로 표시되는 화합물은 150℃ 이상의 높은 유리 전이 온도를 가지고 있다. 따라서 상기 화합물을 유기 EL 소자의 유기층으로 사용할 경우, 유기 EL 소자 내에서 결정화가 최소화되기 때문에 소자의 구동전압을 낮출 수 있고, 발광효율, 휘도, 열적 안정성 및 수명 특성을 개선할 수 있다.In addition, the compound represented by Formula 1 according to the present invention has a high glass transition temperature of 150 ℃ or more. Therefore, when the compound is used as the organic layer of the organic EL device, since the crystallization is minimized in the organic EL device, the driving voltage of the device can be lowered, and the luminous efficiency, luminance, thermal stability, and lifetime characteristics can be improved.

본 발명에 따른 유기 EL 소자 구조의 비제한적인 예를 들면, 기판, 양극, 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 음극이 순차적으로 적층된 것일 수 있다. 이때 상기 발광층, 정공주입층, 정공수송층 및 전자수송층 중 하나 이상은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 상기 전자 수송층 위에는 전자 주입층이 위치할 수도 있다.As a non-limiting example of the organic EL device structure according to the present invention, a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and a cathode may be sequentially stacked. In this case, at least one of the light emitting layer, the hole injection layer, the hole transport layer, and the electron transport layer may include a compound represented by Chemical Formula 1. An electron injection layer may be positioned on the electron transport layer.

또한, 본 발명에 따른 유기 EL 소자는 전술한 바와 같이 양극, 1층 이상의 유기층 및 음극이 순차적으로 적층된 구조뿐만 아니라, 전극과 유기층 계면에 절연층 또는 접착층이 삽입될 수도 있다.In addition, as described above, the organic EL device according to the present invention may not only have a structure in which an anode, at least one organic layer, and a cathode are sequentially stacked, but an insulating layer or an adhesive layer may be inserted at the interface between the electrode and the organic layer.

본 발명의 유기 EL 소자에 있어서, 상기 화학식 1의 화합물을 포함하는 상기 유기층은 진공 증착이나 용액 도포에 의하여 형성될 수 있다. 상기 용액 도포의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이들에만 한정되지 않는다. In the organic EL device of the present invention, the organic layer including the compound of Formula 1 may be formed by vacuum deposition or solution coating. Examples of the solution application include spin coating, dip coating, doctor blading, inkjet printing or thermal transfer method, but is not limited thereto.

본 발명의 유기 EL 소자는, 소자 내 유기층 중 1층 이상을 본 발명의 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 유기층 및 전극을 형성하여 제조될 수 있다.The organic EL device of the present invention forms an organic layer and an electrode using materials and methods known in the art, except that at least one layer of the organic layer in the device includes the compound represented by Formula 1 of the present invention. Can be prepared.

예컨대, 기판으로는 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.For example, a silicon wafer, quartz, glass plate, metal plate, plastic film or sheet may be used as the substrate.

양극 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물 (ITO), 인듐 아연 산화물 (IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합물; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜] (PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자; 또는 카본블랙 등이 있으나, 이들에만 한정되는 것은 아니다.The anode material may be a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of oxides with metals such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black, but is not limited thereto.

음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 또는 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.Cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin or lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.

상기 정공 주입층, 정공 수송층, 전자 수송층 및 전자 주입층은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질이 사용될 수 있다.The hole injection layer, the hole transport layer, the electron transport layer and the electron injection layer is not particularly limited, and conventional materials known in the art may be used.

이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.

<준비예 1> triphenylene-2,7-diyl bis(trifluoromethanesulfonate)의 합성Preparation Example 1 Synthesis of triphenylene-2,7-diyl bis (trifluoromethanesulfonate)

<< 단계 1> 화합물 1 (3,3'-dimethoxy-o-terphenyl)의 합성Step 1> Synthesis of Compound 1 (3,3'-dimethoxy-o-terphenyl)

[반응식 1]Scheme 1

Figure pat00029
Figure pat00029

1,2-dibromobenzene (50g, 214 mmol), 3-methoxyphenylboronic acid (65.1g, 428 mmol) 및 Pd(PPh3)4 (4.95g, 4.28 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 1.4 L 에 용해시킨 후 소듐 카보네이트 (118.2g, 856 mmol)을 녹인 수용액 1.2L을 첨가하여 12시간 동안 환류 교반하였다. 반응이 종결된 후 디클로로메탄 200 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트 (Magnesium sulphate)로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 4 : 1 (v:v)]로 정제하여 백색 고체의 화합물 15 (43.5 g, 수율 70 %)을 수득하였다.1,2-dibromobenzene (50g, 214 mmol), 3-methoxyphenylboronic acid (65.1g, 428 mmol) and Pd (PPh 3 ) 4 (4.95g, 4.28 mmol) were added to the flask and dissolved in 1.4 L of toluene under nitrogen atmosphere. Then, 1.2 L of an aqueous solution of sodium carbonate (118.2 g, 856 mmol) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the mixture was extracted three times with 200 ml of dichloromethane, and the extract was dried with excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 4: 1 (v: v)] to give compound 15 (43.5 g, yield 70%) as a white solid.

GC-Mass (이론치: 290.13 g/mol, 측정치: 290 g/mol)
GC-Mass (Theoretical value: 290.13 g / mol, Measured value: 290 g / mol)

<단계 2> 화합물 2 (2,7-dimethoxytriphenylene)의 합성<Step 2> Synthesis of Compound 2 (2,7-dimethoxytriphenylene)

[반응식 2]Scheme 2

Figure pat00030
Figure pat00030

상기 <단계 1>에서 얻어진 화합물1 (40g, 137 mmol)을 플라스크에 넣고 질소 분위기 하에, 디클로로메탄 1 L 에 용해시킨 다음 Iron (III) chloride (44.4 g, 274 mmol)을 넣고 상온에서 12시간 동안 교반하였다. 이후 2 당량의 iron(III) choloride를 추가로 첨가한 뒤 1시간 더 교반하고, 메틸알콜과 물을 1:1의 비율로 1L를 첨가하였다. 반응이 종결된 후, 유기층을 분리하여 과량의 마그네슘 설페이트로 건조 및 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 2 : 3 (v:v)]로 분리하여 31.6g 의 생성물을 얻고 이를 아세토니트릴 600 ml에 재결정하여 옅은 노란색 고체의 화합물2 (28g, 수율 70 %)을 수득하였다.Compound 1 (40 g, 137 mmol) obtained in <Step 1> was placed in a flask and dissolved in 1 L of dichloromethane under a nitrogen atmosphere. Then, Iron (III) chloride (44.4 g, 274 mmol) was added thereto, and the mixture was stirred at room temperature for 12 hours. Stirred. After adding 2 equivalents of iron (III) choloride, the mixture was further stirred for 1 hour, and 1 liter of methyl alcohol and water were added at a ratio of 1: 1. After the reaction was completed, the organic layer was separated, dried over excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was separated by silica gel column chromatography [n-Hexane: Dichloromethane = 2: 3 (v: v)] to give 31.6 g of product which was recrystallized in 600 ml of acetonitrile to give a pale yellow solid Compound 2 (28 g, yield). 70%) was obtained.

GC-Mass (이론치: 288.12 g/mol, 측정치: 288 g/mol),
GC-Mass (Theoretical value: 288.12 g / mol, Measured value: 288 g / mol),

<단계 3> 화합물3 (2,7-dihydroxytriphenylene)의 합성Step 3 Synthesis of Compound 3 (2,7-dihydroxytriphenylene)

[반응식 3]Scheme 3

Figure pat00031
Figure pat00031

상기 <단계 2>에서 얻어진 화합물2 (25g, 86 mmol) 및 피리딘 하이드로클로라이드 (pyridine hydrochloride) (100g, 86 mmol)을 플라스크에 넣고 질소 분위기 하에서 220℃에서 90분간 환류 교반하였다. 반응이 종결된 후, 조산물을 과량의 물로 세척하여 화합물3 (20g, 수율 88 %)을 수득하였다.Compound 2 (25 g, 86 mmol) and pyridine hydrochloride (100 g, 86 mmol) obtained in <Step 2> were placed in a flask and stirred at reflux for 90 minutes at 220 ° C. under a nitrogen atmosphere. After the reaction was completed, the crude product was washed with excess water to give compound 3 (20 g, yield 88%).

GC-Mass (이론치: 260.08 g/mol, 측정치: 260 g/mol),
GC-Mass (Theoretical value: 260.08 g / mol, Measured value: 260 g / mol),

<단계 4> 화합물4 (triphenylene-2,7-diyl bis(trifluoromethanesulfonate))의 합성Step 4 Synthesis of Compound 4 (triphenylene-2,7-diyl bis (trifluoromethanesulfonate))

[반응식 4]Scheme 4

Figure pat00032
Figure pat00032

상기 <단계 3>에서 얻어진 화합물3 (20 g, 77 mmol)을 플라스크에 넣고 질소 분위기 하에서 pyridine 385 ml에 용해하여 0℃에서 교반하였다. 여기에 trifluoromethanesylfonyl anhydride (43.5 g, 154 mmol)를 천천히 한 방울씩 적가한 후 상온에서 12시간 동안 교반하였다. 반응이 종결된 후, 반응물을 감압 농축한 뒤 얻어진 고체를 플라스크에 넣고 메틸알콜 500 ml를 첨가하여 1시간 동안 교반 및 여과하여 백색 고체의 혼합물을 35g 얻었다. 조산물을 헥산/디클로로메탄으로 재결정하여 백색 고체의 화합물 4(28g, 수율: 68 %)을 수득하였다.Compound 3 (20 g, 77 mmol) obtained in <Step 3> was placed in a flask, dissolved in 385 ml of pyridine under a nitrogen atmosphere, and stirred at 0 ° C. Trifluoromethanesylfonyl anhydride (43.5 g, 154 mmol) was slowly added dropwise thereto, followed by stirring at room temperature for 12 hours. After the reaction was completed, the reaction product was concentrated under reduced pressure, and the obtained solid was placed in a flask. 500 ml of methyl alcohol was added thereto, and the mixture was stirred and filtered for 1 hour to obtain 35 g of a mixture of white solid. The crude product was recrystallized from hexane / dichloromethane to give compound 4 (28 g, yield: 68%) as a white solid.

GC-Mass (이론치: 523.98 g/mol, 측정치: 524 g/mol), GC-Mass (Theoretical value: 523.98 g / mol, Measured value: 524 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 7.72 ~ 7.75(m, 2H), 7.78 ~ 7.80(m, 2H), 8.77 ~ 8.79(m, 4H), 8.92 ~ 8.94(m, 2H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 7.72 to 7.75 (m, 2H), 7.78 to 7.80 (m, 2H), 8.77 to 8.79 (m, 4H), 8.92 to 8.94 (m, 2H )

[[ 합성예Synthetic example 1] : 화합물  1]: compound InvInv 1의 제조 1, manufacture

하기 반응식 5의 반응 경로를 거쳐 화합물 Inv 1을 합성하였다.Compound Inv 1 was synthesized through the reaction route of Scheme 5 below.

[반응식 5]Scheme 5

Figure pat00033

Figure pat00033

1) 단계 1 : 중간체 5의 합성1) Step 1: Synthesis of Intermediate 5

상기 <준비예 1>에서 얻어진 화합물 4 (10 g, 19 mmol), N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-N-phenylbenzenamine (6.34 g, 17.1 mmol) 및 Pd(PPh3)4 (0.65 g, 0.57 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 100 mL에 용해시킨 후 포타슘 카보네이트 (Potassium carbonate) (5.25 g, 38 mmol)을 녹인 수용액 20 mL를 첨가하여 12시간 동안 환류 교반하였다. 물 50 ml를 첨가하여 반응을 종결 시킨 후, 디클로로메탄 30 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 7 : 3 (v:v)]로 정제하여 백색 고체의 화합물 5 (8.2 g, 수율 70 %)을 수득하였다.Compound 4 (10 g, 19 mmol) obtained in the <Preparation Example 1>, N- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) -N -phenylbenzenamine (6.34 g, 17.1 mmol) and Pd (PPh 3 ) 4 (0.65 g, 0.57 mmol) were placed in a flask and dissolved in 100 mL of toluene under a nitrogen atmosphere, followed by potassium carbonate (5.25 g, 38 mmol). 20 mL of an aqueous solution was added thereto, and the mixture was stirred under reflux for 12 hours. After completion of the reaction by adding 50 ml of water, the mixture was extracted three times with 30 ml of dichloromethane, the extract was dried over excess magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 7: 3 (v: v)] to give compound 5 (8.2 g, yield 70%) as a white solid.

GC-Mass (이론치: 619.14 g/mol, 측정치: 619 g/mol)GC-Mass (Theoretical value: 619.14 g / mol, Measured value: 619 g / mol)

2) 단계 2 : Inv 1 의 합성2) Step 2: Synthesis of Inv 1

상기 <단계 1>에서 얻은 화합물 5 (8 g, 12mmol), 디페닐아민 (2.6 g, 15 mmol) 및 Pd(OAc)2 (0.08 g, 0.36 mmol), BINAP(0.45 g, 0.72 mmol)과 포타슘 카보네이트 (3.31g, 24mmol)을 플라스크에 넣고 질소 분위기 하에서 톨루엔 80 mL 에 용해시킨 후 12시간 동안 환류 교반하였다. 반응이 종결된 뒤 물 50ml를 첨가하고, 디클로로메탄 30 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 3 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 1 (5.2 g, 수율 68 %)을 수득하였다.Compound 5 (8 g, 12 mmol), diphenylamine (2.6 g, 15 mmol) and Pd (OAc) 2 (0.08 g, 0.36 mmol) obtained in <Step 1>, BINAP (0.45 g, 0.72 mmol) and potassium Carbonate (3.31 g, 24 mmol) was added to the flask and dissolved in 80 mL of toluene under a nitrogen atmosphere, followed by stirring under reflux for 12 hours. After the reaction was completed, 50 ml of water was added, followed by extraction three times with 30 ml of dichloromethane, and the extract was dried over excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 3: 1 (v: v)] to give the compound Inv 1 (5.2 g, yield 68%) as a white solid.

GC-Mass (이론치: 638.27 g/mol, 측정치: 638 g/mol), GC-Mass (Theoretical value: 638.27 g / mol, Measured value: 638 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 6.46 ~ 6.52(m, 10H), 6.98 ~ 7.08(m, 13H), 7.32(s, 1H), 7.46(m, 2H), 7.82 ~ 7.88(m, 2H), 8.12 ~ 8.18 (m, 2H), 8.68(m, 1H), 8.93(m, 1H), 9.15(s, 1H) 1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 6.46 to 6.52 (m, 10H), 6.98 to 7.08 (m, 13H), 7.32 (s, 1H), 7.46 (m, 2H), 7.82 to 7.88 (m, 2H), 8.12 to 8.18 (m, 2H), 8.68 (m, 1H), 8.93 (m, 1H), 9.15 (s, 1H)

[합성예 2] : 화합물 Inv 3 의 제조Synthesis Example 2 Preparation of Compound Inv 3

하기 반응식 6의 반응 경로를 거쳐 화합물 Inv 3을 합성하였다.Compound Inv 3 was synthesized through the reaction route of Scheme 6 below.

[반응식 6]Scheme 6

Figure pat00034

Figure pat00034

1) 단계 1 : 중간체 6의 합성1) Step 1: Synthesis of Intermediate 6

상기 <준비예 1>에서 얻어진 화합물 4 (10 g, 19 mmol), N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-N-phenylbenzenamine (6.34 g, 17.1 mmol) 및 Pd(PPh3)4 (0.65 g, 0.57 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 100 mL에 용해시킨 후 포타슘 카보네이트 (5.25 g, 38 mmol)을 녹인 수용액 20 mL를 첨가하여 12시간 동안 환류 교반하였다. 물 50 ml를 첨가하여 반응을 종결 시킨 후, 디클로로메탄 30 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 7 : 3 (v:v)]로 정제하여 백색 고체의 화합물 6 (8.6 g, 수율 73 %)을 수득하였다.Compound 4 (10 g, 19 mmol) obtained in the <Preparation Example 1>, N- (3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) -N Aqueous solution of -phenylbenzenamine (6.34 g, 17.1 mmol) and Pd (PPh 3 ) 4 (0.65 g, 0.57 mmol) in a flask, dissolved in 100 mL of toluene under nitrogen atmosphere, and dissolved with potassium carbonate (5.25 g, 38 mmol) 20 mL was added and stirred at reflux for 12 h. After completion of the reaction by adding 50 ml of water, the mixture was extracted three times with 30 ml of dichloromethane, the extract was dried over excess magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 7: 3 (v: v)] to give compound 6 (8.6 g, yield 73%) as a white solid.

GC-Mass (이론치: 619.14 g/mol, 측정치: 619 g/mol)GC-Mass (Theoretical value: 619.14 g / mol, Measured value: 619 g / mol)

2) 단계 2 : Inv 3 의 합성2) Step 2: Synthesis of Inv 3

상기 <단계 1>에서 얻은 화합물 5 (8 g, 12mmol), 디페닐 아민 (2.6 g, 15 mmol) 및 Pd(OAc)2 (0.08 g, 0.36 mmol), BINAP (0.45 g, 0.72 mmol)과 포타슘 카보네이트 ( 3.31g, 24mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 80 mL에 용해시킨 후 12시간 동안 환류 교반하였다. 반응이 종결된 후 물 50ml 를 첨가하고, 디클로로메탄 30 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 3 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 3 (5.5 g, 수율 72 %)을 수득하였다.Compound 5 (8 g, 12 mmol), diphenyl amine (2.6 g, 15 mmol) and Pd (OAc) 2 (0.08 g, 0.36 mmol) obtained in <Step 1>, BINAP (0.45 g, 0.72 mmol) and potassium Carbonate (3.31 g, 24 mmol) was added to the flask and dissolved in 80 mL of toluene under a nitrogen atmosphere, followed by stirring under reflux for 12 hours. After the reaction was completed, 50 ml of water was added, followed by extraction three times with 30 ml of dichloromethane, and the extract was dried over excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 3: 1 (v: v)] to give the compound Inv 3 (5.5 g, 72% yield) as a white solid.

GC-Mass (이론치: 638.27 g/mol, 측정치: 638 g/mol), GC-Mass (Theoretical value: 638.27 g / mol, Measured value: 638 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 6.42 ~ 6.46(m, 9H), 6.68(m, 1H), 6.84(s, 1H), 6.98 ~ 7.08(m, 14H), 7.32(s, 1H), 7.82 ~ 7.88(m, 2H), 8.12 ~ 8.18 (m, 2H), 8.68(m, 1H), 8.93(m, 1H), 9.15(s, 1H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 6.42 to 6.46 (m, 9H), 6.68 (m, 1H), 6.84 (s, 1H), 6.98 to 7.08 (m, 14H), 7.32 ( s, 1H), 7.82 to 7.88 (m, 2H), 8.12 to 8.18 (m, 2H), 8.68 (m, 1H), 8.93 (m, 1H), 9.15 (s, 1H)

[합성예 3] : 화합물 Inv 6 의 제조Synthesis Example 3 Preparation of Compound Inv 6

하기 반응식 7의 반응 경로를 거쳐 화합물 Inv 6을 합성하였다.Compound Inv 6 was synthesized through the reaction path of Scheme 7 below.

[반응식 7]Scheme 7

Figure pat00035
Figure pat00035

1) 단계 1 : 중간체 7의 합성1) Step 1: Synthesis of Intermediate 7

상기 <준비예 1>에서 얻어진 화합물 4 (10 g, 19 mmol), N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-N-bis(diphenyl)benzenamine (8.9 g, 17.1 mmol) 및 Pd(PPh3)4 (0.65 g, 0.57 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 100 mL에 용해시킨 후 포타슘 카보네이트 (5.25 g, 38 mmol)을 녹인 수용액 20 mL를 첨가하여 12시간 동안 환류 교반하였다. 물 50 ml를 첨가하여 반응을 종결 시킨 후, 디클로로메탄 30 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 7 : 3 (v:v)]로 정제하여 백색 고체의 화합물 7 (8.2 g, 수율 56 %)을 수득하였다.Compound 4 (10 g, 19 mmol) obtained in the <Preparation Example 1>, N- (3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) -N -bis (diphenyl) benzenamine (8.9 g, 17.1 mmol) and Pd (PPh 3 ) 4 (0.65 g, 0.57 mmol) were placed in a flask, dissolved in 100 mL of toluene under nitrogen atmosphere, and then potassium carbonate (5.25 g, 38 mmol) 20 mL of an aqueous solution was added thereto, and the mixture was stirred under reflux for 12 hours. After completion of the reaction by adding 50 ml of water, the mixture was extracted three times with 30 ml of dichloromethane, the extract was dried over excess magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 7: 3 (v: v)] to give compound 7 (8.2 g, yield 56%) as a white solid.

GC-Mass (이론치: 771.21 g/mol, 측정치: 771 g/mol)GC-Mass (Theoretical value: 771.21 g / mol, Measured value: 771 g / mol)

2) 단계 2 : Inv 6 의 합성2) Step 2: Synthesis of Inv 6

상기 <단계 1>에서 얻은 화합물 6 (6.1 g, 8mmol), Bis(diphenyl)amine (3.1 g, 9.6mmol) 및 Pd(OAc)2 (0.05 g, 0.24 mmol), BINAP (0.3 g, 0.48 mmol)과 포타슘 카보네이트 (3.31 g, 24 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 60 mL에 용해시킨 후 12시간 동안 환류 교반하였다. 반응이 종결된 뒤 물 30 ml를 첨가 후, 디클로로메탄 20 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 3 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 6 (4.9 g, 수율 65 %)을 수득하였다.Compound 6 (6.1 g, 8 mmol), Bis (diphenyl) amine (3.1 g, 9.6 mmol) and Pd (OAc) 2 (0.05 g, 0.24 mmol) obtained in <Step 1>, BINAP (0.3 g, 0.48 mmol) And potassium carbonate (3.31 g, 24 mmol) were added to a flask, dissolved in 60 mL of toluene under a nitrogen atmosphere, and stirred under reflux for 12 hours. After the reaction was completed, 30 ml of water was added, followed by extraction three times with 20 ml of dichloromethane, and the extract was dried over excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 3: 1 (v: v)] to give compound Inv 6 (4.9 g, yield 65%) as a white solid.

GC-Mass (이론치: 942.40 g/mol, 측정치: 942 g/mol), GC-Mass (Theoretical value: 942.40 g / mol, Measured value: 942 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 6.52(m, 10H), 7.08(m, 1H), 7.32(s, 1H), 7.46 ~ 7.48(m, 22H), 7.75(m, 8H), 7.82 ~ 7.88(m, 2H), 8.12 ~ 8.18(m, 2H), 8.68(m, 1H), 8.93(m, 1H), 9.15(s, 1H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 6.52 (m, 10H), 7.08 (m, 1H), 7.32 (s, 1H), 7.46 ~ 7.48 (m, 22H), 7.75 (m, 8H), 7.82 to 7.88 (m, 2H), 8.12 to 8.18 (m, 2H), 8.68 (m, 1H), 8.93 (m, 1H), 9.15 (s, 1H)

[합성예 4] : 화합물 Inv 30 의 제조Synthesis Example 4 Preparation of Compound Inv 30

하기 반응식 8의 반응 경로를 거쳐 화합물 Inv 30을 합성 하였다.Compound Inv 30 was synthesized through the reaction path of Scheme 8 below.

[반응식 8]Scheme 8

Figure pat00036

Figure pat00036

1) 단계 1 : Inv 30의 합성1) Step 1: Synthesis of Inv 30

상기 <준비예 1>에서 얻어진 화합물 4 (10 g, 19 mmol), N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-N-phenylbenzenamine (15.5 g, 41.8 mmol) 및 Pd(PPh3)4 (0.65 g, 0.57 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 100 mL 에 용해시킨 후 소듐 카보네이트 (6 g, 57 mmol)을 녹인 수용액 20 mL를 첨가하여 12시간 동안 환류 교반하였다. 물 50 ml를 첨가하여 반응을 종결시킨 후, 디클로로메탄 50 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 4 : 1 (v:v)]로 정제하여 백색 고체의 화합물 7 (11.12 g, 수율 82 %)을 수득하였다.Compound 4 (10 g, 19 mmol) obtained in the <Preparation Example 1>, N- (3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) -N -phenylbenzenamine (15.5 g, 41.8 mmol) and Pd (PPh 3 ) 4 (0.65 g, 0.57 mmol) were placed in a flask, dissolved in 100 mL of toluene under nitrogen atmosphere, and then dissolved in sodium carbonate (6 g, 57 mmol) in an aqueous solution 20 mL was added and stirred at reflux for 12 h. After completion of the reaction by adding 50 ml of water, the mixture was extracted three times with 50 ml of dichloromethane, the extract was dried over excess magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 4: 1 (v: v)] to give compound 7 (11.12 g, yield 82%) as a white solid.

GC-Mass (이론치: 714.30 g/mol, 측정치: 714 g/mol)GC-Mass (Theoretical value: 714.30 g / mol, Measured value: 714 g / mol)

1H-NMR (THF-d8, 500MHz) .(ppm) 6.46(m, 8H), 6.68(m, 2H), 6.84(m, 2H), 6.98 ~ 7.07(m, 14H), 7.85(m, 2H), 8.07(m, 2H), 8.52 ~ 8.58(m, 4H), 8.74(m, 2H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 6.46 (m, 8H), 6.68 (m, 2H), 6.84 (m, 2H), 6.98 to 7.07 (m, 14H), 7.85 (m, 2H), 8.07 (m, 2H), 8.52-8.58 (m, 4H), 8.74 (m, 2H)

[합성예 5] : 화합물 Inv 33 의 제조Synthesis Example 5 Preparation of Compound Inv 33

하기 반응식 9의 반응 경로를 거쳐 화합물 Inv 33을 합성하였다.Compound Inv 33 was synthesized through the reaction path of Scheme 9 below.

[반응식 9]Scheme 9

Figure pat00037

Figure pat00037

1) 단계 1 : 중간체 8의 합성1) Step 1: Synthesis of Intermediate 8

1,3,5-Tribromobenzene (37 g, 120 mmol), 디페닐아민 (18.3 g, 108 mmol) 및 Pd(OAc)2 (0.8 g, 3.6 mmol), BINAP (4.47 g, 7.2 mmol), Potassium carbonate (33.2 g, 240 mmol)를 플라스크에 넣고 질소 분위기 하에 톨루엔 1L에 용해시킨 후 12시간 동안 환류 교반하였다. 12시간 후 물 500ml를 넣어 반응을 종결한 후, 디클로로메탄 300 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 4 : 1 (v:v)]로 정제하여 백색 고체의 화합물 8 (36.7 g, 수율 65 %)을 수득하였다.1,3,5-Tribromobenzene (37 g, 120 mmol), diphenylamine (18.3 g, 108 mmol) and Pd (OAc) 2 (0.8 g, 3.6 mmol), BINAP (4.47 g, 7.2 mmol), Potassium carbonate (33.2 g, 240 mmol) was added to the flask and dissolved in 1 L of toluene under a nitrogen atmosphere, followed by stirring under reflux for 12 hours. After 12 hours, 500 ml of water was added to terminate the reaction. After extraction three times with 300 ml of dichloromethane, the extract was dried over an excess of magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 4: 1 (v: v)] to give compound 8 (36.7 g, yield 65%) as a white solid.

GC-Mass (이론치: 490.10 g/mol, 측정치: 490 g/mol)GC-Mass (Theoretical value: 490.10 g / mol, Measured value: 490 g / mol)

2) 단계 2 : 중간체 9 의 합성2) Step 2: Synthesis of Intermediate 9

상기 <단계 1>에서 얻은 화합물 8 (24.5g, 50 mmol), Bis(pinacolate)diboron (25.4 g, 100 mmol) 및 Pd(dppf)2Cl2 (1.7 g, 1.5 mmol), 포타슘 아세테이트 (14.5 g, 150 mmol)를 플라스크에 넣고 질소 분위기 하에 톨루엔 350 mL에 용해시킨 후 12시간 동안 환류 교반하였다. 물 200 ml를 첨가하여 반응을 종결한 뒤, 디클로로메탄 100 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 3 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 6 (19.9 g, 수율 74 %)을 수득하였다.Compound 8 (24.5 g, 50 mmol), Bis (pinacolate) diboron (25.4 g, 100 mmol) and Pd (dppf) 2 Cl 2 (1.7 g, 1.5 mmol) obtained in <Step 1>, potassium acetate (14.5 g , 150 mmol) was added to the flask and dissolved in 350 mL of toluene under a nitrogen atmosphere, followed by stirring under reflux for 12 hours. After completion of the reaction by adding 200 ml of water, the mixture was extracted three times with 100 ml of dichloromethane, the extract was dried over excess magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 3: 1 (v: v)] to give the compound Inv 6 (19.9 g, 74% yield) as a white solid.

GC-Mass (이론치: 538.28 g/mol, 측정치: 538 g/mol), GC-Mass (Theoretical value: 538.28 g / mol, Measured value: 538 g / mol),

3) 단계 3 : 중간체 10 의 합성3) Step 3: Synthesis of Intermediate 10

상기 <단계 2>에서 얻은 화합물 9 (10g, 18mmol)와 상기 <준비예 1>에서 얻은 화합물 4 (10g, 19mmol) 및 Pd(PPh3)4 (0.65 g, 0.57 mmol)를 플라스크에 넣고 질소 분위기 하에 톨루엔 80 mL에 용해시킨 후 포타슘 카보네이트 (5 g, 36 mmol)을 녹인 수용액 20 mL를 첨가하여 12시간 동안 환류 교반하였다. 반응이 종결된 뒤 디클로로메탄 20 ml로 3회 추출하고, 추출액을 과량의 Magnesium sulphate로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 3 : 1 (v:v)]로 정제하여 백색 고체의 화합물 10 (6.13 g, 수율 65 %)을 수득하였다.Compound 9 (10g, 18mmol) obtained in <Step 2> and Compound 4 (10g, 19mmol) and Pd (PPh 3 ) 4 (0.65 g, 0.57 mmol) obtained in <Preparation Example 1> were placed in a flask, and a nitrogen atmosphere. After dissolving in 80 mL of toluene, 20 mL of an aqueous solution of potassium carbonate (5 g, 36 mmol) was added thereto, followed by stirring under reflux for 12 hours. After completion of the reaction, the mixture was extracted three times with 20 ml of dichloromethane, and the extract was dried with excess Magnesium sulphate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 3: 1 (v: v)] to give compound 10 (6.13 g, yield 65%) as a white solid.

GC-Mass (이론치: 786.22 g/mol, 측정치: 786 g/mol), GC-Mass (Theoretical value: 786.22 g / mol, Measured value: 786 g / mol),

4) 단계 4 : Inv 33의 합성4) Step 4: Synthesis of Inv 33

상기 <단계 3>에서 얻은 화합물 10 (6g, 7.6 mmol), 디페닐아민 (1.5 g, 9.2mmol) 및 Pd(Oac)2 (0.05g, 0.22mmol), BINAP (0.273g, 0.44mmol)과 포타슘 카보네이트 (3.15g, 22.8mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 50 mL에 용해시킨 후 12시간 동안 환류 교반하였다. 물 30 ml를 첨가하여 반응을 종결한 뒤, 디클로로메탄 20 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 3 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 33 (4.5 g, 수율 75 %)을 수득하였다.Compound 10 (6 g, 7.6 mmol), diphenylamine (1.5 g, 9.2 mmol) and Pd (Oac) 2 (0.05 g, 0.22 mmol) obtained in <Step 3>, BINAP (0.273 g, 0.44 mmol) and potassium Carbonate (3.15 g, 22.8 mmol) was added to the flask and dissolved in 50 mL of toluene under a nitrogen atmosphere, followed by stirring under reflux for 12 hours. The reaction was terminated by addition of 30 ml of water, followed by extraction three times with 20 ml of dichloromethane, and the extract was dried over excess magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 3: 1 (v: v)] to give the compound Inv 33 (4.5 g, 75% yield) as a white solid.

GC-Mass (이론치: 805.35 g/mol, 측정치: 805 g/mol), GC-Mass (Theoretical value: 805.35 g / mol, Measured value: 805 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 5.62(m, 1H), 6.04(s, 2H), 6.46(m, 12H), 6.98 ~ 7.08(m, 19H), 7.32(s, 1H), 7.82 ~ 7.88(m, 2H), 8.04(m, 1H), 8.12 ~ 8.18(m, 2H), 8.68(m, 1H), 8.93(m, 1H), 9.15(s, 1H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 5.62 (m, 1H), 6.04 (s, 2H), 6.46 (m, 12H), 6.98 to 7.08 (m, 19H), 7.32 (s, 1H), 7.82 to 7.88 (m, 2H), 8.04 (m, 1H), 8.12 to 8.18 (m, 2H), 8.68 (m, 1H), 8.93 (m, 1H), 9.15 (s, 1H)

[합성예 6] : 화합물 Inv 44 의 제조Synthesis Example 6 Preparation of Compound Inv 44

하기 반응식 10의 반응 경로를 거쳐 화합물 Inv 61을 합성하였다.Compound Inv 61 was synthesized through the reaction route of Scheme 10 below.

[반응식 10]Scheme 10

Figure pat00038

Figure pat00038

1) 단계 1 : 중간체 11의 합성1) Step 1: Synthesis of Intermediate 11

상기 <준비예 1>에서 얻어진 화합물 4 (10 g, 19 mmol)와 8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-phenyl-5H-pyrido[4,3-b]indole (6.3g, 17.1 mmol) 및 Pd(PPh3)4 (0.416 g, 0.38 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 80 mL에 용해시킨 후 포타슘 카보네이트 (4.9 g, 38 mmol)을 녹인 수용액 20 mL를 첨가하여 12시간 동안 환류 교반하였다. 반응이 종결된 후 물 30 ml 첨가한 후 디클로로메탄 30 ml로 3회 추출하고, 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 4 : 1 (v:v)]로 정제하여 백색 고체의 화합물 11 (5.19 g, 수율 70 %)을 수득하였다.Compound 4 (10 g, 19 mmol) obtained in <Preparation Example 1> and 8- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -5-phenyl-5H- Pyrido [4,3-b] indole (6.3 g, 17.1 mmol) and Pd (PPh 3 ) 4 (0.416 g, 0.38 mmol) were placed in a flask and dissolved in 80 mL of toluene under a nitrogen atmosphere, followed by potassium carbonate (4.9 g, 20 mL of an aqueous solution of 38 mmol) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, 30 ml of water was added, followed by extraction three times with 30 ml of dichloromethane. The extract was dried over excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 4: 1 (v: v)] to give compound 11 (5.19 g, yield 70%) as a white solid.

GC-Mass (이론치: 618.12 g/mol, 측정치: 618 g/mol)GC-Mass (Theoretical value: 618.12 g / mol, Measured value: 618 g / mol)

2) 단계 2 : Inv 44 의 합성2) Step 2: Synthesis of Inv 44

상기 <단계 1>에서 얻은 화합물 11 (5 g, 8 mmol), 9H-carbazole (1.6 g, 9.6 mmol) 및 Pd(Oac)2 (0.053 g, 0.24 mmol), BINAP (0.298 g, 0.48 mmol)과 포타슘 카보네이트 (3.3 g, 24 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 60 mL에 용해시킨 후 12시간 동안 환류 교반하였다. 물 30 ml를 첨가하여 반응을 종결한 뒤, 디클로로메탄 30 ml로 3회 추출 후 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 2 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 44 ( 3.9 g, 수율 77 %)을 수득하였다.Compound 11 (5 g, 8 mmol), 9H-carbazole (1.6 g, 9.6 mmol) and Pd (Oac) 2 (0.053 g, 0.24 mmol), BINAP (0.298 g, 0.48 mmol) obtained in <Step 1>above; Potassium carbonate (3.3 g, 24 mmol) was added to the flask and dissolved in 60 mL of toluene under a nitrogen atmosphere, followed by stirring under reflux for 12 hours. The reaction was terminated by addition of 30 ml of water, followed by extraction three times with 30 ml of dichloromethane, and the extract was dried over excess magnesium sulfate, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 2: 1 (v: v)] to give the compound Inv 44 (3.9 g, 77% yield) as a white solid.

GC-Mass (이론치: 635.24 g/mol, 측정치: 635 g/mol), GC-Mass (Theoretical value: 635.24 g / mol, Measured value: 635 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 7.08 ~ 7.20(m, 4H), 7.30 ~ 7.40(m, 10H), 7.77 ~ 7.88(m, 4H), 8.04 ~ 8.19(m, 5H), 8.55 ~ 8.59(m, 2H), 8.90 ~ 8,93(m, 2H), 9.15(s, 1H), 9.34(s, 1H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 7.08 to 7.20 (m, 4H), 7.30 to 7.40 (m, 10H), 7.77 to 7.88 (m, 4H), 8.04 to 8.19 (m, 5H ), 8.55 to 8.59 (m, 2H), 8.90 to 8,93 (m, 2H), 9.15 (s, 1H), 9.34 (s, 1H)

[합성예 7] : 화합물 Inv 61 의 제조Synthesis Example 7 Preparation of Compound Inv 61

하기 반응식 11의 반응 경로를 거쳐 화합물 Inv 61을 합성하였다.Compound Inv 61 was synthesized through the reaction path of Scheme 11 below.

[반응식 11]Scheme 11

Figure pat00039
Figure pat00039

1) 단계 1 : 중간체 12의 합성1) Step 1: Synthesis of Intermediate 12

상기 <준비예 1>에서 얻어진 화합물 4 (10 g, 19 mmol)와 dibenzofuran-1-boronic acid (3.62 g, 17.1 mmol) 및 Pd(PPh3)4 (0.416 g, 0.38 mmol)을 플라스크에 넣고 질소 분위기 하에 Toluene 80 mL 에 용해시킨 후 Potassium carbonate (4.9 g, 38 mmol) 을 녹인 수용액 20 mL 를 첨가하여 12시간 동안 환류 교반하였다. 반응이 종결된 후 물 40 ml 첨가하고 디클로로메탄 30 ml로 3회 추출하고, 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 2 : 1 (v:v)]로 정제하여 백색 고체의 화합물 12 (3.25 g, 수율 50 %)을 수득하였다.Compound 4 (10 g, 19 mmol), dibenzofuran-1-boronic acid (3.62 g, 17.1 mmol), and Pd (PPh 3 ) 4 (0.416 g, 0.38 mmol) obtained in <Preparation Example 1> were placed in a flask and nitrogen. After dissolving in 80 mL of toluene under an atmosphere, 20 mL of an aqueous solution of Potassium carbonate (4.9 g, 38 mmol) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, 40 ml of water was added and extracted three times with 30 ml of dichloromethane. The extract was dried over excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 2: 1 (v: v)] to give compound 12 (3.25 g, yield 50%) as a white solid.

GC-Mass (이론치: 542.08 g/mol, 측정치: 542 g/mol)GC-Mass (Theoretical value: 542.08 g / mol, Measured value: 542 g / mol)

2) 단계 2 : Inv 61 의 합성2) Step 2: Synthesis of Inv 61

상기 <단계 1>에서 얻은 화합물 12 (3 g, 5.5 mmol), 디페닐아민 (1.12 g, 6.6 mmol) 및 Pd(Oac)2 (0.037g, 0.17 mmol), BINAP (0.225 g, 0.34mmol)과 포타슘 카보네이트 (2.27 g, 16.5mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 50 mL에 용해시킨 후 12시간 동안 환류 교반하였다. 반응이 종결된 뒤 실리카겔 필터 후 걸러진 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 2 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 61 (3.85 g, 수율 80 %)을 수득하였다.Compound 12 (3 g, 5.5 mmol), diphenylamine (1.12 g, 6.6 mmol) and Pd (Oac) 2 (0.037 g, 0.17 mmol) obtained in <Step 1>, BINAP (0.225 g, 0.34 mmol), Potassium carbonate (2.27 g, 16.5 mmol) was added to the flask, dissolved in 50 mL of toluene under nitrogen atmosphere, and stirred under reflux for 12 hours. After the reaction was terminated, the filtered filtrate was concentrated under reduced pressure after the silica gel filter. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 2: 1 (v: v)] to give compound Inv 61 (3.85 g, yield 80%) as a white solid.

GC-Mass (이론치: 561.21 g/mol, 측정치: 561 g/mol), GC-Mass (Theoretical value: 561.21 g / mol, Measured value: 561 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 6.46(m, 4H), 6.98 ~ 7.08(m, 7H), 7.19(m, 1H), 7.31 ~ 7.39(m, 3H), 7.54(m, 1H), 7.82 ~ 8.04(m, 6H), 8.12 ~ 8.18(m, 2H), 8.68(m, 1H), 8.93(m, 1H), 9.15(s, 1H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 6.46 (m, 4H), 6.98 to 7.08 (m, 7H), 7.19 (m, 1H), 7.31 to 7.39 (m, 3H), 7.54 ( m, 1H), 7.82 to 8.04 (m, 6H), 8.12 to 8.18 (m, 2H), 8.68 (m, 1H), 8.93 (m, 1H), 9.15 (s, 1H)

[합성예 8] : 화합물 Inv 63 의 제조Synthesis Example 8 Preparation of Compound Inv 63

하기 반응식 12의 반응 경로를 거쳐 화합물 Inv 63을 합성하였다.Compound Inv 63 was synthesized through the reaction path of Scheme 12 below.

[반응식 12][Reaction Scheme 12]

1) 단계 1 : 중간체 13의 합성1) Step 1: Synthesis of Intermediate 13

상기 <준비예 1>에서 얻어진 화합물 4 (10 g, 19 mmol)와 dibenzothiophene-4-boronic acid (3.89 g, 17.1 mmol) 및 Pd(PPh3)4 (0.416 g, 0.38 mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 80 mL 에 용해시킨 후 포타슘 카보네이트 (4.9 g, 38 mmol) 을 녹인 수용액 20 mL를 첨가하여 12시간 동안 환류 교반하였다. 반응이 종결된 후 물 40 ml 첨가 후 디클로로메탄 30 ml로 3회 추출 하고, 추출액을 과량의 마그네슘 설페이트로 건조, 여과하고 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 2 : 1 (v:v)]로 정제하여 백색 고체의 화합물 13 (5.2 g, 수율 78 %)을 수득하였다.Compound 4 (10 g, 19 mmol), dibenzothiophene-4-boronic acid (3.89 g, 17.1 mmol) and Pd (PPh 3 ) 4 (0.416 g, 0.38 mmol) obtained in <Preparation Example 1> were placed in a flask, and nitrogen was added to the flask. After dissolving in 80 mL of toluene under an atmosphere, 20 mL of an aqueous solution of potassium carbonate (4.9 g, 38 mmol) was added thereto, followed by stirring under reflux for 12 hours. After completion of the reaction, 40 ml of water was added, followed by extraction three times with 30 ml of dichloromethane. The extract was dried over excess magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 2: 1 (v: v)] to give compound 13 (5.2 g, yield 78%) as a white solid.

GC-Mass (이론치: 558.06 g/mol, 측정치: 558 g/mol)GC-Mass (Theoretical value: 558.06 g / mol, Measured value: 558 g / mol)

2) 단계 2 : Inv 63 의 합성2) Step 2: Synthesis of Inv 63

상기 <단계 1>에서 얻은 화합물 13 (3.06g, 5.5 mmol), 디페닐 아민 (1.12 g, 6.6 mmol) 및 Pd(Oac)2 (0.037g, 0.17 mmol), BINAP (0.225 g, 0.34mmol)과 포타슘 카보네이트 (2.27 g, 16.5mmol)을 플라스크에 넣고 질소 분위기 하에 톨루엔 50 mL에 용해시킨 후 12시간 동안 환류 교반하였다. 반응이 종결된 뒤, 실리카겔 필터 후 걸러진 여액을 감압 농축하였다. 조산물을 실리카겔 컬럼 크로마토그래피 [n-Hexane: Dichloromethane = 2 : 1 (v:v)]로 정제하여 백색 고체의 화합물 Inv 63 (2.6 g, 수율 85 %)을 수득하였다.Compound 13 (3.06 g, 5.5 mmol), diphenyl amine (1.12 g, 6.6 mmol) and Pd (Oac) 2 (0.037 g, 0.17 mmol) obtained in <Step 1>, and BINAP (0.225 g, 0.34 mmol) Potassium carbonate (2.27 g, 16.5 mmol) was added to the flask, dissolved in 50 mL of toluene under nitrogen atmosphere, and stirred under reflux for 12 hours. After the reaction was terminated, the filtered filtrate was concentrated under reduced pressure after the silica gel filter. The crude product was purified by silica gel column chromatography [n-Hexane: Dichloromethane = 2: 1 (v: v)] to give the compound Inv 63 (2.6 g, 85% yield) as a white solid.

GC-Mass (이론치: 577.19 g/mol, 측정치: 577 g/mol), GC-Mass (Theoretical value: 577.19 g / mol, Measured value: 577 g / mol),

1H-NMR (THF-d8, 500MHz) .(ppm) 6.46(m, 4H), 6.98 ~ 7.08(m, 7H), 7.32 ~ 7.39(m, 2H), 7.49 ~ 7.56(m, 3H), 7.82 ~ 7.88(m, 3H), 8.04(m, 1H), 8.12 ~ 8.20(m, 3H), 8.41 ~ 8.45(m, 2H), 8.68(m, 1H), 8.93(m, 1H), 9.15(s, 1H)
1 H-NMR (THF-d 8 , 500 MHz). (Ppm) 6.46 (m, 4H), 6.98-7.08 (m, 7H), 7.32-7.39 (m, 2H), 7.49-7.56 (m, 3H), 7.82 to 7.88 (m, 3H), 8.04 (m, 1H), 8.12 to 8.20 (m, 3H), 8.41 to 8.45 (m, 2H), 8.68 (m, 1H), 8.93 (m, 1H), 9.15 ( s, 1 H)

<실시예 1 ~14> 유기 EL 소자의 제조<Examples 1-14> Fabrication of Organic EL Device

ITO (Indium tin oxide)가 1500 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5 분간 세정한 후 진공 층착기로 기판을 이송하였다. A glass substrate coated with ITO (Indium tin oxide) 1500 thin film was washed by distilled water ultrasonic. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, etc., dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then cleaned the substrate using UV for 5 minutes. The substrate was transferred to a vacuum depositor.

상기와 같이 준비된 ITO 투명 전극 위에 전공 수송층 재료로써, m-MTDATA(60nm)/합성예 1~5에서 합성된 각각의 화합물 (80nm)/DS-H522 + 5% DS-501(300nm)/BCP(10nm)/Alq3(30 nm)/LiF(1nm)/Al(200nm) 순서로 유기 EL 소자를 제조하였다. 또한 인광 호스트 성능 측정을 위해서, m-MTDATA(60nm)/TCTA/합성예 6~8에서 합성된 각각의 화합물 + 10% Ir(ppy)3 (300nm)/BCP(10nm)/Alq3(30 nm)/LiF(1nm)/Al(200nm) 순으로 유기 EL 소자를 제조하였다.M-MTDATA (60 nm) / each compound synthesized in Synthesis Examples 1-5 (80 nm) / DS-H522 + 5% DS-501 (300 nm) / BCP An organic EL device was manufactured in the order of 10 nm) / Alq 3 (30 nm) / LiF (1 nm) / Al (200 nm). In addition, for the measurement of phosphorescent host performance, each compound synthesized in m-MTDATA (60 nm) / TCTA / Synthesis Examples 6-8 + 10% Ir (ppy) 3 (300 nm) / BCP (10 nm) / Alq 3 (30 nm) An organic EL device was manufactured in the order of / LiF (1 nm) / Al (200 nm).

소자 제작에 사용된 DS-H522 와 DS-501 은 ㈜ 두산 전자 BG 제품이며, m-MTDATA, TCTA, CBP, Ir(ppy)3, 및 BCP의 구조는 아래와 같다.DS-H522 and DS-501 used in device fabrication are manufactured by Doosan Corporation BG, and the structures of m-MTDATA, TCTA, CBP, Ir (ppy) 3 , and BCP are as follows.

Figure pat00041
Figure pat00041

m-m- MTDATAMTDATA TCTATCTA

Figure pat00042
Figure pat00043
Figure pat00042
Figure pat00043

NPBNPB CBPCBP

Figure pat00044
Figure pat00045
Figure pat00044
Figure pat00045

BCPBCP IrIr (( ppyppy )33

<비교예 1> 유기 EL 소자의 제조Comparative Example 1 Fabrication of Organic EL Device

정공 수송층 형성시 합성예에서 제조된 화합물 대신 상기 NPB를 발광호스트 물질로 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 EL 소자를 제조하였다.An organic EL device was manufactured in the same manner as in Example 1, except that NPB was used as a light emitting host material instead of the compound prepared in Synthesis Example, when forming the hole transport layer.

<비교예 2> 유기 EL 소자의 제조Comparative Example 2 Fabrication of Organic EL Device

발광층 형성시 합성예에서 제조된 화합물 대신 상기 CBP를 발광호스트 물질로 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 EL 소자를 제조하였다.An organic EL device was manufactured in the same manner as in Example 1, except that CBP was used as a light emitting host material, instead of the compound prepared in Synthesis Example, to form an emission layer.

<< 실험예Experimental Example 1> 유기  1> organic 전계Field 발광소자의 성능 평가 Performance evaluation of light emitting device

실시예 1~8 및 비교예 1~2에서 제조된 각 유기 EL 소자에 대하여 구동전압, 전류효율, 발광 피크에서의 휘도를 각각 측정하고, 그 결과를 하기 표 1에 나타내었다. For each organic EL device manufactured in Examples 1 to 8 and Comparative Examples 1 and 2, the driving voltage, current efficiency, and luminance at the emission peak were respectively measured, and the results are shown in Table 1 below.

소자device HTLHTL 전압(V)Voltage (V) 휘도(cd/m2)Brightness (cd / m 2 ) EL peak(nm)EL peak (nm) 전류효율(cd/A)Current efficiency (cd / A) 비교예 1Comparative Example 1 NPBNPB 5.25.2 18161816 521521 18.118.1 실시예 1Example 1 Inv 1Inv 1 4.74.7 23632363 522522 23.623.6 실시예 2Example 2 Inv 3Inv 3 4.94.9 22732273 519519 22.722.7 실시예 3Example 3 Inv 6Inv 6 4.84.8 22052205 522522 22.122.1 실시예 4Example 4 Inv 30Inv 30 5.15.1 21202120 521521 21.221.2 실시예 5Example 5 Inv 33Inv 33 5.25.2 20152015 521521 20.220.2

상기 표 1의 결과로부터 알 수 있는 바와 같이, 본 발명에 따른 트리페닐렌계화합물을 녹색 유기 EL 소자의 정공 수송층으로 사용하는 실시예 1~5의 경우 종래 NPB를 사용한 청색 유기 EL 소자(비교예 1)와 대비하여 볼 때, 효율 및 전압 면에서 향상된 성능을 나타내었다. 또한 유리 전이 온도 (Tg) 값의 향상을 통하여 수명의 개선 효과 또한 기대해 볼 수 있다. As can be seen from the results of Table 1, in Examples 1 to 5 in which the triphenylene compound according to the present invention is used as the hole transporting layer of the green organic EL device, a blue organic EL device using a conventional NPB (Comparative Example 1 In comparison,) shows improved performance in terms of efficiency and voltage. In addition, the improvement of the lifetime can be expected through the improvement of the glass transition temperature (T g ) value.

소자device HOSTHOST 전압(V)Voltage (V) 휘도(cd/m2)Brightness (cd / m 2 ) EL peak(nm)EL peak (nm) 전류효율(cd/A)Current efficiency (cd / A) 비교예 2Comparative Example 2 CBPCBP 6.936.93 445445 516516 38.238.2 실시예 6Example 6 Inv 44Inv 44 6.126.12 430430 518518 39.539.5 실시예 7Example 7 Inv 61Inv 61 6.826.82 455455 520520 40.440.4 실시예 8Example 8 Inv 63Inv 63 6.456.45 479479 520520 44.644.6

마찬가지로, 본 발명에 따른 화합물을 인광 발광성 녹색 유기 EL 소자의 발광층으로 사용하는 실시예 6~8의 경우, 종래의 CBP를 사용한 녹색 유기 EL 소자(비교예 2)와 대비하여 발광 효율 및 구동 전압 면에서 향상된 성능을 나타내는 것을 확인할 수 있다 (표 2 참조).Similarly, in Examples 6 to 8 in which the compound according to the present invention is used as the light emitting layer of the phosphorescent green organic EL device, in terms of luminous efficiency and driving voltage in comparison with the conventional green organic EL device (Comparative Example 2) using CBP It can be seen that the improved performance is shown in Table 2 (see Table 2).

이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, and that various changes and modifications may be made without departing from the scope of the invention. It is natural to belong.

Claims (7)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure pat00046

상기 식에서,
A는 단일결합, 페닐, 나프틸, 치환 또는 비치환된 핵원자수 6 내지 10의 헤테로 아릴이며, 이때 상기 헤테로 아릴에 도입되는 치환기는 할로겐 원자, 탄소수 1~3의 알킬기 및 탄소수 6 내지 10의 아릴기로 구성된 군으로부터 선택되며;
B는 치환 또는 비치환된 C6 내지 C10 사이의 아릴, 치환 또는 비치환된 핵원자수 6 내지 10의 헤테로 아릴이며, 이때 상기 아릴 또는 헤테로 아릴에 도입되는 치환기는 할로겐 원자, 탄소수 1~3의 알킬기 및 탄소수 6 내지 10의 아릴기로 구성된 군으로부터 선택되며;
이때 A 와 B는 각각 독립적으로 동일하거나 상이할 수 있으며,
X 는 N, O, S 중 하나이며,
l, m 은 각각 독립적으로 0 또는 1이며, 이때 X가 O 또는 S인 경우 l과 m 중 하나는 0이며,
n은 1 또는 2 의 정수이며,
Ar1 내지 Ar4는 치환 또는 비치환된 C6 내지 C20의 아릴, 치환 또는 비치환된 핵원자수 5 내지 20의 헤테로 아릴이며, 이때 아릴, 헤테로 아릴에 도입되는 치환기는 중수소 또는 할로겐 원자, 탄소수 1~3의 알킬기, 탄소수 6 내지 10의 아릴기로 구성된 군으로부터 선택되며, 이들은 각각 독립적으로 동일하거나 상이할 수 있다.
Compound represented by the following formula (1):
[Formula 1]
Figure pat00046

Where
A is a single bond, phenyl, naphthyl, substituted or unsubstituted heteroaryl having 6 to 10 nuclear atoms, wherein the substituent introduced into the hetero aryl is a halogen atom, an alkyl group having 1 to 3 carbon atoms and a 6 to 10 carbon atom. Selected from the group consisting of aryl groups;
B is substituted or unsubstituted aryl between C6 and C10, substituted or unsubstituted heteroaryl having 6 to 10 nuclear atoms, wherein the substituent introduced into the aryl or heteroaryl is a halogen atom, an alkyl group having 1 to 3 carbon atoms And an aryl group having 6 to 10 carbon atoms;
In this case, A and B may be the same as or different from each other independently,
X is one of N, O, S,
l, m are each independently 0 or 1, where X is O or S, then one of l and m is 0,
n is an integer of 1 or 2,
Ar 1 to Ar 4 is substituted or unsubstituted C6 to C20 aryl, substituted or unsubstituted heteroaryl having 5 to 20 nuclear atoms, wherein the substituents introduced into aryl, heteroaryl are deuterium or halogen atoms, carbon atoms 1 It is selected from the group consisting of an alkyl group of ˜3, an aryl group having 6 to 10 carbon atoms, each may be the same or different independently.
제 1 항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4로 표시되는 것이 특징인 화합물:
[화학식 2]
Figure pat00047

[화학식 3]
Figure pat00048

[화학식 4]
Figure pat00049

상기 화학식 2 내지 4에서,
A, B, n, Ar1 내지 Ar4는 각각 제1항에 정의된 바와 같다.
The compound of claim 1, wherein the compound represented by Chemical Formula 1 is represented by the following Chemical Formulas 2 to 4.
(2)
Figure pat00047

(3)
Figure pat00048

[Chemical Formula 4]
Figure pat00049

In Chemical Formulas 2 to 4,
A, B, n, Ar 1 to Ar 4 are each as defined in claim 1.
제 1 항에 있어서, 상기 화학식 1 중 A 또는 B가 핵원자수 6 내지 10의 헤테로 아릴인 경우 하기 화학식 5로 표기되는 치환기 군으로부터 선택되는 것을 특징으로 하는 화합물:
[화학식 5]
Figure pat00050

상기 화학식 5의 치환기 군에 도입되는 복수 개의 Z 는 각각 독립적이며, 동일하게 표기되더라도 동일하거나 서로 상이할 수 있으며, 복수 개의 Z 중 적어도 1개 이상은 질소원자이며, 나머지는 탄소원자이다.
The compound of claim 1, wherein A or B in Formula 1 is selected from the group of substituents represented by the following Formula 5 when hetero aryl having 6 to 10 nuclear atoms:
[Chemical Formula 5]
Figure pat00050

A plurality of Z introduced into the substituent group of Chemical Formula 5 may be each independently and may be the same or different from each other even if they are the same. At least one of the plurality of Z is a nitrogen atom, and the rest are carbon atoms.
제 1 항에 있어서, 상기 화학식 1 중 Ar1과 Ar2는 A 또는 인접하는 치환기와 서로 결합하여 축합환을 형성할 수 있으며,
Ar3와 Ar4는 B 또는 인접하는 치환기와 결합하여 축합환을 형성할 수 있는 것을 특징으로 하는 화합물.
According to claim 1, Ar 1 and Ar 2 in Formula 1 may be bonded to each other with A or adjacent substituents to form a condensed ring,
Ar 3 and Ar 4 may combine with B or an adjacent substituent to form a condensed ring.
양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기층을 포함하는 유기 전계발광 소자로서,
상기 유기층 중 적어도 하나는 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 화합물을 포함하는 것을 특징으로 하는 유기 전계발광 소자.
anode; cathode; And at least one organic layer interposed between the anode and the cathode, wherein the organic electroluminescent device comprises:
At least one of the said organic layers contains the compound of any one of Claims 1-4, The organic electroluminescent element characterized by the above-mentioned.
제 5 항에 있어서, 상기 유기층은 발광층, 전자수송층, 정공 주입층 및 정공 수송층으로 구성된 군으로부터 선택되는 것을 특징으로 하는 유기 전계발광 소자.The organic electroluminescent device according to claim 5, wherein the organic layer is selected from the group consisting of a light emitting layer, an electron transport layer, a hole injection layer, and a hole transport layer. 제 5 항에 있어서, 상기 화합물은 발광층, 전자수송층, 정공 주입층 또는 정공 수송층 물질인 것을 특징으로 하는 유기 전계발광 소자.The organic electroluminescent device according to claim 5, wherein the compound is a light emitting layer, an electron transport layer, a hole injection layer, or a hole transport layer material.
KR1020100042665A 2010-05-06 2010-05-06 Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same KR101218029B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100042665A KR101218029B1 (en) 2010-05-06 2010-05-06 Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same
PCT/KR2011/003416 WO2011139129A2 (en) 2010-05-06 2011-05-06 Triphenylene-based compound comprising an aromatic amine and an organic electroluminescent element comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100042665A KR101218029B1 (en) 2010-05-06 2010-05-06 Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same

Publications (2)

Publication Number Publication Date
KR20110123172A true KR20110123172A (en) 2011-11-14
KR101218029B1 KR101218029B1 (en) 2013-01-02

Family

ID=44904254

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100042665A KR101218029B1 (en) 2010-05-06 2010-05-06 Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same

Country Status (2)

Country Link
KR (1) KR101218029B1 (en)
WO (1) WO2011139129A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433822B1 (en) * 2013-06-17 2014-08-27 삼성디스플레이 주식회사 Organic light emitting diode device
WO2014185589A1 (en) * 2013-05-16 2014-11-20 제일모직 주식회사 Organic compound, organic optoelectronic element, and display device
WO2014185598A1 (en) * 2013-05-16 2014-11-20 제일모직 주식회사 Organic compound, organic optoelectronic element, and display device
US9520567B2 (en) 2013-05-16 2016-12-13 Cheil Industries, Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device
KR20190141582A (en) * 2018-06-14 2019-12-24 주식회사 엘지화학 Compound and organic light emitting device comprising same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844384B2 (en) * 2010-12-29 2016-01-13 エルジー・ケム・リミテッド Novel compound and organic light emitting device using the same
JP2014167946A (en) * 2011-06-23 2014-09-11 Toray Ind Inc Light-emitting element
JPWO2013061805A1 (en) * 2011-10-24 2015-04-02 保土谷化学工業株式会社 Novel triphenylene derivative and organic electroluminescence device using the derivative
JP6078998B2 (en) * 2012-06-20 2017-02-15 住友化学株式会社 Polymer compound and light emitting device using the same
KR101627761B1 (en) 2013-07-10 2016-06-07 제일모직 주식회사 Organic compound and organic optoelectric device and display device
EP2924753B1 (en) * 2014-03-25 2017-04-19 Novaled GmbH Polychromatic light emitting devices and versatile hole transporting matrix for them
US9997716B2 (en) * 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
EP2978040B1 (en) * 2014-07-22 2017-12-27 Samsung Display Co., Ltd. Organic light-emitting device
JP2019023163A (en) * 2015-10-21 2019-02-14 出光興産株式会社 Novel compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143845A (en) * 2004-11-18 2006-06-08 Konica Minolta Holdings Inc Material for organic electroluminescent element, organic electroluminescent element, lighting equipment and display device
KR100753454B1 (en) * 2006-02-03 2007-08-31 주식회사 이엘엠 High-Efficient Organic light emitting material and Organic Light Emitting Diode
WO2009037155A1 (en) * 2007-09-20 2009-03-26 Basf Se Electroluminescent device
JP5353069B2 (en) * 2008-06-04 2013-11-27 三菱化学株式会社 Triphenylene compound, organic electroluminescence device containing triphenylene compound, and organic EL display

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185589A1 (en) * 2013-05-16 2014-11-20 제일모직 주식회사 Organic compound, organic optoelectronic element, and display device
WO2014185598A1 (en) * 2013-05-16 2014-11-20 제일모직 주식회사 Organic compound, organic optoelectronic element, and display device
CN105209442A (en) * 2013-05-16 2015-12-30 第一毛织株式会社 Organic compound, organic optoelectronic element, and display device
US9520567B2 (en) 2013-05-16 2016-12-13 Cheil Industries, Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device
US9735369B2 (en) 2013-05-16 2017-08-15 Cheil Industries, Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device
KR101433822B1 (en) * 2013-06-17 2014-08-27 삼성디스플레이 주식회사 Organic light emitting diode device
US9627628B2 (en) 2013-06-17 2017-04-18 Samsung Display Co., Ld. Organic light emitting diode device
US10418560B2 (en) 2013-06-17 2019-09-17 Samsung Display Co., Ltd. Organic light emitting diode device
KR20190141582A (en) * 2018-06-14 2019-12-24 주식회사 엘지화학 Compound and organic light emitting device comprising same
CN110606808A (en) * 2018-06-14 2019-12-24 株式会社Lg化学 Compound and organic light-emitting element comprising same
CN110606808B (en) * 2018-06-14 2022-10-28 株式会社Lg化学 Compound and organic light-emitting element comprising same

Also Published As

Publication number Publication date
KR101218029B1 (en) 2013-01-02
WO2011139129A2 (en) 2011-11-10
WO2011139129A3 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
KR101218029B1 (en) Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same
KR101565200B1 (en) New compound and organic light emitting device using the same
JP5497045B2 (en) Novel anthracene derivative and organic electronic device using the same
JP5844384B2 (en) Novel compound and organic light emitting device using the same
KR101412437B1 (en) New compounds and organic electronic device using the same
KR101196093B1 (en) Organic electroluminescence derivative and device using the phenanthrocarbazole
EP1828343B1 (en) Pyrene derivatives and organic electronic device using pyrene derivatives
JP5703394B2 (en) NOVEL COMPOUND AND ORGANIC LIGHT EMITTING DEVICE CONTAINING THE SAME
JP5154569B2 (en) Novel fluorene derivative and organic electronic device using the same
JP2015509954A (en) Heterocyclic compounds and organic electronic devices containing the same
JP6207632B2 (en) Novel compound and organic electronic device using the same
JP2009514812A (en) Novel binaphthalene derivative, method for producing the same, and organic electronic device using the same
JP2014240396A (en) Novel heterocyclic derivative and organic light emitting device using the same
KR20100119077A (en) New compounds and organic electronic device using the same
KR20180004032A (en) Compound and organic electronic device comprising the same
KR101640637B1 (en) New heterocyclic compounds, production process thereof and organic electronic device using the same
KR101324150B1 (en) Organic compounds for organic electro luminescente device and organic electro luminescent device using same
KR101396647B1 (en) New anthracene derivatives, preparation method thereof and organic electronic device using the same
KR20150082156A (en) New compounds and organic light emitting device comprising the same
KR20100108505A (en) New cycloalkene derivatives and organic electronic diode using the same
KR20200105388A (en) Novel compound and organic light emitting device comprising the same
KR20130135040A (en) New compounds and organic light emitting device using the same
CN115583887A (en) Organic electroluminescent compound and preparation method and application thereof
KR20180113921A (en) Organic light emitting device
KR101294144B1 (en) Pyrene derivative and organic electroluminescent device using the pyrene derivatives

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161122

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 7