KR20110122061A - 고로용 열풍으로서의 가스 터빈 배기 가스 - Google Patents

고로용 열풍으로서의 가스 터빈 배기 가스 Download PDF

Info

Publication number
KR20110122061A
KR20110122061A KR1020110041415A KR20110041415A KR20110122061A KR 20110122061 A KR20110122061 A KR 20110122061A KR 1020110041415 A KR1020110041415 A KR 1020110041415A KR 20110041415 A KR20110041415 A KR 20110041415A KR 20110122061 A KR20110122061 A KR 20110122061A
Authority
KR
South Korea
Prior art keywords
hot
gas
blast furnace
turbine
air
Prior art date
Application number
KR1020110041415A
Other languages
English (en)
Inventor
리처드 앤소니 드퓨이
로버트 토마스 대처
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20110122061A publication Critical patent/KR20110122061A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

특정한 예시적 실시예에서, 시스템은 터빈(16), 연소기(18) 및 압축기(20)를 갖는 가스 터빈 시스템(12)을 구비한다. 시스템은 또한 가스 터빈 시스템(12)으로부터의 출력 유동 경로를 구비한다. 시스템은 또한 출력 유동 경로에 결합되는 고로(80)를 구비하며, 출력 유동 경로는 가스 터빈 시스템(12)으로부터의 가열된 공기(102) 또는 배기 가스(34)를 열풍 열원으로서 고로(80)에 직접 송출하도록 구성된다.

Description

고로용 열풍으로서의 가스 터빈 배기 가스{GAS TURBINE EXHAUST AS HOT BLAST FOR A BLAST FURNACE}
본 발명은 고로(blast furnace)에 관한 것이며, 보다 구체적으로는 가스 터빈으로부터의 배기 가스 및 고온 추출 공기를 고로용 열풍으로서 사용하기 위한 시스템 및 방법에 관한 것이다.
고로는 예를 들어 제강 플랜트에서 금속철을 생산하는데 흔히 사용된다. 열풍(hot blast)(예를 들어, 초고온으로 가열된 공기)은 고로 내에서 산화철을 금속철로 환원시키기 위해 사용된다. 열풍은 통상, 열풍을 고로에 도입하기 전에 공기를 가열하는 열풍로(hot stove)에 의해 발생된다. 그러나, 열풍로는 시간에 따라 더러워지는(foul) 경향이 있다.
본 발명의 목적은 가스 터빈으로부터의 배기 가스 및 고온 추출 공기를 고로용 열풍으로서 사용하기 위한 시스템 및 방법을 제공하는 것이다.
본 발명의 범위에 맞는 특정 실시예들이 후술된다. 이들 실시예는 본 발명의 범위를 제한하기 위한 것이 아니며, 단지 본 발명의 가능한 형태의 간단한 개요를 제공하기 위한 것이다. 실제로, 본 발명은 후술하는 실시예와 유사하거나 상이할 수 있는 다양한 형태를 망라할 수 있다.
제 1 실시예에서, 시스템은 터빈, 연소기 및 압축기를 갖는 가스 터빈 시스템을 구비한다. 시스템은 또한 가스 터빈 시스템으로부터의 출력 유동 경로를 구비한다. 시스템은 또한 출력 유동 경로에 결합되는 고로를 구비하며, 출력 유동 경로는 가스 터빈 시스템으로부터의 가열된 공기 또는 배기 가스를 열풍 열원으로서 고로에 직접 송출하도록 구성된다.
제 2 실시예에서, 시스템은 터빈, 연소기 및 압축기를 갖는 가스 터빈 시스템을 구비한다. 시스템은 또한 가스 터빈 시스템의 터빈으로부터의 배기 가스를 제 1 열풍 열원으로서 수용하도록 구성된 고로를 구비한다.
제 3 실시예에서, 시스템은 연료를 생산하도록 구성된 연료 시스템을 구비한다. 시스템은 또한 압축 공기를 생산하도록 구성된 압축기를 구비한다. 시스템은 또한 압축기로부터의 압축 공기와 연료 시스템으로부터의 연료를 연소시키도록 구성된 연소기를 구비한다. 또한, 시스템은 연소기로부터의 배기 가스를 열풍 열원으로서 수용하도록 구성된 고로를 구비한다.
본 발명에 의하면 가스 터빈으로부터의 배기 가스 및 고온 추출 공기를 고로용 열풍으로서 사용하는 시스템 및 방법이 제공된다.
본 발명의 상기 및 기타 특색, 양태, 및 장점은 이하의 상세한 설명을 첨부도면을 참조하여 숙독할 때 더 잘 이해될 것이며, 도면 전체에 걸쳐서 동일한 부분은 동일한 도면부호로 지칭된다.
도 1은 가스 터빈, 증기 터빈, 열회수 증기 발생(HRSG: heat recovery steam generation) 시스템, 및 연료 시스템을 갖는 복합 사이클 발전 시스템의 예시적 실시예의 개략 흐름도.
도 2는 연료 시스템 내에서 사용하기 위한 연료 소스를 발생할 수 있는 제강소의 예시적 실시예의 공정 흐름도.
도 3은 도 2의 고로의 예시적 실시예의 개략 흐름도.
도 4는 도 1의 가스 터빈의 터빈으로부터 직접 가열된 배기 가스를 열풍으로서 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도.
도 5는 열풍으로서 도 1의 가스 터빈의 터빈으로부터 직접 가열된 배기 가스를 수용하고 도 1의 가스 터빈의 압축기로부터 직접 고온 추출 공기를 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도.
도 6은 열풍로로부터 열풍을 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로는 도 1의 가스 터빈의 터빈으로부터 수용되는 가열된 배기 가스로부터 열풍을 생성하도록 구성되는 흐름도.
도 7은 열풍로로부터 열풍을 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로는 도 1의 가스 터빈의 터빈으로부터 수용되는 가열된 배기 가스 및 도 1의 가스 터빈의 압축기로부터 수용되는 고온 추출 공기로부터 열풍을 생성하도록 구성되는 흐름도.
도 8은 열풍로로부터 열풍을 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로는 도 1의 가스 터빈의 터빈으로부터 수용되는 가열된 배기 가스와 보충 주위 공기로부터 열풍을 생성하도록 구성되는 흐름도.
도 9는 열풍로로부터 열풍을 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로는 도 1의 가스 터빈의 터빈으로부터 수용되는 가열된 배기 가스, 도 1의 가스 터빈의 압축기로부터 수용되는 고온 추출 공기, 및 보충 주위 공기로부터 열풍을 생성하도록 구성되는 흐름도.
도 10은 도 1의 가스 터빈의 터빈으로부터 직접 가열된 배기 가스를 열풍으로서 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도이며, 여기에서 가스 터빈의 연소기는 도 2의 제강소로부터의 연료를 사용하는 흐름도.
도 11은 도 2의 고로에 사용하기 위한 열풍을 생산하도록 구성된 압축기 및 연소기의 예시적 실시예의 개략 흐름도.
도 12는 도 1의 가스 터빈의 압축기로부터 및 팽창기를 통해서 고온 추출 공기를 수용하도록 구성된 도 2의 고로의 예시적 실시예의 개략 흐름도.
이하, 본 발명의 하나 이상의 특정 실시예를 설명한다. 이들 실시예의 간명한 설명을 제공하기 위해, 실제 실시예의 모든 특색이 명세서에 기재되지 않을 수도 있다. 임의의 이러한 실제 실시예의 전개에 있어서, 임의의 엔지니어링 또는 설계 프로젝트에서와 같이, 실시예마다 다를 수 있는 시스템-관련 및 사업-관련 제약의 준수와 같은 개발자 고유 목표를 달성하기 위해 수많은 실시예-고유 결정이 이루어져야 함을 알아야 한다. 더욱이, 이러한 개발 노력은 복잡하고 시간 소모적일 수 있지만 그럼에도 불구하고 당업자에게는 설계, 제작 및 제조의 일상적인 작업이 될 것임을 알아야 한다.
본 발명의 다양한 실시예의 요소들을 도입할 때, 관사 및 정관사는 그 요소가 하나 이상 존재함을 의미하도록 의도된다. "포함한다", "구비한다", "갖는다"는 용어는 포괄적이도록 의도되며, 열거된 요소들 외에 추가적인 요소가 있을 수 있음을 의미한다.
개시된 실시예는 가스 터빈으로부터의 배기 가스 및 고온 추출 공기를 고로(blast furnace)용 열풍(hot blast)으로서 사용하기 위한 시스템 및 방법을 포함한다. 특정한 예시적 실시예에서, 가스 터빈 시스템의 터빈으로부터의 가열된 배기 가스는 고로에서의 열풍의 소스로서 사용될 수 있다. 다른 예시적 실시예에서, 가스 터빈 시스템의 터빈으로부터의 가열된 배기 가스 및 가스 터빈 엔진의 압축기로부터의 고온 추출 공기는 둘 다 고로에서의 열풍의 소스로서 사용될 수 있다. 특정한 예시적 실시예에서, 가열된 배기 가스와 고온 추출 공기는 열풍로(hot stove)로 먼저 향하지 않고 고로에 직접 송출될 수도 있다. 그러나, 다른 예시적 실시예에서, 가열된 배기 가스와 고온 추출 공기는 고로에서 열풍으로 사용되기 전에 열풍로로 향할 수도 있다. 가스 터빈 시스템의 터빈으로부터의 가열된 배기 가스와 가스 터빈 시스템의 압축기로부터의 고온 추출 가스를 열풍으로서 사용함으로써, 고로와 관련된 열풍로에 대한 부하가 감소되거나 심지어 제거될 수 있으며, 따라서 전술한 열풍로 사용의 역효과를 감소시킬 수 있다.
도 1은 가스 터빈, 증기 터빈, 열회수 증기 발생 시스템, 및 연료 시스템을 갖는 복합 사이클 발전 시스템(10)의 예시적 실시예의 개략 흐름도이다. 나중에 보다 상세히 설명하듯이, 연료 시스템은 다수의 부산물 가스, 예를 들면 고로 가스 및 제강소로부터의 코크스 로(cokes oven) 가스를 혼합함으로써 가스 터빈에 연료를 송출하도록 구성될 수도 있다.
시스템(10)은 제 1 부하(load)(14)를 구동하기 위한 가스 터빈(12)을 구비할 수 있다. 제 1 부하(14)는 예를 들어, 전력을 생산하기 위한 발전기일 수 있다. 가스 터빈(12)은 터빈(16), 연소기 또는 연소실(18), 및 압축기(20)를 구비할 수 있다. 시스템(10)은 또한 제 2 부하(24)를 구동하기 위한 증기 터빈(22)을 구비할 수 있다. 제 2 부하(24) 역시 전력을 발생하기 위한 발전기일 수 있다. 그러나, 제 1 및 제 2 부하(14, 24)는 가스 터빈(12)과 증기 터빈(22)에 의해 구동될 수 있는 다른 형태의 부하일 수도 있다. 또한, 가스 터빈(12)과 증기 터빈(22)은 도시된 실시예에서 도시하듯이 별도의 부하(14, 24)를 구동할 수도 있지만, 단일 샤프트를 거쳐서 단일 부하를 구동하기 위해 나란히 사용될 수도 있다. 도시된 실시예에서, 증기 터빈(22)은 하나의 저압 섹션(26)(LP ST), 하나의 중간압 섹션(28)(IP ST), 및 하나의 고압 섹션(30)(HP ST)을 구비할 수 있다. 그러나, 증기 터빈(22)뿐 아니라 가스 터빈(12)의 특정한 구조는 실시예-고유할 수 있으며, 섹션들의 임의의 조합을 구비할 수도 있다.
시스템(10)은 또한 다단 HRSG(32)를 구비할 수 있다. 도시된 실시예에서의 HRSG(32)의 구성요소는 HRSG(32)의 단순 도시이며, 제한적이도록 의도되지 않는다. 오히려, 도시된 HRSG(32)는 이러한 HRSG 시스템의 전체적인 작동을 시사하도록 도시되어 있다. 가스 터빈(12)으로부터의 가열된 배기 가스(34)는 HRSG(32)로 운송될 수 있으며, 증기 터빈(22)을 운전하는데 사용되는 증기를 가열하기 위해 사용될 수 있다. 증기 터빈(22)의 저압 섹션(26)으로부터의 배기 가스는 응축기(36)로 향할 수 있다. 응축기(36)로부터의 응축물은 이어서, 응축물 펌프(38)의 도움으로 HRSG(32)의 저압 섹션으로 향할 수 있다.
응축물은 이후, 응축물을 가열하기 위해 사용될 수 있는 저압 절감장치(40)(LPECON: low-pressure economizer), 급수를 가스로 가열하도록 구성된 장치를 통해서 유동할 수 있다. 저압 절감장치(40)로부터, 응축물의 일부는 저압 절감장치(42)(LPEVAP)로 향할 수 있고 나머지는 중간압 절감장치(44)(IPECON)를 향해서 펌핑될 수 있다. 저압 절감장치(42)로부터의 증기는 증기 터빈(22)의 저압 섹션(26)으로 복귀할 수 있다. 마찬가지로, 중간압 절감장치(44)로부터, 응축물의 일부가 중간압 증발기(46)(IPEVAP: intermediate-pressure evaporator)로 향할 수 있으며 나머지는 고압 절감장치(48)를 향해서 펌핑될 수 있다. 또한, 중간압 절감장치(44)로부터의 증기는 연료 가열기(도시되지 않음)로 보내질 수 있으며, 여기에서 증기는 가스 터빈(12)의 연소실(18)에서 사용하기 위한 연료를 가열하는데 사용될 수 있다. 중간압 증발기(46)로부터의 증기는 증기 터빈(22)의 중간압 섹션(28)으로 보내질 수 있다. 다시, 절감장치, 증발기, 및 증기 터빈(22) 사이의 연결은 실시예마다 달라질 수 있으며, 도시된 실시예는 본 실시예의 고유한 양태를 채용할 수 있는 HRSG 시스템의 전반적인 작동을 예시할 뿐이다.
마지막으로, 고압 절감장치(48)로부터의 응축물은 고압 증발기(50)(HPEVAP)로 향할 수 있다. 고압 증발기(50)를 빠져나오는 증기는 일차 고압 과열기(52) 및 최종 고압 과열기(54)로 향할 수 있으며, 과열된 증기는 결국 증기 터빈(22)의 고압 섹션(30)으로 보내진다. 증기 터빈(22)의 고압 섹션(30)으로부터의 배기 가스는 이후 증기 터빈(22)의 중간압 섹션(28)으로 향할 수 있다. 증기 터빈(22)의 중간압 섹션(28)으로부터의 배기 가스는 증기 터빈(22)의 저압 섹션(26)으로 향할 수 있다.
일차 고압 과열기(52)와 최종 고압 과열기(54) 사이에는 단계간 과열저감기(inter-stage attemperator)(56)가 설치될 수 있다. 단계간 과열저감기(56)는 최종 고압 과열기(54)로부터의 증기의 배기 온도의 보다 확실한 제어를 가능하게 할 수 있다. 구체적으로, 단계간 과열저감기(56)는, 최종 고압 과열기(54)를 빠져나오는 증기의 배기 온도가 소정 값을 초과할 때마다 최종 고압 과열기(54)의 상류에서의 과열된 증기에 저온 급수 스프레이를 분사함으로써 최종 고압 과열기(54)를 빠져나가는 증기의 온도를 제어하도록 구성될 수 있다.
또한, 증기 터빈(22)의 고압 섹션(30)으로부터의 배기 가스는 일차 재가열기(re-heater)(58) 및 이차 재가열기(60)로 향할 수 있으며, 증기 터빈(22)의 중간압 섹션(28)으로 향하기 전에 재가열기에서 재가열될 수 있다. 일차 재가열기(58) 및 이차 재가열기(60)는 또한 재가열기로부터의 배기 증기 온도를 제어하기 위해 단계간 과열저감기(62)와 연관될 수 있다. 구체적으로, 단계간 과열저감기(62)는, 이차 재가열기(60)를 빠져나가는 증기의 배기 온도가 소정 값을 초과할 때마다 이차 재가열기(60)의 상류에서의 과열된 증기에 저온 급수 스프레이를 분사함으로써 이차 재가열기(60)를 빠져나가는 증기의 온도를 제어하도록 구성될 수 있다.
시스템(10)과 같은 복합 사이클 시스템에서, 고온 배기 가스(34)는 가스 터빈(12)으로부터 유출되어 HRSG(32)를 통과할 수 있으며, 고압 고온 증기를 발생하는데 사용될 수 있다. HRSG(32)에 의해 생성된 증기는 이후 발전을 위해 증기 터빈(22)을 통과할 수 있다. 또한, 생성된 증기는 과열된 증기가 사용될 수 있는 임의의 다른 프로세스에 공급될 수도 있다. 가스 터빈(12) 사이클은 흔히 "토핑(topping) 사이클"로 지칭되며, 증기 터빈(22) 발전 사이클은 흔히 "바터밍(bottoming) 사이클"로 지칭된다. 이들 두 사이클을 도 1에 도시하듯이 조합함으로써, 복합 사이클 발전 시스템(10)은 양 사이클에서 우수한 효율을 초래할 수 있다. 특히, 토핑 사이클로부터의 배기 열은 포획되어, 바터밍 사이클에서 사용하기 위한 증기를 발생하는데 사용될 수 있다.
가스 터빈(12)은 연료 시스템(64)으로부터의 연료를 사용하여 작동될 수 있다. 특히, 연료 시스템(64)은 가스 터빈(12)에 연료(66)를 공급할 수 있으며, 이 연료는 가스 터빈(12)의 연소실(18) 내에서 연소될 수 있다. 가스 터빈(12)의 연소실(18) 내에서 사용하기에 바람직한 연료는 천연 가스일 수 있지만, 임의의 적합한 연료(66)가 사용될 수도 있다. 연료 시스템(64)은 가스 터빈(12) 내에서 사용하기 위한 연료(66)를 다양한 방식으로 발생할 수 있다. 특정한 예시적 실시예에서, 연료 시스템(64)은 다른 탄화수소 자원으로부터 연료(66)를 발생할 수 있다. 예를 들어, 연료 시스템(64)은 석탄 가스화 공정을 구비할 수 있는 바, 가스화 장치는 석탄을 증기와의 상호작용 및 가스화 장치 내의 고압 및 고온으로 인해 화학적으로 분해한다. 이 공정으로부터, 가스화 장치는 주로 CO와 H2로 이루어진 연료(66)를 생성할 수 있다. 이 연료(66)는 흔히 "합성가스(syngas)"로 지칭되며, 천연 가스처럼 가스 터빈(12)의 연소실(18) 내에서 연소될 수 있다.
그러나, 다른 예시적인 실시예에서, 연료 시스템(64)은 가스 터빈(12)에 의해 사용되는 연료(66)를 발생하기 위해 다른 공정으로부터의 연료 소스를 수용하여 추가 처리할 수 있다. 예를 들어, 특정한 예시적 실시예에서, 연료 시스템(64)은 제강소에 의해 발생된 연료 소스를 수용할 수 있다. 도 2는 연료 시스템(64) 내에서 사용하기 위한 연료 소스를 발생할 수 있는 제강소(68)의 예시적 실시예의 공정 흐름도이다. 제강소(68)의 제강 공정은 통상 큰 체적의 특수 가스를 부산물로서 발생시킨다. 제강소(68)와 연관된 예시적 실시예는 본 발명을 임의의 방식으로 제한하려는 것이 아니며, 단지 본 발명에 의해 구체화되는 시스템의 예시적인 일 양태를 설명하기 위한 것이다.
예를 들어, 도 2에 도시하듯이, 제강에서는 적어도 세 개의 주 처리 스테이지가 존재하며, 이들은 모두 가스를 발생한다. 특히, 코크스 로(70)는 석탄과 같은 탄(coal)(72)을 수용할 수 있고, 산소의 부재 하에 석탄(72)의 건류(dry distillation)를 사용하여 코크스(74)를 생산할 수 있다. 코크스 로 가스(76)는 또한 코크스 로(70) 내에서 코크스(74)를 생산하기 위한 공정의 부산물로서 발생될 수도 있다. 다음으로, 코크스 로(70)에 의해 생산된 코크스(74)뿐 아니라 철광석(78)이 고로(80)로 향할 수 있다. 금속 철(82)은 고로(80) 내에서 생산될 수 있다. 또한, 고로(80)의 부산물로서 고로 가스(84)가 발생될 수 있다. 고로(80)에 의해 생산된 철(82)은 이후 컨버터(86)로 향할 수 있으며, 상기 컨버터 내에서 철(82)은 산소 및 공기에 의해 강(88)으로 정련될 수 있다. 또한, 컨버터 가스(90)는 컨버터(86) 내에서 강(88)을 제강하기 위한 공정의 부산물로서 발생될 수도 있다.
따라서, 제강소(68)는 세 개의 개별 부산물 가스, 예를 들면 코크스로 가스(76), 고로 가스(84), 및 컨버터 가스(90)를 발생할 수 있으며, 이들 가스는 모두 상이한 화학적 조성 및 특성으로 특징지어질 수 있다. 예를 들어, 코크스 로 가스(76)는 일반적으로 대략 50-70%의 수소(H2)와 대략 25-30%의 메탄(CH4)으로 이루어질 수 있으며, 대략 4,250 kcal/N㎥의 저위 발열량(LHV: lower heating value)을 가질 수 있다. 역으로, 고로 가스(84)는 일반적으로 대략 5%의 수소와 대략 20%의 일산화탄소(CO)로 이루어질 수 있으며, 대략 700 kcal/N㎥에 불과한 LHV를 가질 수 있다. 또한, 컨버터 가스(90)는 일반적으로 대략 60+%의 일산화탄소로 이루어질 수 있으며, 대략 2,500 kcal/N㎥의 LHV를 가질 수 있다. 따라서, 고로 가스(84)는 코크스 로 가스(76) 및 컨버터 가스(90)에 비해 현저히 낮은 LHV를 가질 수 있다. 그러나, 특정한 예시적 실시예에서, 연료 시스템(64)은 가스 터빈(12)에 대한 최소 및 최대 허용 LHV 임계치를 충족하는 연료(66)를 발생하기 위해 코크스 로 가스(76), 고로 가스(84) 및 컨버터 가스(90)를 혼합할 수 있다.
철광석(78)으로부터 철(82)을 제조하기 위해, 공기가 매우 높은 온도로 가열된 후 고로(80)의 바닥에 도입된다. 가열된 공기는 열풍으로 지칭될 수 있다. 열풍이 고로(80) 내부에서 철광석(78) 및 코크스(74)와 접촉하면, 산화철이 금속철(82)로 환원된다. 도 3은 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이다. 도시하듯이, 특정한 예시적 실시예에서, 열풍(92)은 열풍로(94)로부터 고로(80)로 송출될 수 있다. 공기(96)는 열풍로(94)에서 가열되어 열풍(92)을 생성할 수 있으며, 이 열풍은 고로(80)에서 철광석(78)과 코크스(74)를 금속철(82)로 변환시키기 위해 사용될 수 있다. 그러나, 열풍로(94)의 사용은 열풍(92)을 생성하는 가장 효과적인 방법이 아닐 수도 있다. 예를 들어, 열풍로는 더러워지는 경향이 있으며, 이는 신뢰도 저하를 초래하거나 잉여 시스템에서의 신뢰도 저하를 보상하기 위한 추가 비용을 초래할 수 있다.
열풍(92)의 다른 소스는 도 1의 복합 사이클 발전 시스템(10)일 수 있다. 보다 구체적으로, 특정한 예시적 실시예에서, 도 1의 시스템(10)의 가스 터빈(12)은 열풍(92)의 소스로 사용될 수 있다. 예를 들어, 도 4는 도 1의 가스 터빈(12)의 터빈(16)으로부터 직접 가열된 배기 가스(34)를 열풍(92)으로서 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이다. 전술했듯이, 가스 터빈(12)은 천연 가스 및/또는 수소 농후 합성 가스와 같은 액체 또는 가스 연료를 사용할 수 있다. 연료 노즐은 연료(66)를 흡입하고, 이 연료(66)를 공기와 혼합하며, 공기-연료 혼합물을 연소기(18) 내에 분배할 수 있다. 예를 들어, 연료 노즐은 공기-연료 혼합물을 연소기(18) 내에 최적의 연소, 배출, 연료 소비, 및 파워 출력에 적합한 비율로 분사할 수 있다. 공기-연료 혼합물은 연소기(18) 내의 챔버에서 연소하여, 고온 압축된 배기 가스를 생성한다.
연소기(18)는 가열된 배기 가스(34)를 터빈(16)을 통해서 배기 출구를 향해 안내한다. 가열된 배기 가스(34)가 터빈(16)을 통과할 때, 가스는 하나 이상의 터빈 블레이드에 힘을 가하여 샤프트(98)를 가스 터빈(12)의 축을 따라서 회전시킨다. 샤프트(98)는 압축기(20)를 포함하는 가스 터빈(12)의 각종 구성요소에 연결될 수 있다. 압축기(20)는 또한 샤프트(98)에 연결될 수 있는 블레이드를 구비한다. 샤프트(98)가 회전하면, 압축기(20) 내의 블레이드(20)도 회전하고, 따라서 공기 흡입구로부터의 공기(100)를 압축기(20)를 통해서 연소기(18) 내로 압축한다. 샤프트(98)는 또한 파워 플랜트 내의 전기 발전기와 같은 정지 부하일 수 있는 부하(14)에 기계적으로 또는 공기역학적으로 연결될 수 있다. 부하(14)는 가스 터빈(12)의 회전 출력부에 의해 급전될 수 있는 임의의 적합한 장치를 구비할 수 있다. 도시하듯이, 가스 터빈(12)의 터빈(16)으로부터의 가열된 배기 가스(34)는 열풍(92)으로서 고로(80)에 직접 송출될 수 있다. 즉, 가열된 배기 가스(34)는 열풍로로 먼저 향하지 않고 고로(80)에 송출될 수 있다.
그러나, 도 1의 가스 터빈(12)의 터빈(16)으로부터의 가열된 배기 가스(34)는 고로(80)에 사용하기 위한 열풍(92)의 유일한 소스가 아닐 수 있다. 예를 들어, 도 5는 열풍(92)으로서 도 1의 가스 터빈(12)의 터빈(16)으로부터 직접 가열된 배기 가스(34)를 수용하고 도 1의 가스 터빈(12)의 압축기(20)로부터 직접 고온 추출 공기(102)를 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이다. 특정한 적용에서, 가스 터빈(12) 압축비는 압축기(20)에 대한 한계에 접근할 수 있다. 예를 들어, 연소기(18) 내에서 또는 낮은 주위 온도를 특징으로 하는 장소에서 연료 소스로서 저열량(low-BTU) 연료가 사용되는 적용에서, 압축기(20) 압축비[예를 들면, 압축기(20)에 진입하는 공기압에 대한 압축기(20)를 빠져나가는 공기압의 비율]는 터빈(16) 압력비[예를 들면, 터빈(16)에 진입하는 고온 가스 압력에 대한 터빈(16)을 빠져나가는 고온 가스 압력의 비율]보다 낮아질 수 있다. 압축기(20) 압력비 보호를 제공하기[예를 들면, 압축기(20)의 실속(stall) 가능성을 낮추기] 위해, 압축기(20)로부터 배출되는 공기는 예를 들어 외부 유출 공기 라인을 거쳐서 고온 추출 공기(102)로서 송출될 수 있다.
압축기(20)로부터 송출되는 고온 추출 공기(102)의 양은 주위 조건 및 가스 터빈(12) 출력의 함수일 수 있다. 보다 구체적으로, 송출되는 고온 추출 공기(102)의 양은 주위 온도가 낮을수록 그리고 가스 터빈(12) 부하가 낮을수록 증가할 수 있다. 또한, 저열량 연료(66)를 사용하는 가스 터빈(12) 적용에서, 연료(66)의 유량은 일반적으로, 비교될 수 있는 천연 가스 연료 적용에 비해 훨씬 높을 것이다. 이는 주로, 동등한 가열 또는 소정의 연소 온도를 얻기 위해 더 많은 저열량 연료가 사용된다는 사실에 기인한다. 따라서, 추가 배압이 압축기(20)에 가해질 수 있다. 이들 적용에서는, 배압을 감소시키고 압축기(20)의 실속 여유(예를 들면, 실속을 방지하기 위한 설계 오차의 여유)를 향상시키기 위해 압축기(20)로부터 배출되는 공기도 송출될 수 있다.
압축기(20)로부터 배출되는 압축 공기의 송출은 복합 사이클 발전 시스템(10)의 정미 효율을 감소시킬 수 있는 바, 이는 압축기(20) 내에서 흡입 공기(100)의 압력을 상승시키기 위해 소비되는 에너지가 가스 터빈(12)의 연소기(18) 및 터빈(16)에 의해 회수될 수 없기 때문이다. 그러나, 압축기(20)로부터 열풍(92)으로서 송출되는 고온 추출 공기(102)의 사용은, 소실될 수 있는 고온 추출 공기(102) 내의 에너지의 회수를 촉진할 수 있다. 도 5에 도시하듯이, 가스 터빈(12)의 압축기(20)로부터의 고온 추출 공기(102)는 고로(80)에 직접 열풍(92)으로서 송출될 수 있다. 즉, 고온 추출 공기(102)는 먼저 열풍로로 향하지 않고 고로(80)로 송출될 수 있다. 특정한 예시적 실시예에서는, 가스 터빈(12)의 압축기(20)로부터 송출되는 고온 추출 공기(102)의 유동을 제어하기 위해 유동 제어 밸브(104)가 사용될 수 있다.
보다 구체적으로, 가스 터빈(12)의 터빈(16)으로부터의 고온 배기 가스(34) 및 가스 터빈(12)의 압축기(20)로부터 송출되는 고온 추출 공기(102)는 고로(80)용 열풍으로서 혼합될 수 있다. 도시하듯이, 특정한 예시적 실시예에서는, 가열된 배기 가스(34)와 고온 추출 공기(102)가 고로(80)의 상류에서 단일의 열풍(92) 스트림으로 혼합될 수 있다. 그러나, 다른 예시적 실시예에서는, 가열된 배기 가스(34)와 고온 추출 공기(102)가 둘 다 개별적인 열풍(92) 스트림으로서 고로(80) 내로 향할 수 있다. 특정한 예시적 실시예에서는, 고로 상류에서의 가열된 배기 가스(34)와 고온 추출 공기(102)의 혼합을 제어하기 위해 유동 제어 밸브(104)가 사용될 수 있다.
가스 터빈(12)의 터빈(16)으로부터의 배기 가스(34) 및 가스 터빈(12)의 압축기(20)로부터의 고온 추출 공기(102)를 고로(80)에 직접 열풍(92)으로서 송출하는 대신에, 특정한 예시적 실시예에서는, 이들 열풍의 소스가 먼저 열풍로(94)로 향할 수도 있다. 예를 들어, 도 6은 열풍로(94)로부터 열풍(92)을 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로(94)는 도 1의 가스 터빈(12)의 터빈(16)으로부터 수용되는 가열된 배기 가스(34)로부터 열풍(92)을 생성하도록 구성된다. 또한, 도 7은 열풍로(94)로부터 열풍(92)을 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로(94)는 도 1의 가스 터빈(12)의 터빈(16)으로부터 수용되는 가열된 배기 가스(34) 및 도 1의 가스 터빈(12)의 압축기(20)로부터 수용되는 고온 추출 공기(102)로부터 열풍(92)을 생성하도록 구성된다.
도 6 및 도 7의 예시적 실시예의 각각은 도 4 및 도 5의 실시예와 각각 유사하다. 그러나, 도 6 및 도 7에 도시된 실시예에서, 가열된 배기 가스(34)와 고온 추출 공기(102)는 고로(80)에 직접 열풍(92)으로서 송출되는 대신에, 먼저 열풍로(94) 내로 향한다. 도 6 및 도 7의 실시예에서의 열풍로(94)는 고로(80)로 향하는 열풍(92)을 생성하기 위한 열풍 가열의 소스로서 가열된 배기 가스(34)와 고온 추출 공기(102)를 사용한다.
도 6 및 도 7에 도시된 예시적 실시예의 각각에서, 가스 터빈(12)의 터빈(16)으로부터의 가열된 배기 가스(34)와 가스 터빈(12)의 압축기(20)로부터의 고온 추출 공기(102)는 열풍로(94)에서 열풍(92)을 생성하기 위해 사용되는 열풍 가열의 유일한 소스이다. 그러나, 다른 예시적 실시예에서, 가열된 배기 가스(34)와 고온 추출 공기(102)는 열풍로(94) 내의 주위 공기에 의해 보충될 수도 있다. 예를 들어, 도 8은 열풍로(94)로부터 열풍(92)을 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로(94)는 도 1의 가스 터빈(12)의 터빈(16)으로부터 수용되는 가열된 배기 가스(34)와 보충 주위 공기(106)로부터 열풍(92)을 생성하도록 구성된다. 또한, 도 9는 열풍로(94)로부터 열풍(92)을 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이며, 여기에서 열풍로(94)는 도 1의 가스 터빈(12)의 터빈(16)으로부터 수용되는 가열된 배기 가스(34), 도 1의 가스 터빈(12)의 압축기(20)로부터 수용되는 고온 추출 공기(102), 및 보충 주위 공기(106)로부터 열풍(92)을 생성하도록 구성된다.
도 8 및 도 9의 예시적 실시예의 각각은 도 6 및 도 7의 실시예와 각각 유사하다. 그러나, 도 8 및 도 9에 도시된 실시예에서, 가열된 배기 가스(34)와 고온 추출 공기(102)는 보충 주위 공기(106)에 의해 열풍 가열 소스로서 보충된다. 도 8 및 도 9의 실시예에서의 열풍로(94)는 고로(80)로 향하는 열풍(92)을 생성하기 위한 열풍 가열의 소스로서 가열된 배기 가스(34)와 고온 추출 공기(102)를 사용한다. 주위 공기(106)는 가열된 배기 가스(34) 및 고온 추출 공기(102)를 보충한다.
도 4 내지 도 9의 예시적 실시예는 고로(80)에 사용하기 위한 열풍(92) 열원[예를 들면, 가스 터빈(12)의 터빈(16)으로부터의 가열된 배기 가스(34) 및 가스 터빈(12)의 압축기(20)로부터의 고온 추출 공기(102)]으로서 도 1의 복합 사이클 발전 시스템(10)의 가스 터빈 엔진(12)을 도시하고 있지만, 도 1의 복합 사이클 발전 시스템(10)으로부터의 다른 열풍 열원이 사용될 수도 있다. 예를 들어, 특정한 예시적 실시예에서, HRSG(32)로부터의 열원이 열풍 열원으로서 사용될 수도 있다. 또한, 다른 예시적 실시예에서는, 열풍 열원으로서 사용되는 가스 터빈이 도 1의 복합 사이클 발전 시스템(10)의 가스 터빈(12)이 아닐 수도 있다. 오히려, 열풍 열원으로서 사용되는 가스 터빈은, 복합 사이클 발전 시스템과 연관되지 않을 수 있는 단순 사이클 가스 터빈과 같은 임의의 적합한 가스 터빈일 수도 있다.
도 4 내지 도 9에 도시된 예시적 실시예에서는, 가스 터빈(12)의 연소기(18)로 향하는 연료(66)의 소스가 임의의 적합한 액체 및/또는 기체상 연료 소스일 수 있다. 그러나, 특정한 예시적 실시예에서는, 고로(80)로부터의 고로 가스(84)가 가스 터빈(12)의 연소기(18)에서 연소되는 연료(66)의 소스로 사용될 수 있다. 실제로, 특정한 예시적 실시예에서는, 도 2의 제강소(68)로부터의 코크스 로 가스(76) 및 컨버터 가스(90) 또한 연료(66)의 소스로서 사용될 수 있다. 보다 구체적으로, 특정한 예시적 실시예에서는, 도 2의 제강소(68)로부터의 고로 가스(84) 및/또는 코크스 로 가스(76) 및/또는 컨버터 가스(90)는 연료 시스템(64)에 의해 혼합되어 연료(66)를 생성할 수 있으며, 이 연료는 가스 터빈(12)의 연소기(18)로 향한다.
예를 들어, 도 10은 도 1의 가스 터빈(12)의 터빈(16)으로부터 직접 가열된 배기 가스(34)를 열풍(92)으로서 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이며, 여기에서 가스 터빈(12)의 연소기(18)는 도 2의 제강소(68)로부터의 연료(66)를 사용한다. 도 10에 도시된 실시예는 도 2의 제강소(68)로부터의 고로 가스(84) 및/또는 코크스 로 가스(76) 및/또는 컨버터 가스(90)를 연료 시스템(64)에 의해 생산되는 연료(66)의 소스로서 활용한다. 특정한 예시적 실시예에서, 도 2의 제강소(68)로부터의 고로 가스(84) 및/또는 코크스 로 가스(76) 및/또는 컨버터 가스(90)는 소정 특성을 갖는 연료(66)를 생산하기 위해 연료 시스템(64)에 의해 혼합될 수 있다.
예를 들어, 특정한 예시적 실시예에서, 제강소 부산물 가스의 일부[예를 들면, 고로 가스(84)]는 통상의 연료보다 낮은 발열량을 특징으로 할 수 있고, 다른 제강소 부산물 가스[예를 들면, 코크스 로 가스(76)]는 통상의 연료보다 높은 발열량을 특징으로 할 수 있다. 그러나, 발열량이 낮은 가스[예를 들면, 고로 가스(84)]는 발열량이 높은 가스[예를 들면, 코크스 로 가스(76)]보다 상당히 많은 양을 입수할 수 있다. 따라서, 가스 터빈(12)의 연소기(18) 내에서의 연소에 적합한 연료(66)를 발생하기 위해, 혼합 연료[예를 들면, 고로 가스(84)와 코크스 로 가스(76)의 혼합 결과물]의 발열량은 작동 중에 항상 특정한 소정 목표 레벨 이상으로 제어 유지될 수 있다. 다른 예시적 실시예에서는, 혼합 연료(66)의 다른 특성(예를 들면, 압력, 온도 등)이 제어 유지될 수 있다.
특정한 예시적 실시예에서는, 고로 가스(84), 코크스 로 가스(76) 및 컨버터 가스(90)의 혼합을 제어하기 위한 콘트롤러(108)가 사용될 수 있다. 예를 들어, 콘트롤러(108)는 각각의 가스 스트림의 가용성(availability), 각각의 가스 스트림의 특성(예를 들면, 열량계, 가스 크로마토그래프 등에 의해 측정됨) 및 기타 작동 변수에 기초하여 고로 가스(84), 코크스 로 가스(76) 및 컨버터 가스(90)의 적절한 혼합비를 결정하도록 구성될 수 있다. 예를 들어, 특정한 예시적 실시예에서, 콘트롤러(108)의 일 양태는 연료 시스템(64)으로부터의 혼합 연료(66)의 거의 일정한 저열량이 유지되도록 보장하는 것일 수 있다. 즉, 연료 시스템(64)으로부터의 혼합 연료(66)의 저열량은 소량(예를 들면, 대략 1, 2, 3, 4 또는 5퍼센트)만큼만 변화하는 범위 내에서 유지될 수 있다. 그렇게 함으로써, 가스 터빈(12)뿐 아니라 연료 시스템(64) 및 기타 관련 설비의 작동은 작동 조건에 관계없이 거의 일정하게 유지될 수 있다.
특정한 예시적 실시예에서, 콘트롤러(108)는 임의의 적합한 형태의 비휘발성 메모리, 휘발성 메모리 또는 그 조합과 같은 메모리를 구비할 수 있다. 메모리는 본 명세서에 기재된 제어 기능 중 임의의 것을 수행하기 위한 코드/논리를 구비할 수 있다. 또한, 코드/논리는 하드웨어, 소프트웨어(유형의 기계-판독가능한 매체에 저장된 코드와 같은) 또는 그 조합에서 실행될 수 있다.
도 10에 도시된 예시적 실시예는 제강소(68)로부터의 가스 부산물이 연료 시스템(64)에서 연료 소스로 사용되는 것을 제외하고 도 4에 도시된 실시예와 유사하다. 그러나, 고로 가스(84) 및/또는 코크스 로 가스(76) 및/또는 컨버터 가스(90)를 혼합하기 위한 연료 시스템(64)의 사용 및 고로 가스(84) 및/또는 코크스 로 가스(76) 및/또는 컨버터 가스(90)의 혼합을 제어하기 위한 콘트롤러(108)의 사용이 본 명세서에 기재된 실시예들 중 임의의 실시예에서 실행될 수 있다.
도 4 내지 도 9에 도시된 실시예를 실행하기 위해, 가스 터빈(12)에 대한 특정 조절이 이루어질 수 있다. 예를 들어, 특정한 예시적 실시예에서, 가스 터빈(12)의 터빈(16)으로부터의 가열된 배기 가스(34)의 압력 및 온도는 고로(80)에 의해 요구되는 것보다 낮을 수 있다. 터빈(16)으로부터의 가열된 배기 가스(34)의 압력 및 온도를 증가시키기 위한 한 가지 방법은, 고로(80)에 의해 요구되는 압력과 매치되도록 터빈(16)으로부터 하나 이상의 블레이드를 제거하는 것일 수 있다. 또한, 특정한 예시적 실시예에서는, 고로(80)에 열풍(92)을 도입하기 전에 열풍(92)의 온도를 상승시키고 압력을 감소시키기 위해 열교환기 및 팽창기가 사용될 수 있다.
다른 예시적 실시예에서는, 가스 터빈의 터빈이 전혀 사용되지 않을 수도 있다. 오히려, 가스 터빈 대신에 압축기와 연소기만 사용될 수 있다. 예를 들어, 도 11은 도 2의 고로(80)에 사용하기 위한 열풍(92)을 생산하도록 구성된 압축기(110) 및 연소기(112)의 예시적 실시예의 개략 흐름도이다. 압축기(110)는 고로(80)에 의해 요구되는 압력과 매치되도록 설계될 수 있다. 압축기(110)로부터의 압축 공기는 연소기(112) 내로 향할 수 있고, 연소기에서 압축 공기는 연료와 혼합되고 연소되어 열풍(92)을 생성할 수 있으며, 이 열풍은 연소기(112)로부터 고로(80)에 직접 송출될 수 있다. 압축기(110)는 전동기, 증기 터빈, 가스 터빈, 가스 엔진 또는 임의의 기타 적합한 구동장치와 같은 압축기 구동장치(114)에 의해 구동될 수 있다.
전술했듯이, 열풍(92)이 고로(80)에 도입되기 전에 열풍(92)의 압력을 감소시키기 위해 팽창기가 사용될 수 있다. 예를 들어, 도 12는 도 1의 가스 터빈(12)의 압축기(20)로부터 및 팽창기(116)를 통해서 고온 추출 공기(102)를 수용하도록 구성된 도 2의 고로(80)의 예시적 실시예의 개략 흐름도이다. 도시하듯이, 가스 터빈(12)의 압축기(20)로부터의 고온 추출 공기(102)는 제 1 공기 스트림(118) 및 제 2 공기 스트림(120)으로 분할될 수 있다. 제 1 공기 스트림(118)은 팽창기(116)로 향할 수 있으며, 팽창기에서 제 1 공기 스트림(118)의 압력은 감소되고, 제 2 공기 스트림(120)은 유동 제어 밸브(104)를 통해서 팽창기(116)를 바이패스한다. 제 1 및 제 2 공기 스트림(118, 120)은 이후 열풍(92)을 형성하기 위해 하나의 스트림으로 합쳐질 수 있다. 특정한 예시적 실시예에서는, 유동 제어 밸브(104)를 통한 바이패스 라인이 사용되지 않을 수도 있다. 도 5에 도시된 예시적 실시예에 대한 수정예로서 예시되었지만, 팽창기(116)는 고로(80)에 도입되기 전에 열풍(92)의 압력을 감소시키기 위해 본 명세서에 기재된 예시적 실시예들 중 임의의 것과 함께 사용될 수도 있다.
터빈 및/또는 압축기 콤포넌트로부터의 가열된 가스 또는 공기[예를 들면, 가스 터빈(12)의 터빈(16)으로부터의 가열된 배기 가스(34) 및 가스 터빈(12)의 압축기(20)로부터의 고온 추출 공기(102)]를 고로(80)에서의 열풍(92)으로서 사용하는 것은 여러가지 이점을 제공할 수 있다. 예를 들어, 전술했듯이, 열풍로는 시간에 따라 더러워지는 경향이 있다. 따라서, 가스 터빈(12)의 터빈(16)으로부터의 가열된 배기 가스(34) 및 가스 터빈(12)의 압축기(20)로부터의 고온 추출 공기(102)의 사용은 열풍로(94)에 대한 부하를 감소하거나 심지어 제거할 수 있으며, 따라서 고로(80) 작동의 신뢰성을 증가시킬 뿐 아니라, 열풍로(94)와 관련된 유지 비용을 감소시킬 수 있다. 따라서, 낮은 전체 비용으로 제강소(68)의 전체 효율이 증가될 수 있다. 개시된 실시예들은 또한, 다량의 고온 압축 공기를 생산하는 보다 비용 효과적인 방법일 수 있다.
전술한 내용은, 최선의 형태를 포함하는 본 발명을 개시하기 위한 예 또한 당업자가 임의의 장치 또는 시스템의 제조 및 이용과 임의의 통합된 방법의 수행을 포함하는 본 발명을 실시할 수 있게 하기 위한 예를 이용한다. 본 발명의 특허 가능한 범위는 청구범위에 의해 한정되며, 당업자에게 발생하는 다른 예를 포함할 수 있다. 이러한 다른 예는 청구범위의 문언과 다르지 않은 구성 요소를 갖거나 청구범위의 문언과 실질적으로 차이가 없는 등가의 구성 요소를 구비할 경우 청구범위 내에 포함되도록 의도된다.
10 : 복합 사이클 발전 시스템 12 : 가스 터빈
14 : 제 1 부하 16 : 터빈
18 : 연소기 또는 연소실 20 : 압축기
22 : 증기 터빈 24 : 제 2 부하
26 : 저압 섹션 28 : 중간압 섹션
30 : 고압 섹션 32 : 열회수 증기 발생(HRSG) 시스템
34 : 가열된 배기 가스 36 : 응축기
38 : 응축물 펌프 40 : 저압 절감장치
42 : 저압 증발기 44 : 중간압 절감장치
46 : 중간압 증발기 48 : 고압 절감장치
50 : 고압 증발기 52 : 일차 고압 과열기
54 : 최종 고압 과열기 56 : 단계간 과열저감기
58 : 일차 재가열기 60 : 이차 재가열기
62 : 단계간 과열저감기 64 : 연료 시스템
66 : 연료 68 : 제강소
70 : 코크스 로 72 : 석탄
74 : 코크스 76 : 코크스 로 가스
78 : 철광석 80 : 고로
82 : 철 84 : 고로 가스
86 : 컨버터 88 : 강
90 : 컨버터 가스 92 : 열풍
94 : 열풍로 96 : 공기
98 : 샤프트 100 : 공기
102 : 고온 추출 공기 104 : 유동 제어 밸브
106 : 보충 주위 공기 108 : 콘트롤러
110 : 압축기 112 : 연소기
114 : 압축기 드라이버 116 : 팽창기
118 : 제 1 공기 스트림 120 : 제 2 공기 스트림

Claims (10)

  1. 터빈(16), 연소기(18) 및 압축기(20)를 갖는 가스 터빈 시스템(12), 및
    상기 가스 터빈 시스템(12)의 터빈(16)으로부터의 배기 가스(34)를 제 1 열풍 열원으로서 수용하도록 구성된 고로(80)를 포함하는 것을 특징으로 하는
    시스템.
  2. 제 1 항에 있어서,
    상기 시스템은 터빈(16)으로부터의 배기 가스(34)를 제 1 열풍 열원으로서 고로(80)에 직접 송출하도록 구성되는 것을 특징으로 하는
    시스템.
  3. 제 2 항에 있어서,
    상기 시스템은 가스 터빈 시스템(12)의 압축기(20)로부터의 가열된 공기(102)를 제 2 열풍 열원으로서 고로(80)에 직접 송출하도록 구성되는 것을 특징으로 하는
    시스템.
  4. 제 3 항에 있어서,
    상기 고로(80)의 상류에 열교환기를 포함하며, 상기 열교환기는 가스 터빈 시스템(12)의 압축기(20)로부터의 가열된 공기(102)의 온도를 상승시키도록 구성되는 것을 특징으로 하는
    시스템.
  5. 제 3 항에 있어서,
    상기 고로(80)의 상류에 팽창기(116)를 포함하며, 상기 팽창기(116)는 가스 터빈 시스템(12)의 압축기(20)로부터의 가열된 공기(102)의 압력을 감소시키도록 구성되는 것을 특징으로 하는
    시스템.
  6. 제 1 항에 있어서,
    열풍로(94)를 포함하며, 상기 시스템은 터빈(16)으로부터의 배기 가스(34)를 제 1 열풍 열원으로서 열풍로(94)에 송출하도록 구성되며, 상기 열풍로(94)는 터빈(16)으로부터의 배기 가스(34)를 고로(80)에 송출하기 위한 열풍(92)으로 전환하도록 구성되는 것을 특징으로 하는
    시스템.
  7. 제 6 항에 있어서,
    상기 시스템은 가스 터빈 시스템(12)의 압축기(20)로부터의 가열된 공기(102)를 제 2 열풍 열원으로서 열풍로(94)에 송출하도록 구성되며, 상기 열풍로(94)는 압축기(20)로부터의 가열된 공기(102)를 고로(80)에 송출하기 위한 열풍(92)으로 전환하도록 구성되는 것을 특징으로 하는
    시스템.
  8. 제 7 항에 있어서,
    상기 시스템은 보충 공기(106)를 제 3 열풍 열원으로서 열풍로(94)에 송출하도록 구성되며, 상기 열풍로(94)는 보충 공기(106)를 고로(80)에 송출하기 위한 열풍(92)으로 전환하도록 구성되는 것을 특징으로 하는
    시스템.
  9. 제 1 항에 있어서,
    상기 가스 터빈 시스템(12)의 연소기(18)에 연료(66)를 송출하도록 구성된 연료 시스템(64)을 포함하며, 상기 연료 시스템(64)은 연료(66)를 적어도 부분적으로 고로(80)로부터 고로 가스(84)로서 수용하도록 구성되는 것을 특징으로 하는
    시스템.
  10. 제 9 항에 있어서,
    상기 연료 시스템(64)은 연료(66)를 적어도 부분적으로 코크스 로(70)로부터 코크스 로 가스(76)로서, 컨버터(86)로부터 컨버터 가스(90)로서, 또는 그 조합으로서 수용하도록 구성되는 것을 특징으로 하는
    시스템.
KR1020110041415A 2010-05-03 2011-05-02 고로용 열풍으로서의 가스 터빈 배기 가스 KR20110122061A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/772,656 2010-05-03
US12/772,656 US20110266726A1 (en) 2010-05-03 2010-05-03 Gas turbine exhaust as hot blast for a blast furnace

Publications (1)

Publication Number Publication Date
KR20110122061A true KR20110122061A (ko) 2011-11-09

Family

ID=44857616

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110041415A KR20110122061A (ko) 2010-05-03 2011-05-02 고로용 열풍으로서의 가스 터빈 배기 가스

Country Status (3)

Country Link
US (1) US20110266726A1 (ko)
KR (1) KR20110122061A (ko)
CN (1) CN102235240A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130111431A (ko) * 2012-03-30 2013-10-10 제너럴 일렉트릭 캄파니 제철소에서의 동력 발전용 시스템 및 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199547A1 (de) * 2008-12-19 2010-06-23 Siemens Aktiengesellschaft Abhitzedampferzeuger sowie ein Verfahren zum verbesserten Betrieb eines Abhitzedampferzeugers
JP5896885B2 (ja) * 2012-11-13 2016-03-30 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの運転方法
US9739478B2 (en) * 2013-02-05 2017-08-22 General Electric Company System and method for heat recovery steam generators
GB2513185A (en) * 2013-04-19 2014-10-22 Siemens Vai Metals Tech Gmbh Blast furnace plant
CN103397942B (zh) * 2013-08-21 2016-04-20 中国航空动力机械研究所 热电系统
DE102013113913A1 (de) * 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113958A1 (de) * 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
JOP20180091B1 (ar) 2017-10-12 2022-09-15 Red Leaf Resources Inc تسخين المواد من خلال التوليد المشترك للحرارة والكهرباء

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2632297A (en) * 1948-08-27 1953-03-24 Power Jets Res & Dev Ltd Gas turbine plant
US3216711A (en) * 1962-07-06 1965-11-09 United Aircraft Corp Blast furnace pressurized by jet engine gas
US3216712A (en) * 1962-08-15 1965-11-09 United Aircraft Corp Air supply for a blast furnace
US3778047A (en) * 1972-09-11 1973-12-11 United States Steel Corp Apparatus for generating and delivering combustion gases and reduction gases to a blast furnace
GB9208646D0 (en) * 1992-04-22 1992-06-10 Boc Group Plc Air separation
JP2003254085A (ja) * 2002-03-04 2003-09-10 Yuzo Terai 製鉄コプロダクションの高炉送風加熱方式
JP4563242B2 (ja) * 2005-04-19 2010-10-13 三菱重工業株式会社 燃料ガスカロリ制御方法及び装置
US8381506B2 (en) * 2009-03-10 2013-02-26 General Electric Company Low heating value fuel gas blending control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130111431A (ko) * 2012-03-30 2013-10-10 제너럴 일렉트릭 캄파니 제철소에서의 동력 발전용 시스템 및 방법

Also Published As

Publication number Publication date
US20110266726A1 (en) 2011-11-03
CN102235240A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
KR20110122061A (ko) 고로용 열풍으로서의 가스 터빈 배기 가스
US20130269360A1 (en) Method and system for controlling a powerplant during low-load operations
EP1580483B1 (en) Steam turbine plant
US20100205967A1 (en) Pre-heating gas turbine inlet air using an external fired heater and reducing overboard bleed in low-btu applications
US20100180567A1 (en) Combined Power Augmentation System and Method
US6463741B1 (en) Method for operating a power plant
US20130269356A1 (en) Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US8117821B2 (en) Optimization of low-BTU fuel-fired combined-cycle power plant by performance heating
US11181041B2 (en) Heat recovery steam generator with electrical heater system and method
US20130104816A1 (en) System and method for operating heat recovery steam generators
US20130269346A1 (en) Combined cycle power plant with co2 capture and method to operate it
EP3314166A1 (en) Method and equipment for combustion of ammonia
RU2012101463A (ru) Способ удаления увлеченного газа в системе генерирования мощности с комбинированным циклом
US20100281870A1 (en) System and method for heating fuel for a gas turbine
US20120285176A1 (en) Integration of coal fired steam plants with integrated gasification combined cycle power plants
JP2012172587A (ja) 2軸式ガスタービンの改造方法
Vandani et al. Energy, exergy and environmental analyses of a combined cycle power plant under part-load conditions
JP2013133823A (ja) ガスタービンからの酸素エミッションを制御するシステム及び方法
US8869502B2 (en) Fuel reformer system for a turbomachine system
Yap et al. Simulation of producer gas fired power plants with inlet fog cooling and steam injection
WO2024038724A1 (ja) コンバインドサイクル発電設備
Carapellucci et al. Feedwater repowering of coal fired power plants: effects of steam turbine overloads on energy and economic performance of the integrated power system
De et al. Thermodynamic analysis of a partial gasification pressurized combustion and supercritical steam combined cycle
Kok et al. Thermodynamic analysis of the thermal and exergetic performance of a mixed gas-steam aero derivative gas turbine engine for power generation
WO2024038723A1 (ja) コンバインドサイクル発電設備

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid