KR20110119101A - Non-oriented electrical steel sheets having excellent magnetic property and method for manufacturing the same - Google Patents

Non-oriented electrical steel sheets having excellent magnetic property and method for manufacturing the same Download PDF

Info

Publication number
KR20110119101A
KR20110119101A KR1020100038606A KR20100038606A KR20110119101A KR 20110119101 A KR20110119101 A KR 20110119101A KR 1020100038606 A KR1020100038606 A KR 1020100038606A KR 20100038606 A KR20100038606 A KR 20100038606A KR 20110119101 A KR20110119101 A KR 20110119101A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
electrical steel
oriented electrical
iron loss
Prior art date
Application number
KR1020100038606A
Other languages
Korean (ko)
Other versions
KR101649324B1 (en
Inventor
김재성
김용수
신수영
봉원석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020100038606A priority Critical patent/KR101649324B1/en
Publication of KR20110119101A publication Critical patent/KR20110119101A/en
Application granted granted Critical
Publication of KR101649324B1 publication Critical patent/KR101649324B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A non-oriented electrical steel sheet with low iron loss and a manufacturing method thereof are provided to reduce energy loss when used for a motor core by optimizing the quantity of tin according to the aluminum content and controlling the amount of nitride and oxide to reduce iron loss. CONSTITUTION: A non-oriented electrical steel sheet with low iron loss comprises silicon of 4.0 weight% or less, manganese of 0.1~1.0 weight%, aluminum of 0.45~1.7 weight%, carbon of 0.005 weight% or less, phosphorus of 0.1 weight% or less, sulfur of 0.003 weight% or less, nitrogen of 0.003 weight% or less, titanium of 0.005 weight% or less, tin of less than 0.08 weight%, and iron and impurities of the remaining amount.

Description

철손이 낮은 무방향성 전기강판 및 그 제조 방법{Non-oriented electrical steel sheets having excellent magnetic property and Method for manufacturing the same}Non-oriented electrical steel sheets having excellent magnetic property and method for manufacturing the same

본 발명은 모터, 변압기와 같은 전기기기의 철심으로 사용되는 자성이 우수한 전기강판 및 그 제조방법에 관한 것으로 특히, 철손이 낮은 전기강판 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical steel sheet having excellent magnetic properties used as an iron core of an electric apparatus such as a motor and a transformer, and a method of manufacturing the same, and more particularly, to an electrical steel sheet having a low iron loss and a method of manufacturing the same.

전 세계적으로 계속되고 있는 공업화에 따라 모터와 변압기의 수요가 증가하고 있으며, 특히, 환경오염 방지와 에너지 절감이 요구됨에 따라 고 효율, 고 부가가치 모터 및 변압기의 수요가 점차 증가하고 있는 추세이다. 이에 따라 모터와 변압기의 철심 재료로 사용 되는 전기강판의 효율 증가를 위한 노력이 진행되고 있다.As industrialization continues worldwide, demand for motors and transformers is increasing. In particular, demand for high efficiency, high value-added motors and transformers is gradually increasing as environmental pollution prevention and energy saving are required. Accordingly, efforts have been made to increase the efficiency of electrical steel sheets used as iron core materials for motors and transformers.

전기강판의 효율 증가를 위해, 기존에는 Si 합금원소를 증가시킴으로써 자화값의 증가 및 여기 전류에 의한 철손을 감소시켜 왔으며, 최근에는 압연성 열위에 따른 Si 투입량의 한계 때문에 Al 합금원소를 증가시킴으로써 철손을 감소시켜왔다.In order to increase the efficiency of electrical steel sheet, the increase of the magnetization value and the iron loss due to the excitation current has been reduced by increasing the Si alloy element, and recently, the iron loss by increasing the Al alloy element due to the limitation of Si input due to the inferior rolling property Has been reduced.

하지만, Al의 증가와 S와 같은 불순물 원소의 감소는 표면의 반응성을 높임으로써 최종소둔시 표층하에 Al계 질화물 및 산화물을 생성하여 오히려 철손을 악화시키는 현상이 발견되어 왔다. 따라서, 이에 의한 철손 열화를 방지하기 위해 미량원소를 투입하거나, 표면 Al혹은 Si농화층을 만들거나, S의 함량을 조절하는 등의 연구가 진행되어 왔다.However, an increase in Al and a decrease in impurity elements such as S have been found to increase the surface reactivity, thereby producing Al-based nitrides and oxides under the surface layer during final annealing, thereby worsening iron loss. Therefore, in order to prevent the deterioration of iron loss caused by this, a study has been conducted such as adding a trace element, making a surface Al or Si enriched layer, or controlling the content of S.

예를 들면, 일본 공개특허 1998-183310호와 2001-140018에는 산세를 충분히 하여 표면 조도를 향상시킴으로써, 치밀한 1㎛ 내외의 Al이나 Si농화층을 만들어서 표층하 질화물을 억제하는 기술이 개시되어 있다. For example, Japanese Patent Application Laid-Open Nos. 1998-183310 and 2001-140018 disclose techniques for suppressing subsurface nitride by forming a dense Al or Si thick layer of about 1 µm by improving the surface roughness by sufficiently pickling.

또한, 일본특허 2006-241563에는 650도까지 노내 수증기 분압비를 0.3이상 0.5 이하로 하되, 650도 이상의 소정의 소둔 균열 온도에서는 수증기 수소 분압비를 0.1~0.3 사이로 조절하여 2~20nm의 SiO2 및 MnO층을 만들어서 표층하 석출물을 막아 철손을 향상시키는 기술이 개시되어 있다. In addition, Japanese Patent 2006-241563 has an internal steam partial pressure ratio of 0.3 to 0.5 up to 650 degrees, but at a predetermined annealing crack temperature of 650 degrees, the steam hydrogen partial pressure ratio is adjusted to between 0.1 and 0.3 to provide SiO 2 and 2-20 nm. A technique for improving iron loss by forming an MnO layer to prevent subsurface precipitates is disclosed.

또한, 일본특허 1998-317111과 2000-328207에는 S의 함량에 따라 미량원소를 투입하여 표층하 질화를 막는 기술이 개시되어 있는데, S가 10ppm 이하일때 Sb나 Sn을 투입하여 Al계 산화물을 형성하여 질화물을 막아 철손을 향상시키고자 했다.In addition, Japanese Patent 1998-317111 and 2000-328207 disclose a technique for preventing surface subsurface nitriding by adding a trace element according to the content of S. When S is 10 ppm or less, Sb or Sn is added to form an Al oxide. We tried to improve the iron loss by preventing nitride.

하지만, 표층에 Al 농화층을 형성하는 기술의 경우에는 Al 농화층에 의한 질소흡수가 진행되어, 코팅 밀착성을 열위시킬 가능성이 크고, 농화층을 만들기 위해서는 Al을 증가시켜야 하는데, 이 때 발생하는 인성저하에 의한 작업성 문제가 발생하기 쉽다. However, in the case of the technique of forming an Al enriched layer on the surface layer, nitrogen absorption by the Al enriched layer proceeds, which is likely to infer the adhesion of the coating, and in order to make the enriched layer, Al must be increased. Workability problems due to degradation are likely to occur.

또한, 초반에 수증기 수소 분압비를 조절하여 SiO2층을 만들어 철손을 향상시키는 기술의 경우, 수소가 투입되는 연속 가열대에서 분압이 다른 영역을 설정함으로써 설비 운영에 있어 어려움이 있다. Further, by adjusting the hydrogen partial pressure of water vapor at the beginning when the technique of improving the core loss make the SiO 2 layer, in the equipment operation, by setting the continuous gayeoldae the other partial region in which hydrogen is added, it is difficult.

또한, S함량이 10ppm이하일 때 Sb나 Sn과 같은 미량원소를 투입하여 표층하 질화를 막아 철손을 저감시키는 일본공개특허 1998-317111호와 같은 기술의 경우, S량이 10ppm보다 더 적을 때에 Sb, Sn에 의한 철손 저감효과가 현저히 확인되는 것으로 기재하고 있으나, 본 발명자가 실험한 바에 의하면 S함량이 10ppm보다 더 적게 함유되는 소재에 Sb, Sn등의 원소를 투입하는 경우 철손의 현저한 저감이 일어나지 않고, 다만, Sb, Sn등의 원소를 투입하는 것에 기인하는 효과만 나타나는 것으로 확인되었다. 여기에서 철손저감효과가 나타나는 것은 S함량의 저감에 의한 것 보다는 강판표면부에 농화하여 질소의 흡착을 억제하는 Sb, Sn등의 원소를 투입하는 것에 기인하는 것인 바, 따라서 이러한 특허기술은 잘못된 가정하에서 도출된 것이어서 현장에서 적용될 수 없는 문제가 있고, In addition, in the case of a technique such as Japanese Laid-Open Patent Publication No. 1998-317111 which reduces the iron loss by inserting a trace element such as Sb or Sn when the S content is 10 ppm or less, and prevents subsurface nitriding, Sb and Sn are less than 10 ppm. Although the effect of reducing iron loss by the present invention is remarkably confirmed, according to the inventors' experiment, when the elements such as Sb and Sn are added to a material containing less than 10 ppm of S, a significant reduction of iron loss does not occur. However, it was confirmed that only the effects due to the addition of elements such as Sb and Sn are shown. The iron loss reduction effect is caused by the introduction of elements such as Sb and Sn, which concentrate on the steel plate surface and suppress the adsorption of nitrogen, rather than by reducing the S content. There was a problem that was derived under the assumption and could not be applied in the field.

표층하 질화를 발생시키는 주된 원인에 대해서도 질화층의 생성억제에만 초점을 맞추어서 질화층의 생성을 억제하는 원소 즉, Sb, Sn등의 원소에 대하여만 기재하고 있을 뿐, 강 내부의 Al함량과 소둔분위기 조건 등이 질화층의 생성에 어떠한 작용을 하는지에 대하여는 구체적으로 명시하고 있지 않아 현저한 철손저감 효과를 기대할 수 없는 문제점이 있었다.The main causes of subsurface nitriding are described only for elements that suppress the formation of nitride layers, focusing only on the suppression of the formation of nitride layers, that is, elements such as Sb and Sn. It does not specify in detail how the atmospheric conditions and the like act on the formation of the nitride layer, there was a problem that can not expect a significant iron loss reduction effect.

JP 1998-183310 A 1998.07.14.JP 1998-183310 A 1998.07.14. JP 2001-140018 A 2001.05.22.JP 2001-140018 A 2001.05.22. JP 2006-241563 A 2006.09.14.JP 2006-241563 A 2006.09.14. JP 1998-317111 A 1998.12.02.JP 1998-317111 A 1998.12.02. JP 2000-328207 A 2000.11.28.JP 2000-328207 A 2000.11.28.

본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로, 최종 소둔과정에서 발생하는 표층하 질화 및 산화물에 의한 자성 열화를 막기 위해, 노점을 낮게 제어하고, Al에 따라 Sn을 적정량으로 투입함으로써 자성이 우수한 특히, 철손이 낮은 무방향성 전기강판을 얻는 것을 목적으로 한다. The present invention was devised to solve the above problems. In order to prevent magnetic deterioration due to subsurface nitriding and oxides occurring during the final annealing process, the dew point is controlled to be low, and the amount of Sn is added in an appropriate amount according to Al. It is an object to obtain this excellent non-oriented electrical steel sheet having a particularly low iron loss.

본 발명은 상기한 목적을 달성하기 위하여, Al이 포함된 무방향성 전기강판의 Sn양을 Al함량과 연계하여 투입하고, 최종소둔로의 노점을 제어함으로써, 최종 제품판의 표층하 질화 및 산화물을 억제하여 철손이 낮은 무방향성 전기강판을 얻도록 하는데 특징이 있다.The present invention, in order to achieve the above object, by adding the Sn content of the non-oriented electrical steel sheet containing Al in conjunction with the Al content, and by controlling the dew point of the final annealing furnace, the surface layer nitride and oxide of the final product sheet It is characterized by suppressing the non-oriented electrical steel sheet with low iron loss.

본 발명의 철손이 낮은 무방향성 전기강판은, 중량%로 Si:4.0%이하, Mn:0.1~1.0%, Al:0.45 ~1.7%, C:0.005%이하, P:0.1%이하, S:0.003%이하, N:0.003%이하, Ti:0.005%이하, Sn:0.08%미만, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물을 함유하되, Sn의 함량은 Al 함량에 따라 아래 식1을 만족하는 범위로 이루어진 것을 특징으로 한다.Non-oriented electrical steel sheet having a low iron loss of the present invention, Si: 4.0% or less, Mn: 0.1 ~ 1.0%, Al: 0.45 ~ 1.7%, C: 0.005% or less, P: 0.1% or less, S: 0.003 % Or less, N: 0.003% or less, Ti: 0.005% or less, Sn: less than 0.08%, remainder Fe and other unavoidable impurities, but the content of Sn is in a range satisfying Equation 1 according to Al content Characterized in that made.

[식 1] 800 > Sn(ppm) > 285 × Al(wt%) - 125 800> Sn (ppm)> 285 × Al (wt%)-125

또한, 상기 강판은, GDS(Glow discharge Spectroscopy)로 관찰했을 때 표층하 질소 분율의 최대값이 5% 이하인 것을 특징으로 하고, In addition, the steel sheet, when observed by GDS (Glow discharge Spectroscopy) is characterized in that the maximum value of the sub-surface nitrogen fraction is 5% or less,

또한, 상기 강판은 GDS로 관찰했을 때 표층하 산소 분율이 50%인 깊이가 0.1㎛ 미만인 것을 특징으로 한다.In addition, the steel sheet is characterized by a depth of less than 0.1㎛ the oxygen fraction of the surface layer 50% when observed by GDS.

본 발명의 제조방법은, 슬라브를 재가열하고 열간압연한 후, 열연판소둔, 냉간압연, 최종 소둔하는 통상의 공정에 의해 완성되는 무방향성 전기강판의 제조방법에 있어서, 상기 슬라브는 청구항 1기재의 성분조성으로 이루어지고, 상기 최종소둔은 수소와 질소로 구성된 분위기로 내에서 실시하되, 노점이 -10도 미만이 되도록 관리하는 것을 특징으로 하며, 상기 열연판 소둔은 소둔직후 산세조에서 표층의 스케일을 벗겨내는 것을 특징으로 한다. The manufacturing method of the present invention, In the method for producing a non-oriented electrical steel sheet which is completed by a conventional process of reheating and hot rolling the slab, followed by hot rolling annealing, cold rolling, final annealing, the slab is made of the composition of the composition of claim 1, The final annealing is carried out in an atmosphere consisting of hydrogen and nitrogen, characterized in that the dew point is managed to be less than -10 degrees, the hot-rolled sheet annealing is characterized in that the surface layer is stripped from the pickling tank immediately after annealing do.

본 발명에 의하면 고급 무방향성 전기강판에서 Sn의 투입량을 Al함량에 따라 최적화하고 최종소둔시 노점을 관리하여 질화 및 산화물 양을 제어하여 철손을 줄임으로써, 모터 철심으로 사용시에 에너지 손실을 줄일 수 있다. According to the present invention, it is possible to reduce energy loss during use as a motor core by optimizing Sn input amount according to Al content in high quality non-oriented electrical steel sheet and managing the dew point during final annealing to reduce the iron loss by controlling the amount of nitriding and oxides. .

또한, Sn이 필요 이상으로 첨가됨으로 인한 자성의 열화 및 합금첨가 비용의 상승을 방지함으로서 무방향성 전기강판의 품질을 높이고 제조단가를 절감할 수 있다. In addition, it is possible to improve the quality of the non-oriented electrical steel sheet and reduce the manufacturing cost by preventing the deterioration of the magnetic and the increase of the alloying cost due to the addition of Sn more than necessary.

도 1은 무방향성 전기강판의 철손 저감효과를 얻을 수 있는 Al 함량과 Sn 투입량의 상관관계를 나타낸 그래프,
도 2는 Al 함량과 Sn의 투입량에 따른 무방향성 전기강판의 철손을 나타낸 그래프,
도 3은 Al 함량과 Sn의 투입량 및 최종소둔시 노점에 따른 무방향성 전기강판의 철손을 2.2(W/Kg) 미만인 것과, 2.2(W/Kg) 초과인 것으로 구분하여 나타낸 그래프이다.
1 is a graph showing the correlation between Al content and Sn input amount to obtain the iron loss reduction effect of non-oriented electrical steel sheet,
2 is a graph showing the iron loss of the non-oriented electrical steel sheet according to the Al content and the input amount of Sn,
3 is a graph showing the iron loss of the non-oriented electrical steel sheet according to the Al content, the Sn input amount and the dew point at the final annealing is divided into less than 2.2 (W / Kg) and more than 2.2 (W / Kg).

이하, 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

Si, Al 및 Mn을 함유하는 무방향성 전기강판에서 N은 소둔 중 강판 내부로 침입하여 질화물을 형성하고 결정립 성장을 억제하여 집합조직 발달을 저해하는 불순물 원소로 알려져 있다. In non-oriented electrical steel sheets containing Si, Al, and Mn, N is known as an impurity element that penetrates into the steel sheet during annealing to form nitride and inhibit grain growth to inhibit the development of texture.

본 발명자는 N의 강중 침입을 억제함으로써 자성이 우수한 고급 무방향성 전기강판을 제조하고자 다양한 합금원소가 자성에 미치는 종류별 영향에 대하여 연구한 결과, Sn을 첨가함으로써 얻게 되는 자성 향상의 효과는 일정하지 않고 강내 성분 함량, 특히 Al의 함량에 따라 좌우되는 것으로 조사되었다. The present inventors have studied the effects of various alloying elements on the magnetism to produce high quality non-oriented electrical steel sheets having excellent magnetic properties by suppressing the ingress of N in the steel, and the effect of the magnetic enhancement obtained by adding Sn is not constant. It was found to depend on the content of constituents in the cavity, especially on the content of Al.

이에 착안하여 본 발명자는 무방향성 전기강판의 Al의 함량이 Sn의 투입량에 따른 자성 향상의 효과에 미치는 영향에 대해 확인하고자 다양한 합금성분에 대하여 거듭 실험을 수행하였으며, 그 결과 0.45~1.7%의 Al을 함유하는 성분계로 이루어진 무방향성 전기강판에서 Sn의 투입에 의한 자성 향상의 효과는 Al 함량에 따라 크게 좌우되며, Sn을 Al 함량에 대하여 특정 조건식을 만족하도록 첨가시킴으로써 표층하 질화물의 형성을 제어할 수 있고, 그에 따라 우수한 철손을 안정적으로 확보할 수 있음을 최초로 발견하여 본 발명을 완성할 수 있었다. With this in mind, the present inventors have repeatedly conducted experiments on various alloying components to determine the effect of Al content of the non-oriented electrical steel sheet on the effect of magnetic enhancement according to the amount of Sn input, and as a result, 0.45 to 1.7% of Al In the non-oriented electrical steel sheet composed of a component system containing, the effect of the improvement of magnetism by the addition of Sn is largely dependent on the Al content, and the addition of Sn to satisfy the specific conditional formula for the Al content can control the formation of nitride under the surface. The present invention was able to be completed for the first time, thereby stably securing excellent iron loss.

본 발명은 중량%로 Si:4.0%이하, Mn:0.1~1.0%, Al:0.45~1.7%, C:0.005%이하, P:0.1%이하, S:0.003%이하, N:0.003%이하, Ti:0.005%이하, Sn:0.08%미만, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물을 함유한 무방향성 전기강판으로써, Sn의 함량은 Al 함량에 따라 아래 식1을 만족하는 범위로 이루어진 것을 특징으로 한다. In the present invention, Si: 4.0% or less, Mn: 0.1 to 1.0%, Al: 0.45 to 1.7%, C: 0.005% or less, P: 0.1% or less, S: 0.003% or less, N: 0.003% or less, Ti: 0.005% or less, Sn: less than 0.08%, remainder Fe and other non-oriented electrical steel sheet containing other unavoidable impurities, the content of Sn is characterized in that the range of the following formula 1 according to the Al content do.

[식 1] 800 > Sn(ppm) > 285 × Al(wt%) - 125
800> Sn (ppm)> 285 × Al (wt%)-125

먼저, 본 발명의 성분제한 이유부터 살펴본다. 이하, 함량은 중량%이다.First, look at the reasons for limiting the components of the present invention. The content is below% by weight.

[C: 0.005% 이하][C: 0.005% or less]

C는 최종제품에서 자기시효를 일으켜서 사용 중 자기적 특성을 저하시키므로 0.005중량% 이하로 함유하며, C의 함량이 낮을수록 자기적 특성에 바람직하므로 최종제품에서는 0.003중량% 이하로 제한하는 것이 더욱 바람직하다.C contains less than 0.005% by weight because it causes magnetic aging in the final product, which lowers the magnetic properties during use, and the lower the content of C, the better the magnetic properties. Do.

[Si: 4.0% 이하][Si: 4.0% or less]

Si는 비저항을 증가시켜서 철손 중 와류손실을 낮추는 성분으로서, 4.0% 를 초과하여 첨가하면 냉간압연성이 떨어져 판파단이 일어나기 때문에 4.0% 이하로 제한하는 것이 바람직하다.Si is a component that decreases the eddy current loss during iron loss by increasing the specific resistance, and if it is added in excess of 4.0%, it is preferable to limit it to 4.0% or less because cold rolling is poor.

[P: 0.1% 이하][P: 0.1% or less]

P는 비저항을 증가시키고, 집합조직을 개선하여 자성을 향상시키기 위하여 첨가한다. 과다하게 첨가된 경우 냉간압연성이 악화되기 때문에 0.1% 이하로 제한하는 것이 바람직하다.P is added to increase the resistivity, improve the texture, and improve the magnetism. If excessively added, cold rolling is deteriorated, so it is preferable to limit it to 0.1% or less.

[S: 0.003% 이하] [S: 0.003% or less]

S는 미세한 석출물인 MnS 및 CuS를 형성하고 결정립성장을 억제하여 자기특성을 악화시키기 때문에 낮게 관리하는 것이 바람직하므로 그 함량을 0.003% 이하로 제한한다. S is preferably managed low because it forms fine precipitates MnS and CuS and suppresses grain growth to deteriorate magnetic properties, so the content is limited to 0.003% or less.

[Mn: 0.1~1.0%][Mn: 0.1-1.0%]

Mn이 0.1% 미만으로 존재하면 미세한 MnS 석출물이 형성되어 결정립성장을 억제시킴으로서 자성을 악화시킨다. 따라서 0.1%이상 존재하게 되는 경우, 조대한 MnS가 형성되고, 또한 S성분이 보다 미세한 석출물인 CuS로 석출되는 것을 막을 수있다. 그러나 Mn이 증가하는 경우 자성을 떨어뜨리기 때문에 1.0% 이하로 첨가한다.If Mn is present at less than 0.1%, fine MnS precipitates are formed to inhibit grain growth, thereby deteriorating magnetism. Therefore, when 0.1% or more exists, coarse MnS is formed and S component can be prevented from being precipitated by CuS which is a finer precipitate. However, when Mn increases, the magnetic content decreases, so it is added below 1.0%.

[Al:0.45~1.7%] [Al: 0.45-1.7%]

Al은 비저항을 증가시켜 와류손실을 낮추는데 유효한 성분이다. 0.45% 미만의 경우 AlN이 미세석출하여 자성이 악화되고, 또한 1.7%를 초과한 경우 가공성이 열화되므로, 1.7% 이하로 제한하는 것이 바람직하다.Al is an effective component to lower the eddy current loss by increasing the specific resistance. In the case of less than 0.45%, AlN is microprecipitated to deteriorate the magnetism, and if it exceeds 1.7%, the workability is deteriorated, so it is preferable to limit it to 1.7% or less.

[N:0.003% 이하][N: 0.003% or less]

N은 모재 내부에 미세하고 긴 AlN 석출물을 형성하여 결정립성장을 억제하므로 적게 함유시키며, 본 발명에서는 0.003% 이하로 제한하는 것이 바람직하다.N is formed to contain fine and long AlN precipitate inside the base material to suppress grain growth, so it is contained less, it is preferable to limit to 0.003% or less in the present invention.

[Ti:0.005% 이하][Ti: 0.005% or less]

Ti는 미세한 TiN, TiC의 석출물을 형성시켜 결정립 성장을 억제하며, 0.005%를 초과하여 첨가되는 경우 많은 미세한 석출물이 발생하여 집합조직을 나쁘게 하여 자성을 악화시킨다.Ti suppresses grain growth by forming fine TiN and TiC precipitates, and when added in excess of 0.005%, Ti causes many fine precipitates to worsen the texture and deteriorate the magnetic properties.

[Sn:0.08% 미만][Sn: less than 0.08%]

Sn은 표면 석출원소로서 강판표층부에 농화하여 질소의 흡착을 억제하고, 결과적으로 결정립의 성장을 방해하지 않아 철손을 낮추는 역할을 하며, Sn의 양이 800ppm이상으로 지나치게 많을 경우 결정립 성장 지연 등으로 인해 오히려 자성이 악화되므로 0.08% 미만으로 한정한다.Sn is a surface precipitation element, which concentrates on the surface of the steel sheet to suppress nitrogen adsorption and consequently serves to lower iron loss by not interfering with the growth of grains, and when the amount of Sn is excessively higher than 800 ppm, the grain growth is delayed. Rather, the magnetic deterioration is limited to less than 0.08%.

상기 조성 이외에 나머지는 Fe 및 기타 피할 수 없는 불순물로 이루어진다.In addition to the above composition, the remainder consists of Fe and other inevitable impurities.

위와 같은 조성으로 된 슬라브를 열간 압연, 권취, 열연판 소둔을 한후 산세, 냉간 압연한 후, 최종소둔을 하여 완성하게 된다. 이 때, 열연판 소둔은 상변태가 없는 고급 전기강판을 대상으로 최종 소둔판의 집합조직을 향상시키기 위해 실시하며, 소둔 직후 산세조에서 표층의 스케일을 벗겨내어 표면 품질을 확보하게 된다. The slabs having the composition as described above are subjected to hot rolling, winding and hot rolled sheet annealing, followed by pickling and cold rolling, followed by final annealing. At this time, the hot-rolled sheet annealing is performed to improve the texture of the final annealing plate for the high-grade electrical steel sheet without phase transformation, and immediately after the annealing to remove the scale of the surface layer to ensure the surface quality.

냉간압연 후 표면에 존재하는 압연유를 탈지하고 최종 소둔을 하게 되는데, 이 과정은 최종제품을 만들어내는 것으로 표면 품질이 중요하기 때문에 수소와 질소로 구성된 분위기로 내에서 소둔하게 된다. 최종소둔시 수소가 포함되기 때문에 Fe나 Si계 산화물들은 대부분 환원하게 되며, 일부 Al이 산화 혹은 질화된다. 일반적으로 Al산화물은 표층에 분포되어 있고, Al 질화물은 각진 덩어리를 이루어 표층 및 표층하에 분포하게 되는데, 두 경우 모두 자기 도메인의 이동을 방해하여 철손에 안좋은 영향을 주며, 추후 코팅 밀착성도 열위하게 만든다. Al 산화물의 경우에는 노점이 낮게 관리되면 억제되는데, 특히 최종소둔시 노점을 -10도 미만으로 관리하는 경우 산소 분압을 낮추어 산화물이 거의 발생하지 않도록 할 수 있다. After cold rolling, the rolling oil present on the surface is degreased and finally annealed. This process produces the final product, and because the surface quality is important, it is annealed in an atmosphere composed of hydrogen and nitrogen. Since hydrogen is included in the final annealing, Fe or Si-based oxides are mostly reduced, and some Al is oxidized or nitrided. In general, Al oxides are distributed in the surface layer, and Al nitrides are formed in angular agglomerates and in the surface layer and under the surface layer, both of which impede the movement of the magnetic domain, adversely affecting iron loss, and inferior coating adhesion. . In the case of Al oxide, the dew point is controlled to be low. In particular, when the dew point is managed at less than -10 degrees during final annealing, it is possible to reduce the partial pressure of oxygen so that almost no oxide is generated.

하지만, 최종소둔시 노점이 일정 온도 이하로 떨어질 경우, 상대적인 흡질에 의한 질화물 형성 가능성은 증가하게 된다. 특히, 최종소둔시 노점이 낮고, Al함량이 비교적 높으며, S가 적어 표면 반응성이 좋은 경우 표층하에 질소가 침투하여 자성을 열위시킨다. 따라서, Sn과 같이 표면 석출 원소를 첨가할 경우 표면 반응성을 떨어뜨려, 추가적인 질화를 방지함으로써 자성을 향상시킬 수 있다. However, if the dew point falls below a certain temperature during final annealing, the possibility of nitride formation due to relative absorption is increased. In particular, if the dew point is low during final annealing, the Al content is relatively high, and the S content is low, the surface reactivity is good, so that nitrogen penetrates under the surface layer and deteriorates the magnetic properties. Therefore, when the surface precipitation element is added, such as Sn, the surface reactivity may be lowered, and thus, the magnetic property may be improved by preventing further nitriding.

강내부에 Al이 0.45% 미만일 경우에는 흡질 현상이 거의 발생하지 않으나, Al이 이보다 높으면 높을수록 표면 반응성을 떨어뜨리는 것에 의한 자성 향상 효과의 유효성이 높아지기 때문에, 다음과 같은 (식 1)과 같이 Al함량에 따라 Sn의 투입량을 늘림으로써 우수한 자성을 확보할 수 있다. 다만, Sn의 투입량이 800ppm이상으로 지나치게 많을 경우 결정립 성장 지연 등으로 인해 오히려 자성이 악화된다.When Al is less than 0.45% in the steel, absorption is hardly generated. However, the higher Al is, the higher the effectiveness of the magnetic enhancement effect by lowering the surface reactivity becomes. By increasing the amount of Sn in accordance with the content can be secured excellent magnetic. However, when the amount of Sn is too high, such as 800ppm or more, the magnetism deteriorates due to the delay of grain growth.

[식 1] 800 > Sn(ppm) > 285 × Al(wt%) - 125
800> Sn (ppm)> 285 × Al (wt%)-125

강판 표층을 단시간에 분석하기 위한 방법으로 GDS(Glow Discharge Spectroscopy)와 같은 표면 증발을 통해 깊이에 따른 원소의 함량을 분석하는 방법이 있다. 무방향성 전기강판의 표층을 GDS로 관찰할 경우, 위 조건에 따라 제작된 경우 표층의 질소함량 최대치는 5% 이하였다. 산소의 경우는 최대값이 대부분 표면에서 100%로 관찰되며 이후 깊이에 따라 급속히 감소하는 경향이 있는데, 따라서 산소함량의 최대값보다는 깊이에 따라 얼마나 빠르게 감소하는가가 의미가 있다. Sn을 Al함량에 따라 [식 1]에 따라 적절하게 첨가하여 자성이 우수한 경우 산소함량이 50%가 되는 시점이 0.1um 미만, 더욱 바람직하기로는 0.08㎛ 이하였다.
As a method for analyzing the surface layer of the steel sheet in a short time, there is a method of analyzing the content of elements depending on the depth through surface evaporation such as glow discharge spectroscopy (GDS). When the surface layer of the non-oriented electrical steel sheet was observed by GDS, the maximum nitrogen content of the surface layer was 5% or less when manufactured according to the above conditions. In the case of oxygen, the maximum value is mostly observed at 100% on the surface, and then tends to decrease rapidly with depth. Therefore, it is meaningful how rapidly it decreases with depth rather than the maximum value of oxygen content. When Sn is appropriately added according to Al content according to [Equation 1], the magnetic content is excellent, and the time when the oxygen content is 50% is less than 0.1 μm, more preferably 0.08 μm or less.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

중량%로, C:0.0030%, P:0.012%, S:0.0003~0.0036%, N:0.0013%, Mn:0.17%, Ti:0.0015% 및 나머지 Fe 및 기타 불가피한 불순물과 표1과 같이 Al, Si, Sn으로 조성되는 슬라브를 1130℃로 재가열한 다음 2.3mm로 열간압연하여 열간압연강판을 제조하였다. 이 때, 비저항 차이에 의해 발생하는 철손 차이를 없애기 위해 Al+Si 값은 4.1~4.3(wt%) 범위내로 유지하였다. 상기 열간압연된 강판을 650℃에서 권취 후 공기중에서 냉각하고 1040℃에서 2분 동안 열연판 소둔을 실시한 후 산세후에 0.35mm로 냉간압연을 실시하였으며, 노점을 -42~-2도까지 변화해가며, 1040℃에서 50초 동안 수소 20%, 질소 80% 분위기로 최종 소둔을 실시한 후 강판의 자성 및 표면 분석을 실시하였다. 강판의 자성측정은 60X60mm2 크기 단판 측정기를 이용하여 압연 방향과 압연 직각 방향으로 측정하여 평균내었으며, GDS를 이용하여 표층으로부터 깊이에 따른 질소와 산소의 분율을 측정하여 강판 표면을 분석하였다.By weight, C: 0.0030%, P: 0.012%, S: 0.0003 ~ 0.0036%, N: 0.0013%, Mn: 0.17%, Ti: 0.0015% and the remaining Fe and other unavoidable impurities and Al, Si as shown in Table 1 Re-heated the slab composed of Sn, 1130 ℃ and then hot rolled to 2.3mm to prepare a hot rolled steel sheet. At this time, Al + Si value was maintained within the range of 4.1 ~ 4.3 (wt%) to eliminate the iron loss caused by the difference in resistivity. The hot rolled steel sheet was wound at 650 ° C., cooled in air, hot rolled annealed at 1040 ° C. for 2 minutes, and cold rolled to 0.35 mm after pickling, changing the dew point to -42 to -2 degrees. After the final annealing in an atmosphere of 20% hydrogen and 80% nitrogen for 10 seconds at 1040 ℃, the magnetic and surface analysis of the steel sheet. Magnetic measurements of the steel sheets were averaged by measuring in the rolling direction and the right angle direction using a 60 × 60 mm 2 size plate measuring instrument, and the surface of the steel sheets was analyzed by measuring the fraction of nitrogen and oxygen according to the depth from the surface layer using GDS.

표 1은 최종소둔시 노점과 제강성분에 따른 강판의 철손 및 표면 분석결과이다.Table 1 shows the results of iron loss and surface analysis of steel sheets according to dew point and steelmaking composition during final annealing.

시료sample
번호number
1)노점1) dew point
(℃)(° C)
제강성분Steelmaking component 2)표층하 2) under the surface
질소분율Nitrogen fraction
최대값(%)Maximum value (%)
3)산소 50% 3) oxygen 50%
침투깊이Penetration depth
(μm)(μm)
철손Iron loss
(W15/50,W/Kg)(W15 / 50, W / Kg)

구분division
Al(wt%)Al (wt%) Si(wt%)Si (wt%) Sn(ppm)Sn (ppm) S(ppm)S (ppm) 1One -41-41 0.45 0.45 3.70 3.70 1010 77 55 0.0510.051 2.152.15 발명재1Invention 1 22 -40-40 0.46 0.46 3.65 3.65 120120 88 44 0.047 0.047 2.162.16 발명재2Invention 2 33 -40-40 0.81 0.81 3.41 3.41 00 77 10.510.5 0.051 0.051 2.352.35 비교재1Comparative Material 1 44 -40-40 0.82 0.82 3.42 3.42 5555 66 99 0.062 0.062 2.322.32 비교재2Comparative Material 2 55 -41-41 0.80 0.80 3.38 3.38 9090 55 7.57.5 0.058 0.058 2.302.30 비교재3Comparative Material 3 66 -42-42 0.83 0.83 3.40 3.40 120120 66 44 0.053 0.053 2.192.19 발명재3Invention 3 77 -40-40 0.82 0.82 3.40 3.40 200200 77 2.52.5 0.049 0.049 2.122.12 발명재4Invention 4 88 -40-40 1.21 1.21 3.03 3.03 150150 88 77 0.051 0.051 2.352.35 비교재4Comparative Material 4 99 -40-40 1.09 1.09 3.08 3.08 210210 77 3.53.5 0.047 0.047 2.132.13 발명재5Invention 5 1010 -40-40 1.23 1.23 3.01 3.01 304304 44 33 0.049 0.049 2.102.10 발명재6Invention 6 1111 -40-40 1.45 1.45 2.66 2.66 150150 55 6.56.5 0.051 0.051 2.312.31 비교재5Comparative Material 5 1212 -40-40 1.55 1.55 2.71 2.71 320320 77 33 0.051 0.051 2.162.16 발명재7Invention Material7 1313 -40-40 1.54 1.54 2.70 2.70 800800 55 33 0.051 0.051 2.312.31 비교재6Comparative Material 6 1414 -40-40 1.50 1.50 2.65 2.65 10001000 33 3.53.5 0.050 0.050 2.322.32 비교재7Comparative Material7 1515 -25-25 0.46 0.46 3.65 3.65 120120 55 3.53.5 0.069 0.069 2.102.10 발명재8Invention Material 8 1616 -26-26 0.80 0.80 3.38 3.38 9090 77 77 0.070 0.070 2.312.31 비교재8Comparative Material 8 1717 -22-22 0.82 0.82 3.40 3.40 200200 66 22 0.073 0.073 2.132.13 발명재9Invention Material 9 1818 -23-23 1.21 1.21 3.03 3.03 150150 88 6.56.5 0.069 0.069 2.342.34 비교재9Comparative Material 9 1919 -18-18 1.09 1.09 3.08 3.08 210210 66 44 0.071 0.071 2.192.19 발명재10Invention 10 2020 -23-23 1.45 1.45 2.66 2.66 150150 77 66 0.072 0.072 2.332.33 비교재10Comparative Material 10 2121 -21-21 1.55 1.55 2.71 2.71 320320 55 2.52.5 0.069 0.069 2.212.21 발명재11Invention Material 11 2222 -10-10 0.45 0.45 3.70 3.70 00 66 44 0.120 0.120 2.312.31 비교재11Comparative Material 11 2323 -8-8 0.46 0.46 3.65 3.65 120120 44 2.52.5 0.170 0.170 2.352.35 비교재12Comparative Material 12 2424 -4-4 0.81 0.81 3.41 3.41 00 66 4.54.5 0.160 0.160 2.332.33 비교재13Comparative Material 13 2525 -5-5 0.80 0.80 3.38 3.38 9090 66 44 0.180 0.180 2.312.31 비교재14Comparative Material14 2626 -5-5 0.83 0.83 3.40 3.40 120120 55 3.53.5 0.170 0.170 2.312.31 비교재15Comparative Material 15 2727 -5-5 0.82 0.82 3.40 3.40 200200 77 2.52.5 0.180 0.180 2.322.32 비교재16Comparative Material 16 2828 -6-6 1.21 1.21 3.03 3.03 150150 88 4.54.5 0.210 0.210 2.352.35 비교재17Comparative Material17 2929 -5-5 1.09 1.09 3.08 3.08 210210 55 33 0.180 0.180 2.322.32 비교재18Comparative Material 18 3030 -2-2 1.23 1.23 3.01 3.01 304304 88 2.52.5 0.170 0.170 2.312.31 비교재19Comparative Material 19 3131 -8-8 1.45 1.45 2.66 2.66 150150 44 44 0.170 0.170 2.332.33 비교재20Comparative Material 20 3232 -6-6 1.60 1.60 2.70 2.70 250250 66 4.54.5 0.200 0.200 2.412.41 비교재21Comparative Material21 3333 -5-5 1.55 1.55 2.71 2.71 320320 55 33 0.170 0.170 2.402.40 비교재22Comparative Material 22 3434 -5-5 1.50 1.50 2.65 2.65 400400 66 3.53.5 0.170 0.170 2.412.41 비교재23Comparative Material 23 3535 -40-40 0.82 0.82 3.393.39 196196 99 2.12.1 0.0430.043 2.122.12 발명재12Invention Material12 3636 -41-41 0.79 0.79 3.40 3.40 180180 1515 2.32.3 0.045 0.045 2.132.13 발명재13Invention Material 13 3737 -41-41 0.81 0.81 3.42 3.42 189189 2525 2.22.2 0.0460.046 2.092.09 발명재14Invention 14 3838 -42-42 0.80 0.80 3.39 3.39 210210 2828 2.12.1 0.043 0.043 2.152.15 발명재15Invention 15 3939 -41-41 0.82 0.82 3.43 3.43 190190 3535 2.52.5 0.0420.042 2.352.35 비교재24Comparative Material 24 4040 -40-40 1.21 1.21 2.96 2.96 250250 88 2.52.5 0.0420.042 2.102.10 발명재16Invention 16 4141 -40-40 1.22 1.22 3.01 3.01 245245 1111 2.42.4 0.044 0.044 1.981.98 발명재17Invention 17 4242 -40-40 1.18 1.18 3.10 3.10 220220 1515 2.42.4 0.045 0.045 2.032.03 발명재18Invention 18 4343 -40-40 1.23 1.23 3.02 3.02 230230 2626 2.32.3 0.043 0.043 2.002.00 발명재19Invention Material 19 4444 -40-40 1.22 1.22 3.033.03 250250 3333 2.32.3 0.044 0.044 2.312.31 비교재25Comparative Material 25 4545 -40-40 1.15 1.15 3.00 3.00 00 99 9.89.8 0.045 0.045 2.282.28 비교재26Comparative Material 26 4646 -40-40 1.22 1.22 3.02 3.02 00 1515 11.211.2 0.043 0.043 2.312.31 비교재27Comparative material 27 4747 -40-40 1.21 1.21 2.952.95 00 3030 10.110.1 0.044 0.044 2.322.32 비교재28Comparative Material 28 4848 -22-22 0.82 0.82 3.30 3.30 130130 99 2.32.3 0.074 0.074 2.112.11 발명재20Invention 20 4949 -22-22 0.81 0.81 3.31 3.31 150150 1515 2.42.4 0.072 0.072 2.102.10 발명재21Inventive Materials21 5050 -22-22 0.83 0.83 3.35 3.35 140140 2626 2.32.3 0.074 0.074 2.122.12 발명재22Invention Material22 5151 -22-22 0.82 0.82 3.30 3.30 00 99 99 0.071 0.071 2.282.28 비교재29Comparative Material 29 5252 -21-21 0.81 0.81 3.31 3.31 00 1515 8.58.5 0.0690.069 2.292.29 비교재30Comparative Material 30 5353 -19-19 0.83 0.83 3.35 3.35 00 2626 99 0.074 0.074 2.302.30 비교재31Comparative Material 31 5454 -15-15 1.11 1.11 3.08 3.08 250250 1313 4.14.1 0.0760.076 1.961.96 발명재23Invention 23 5555 -16-16 1.12 1.12 3.08 3.08 240240 2525 3.83.8 0.0750.075 2.152.15 발명재24Invention 24 5656 -14-14 1.20 1.20 3.08 3.08 260260 3636 3.93.9 0.074 0.074 2.322.32 비교재32Comparative Material32

1) Chilled mirror type의 노점계로 측정한 최종소둔로 노점1) Final annealing furnace dew point measured by chilled mirror type dew point meter

2) GDS로 측정했을 때, 질소의 깊이 분포 그래프에서 최대 질소량2) Maximum nitrogen in the depth distribution graph of nitrogen as measured by GDS

3) GDS로 측정했을 때, 산소의 분율이 50%가 되는 깊이
3) Depth at which the fraction of oxygen reaches 50% as measured by GDS

비교재 11~23은 최종소둔시 노점이 -10도 이상인 경우로서, 표층하 질화물의 양은 적어지지만 산화물이 강판 표층으로부터 깊이 침투하여 철손이 열화되며, 이는 도 3의 도시에서 확인할 수 있다. Comparative materials 11 to 23 have a dew point of more than -10 degrees at the time of final annealing, but the amount of nitride under the surface layer decreases, but the iron loss is deteriorated due to the oxide penetrating deeply from the surface of the steel sheet, which can be seen in FIG. 3.

최종소둔시 노점이 -10도 보다 낮은 경우에는 합금성분에 따라 철손이 변하게 된다. 발명재 1,2와 같이 Al함량이 0.45% 정도로 상대적으로 작은 경우에는 표층하 질소값이 낮아지고 철손이 향상된다. 이는 Al양이 적으면 강내에서 질화물의 대부분을 차지하는 AlN이 형성될 확률이 줄어들기 때문이다.In the final annealing, if the dew point is lower than -10 degrees, the iron loss is changed according to the alloy composition. When the Al content is relatively small, such as Inventive Materials 1,2 and 0.45%, the nitrogen value under the surface is lowered and the iron loss is improved. This is because a small amount of Al reduces the probability of forming AlN, which occupies most of the nitride in the steel.

Al함량이 높아지는 경우에는 Al과 Sn의 양에 따라 표층하 질소 최대값이 변하게 되는데, Al이 증가하고, Sn이 감소할수록 표층하 질소 값이 증가하게 되는 경향을 나타낸다. Al이 0.8%인 경우 Sn값이 120ppm이상, Al이 1.2%인 경우 200ppm이상, Al이 1.5%인 경우 250ppm이상인 경우 자성이 양호하게 나왔다. Al양이 증가함에 따라 적정 Sn양이 증가하는 것은 Al이 많아짐에 따라 흡질이 더 잘 발생하기 때문이다.When the Al content is increased, the maximum nitrogen value in the surface layer changes according to the amounts of Al and Sn. As Al increases and the Sn decreases, the nitrogen value in the surface layer increases. When the Al value is 0.8% and the Sn value is 120ppm or more, Al is 1.2% or more, 200ppm or more, Al 1.5% is more than 250ppm magnetism was good. As the amount of Al increases, the amount of the appropriate Sn increases because the absorption is better as the amount of Al increases.

이러한 점에 기초하여 실험결과를 맞춤계산한 결과, 도 1의 도시와 같이 Sn의 투입량이 285×Al(wt%)-125 보다 큰 값일 때 우수한 자성을 가지게 되는 것으로 확인되었다. 자성이 우수한 발명재의 경우 대체로 표층하 질소 최대값이 5%이하이고, 산소 침투 깊이는 0.1um 미만인 것으로 나타났다.As a result of custom calculation of the experimental results on the basis of these points, as shown in FIG. 1, it was confirmed that the magnetic properties were excellent when the Sn input amount was larger than 285 × Al (wt%)-125. In the case of the excellent magnetic material, the maximum subsurface nitrogen was 5% or less, and the oxygen penetration depth was found to be less than 0.1 μm.

도 2는 Al 함량과 Sn의 투입량에 따른 무방향성 전기강판의 철손을 나타낸 그래프이다. 도 2의 도시와 같이, Sn의 투입량(ppm)이 285×Al(wt%)-125 보다 큰 본 발명의 범위에서는 철손이 2.1(W/Kg) 정도로 낮았으나, Sn의 투입량(ppm)이 285×Al(wt%)-125 보다 작아 본 발명의 범위에서 벗어난 경우에서는 철손이 2.3(W/Kg) 이상으로 높아지는 것으로 조사되었다.Figure 2 is a graph showing the iron loss of the non-oriented electrical steel sheet according to the Al content and the input amount of Sn. As shown in FIG. 2, in the range of the present invention in which the Sn input amount (ppm) is greater than 285 × Al (wt%)-125, the iron loss was as low as 2.1 (W / Kg), but the Sn input amount (ppm) was 285. It was found that the iron loss increased to 2.3 (W / Kg) or more when less than xAl (wt%)-125 and outside the scope of the present invention.

비교재 6, 7과 같이 Sn이 800ppm이상인 경우에는 오히려 자성이 악화되는 경향이 나타나게 되는데 이는 Sn이 결정립 성장성을 해치기 때문인 것으로 생각된다.As in Comparative Materials 6 and 7, Sn tends to deteriorate in the case of more than 800 ppm, which is thought to be because Sn impairs grain growth.

비교재 25~32번에서, 노점이 -10도 미만으로 낮아 흡질이 되기 쉬운 조건하에서, Sn이 미 첨가되었을 경우, 표층하 질소 최대값은 S 함량과 관련 없이 높게 나타났으며, 자성은 모두 열위하였다. 다만, 발명재 12~24번에서 S가 30ppm이하의 범위에서는 S의 함량과 상관없이 Sn 첨가량이 285×Al(wt%)-125 보다 높은 경우 자성이 모두 우수하였다.In Comparative Materials Nos. 25-32, under the condition that dew point was less than -10 degrees and easily absorbed, when Sn was not added, the maximum value of subsurface nitrogen was high regardless of the S content. It was. However, in the Inventive Materials Nos. 12-24, the magnetic properties were excellent in the case where the amount of Sn was higher than 285 × Al (wt%)-125 regardless of the content of S in the range of 30 ppm or less.

이러한 결과로부터 Al이 0.45%이상 함유된 성분계의 무방향성 전기강판에서 S가 흡질에 미치는 영향은 크지 않으며, 다만 S는 재고용 등의 과정에서 생성되는 미세석출물로 인해 자성이 열화되지 않도록 30ppm이하로 관리하는 것으로 충분하고, Sn을 Al함량에 따라 결정되는 적정량으로 투입함으로써 표층 질화물의 형성이 억제되어 극히 우수한 철손 특성을 갖는 무방향성 전기강판의 제조가 가능함을 알 수 있다.
From these results, the effect of S on the absorption of the non-oriented electrical steel sheet containing 0.45% or more of Al is not great, but S is managed to 30ppm or less so that the magnetism does not deteriorate due to the fine precipitates produced during restocking. It can be seen that it is sufficient, and by adding Sn in an appropriate amount determined according to the Al content, formation of surface nitride is suppressed, and thus it is possible to manufacture non-oriented electrical steel sheet having extremely excellent iron loss characteristics.

Claims (5)

중량%로 Si:4.0%이하, Mn:0.1~1.0%, Al:0.45~1.7%, C:0.005%이하, P:0.1%이하, S:0.003%이하, N:0.003%이하, Ti:0.005%이하, Sn:0.08%미만, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물을 함유하되, Sn의 함량은 Al 함량에 따라 아래 식1을 만족하는 범위로 이루어진 것을 특징으로 하는 철손이 낮은 무방향성 전기강판.
[식 1] 800 > Sn(ppm) > 285 × Al(wt%) - 125
Si: 4.0% or less, Mn: 0.1 to 1.0%, Al: 0.45 to 1.7%, C: 0.005% or less, P: 0.1% or less, S: 0.003% or less, N: 0.003% or less, Ti: 0.005 Less than 0.08% Sn, less than 0.08%, remainder Fe and other unavoidably mixed impurities, but the content of Sn is low iron loss non-oriented electrical steel sheet, characterized in that it is made to satisfy the following formula 1 .
800> Sn (ppm)> 285 × Al (wt%)-125
제1항에 있어서,
상기 강판은, GDS로 관찰했을 때 표층하 질소 분율의 최대값이 5% 이하인 것을 특징으로 하는 철손이 낮은 무방향성 전기강판.
The method of claim 1,
The steel sheet is low iron loss non-oriented electrical steel sheet, characterized in that the maximum value of the nitrogen fraction under the surface layer is 5% or less when observed by GDS.
제1항 또는 제2항에 있어서,
상기 강판은 GDS로 관찰했을 때 표층하 산소 분율이 50%인 깊이가 0.1㎛ 미만인 것을 특징으로 하는 철손이 낮은 무방향성 전기강판.
The method according to claim 1 or 2,
The steel sheet has a low iron loss non-oriented electrical steel sheet, characterized in that the depth of the surface layer oxygen fraction 50% when observed by GDS is less than 0.1㎛.
슬라브를 재가열하고 열간압연한 후, 열연판소둔, 냉간압연, 최종소둔하는 통상의 공정에 의해 완성되는 무방향성 전기강판의 제조방법에 있어서,
상기 슬라브는 청구항 1기재의 성분조성으로 이루어지고, 상기 최종소둔은 수소와 질소로 구성된 분위기로 내에서 실시하되, 노점이 -10도 미만이 되도록 관리하는 것을 특징으로 하는 철손이 낮은 무방향성 전기강판의 제조방법.
In the method for producing a non-oriented electrical steel sheet which is completed by the usual process of reheating and hot rolling the slab, hot rolling annealing, cold rolling, final annealing,
The slab is made of the composition of the components of claim 1, The final annealing is carried out in an atmosphere consisting of hydrogen and nitrogen, the method of producing a low iron loss non-oriented electrical steel sheet, characterized in that the dew point is managed to be less than -10 degrees.
제4항에 있어서,
상기 열연판 소둔은 소둔직후 산세조에서 표층의 스케일을 벗겨내는 것을 특징으로 하는 철손이 낮은 무방향성 전기강판의 제조방법.
The method of claim 4, wherein
The hot rolled sheet annealing is a method of producing a low iron loss non-oriented electrical steel sheet, characterized in that the surface of the scale in the pickling bath immediately after annealing.
KR1020100038606A 2010-04-26 2010-04-26 Non-oriented electrical steel sheets having excellent magnetic property and Method for manufacturing the same KR101649324B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100038606A KR101649324B1 (en) 2010-04-26 2010-04-26 Non-oriented electrical steel sheets having excellent magnetic property and Method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100038606A KR101649324B1 (en) 2010-04-26 2010-04-26 Non-oriented electrical steel sheets having excellent magnetic property and Method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20110119101A true KR20110119101A (en) 2011-11-02
KR101649324B1 KR101649324B1 (en) 2016-08-19

Family

ID=45390729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100038606A KR101649324B1 (en) 2010-04-26 2010-04-26 Non-oriented electrical steel sheets having excellent magnetic property and Method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101649324B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125855A3 (en) * 2019-12-20 2021-08-05 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230095229A (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183310A (en) 1996-12-20 1998-07-14 Kawasaki Steel Corp Non-oriented silicon steel sheet excellent in magnetic characteristic after stress relief annealing
JPH10317111A (en) 1996-12-17 1998-12-02 Nkk Corp Non-oriented silicon steel having low iron loss
JP2000328207A (en) 1999-05-18 2000-11-28 Nkk Corp Silicon steel sheet excellent in nitriding and internal oxidation resistances
JP2001140018A (en) 1999-08-30 2001-05-22 Nippon Steel Corp Nonoriented silicon steel sheet having boundary from good for magnetic property and producing method therefor
JP2003293101A (en) * 2002-04-02 2003-10-15 Jfe Steel Kk Nonoriented silicon steel sheet having excellent magnetic property and corrosion resistance after stress relieving annealing
JP2006241563A (en) 2005-03-07 2006-09-14 Nippon Steel Corp Nonoriented silicon steel sheet having excellent magnetic property and its production method
JP2009167480A (en) * 2008-01-17 2009-07-30 Jfe Steel Corp Method for producing non-oriented electrical steel sheet for etching-process, and method for manufacturing motor core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317111A (en) 1996-12-17 1998-12-02 Nkk Corp Non-oriented silicon steel having low iron loss
JPH10183310A (en) 1996-12-20 1998-07-14 Kawasaki Steel Corp Non-oriented silicon steel sheet excellent in magnetic characteristic after stress relief annealing
JP2000328207A (en) 1999-05-18 2000-11-28 Nkk Corp Silicon steel sheet excellent in nitriding and internal oxidation resistances
JP2001140018A (en) 1999-08-30 2001-05-22 Nippon Steel Corp Nonoriented silicon steel sheet having boundary from good for magnetic property and producing method therefor
JP2003293101A (en) * 2002-04-02 2003-10-15 Jfe Steel Kk Nonoriented silicon steel sheet having excellent magnetic property and corrosion resistance after stress relieving annealing
JP2006241563A (en) 2005-03-07 2006-09-14 Nippon Steel Corp Nonoriented silicon steel sheet having excellent magnetic property and its production method
JP2009167480A (en) * 2008-01-17 2009-07-30 Jfe Steel Corp Method for producing non-oriented electrical steel sheet for etching-process, and method for manufacturing motor core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125855A3 (en) * 2019-12-20 2021-08-05 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
KR101649324B1 (en) 2016-08-19

Similar Documents

Publication Publication Date Title
KR101903008B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101634092B1 (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR101507942B1 (en) Non-oriented electrical steel steet and method for the same
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
US20230050497A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
CN110114488B (en) Non-oriented electromagnetic steel sheet having excellent recyclability
KR20160044452A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101051747B1 (en) Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties
KR101353462B1 (en) Non-oriented electrical steel shteets and method for manufactureing the same
KR101353463B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20150126334A (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR101410476B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101037159B1 (en) Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
KR20110119101A (en) Non-oriented electrical steel sheets having excellent magnetic property and method for manufacturing the same
US20240221982A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
KR102513317B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150073798A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101059215B1 (en) Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
WO2020090156A1 (en) Method for manufacturing non-oriented electromagnetic steel sheet
KR101632890B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150062246A (en) Non-oriented electrical steel sheets and method for manufacturing the same
JP4292804B2 (en) Method for producing grain-oriented electrical steel sheet
KR20140133681A (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR100865317B1 (en) Non orient electric steel sheet and the manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190725

Year of fee payment: 4