KR20110082152A - 실시간 병리 - Google Patents

실시간 병리 Download PDF

Info

Publication number
KR20110082152A
KR20110082152A KR1020117009838A KR20117009838A KR20110082152A KR 20110082152 A KR20110082152 A KR 20110082152A KR 1020117009838 A KR1020117009838 A KR 1020117009838A KR 20117009838 A KR20117009838 A KR 20117009838A KR 20110082152 A KR20110082152 A KR 20110082152A
Authority
KR
South Korea
Prior art keywords
tissue
sensor
cannula
patient
opening
Prior art date
Application number
KR1020117009838A
Other languages
English (en)
Other versions
KR101541210B1 (ko
Inventor
죠셉 엘. 마크
마이클 이. 밀러
Original Assignee
서로스 서지컬 시스템즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서로스 서지컬 시스템즈 인코포레이티드 filed Critical 서로스 서지컬 시스템즈 인코포레이티드
Publication of KR20110082152A publication Critical patent/KR20110082152A/ko
Application granted granted Critical
Publication of KR101541210B1 publication Critical patent/KR101541210B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0266Pointed or sharp biopsy instruments means for severing sample
    • A61B10/0275Pointed or sharp biopsy instruments means for severing sample with sample notch, e.g. on the side of inner stylet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0283Pointed or sharp biopsy instruments with vacuum aspiration, e.g. caused by retractable plunger or by connected syringe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • A61B2017/00061Light spectrum

Abstract

환자의 비정상 조직을 검출하기 위한 시스템은 기부 개구 및 말단 개구를 갖는 삽입기 캐뉼러를 포함한다. 상기 시스템은 캐뉼러를 통해 선택적으로 삽입되도록 형성된 외과용 기구를 부가로 포함한다. 상기 외과용 기구는 삽입기 캐뉼러를 통해 완전히 삽입되었을 때 삽입기 캐뉼러의 말단 개구에 대해 배치된 조직 절단 개구를 부가로 포함한다. 또한, 상기 시스템은 환자의 조직의 적어도 하나의 특성을 검출하도록 형성된 센서를 포함한다. 상기 센서는 외과용 기구가 삽입기 캐뉼러에 삽입될 때 삽입기 캐뉼러의 말단부에 대해 고정된 거리로 배치된다.

Description

실시간 병리{REAL TIME PATHOLOGY}
본 발명은 병리(pathology)에 관한 시스템 및 방법에 관한 것이다. 특히 본 발명은 실시간 병리를 위한 시스템 및 방법에 관한 것이다.
암의 진단 및 치료에는 샘플을 의심스러운 덩어리(suspicious mass)에 위치시키고 이를 제거할 필요가 있다. 상기 의심스러운 덩어리는 전형적으로 시각적 검사, 심계항진(palpitation), X선, MRI, 초음파 영상 또는 다른 검출 수단을 포함하는 예비 검사중에 발견된다. 이런 예비 검사는 의심스러운 덩어리를 폭로하며, 상기 덩어리는 덩어리가 악성인지 또는 양성인지의 여부를 결정하기 위해 평가되어야만 한다. 전형적으로, 덩어리는 악성인지 또는 양성인지의 여부를 결정하기 위해 실험실에서 생체검사되어 처리된다. 이런 방법은 유방암(breast cancer) 뿐만 아니라 다른 형태의 암의 조기 진단을 위해 사용된다. 조기 진단은 인체의 다른 부분으로 악성 세포의 전이를 방지하고, 궁극적으로 치명적인 결과를 방지한다.
유방 생체검사에 있어서 예를 들어 생체검사 방법은 개방형 처치나 피부를 통한 방법에 의해 실행된다. 개방형 외과 생체검사 처치는 먼저 X선 또는 초음파와 같은 시각화(visualization) 기법을 이용하는 동안 와이어 루프(wire roop)의 삽입에 의한 병변(lesion)의 국부화를 필요로 한다. 다음, 환자는 유방에 대형 절개가 이루어지는 수술실로 가게 되고, 상기 와이어 루프를 둘러싸고 있는 조직이 제거된다. 이런 절차는 유방 조직에 심각한 트라우마(trauma)를 초래하고, 손상된 결과를 남기며, 환자에게 상당한 회복 시간을 요구하게 된다. 이것은 자주 환자들이 필요한 의료 케어(medical care)를 받아들이는데 방해물이 된다. 상기 개방형 기법은 피부를 통한 방법(percutaneous method)에 비해 샘플 사이트(sample site)의 감염 및 출혈의 위험을 증가시킨다.
피부를 통한 생체검사는 초음파, 유선 조영 촬영(X선), MRI, PET, CT, 테라헤르쯔 기술 등과 같은 실시간 시각화 기법과 함께 미세한 바늘 흡인(aspiration) 또는 코어 생체검사를 이용하여 실행되어 왔다. 미세한 바늘 흡인은 흡인 바늘을 이용하여 소수의 세포 제거를 포함하고 있다. 그후, 세포학 기법을 이용하여 세포의 도말(smear)이 분석된다. 미세한 바늘 흡인이 개방형 처리 보다 침입이 덜하지만, 단지 소량의 세포만 분석하는데 유용하다. 또한, 이런 방법은 발견되었을 경우 암 상태의 더욱 완벽한 평가를 제공할 수 있는 조직의 병리학적 평가를 제공하지 않는다. 이와는 달리, 코어 생체검사에서는 조직의 구조를 파괴하지 않고서도 조직의 큰 조각이 제거될 수 있다. 따라서, 코어 생체검사 기법은 암의 상태를 지시하는 더욱 복잡한 조직학 기법을 사용하여 분석될 수 있다. 작은 병변의 경우, 전체 덩어리는 코어 생체검사 방법을 사용하여 제거된다. 이런 이유들로 인해, 코어 생체검사가 선호되며, 질병의 진행 및 형식의 병리에 의해 더욱 자세한 사진이 작성될 수 있도록 코어 생체검사 방법이 트렌드가 되고 있다.
그러나, 상기 서술된 각각의 방법은 사용된 세포학적 기법 또는 조직학적 기법으로 인해 조직 샘플의 입수 단계와 조직 건강을 실제로 결정하는 단계 사이에 상당한 시간이 소요되는 처리 단계(예를 들어, 세포 또는 슬라이드의 도말 단계, 오염 단계, 판독 단계)가 뒤따를 것을 요구하고 있다. 또한, 환자는 치료 장소를 떠나며, 치료실은 다른 환자를 위해 준비된다. 초기 결정이 이루어진 후, 예를 들어 조직이 악성인 것으로 밝혀지면, 환자와 만나고, 치료 장소에서 다른 예약이 이루어진다. 환자가 돌아온 후, 의심스러운 덩어리는 제거 전에 다시 위치되어야만 한다. 따라서, 제1샘플이 입수된 후라도, 제2위치 처치는 의심스러운 덩어리가 제거되기 전에 실행되어야만 한다.
상술한 단점을 감안하여, 의심스러운 덩어리의 진단 및 치료를 위한 응답 시간을 개량하는 진단 시스템이 요망되고 있다. 또한, 필요할 경우, 샘플이 입수되는 특정 위치에서의 조직 제거를 위해 진단 및 치료 시스템이 제공된다. 상기 시스템은 의심스러운 덩어리를 표준 기법 보다 짧은 시간에 검출할 수 있을 것도 요망된다. 또한, 시스템은 의심스러운 덩어리를 실시간 또는 거의 실시간으로 검출하는 것이 바람직하다. 또한, MRI 를 포함하는(이에 한정되지 않음) 영상 양식(modality)과 양립될 수 있는 진단 시스템도 요망된다.
환자의 비정상 조직을 검출하기 위한 시스템은 기부 개구 및 말단 개구를 갖는 삽입기 캐뉼러(introducer cannula)를 포함한다. 상기 시스템은 캐뉼러를 통한 선택적 삽입을 위해 형성된 외과용 기구를 부가로 포함한다. 상기 외과용 기구는 삽입기 캐뉼러를 통해 완전히 삽입되었을 때 삽입기 캐뉼러의 말단부에 대해 배치된 조직 절단 개구를 부가로 포함한다. 또한, 상기 시스템은 환자의 조직의 적어도 하나의 특성을 검출하도록 형성된 센서를 포함한다. 상기 센서는 외과용 기구가 삽입기 캐뉼러에 삽입되었을 때 삽입기 캐뉼러의 말단부에 대해 고정된 거리로 배치된다.
또한, 환자의 비정상 조직을 검출하기 시스템도 설명되어 있다. 상기 시스템은 기부 개구 및 말단 개구를 갖는 삽입기 캐뉼러를 포함한다. 조직 절제 장치는 캐뉼러를 통한 삽입을 위해 형성되며, 상기 조직 절제 장치는 삽입기 캐뉼러의 말단 개구에 대해 배치된 조직 절단 개구를 부가로 포함한다. 또한, 센서는 삽입기 캐뉼러의 말단 개구에 대해 환자의 비정상 조직을 검출하도록 형성된다.
또한, 환자의 비정상 조직을 검출하는 시스템도 서술될 것이다. 상기 시스템은 기부 개구 및 말단 개구를 갖는 삽입기 캐뉼러를 포함한다. 또한, 상기 시스템은 환자의 조직의 적어도 하나의 성상(property)을 검출하도록 형성된 센서를 포함한다. 조직 절제 장치는 캐뉼러를 통해 삽입되도록 형성된다. 또한, 상기 조직 절제 장치는 환자로부터 조직을 절단하고, 절단된 조직을 센서로 이송하도록 형성된다.
본 발명의 특징 및 장점은 첨부된 도면을 참조한 하기의 상세한 설명에 의해 보다 명확해질 것이다.
도1은 실시간 병리 시스템의 예시적인 기능적 다이아그램.
도2는 도1에 도시된 실시간 병리 시스템을 위한 예시적인 시스템 다이아그램.
도3a는 도1에 도시된 실시간 병리 시스템에 사용하기 위한 센서와 감지 유니트의 사시도.
도3b는 내부에 도3의 감지 유니트가 배치된 조직 절제 장치의 일부의 사시도.
도4a는 샘플링 개구(aperture)에 인접하게 배치된 센서를 갖는 조직 절제 장치의 단면도.
도4b는 프로세서(processor)에 센서를 전기적으로 접속하는 신호 라인의 입면도.
도4c는 샘플링 개구에 인접하게 배치된 센서를 갖는 절제 장치의 횡단면도.
도4d는 소침(stylet)의 천공 팁(piercing tip)에 인접하게 배치된 센서를 갖는 절제 장치의 사시도.
도4e는 일체형 천공 팁에 인접하게 배치된 센서를 갖는 절제 장치의 사시도.
도4f는 절제 장치의 유체 통로에 배치된 센서의 횡단면도.
도4g는 절제 장치와 조직 수집 캐니스터(canister) 사이에 배치된 부착부로서 절제 장치에 배치된 센서의 횡단면도.
도4h는 폐쇄구(obturator)에 배치된 센서를 도시한 측면도.
도5a는 도1의 실시간 병리 시스템을 위해 마진(margin) 테스트가 실행되기 전의 절제된 공동의 횡단면도.
도5b는 특정 위치를 위해 실행된 마진 테스트를 도시한 도면.
도5c는 마진 테스트를 실행하기 위해 외부 캐뉼러의 회전을 도시한 도면.
도6은 조직 절제후 공동의 실시간 병리 마진 결정의 방법을 도시한 도면.
도7은 실시간 병리 시스템을 위한 여러 작동 모드를 도시한 도면.
도8은 실시간 병리 결정의 방법을 도시한 도면.
도면에는 예시적인 실시예가 상세히 도시되어 있다. 도면은 실시예를 나타내고 있지만, 크기대로 도시될 필요는 없으며, 그 특징부는 실시예의 혁신적인 특징을 양호하게 도시 및 설명하기 위해 확대도시되었다. 또한, 도시된 실시예는 도면에 도시되고 하기의 상세한 설명에 서술된 정밀한 형태 및 형상에 대한 설명을 과장하거나 제한 또는 억제하도록 의도되지 않았다.
여기에서 논의된 시스템 및 방법은 미리 결정된 조직 상황을 검출(예를 들어, 암 또는 비정상 조직의 검출)하기 위해 대체로 환자의 생체내 조직의 감지를 언급하고 있다. 생체내 시스템은 별도의 분석자(예를 들어, 슬라이드를 관찰하는 외과 병리학자)에 의한 국부적인 테스트를 위해 조직의 테스트 또는 제거를 위한 오프사이트(off-site) 조직의 제거를 요구하지 않는다. 여기에 서술된 시스템은 사용자로 하여금 의료 기구를 환자에 삽입하고, 조직의 일부를 절제하고, 실시간으로 분석을 할 수 있게 한다. 일부 실시예에서, 조직은 절제될 필요조차 없으며, 이 경우 사용자는 적절한 마진이 생성되었는지의 여부를 테스트하기 위해 이미 절제된 공동에 탐침을 삽입한다.
여기에 서술된 시스템 및 방법의 실시간 특징은 완벽하게 즉각적인 테스트를 언급하는 것이 아니라, 사용자(그리고 환자)가 결과를 위해 장시간 기다리지 않도록 의료 처치가 취해지는 중에 신속히 테스트 및 분석되는 것으로 간주된다. 이런 방식으로, 사용자가 조직의 일부를 절제하고, 상기 장치가 처치중 결정을 내릴 때, 이런 시스템은 사용자가 조직을 계속 절제하고 짐스러운 지연없이 테스트 처치를 반복하기 때문에 실시간으로 간주된다.
일 실시예에서, 실시간 병리는 생체검사 처치(예를 들어, 코어 샘플 또는 바늘 생체검사)중에 실행된다. 사용자가 바늘을 환자에게 삽입하여 조직 샘플을 절제할 때, 실시간 병리 시스템은 병리 테스트를 실행한다. 그후, 사용자는 병리 리포트를 받게 되며, 병리 테스트의 결과는 사용자에게 보고된다. 이런 시스템은 생체검사 장치 및 일련의 병리 테스트로부터 조직 샘플의 제거를 요구하지 않는다. 만일 사용자가 환자의 다른 부위를 샘플링할 것을 요구한다면, 상기 처치가 여러번 반복된다.
다른 실시예에서, 실시간 병리는 예를 들어 유방 생체검사 장치와 같은 벌크(bulk) 외과용 장치를 사용하여 실행된다. 이런 생체검사 장치는 2007년 10월 1일자로 출원되고 발명의 명칭이 "외과용 장치" 인 계류중인 미국 특허출원 제11/865,092호와, 그 내용이 본 발명에 참조인용되었으며 공동양도되고 발명의 명칭이 모두 "생체검사 장치" 인 미국특허 제6,758,824호 및 제6,638,235호에 게재되어 있다. 벌크 절제 처치중, 사용자는 의심스러운 암 위치에서 조직을 제거한다. 사용자가 의심스러운 조직을 절제하였을 때, 의심스러운 영역 주위에서 충분한 조직이 제거되었는지의 여부를 결정하기 위해 마진이 샘플링된다. 실시간 병리 시스템은 외과용 장치(예를 들어, 샘플링 영역을 따라 또는 조직 배출 통로를 따라)에 구축된다. 따라서, 사용자는 마진 영역을 샘플링하고, 외과용 장치를 제거하지 않고 실시간 병리 테스트를 실행한다. 실시간 병리 테스트의 결과가 사용자에게 제공되었을 때, 사용자는 마진이 적절한지의 여부(예를 들어, 암세포가 검출되지 않았는지)와, 더 많은 절제가 필요한지의 여부(예를 들어, 의심스러운 세포가 검출되었는지)를 결정한다.
일 실시예에서, 유방 생체검사를 위해 사용된 조직 제거 또는 절제 장치는 배치를 위한 입체공간적(stereotactic) 테이블에 부착된다. 조직 제거를 위한 환자의 목표 영역(예를 들어, 유방)은 조직 제거 장치와 관련하여 움직이지 않는다. 상기 입체공간적 테이블은 목표 영역 및 기점(fiducia) 위치의 시각화를 허용하며, 상기 시각화는 조직 제거 장치의 정확한 이동 및 배치를 허용한다. 많은 경우에 있어서, 조직 제거 장치는 아래와 도면에 상세히 서술된 바와 같은 외과용 장치이다. 외과용 장치가 배치 시스템에 설치될 때, 배치 시스템의 운동은 조직 샘플의 정밀한 제거를 허용한다. 또한, 외과의사는 목표 영역을 계속 확인한 후 외과용 장치를 정밀하게 위치시켜 상기 목표 영역에서 조직을 제거하기 위해 하나 이상의 시각화 장치(즉, 영상 양식)를 사용한다. 영상 양식은 예를 들어 MRI, PET, CT, 초음파, 테라헤르쯔 기술, 영상합성(tomosynthesis) 등을 포함한다. 목표 영역의 위치가 결정되고, 배치 시스템 및 외과용 장치의 수동 또는 자동 이동을 위해 그 위치가 기록된다.
일단 외과용 장치가 배치되면, 삽입기 캐뉼러가 목표 사이트에 인접한 환자의 내부로 삽입된다. 의심스러운 조직을 더욱 확인하고 위치시키기 위해 실시간 병리 시스템이 별도로 이용되거나 또는 시각화 시스템과 함께 이용된다. 시각화가 사용자로 하여금 예를 들어 사이트 마커(site marker) 또는 표시부에 의해 확인된 특정 사이트를 배치하게 하는 곳에서, 실시간 병리 시스템은 조직 절제를 위한 적절한 위치 또는 위치들을 결정하기 위해 사용자가 조직 자체를 테스트하게 한다. 또한, 실시간 병리 시스템은 절제될 조직의 경계를 결정하는데 사용되며, 벌크 절제후 모든 조직이 제거되었는지의 여부를 결정하는데 사용된다. 또한, 비정상적인 조직이 확인 및/또는 제거되기 전이나 후 또는 제거되는 도중에, 한가지 이상의 치료도 목표 사이트에 도입된다. 이런 치료는 단축요법(brachytherapy) 및 보조 치료[조직 흡열, 조직 가열, 조직 냉동, 조직에의 화학물 적용, 외부 비임 HIFU 요법, 개재(interstitial) HIFU 요법, 전기천공(electroporation) 요법, 초음파천공 요법, 개재 마이프로파 요법 등과 같은]를 포함한다.
도1은 예시적인 실시간 병리 시스템(100)의 예시적인 기능도이다. 시스템(100)은 센서(110), 분석 시스템(120), 출력부(130), 사용자(140)를 포함한다. 센서(110)는 의심스러운 세포, 비정상 세포와 같은 미리 결정된 조직 상태, 및/또는 PH(즉, 산성, 중성, 알칼리성), 또는 다른 측정가능한 파라미터를 검출하는데 사용되는 적어도 하나의 메카니즘으로서 형성된다. 또한, 분석 시스템(120)은 측정된 변수의 통계적 모델에 기초한 세포들의 비정상과 같이 모델로부터 전개된 추론을 사용하는 정보를 제공한다. 선택적으로, 센서(110)는 감지된 조직이 비정상인지의 여부를 결정하기 위한 임계값에 대해 그 존재를 위해 해석되는 디지탈 및/또는 아날로그 신호(들)을 분석 시스템(120)에 제공할 수도 있다.
대체로, 의심스러운 조직 또는 비정상 조직을 검출하기 위해 실시간 병리 시스템(100)이 사용된다. 그후, 실시간 병리의 결과는 검출이 실행되었을 때에 매우 가깝게 사용자에게 일시적으로 제공되거나 또는 실시간 병리 시스템(100)을 위해 선택된 형상 및 작동 모드에 의존하여 연속적으로 제공된다.
선택적으로, 센서(110)는 미리 결정된 병리 상태가 테스트될 조직에 존재하는지의 여부를 독립적으로 또는 함께 결정하는데 사용되는 다수의 센서를 포함할 수도 있다. 대체로, 센서(110)는 광원, 렌즈, 및/또는 특정 파장에 선택적으로 민감하거나 또는 계속 처리되는 광범위한 주파수에 민감한 광검출기를 구비하는 광학 부품을 포함한다. 센서(110)는 수동적이며, 대체로 검출기만 포함한다. 선택적으로, 센서(110)는 단일의 광 주파수 또는 넓은 주파수 범위를 제공하는 광원을 포함하는 능동 센서일 수도 있다. 광원은 상이한 주파수를 상이한 시간에 제공하거나 또는 선택된 주파수의 크기를 동일한 시간에 제공하도록 조정될 수 있다.
광 센서 부품으로서 형성되었을 때, 센서(110)는 메가 픽셀 카메라와 조합하여 다수의 작은 렌즈를 포함하는 어레이(array) 현미경을 포함한다. 이런 현미경의 예로는 "http://www. azstarnet.com/sn/health/77532.php" 에서 찾아볼 수 있고 그 내용이 여기에 참조인용되었으며 닥터 로날드 에스. 웨인스타인에 의한 "암 생체검사 결과의 속도를 높이는 새로운 툴" 에 게재되어 있다. 현미경은 전형적으로 병든 조직이나 건강한 조직의 특징인 미리 결정된 파장에 대해 증가된 감도를 갖는 수동적인 장치이다. 이들 파장의 외관은 다이(dyes) 또는 병든 조직을 찾아내어 이들을 마킹하는 다른 화합물을 포함하는 마커 시스템으로 더욱 향상된다. 분석 시스템은 센서의 내부에 있거나 또는 예를 들어 제어 콘솔에서 장치의 외부에 있다. 능동 광 센서는 의심스러운 조직을 특정한 파장(또는 파장들)이나 레이저 소스로 조사하는 방사성 부품을 포함한다. 광 센서는 되돌아오는 또는 반사된 광을 측정하여, 세포의 건강에 관해 결정을 내린다. 예를 들어, 광 센서는 반사된 파장이나 상기 광의 상 이동(phase shift)을 판독한다.
다른 실시예에서, 센서(110)는 의심스러운 세포를 확인하기 위해 마커의 추가를 필요로 한다. 일 실시예는 양전자 방출 단층촬영(positron emission tomography: PET)과 함께 마커의 사용을 포함한다. 센서(110)는 환자에 있을 동안 마커를 생산하는 마이크로유동칩으로서 형성된다. "http://www. physorg.com/news9145.html 에서 찾아볼 수 있고 그 내용이 여기에 참조인용된 "의료 영상 바이오마커(biomarker)를 위한 새로운 마이크로랩 온 칩(microlab on chip)" 을 참조하기 바란다. 선택적으로, 다른 실시예는 그 내용이 본 발명에 모두 참조인용되고 발명의 명칭이 "라벨형 형광 샘플을 위치 좌표에 할당하는 단계와, 상기 샘플을 조사하는 단계와, 형광 세기를 결정하는 단계를 포함하는 특히 암 진단용 조직 샘플의 조사" 인 독일 특허공개 DE 10200 50 33474호에 게재된 바와 같이, 의심스러운 세포를 확인하기 위해 염료를 사용하는 단계를 포함한다.
센서(110)는 화학 센서를 포함한다. 예를 들어, 센서(110)는 미리 결정된 화학 마커를 절제된 조직으로부터 검출하도록 형성된다. 선택적으로, 센서(110)는 미리 결정된 화학물, 단백질, 또는 다른 인디케이터(indicator)의 존재를 결정하기 위하여 절제된 조직과 반응하는 시약을 포함할 수도 있다. 또한, 조직은 의심스러운 조직을 향상시키거나 확인하기 위해 마킹재로 처리되었다. 센서(110)는 단일 세포 또는 반응을 검출 및 전달하기 위해 전자 센서를 포함하는 기질(substrate)상에 합성된 폴리뉴클레오티드, 옹리고뉴클레오티드, 폴리펩티드, 또는 올리고텝티드의 독특한 어레이일 수도 있다. 그 예는 로체 다이어그노스틱스에 의해 제조되었으며 체외에서 사용되고 체내에서 적용되는 앰플리칩® 모듈이다. 여기에 서술되는 바와 같이, 센서(110)는 대체로 체내에 사용되거나 또는 조직 절제 사이트의 원래 위치에 사용된다. 선택적으로 여기에 서술되는 바와 같이 센서(110)는 체외에서 사용되지만, 아직 외과용 장치를 수반하고 있다[하기에 센서(110)가 도4f의 유체 경로에 있을 때에 대해 서술된다].
다른 실시예에서, 센서(110)는 세포의 기하학적 표면 형상을 검출하도록 형성된다. 예를 들어, 기하학적 표면 형상과 조직의 밀도를 결정하기 위해 인체의 촉진(觸診)처럼, 촉감 센서가 사용된다. 그 예는 "http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1008&context=chemeng_nanotechnology" 에서 찾아볼 수 있고 그 내용이 여기에 모두 참조인용되었으며 닥터 라비 사라프 등에 의한 "터치에 의해 텍스쳐(texture)를 감지하는 고해상 박막 장치" 에 게재되어 있다.
다른 실시예에서, 센서(110)는 인접한 조직의 저항성 또는 도전성을 결정하기 위한 임피던스 센서로서 형성된다. 상기 센서는 전극을 포함하며, 살아있는 조직의 임피던스를 검출하도록 형성된 신호에 의해 구동된다. 신호는 다른 분석을 위해 프로세서로 전송된다. 전형적으로, 저항률 또는 도전률은 센서(110)에 의해 측정되며, 임피던스 판독에 기초하여 건강한 조직과 의심스러운 조직 사이의 차이를 결정하는 프로세서에 의해 모델이 사용된다. 이런 센서의 예는 여기에 모두 참조인용된 "http://www.ece.cmu.edu/∼dwg/research/mrs2004.pdf" 에서 찾아볼 수 있는 "임피던스 기반 바이오센서"에 서술되어 있다.
센서(110)는 세포에 물질을 첨가하거나 또는 세포간 테스팅을 위한 직접 접근을 제공하기 위해 절제된 조직으로부터 세포를 수정하도록 형성된다. 예를 들어, 센서(110)는 세포를 파괴하지 않고(예를 들어 절단이나 파열을 통해) 세포벽의 일부를 개방하기 위해 전기천공을 실행하는 요소를 포함한다. 이 실시예에서, 전기천공은 단세포 분석 처리에서 세포의 내부 화학물을 감지하는데 사용된다. 또한, 이런 전기천공 공정은 암인지 또는 암에 대한 전구체(precursor)를 포함하고 있는지의 여부를 결정하는데 사용된다. 그 실시예는 여기에 모두 참조인용된 "http://news.uns.purdue.edu/htm14Gver/2006/060621.Lu.cellchannel.html" 에서 찾아볼 수 있는 "마이크로채널, 전기 보조 약 발견, 조기 진단"에 서술되어 있다.
전기천공을 사용하여, 손상되지 않은 세포가 개방되고, 오염되지 않은 것으로 간주된다. 전기천공은 세포벽을 개방하는 전기장을 제공하는 적어도 2개의 탐침을 갖는 센서(110)에 사용된다. 개방된 세포벽은 다른 분석을 위해 세포간 물질이 센서로 이동되는 것을 허용한다. 다른 실시예에서, 전기천공은 센서가 세포내에 삽입되는 것을 허용한다(예를 들어, 전기장 탐침들 사이). 탐침은 세포벽의 파괴없이 세포벽을 침입하는 미세 스파이크로서 형성된다. 이런 방식으로, 세포의 파괴나 세포간 물질의 오염없이 세포 내부로의 접근을 위해 센서(110)가 제공된다.
분석 시스템(120)은 건강한 조직으로부터 의심스러운 조직을 결정하고, 상기 결정을 사용자를 위한 출력으로 결정을 포맷하기 위한 방법 및 처리를 포함한다. 또한, 분석 시스템(120)은 센서(110)를 위해 한가지 이상의 방법이 사용되는 센서 융합(fusion)의 특징을 포함한다. 예를 들어, 능동 광학 센서 및 pH 센서가 사용될 때 센서 융합이 이용되며, 조직의 가능한 비정상을 결정하기 위해 능동 광학 센서로부터의 출력의 조합이 함께 분석된다. 출력부(130)는 인디케이터, 디스플레이, 사운드 장치, 및 사용자에게 정보를 제공하는 다른 시스템을 포함한다.
도2는 실시간 병리 시스템(100)(도1에 도시된)을 위한 예시적인 시스템 다이아그램(200) 이다. 시스템 다이아그램(200)은 센서(110), 프로세서(220), 디스플레이(230), 사용자(140), 제어부(250), 출력부(280)를 포함한다. 사용자는 외과의사 또는 실시간 병리 시스템(100)을 작동시키는 기사 이다. 그러나, 사용자(140)는 실시간 병리 시스템(100)에 연결된 다른 메카니즘으로 간주된다.
상술한 바와 같이 센서(110)는 단일 센서 또는 다수의 센서이다. 센서(110)의 위치는 도4a-4h에 관해 하기에 서술되는 외과용 기구상에 미리 결정된 여러 위치에 있다.
프로세서(220)는 외과용 장치[예를 들어, 폐쇄구, 소침, 벌크 절제 장치, 생체검사 장치 등]의 내부에 또는 외과용 장치(예를 들어 제어 콘솔 등)의 외부에 배치되거나 이에 연결된다. 프로세서(220)는 일반적인 마이크로프로세서 이며 및/또는 센서(110)에 의해 제공된 신호를 여과 및 분석하는 신호 처리 기능을 포함한다.
조직이 비정상인지의 여부에 대한 결정은 센서(110)로부터 디지탈 판독을 포함하여, 복수의 센서(110)로부터의 신호의 조합을 사용하고 또한 암을 포함하는 예측된 "비정상" 조직과 비교하여 예측된 "정상" 조직의 모델을 사용하는 많은 방법에 의해 실행된다.
모델은 경험에 기초되며 또는 광범위한 조직 비정상을 검출하기 위해 통계 데이터를 사용한다. 또한, 프로세서(220)는 실시간 병리 시스템(100)이 사용되고 있는 조직의 형식(type)을 위해 형성되거나 또는 선택적으로 형성될 수 있다. 예를 들어, 프로세서(220)는 환자의 유방내의 비정상 조직을 검출하도록 형성된다. 다른 실시예에서, 프로세서(220)는 환자의 뇌 내부의 비정상 조직을 검출하도록 형성된다. 유방 및 뇌의 비정상 조직들이 본래의 것(예를 들어, 암)과 유사하더라도, 이들은 센서(110)에 상이한 특성(예를 들어, 세포 형태, 화학적 마커, 임피던스 등)을 제공한다. 따라서, 프로세서(220)는 의심스러운 조직이 환자의 몸체(예를 들어, 뇌 또는 유방)의 어디에 위치하고 있는지에 대한 정보를 고려함으로써 비정상의 결정에 대한 정확도를 더욱 향상시킨다.
디스플레이(20)는 절제가 진행중인지 아닌지의 시스템의 현재 "모드" 의 표시와, 조직의 건강 또는 비정상의 표시를 포함한다. 또한, 디스플레이(230)는 단일 위치에 있을 필요는 없지만, 대체로 실시간 병리 시스템(100)에 인접하거나 그 내부에 있는 것으로 보이는 인디케이터이다. 예를 들어, 센서(110)가 부착된 외과용 기구에는 불켜진 인디케이터(예를 들어, 적색광 및/또는 녹색광)가 제공된다. 선택적으로, 사용자에게 실시간 병리 시스템(100)의 상태나 결과를 디스플레이하기 위해 제어 패널에는 광 및/또는 사운딩(sounding) 장치가 제공될 수도 있다. 예를 들어, 실시간 병리 시스템(100)이 비정상 조직을 만났을 때, 비정상 조직임을 나타내는 소리 뿐만 아니라 적색광이 나타난다. 이것은 사용자(140)에게 경고를 발하며, 사용자(140)로 하여금 비정상 조직(및 아마도 주변 조직)을 절제할 것인지의 여부를 선택하게 한다.
제어부(250)는 사용자(140)가 실시간 병리 시스템(100)의 기능을 결정하게 하는 단일 입력부 또는 다수의 입력부를 포함한다. 예를 들어, 수동 제어 시스템에서, 사용자는 분석 처리를 시작하기 위해 버튼을 누른다. 이것은 조직이 벌크 절제되고 마진 근처의 최종 샘플이 테스트될 때 실행된다. 마진 영역으로부터의 절제후, 사용자는 마진을 테스트하도록 분석 기능을 작동시킨다. 다른 실시예에서, 사용자는 절제중 취한 샘플을 지속적으로 테스트하기를 원한다. 이 경우, 지속적인 분석이 선택되며, 시스템은 미리 결정된 간격으로 지속적으로 샘플링할 것이다. 따라서, 사용자는 의심스러운 조직을 포함하는 것으로 알려진 위치에서 절제를 시작하며, 사용자는 실시간 병리 시스템(100)이 조직이 "깨끗하다는" (예를 들어, 샘플의 미리 결정된 개수 또는 체적을 위해 의심스러운 조직이 확인되지 않았다는) 것을 나타낼 때까지 조직을 계속 절제한다.
제어부(250)는 실시간 병리 시스템(100)이 함께 사용되고 있는 장치, 예를 들어 유방 생체검사 장치를 제어하는데 사용된다. 이 경우, 제어부(250)는 생체검사 장치가 생체검사 모드(예를 들어, 샘플 절제), 세척 모드(예를 들어 생체검사 공동을 씻어내기 위한), 처치 모드(예를 들어, 치료약을 생체검사 공동에 분배하는데 사용되는), 또는 병리 모드(예를 들어, 조직의 단일 샘플 실시간 테스팅)인지의 여부를 제어하도록 작동된다.
제어부(250)의 다른 실시예는 사용자가 실행된 테스팅의 형태를 한정하는[예를 들어 센서(110)가 여러 형태의 테스팅을 위한 능력을 포함하는] 것을 포함한다. 예를 들어, 사용자는 목표 사이트에 염료가 첨가된 후 능동 광학 테스팅을 선택한다. 이러한 사용자 선택은 사용자가 제거 단계로부터 마진 테스팅 단계로의 이행시에도 사용된다. 여기서, 사용자는 조직의 일부를 제거하며, 사용자가 그 제거가 완벽했음을 결정할 때 마진이 검사된다. 그후, 사용자는 의심스러운 조직을 선호하는 마킹제를 도입한다. 상기 마킹제는 그 어떤 의심스러운 조직(예를 들어, 암 세포)에 의해 흡수되며, 그후 제어부(250)는 세포의 마킹제의 존재를 검사하기 위한 실시간 병리 시스템(100)을 제어한다. 마킹제가 발견되었을 때, 목표 사이트에서 추가의 조직 절제가 실행된다. 이런 선택적 테스팅 방법은 사용자로 하여금 조직을 절제하게 하고 외과용 장치를 제거하거나 재배치할 필요없이 조직을 실시간으로 테스팅하게 한다. 이 방법으로, 사용자는 의심스러운 조직이 남아있는지의 여부를 결정할 수 있고, 이전의 샘플이 제거된 동일 위치에서 추가 절제를 실행할 수 있다. 따라서, 부정확한 위치에서의 지속적인 절제 가능성이 감소된다. 또한, 사용자는 복수의 영역에서 절제를 실행하며, 마진이 실제로 "깨끗하다는" 신뢰성을 개량시킨다.
이런 파장들의 외관은 병든 조직을 찾아내어 이들을 마킹하는 염료 또는 다른 화합물을 포함하는 마커 시스템으로 더욱 향상된다. 다른 현미경 시스템은 세포 구조 쟁점을 찾는 광학 시스템을 포함하며, 분석 시스템은 센서내에 또는 예를 들어 제어 콘솔의 장치 외부에 있다. 능동적인 광학 방법(예를 들어, 광의 방출)은 인접한 조직의 건강을 결정하고 이에 따라 사용자(140)로 하여금 마진이 깨끗한지의 여부를 결정하는데 사용된다.
사용자는 출력부(280)에서 시각 또는 청각 표시에 의해 실시간 병리 시스템(100)의 결과를 통지받는다. 예를 들어, 마진 테스팅의 실행시, 시스템은 사용자(140)가 복수의 위치에서 샘플을 취하고 의심 조직이 발견되지 않았을 때 깨끗한 마진을 나타낸다. 출력부(280)에 의해 제공된 다른 표시는 연속적인 샘플링 모드(하기의 도7에 대해 상세히 서술되는)로 작동될 동안 의심스러운 조직의 존재를 나타내는 사용자(140)로의 가청 신호를 포함한다.
도3a는 조직을 센서(110)로 인출하고 상기 조직을 센서(110)와 꾸준히 접촉시키는 것을 도와주기 위해 진공 표면(312)에 장착된 감지 유니트(310)[센서(110)를 포함하는]의 사시도이다. 기질(314)은 진공측(324)에 의해 공급된 진공이 조직측(322)에서 발달되게 하는 다수의 진공 구멍(320)을 포함한다. 진공측(324)은 진공 소스에 부착되며, 진공 구멍(320)은 센서(110)를 향해 조직을 견인하고 샘플링이 발생될 동안 조직을 정위치에 유지시킨다. 진공측(324)에 발달된 진공은 일반적인 흡인 라인과 유사하게 별도로 작동된다.
서술되는 바와 같이, 감지 유니트(310)는 일체형 부품으로서 또는 추가적인 부품으로서 센서(110)를 포함한다. 또한, 센서(110)는 감지 유니트(310)(예를 들어 조직 지지를 위한 특징부를 갖는)를 포함하지 않지만, 외과용 장치(예를 들어, 소침 또는 폐쇄구)에 별도로 장착된다.
일 실시예에서, 감지 유니트(310)는 "캐뉼러내 캐뉼러" 외과용 절제 장치의 내부 캐뉼러의 부분으로서 형성된다. 예를 들어 도3b에 도시된 바와 같이, 감지 유니트(310)는 외부 캐뉼러(360)내에 미끄러질 수 있게 배치되는 내부 캐뉼러(350)의 부분이다. 기질(314)은 내부 캐뉼러(350)를 포함하며, 진공은 조직을 진공 구멍(320) 및 센서(110)로 인출하기 위해 외부 캐뉼러(360)와 내부 캐뉼러(350) 사이에 발달된다. 이런 캐뉼러내 캐뉼러의 실시예는 발명의 명칭이 모두 "생체검사 장치" 이고 공동양수된 미국특허 제6,758,824호 및 제6,638,235호에 게재되어 있으며, 상기 특허들의 내용은 모두 본 발명에 참조인용되었다.
도4a는 절제 장치의 외피(420)의 샘플링 개구(410)에 인접하게 배치되는 센서(110)의 단면도이다. 각각의 센서(110A, 110B, 110C, 110D)는 사용자(140)가 기구를 안내하고 의심스러운 조직의 위치를 결정하도록 배치된다. 안내 동작의 실시예에서, 천공 팁(430)은 환자속으로의 외피(420)의 용이한 삽입을 제공한다. 천공 팁(430)은 예를 들어 트로카(Trocar) 팁으로서 형성된다. 센서(110C, 110D)는 천공 팁(430)의 근처에 배치되며[또는 이 경우 천공 팁(430)의 일부로서 도시되었음], 외피(420)가 환자에 삽입될 때 조직의 잠재적 비정상에 관한 표시를 제공한다. 실시간 병리 시스템(100)은 절제 처치를 위한 외피(420)의 배치를 더욱 정확하게 도와주기 위해 외과 처치의 삽입단계중 센서(110C, 110D)로부터 신호를 수신 및 처리하도록 형성된다.
다른 실시예에서, 조직 절제가 실행될 동안, 센서(110A, 110B)는 샘플링 개구(410)에 인접하게 배치되고, 환자 내부의 바로 인접한 조직의 건강 또는 비정상에 관한 표시를 사용자(140)에게 제공한다. 따라서, 절제는 센서(110A, 110B)가 비정상 조직을 나타내지 않을 때까지 지속된다. 또한, 센서(110A, 110B)가 샘플링 개구(410)의 근처에 배치되기 때문에, 조직 절제 시스템은 회전되며, 센서(110A, 110B)로부터의 표시는 회전중 그 인접한 조직의 건강을 나타낸다. 예를 들어, 샘플링 개구(410)가 회전될 때, 센서(110A, 110B)는 샘플링 개구(410)에 관해 조직의 건강 또는 비정상을 나타낸다.
도4b는 센서(110A, 110B)를 프로세서(220)(도2에 도시)에 전기적으로 접속하는 신호 라인(450A, 450B)의 사시도이다. 도시된 바와 같이, 신호 라인(450A, 450B)은 외피(420)의 외측에 배치된다. 실시예에서, 신호 라인(450A, 450B)은 외피(420)에 아교접착되거나 부착되는 종래의 와이어이다. 다른 실시예는 외피(420)에 부착되는 평탄한 굴곡 케이블(flat-flex-cable: FFC)를 포함한다. 다른 실시예에서, 신호 라인(450A, 450B)은 패터닝된(예를 들어, 에칭에 의해) 금속화된(예를 들어, 스퍼터링에 의해) 영역이다. 상기 금속화는 절연층으로 코팅된 예를 들어 스텐레스 스틸 외피(420) 또는 플라스틱 외피상에 실행된다.
도4c는 삽입기 캐뉼러(460)의 샘플링 개구(410)의 근처에 배치된 센서(110)의 단면도이다. 삽입기 캐뉼러(460)는 삽입기 캐뉼러(460)가 전형적으로 개방된 단부를 갖는 점에서 외피(420)(도4b의)와는 상이하게 형성된다. 이 실시예에서, 센서(110)는 조직이 샘플링 개구(410)를 통해 탈출될 때 센서(110)에 노출되도록, 샘플링 개구(410)의 근처에서 외부 캐뉼러(360)의 내측에 배치된다. 그후, 주위 조직을 조사하여 의심스러운 조직(만일 있다면)의 존재를 결정하기 위해, 사용자(140)는 탈출된 조직의 절제나 센서(110)의 사용을 결정한다. 이 실시예에서, 센서(110)를 프로세서(220)(도2 참조)에 전기적으로 접속하는 신호 라인(450A, 450B)(도4b 참조)은 캐뉼러(360)의 내측에 배치되거나 또는 내부 캐뉼러(350)와 외부 캐뉼러(360) 사이에서 프로세서(220)에 연결된다.
도4d는 소침(462)의 천공 팁(430) 근처에 배치된 센서(110)의 사시도이다. 이 실시예에서, 소침(462)은 절제 능력을 포함하지 않지만, 삽입기 캐뉼러(460)의 삽입을 위해 조직을 천공하는데 사용된다. 센서(110)는 절제 처치중 비정상 조직의 표시를 허용하기 위해 소침(462)의 천공 팁(430)에 배치된다. 센서(110)가 비정상 조직을 검출할 때, 사용자(140)는 조직을 제거하기 위해 절제 장치가 삽입되도록 소침[및 삽입기 캐뉼러(460)]의 삽입을 정지시킨다. 일단 조직 제거가 실행되면, 사용자(140)는 소침(42)을 재삽입하고, 추가적인 비정상 조직을 위해 환자를 계속 조사한다. 센서(110)는 소침(462)의 외측에 부착되거나 또는 소침(462)을 갖는 채널을 통해 프로세서(220)로 연결되는 와이어로서 신호 라인(450A, 450B)(도4b 참조)을 사용한다.
도4e는 소침의 천공 팁(430)[절제 장치(도4g 참조)와 일체인]의 근처에 배치되는 센서(110)의 사시도이다. 이 실시예에서, 센서(110)는 천공 팁(430)에 배치되며, 외과용 장치를 목표 영역에 안내하는데 사용된다. 외부 삽입기 캐뉼러(460)가 먼저 배치되었을 때, 천공 팁(430)은 삽입시 조직을 계속 천공할 것이다. 그후, 사용자(140)는 목표 사이트가 근처에 있거나 또는 절제 처치가 그 제공된 배치에서 시작되는 것을 나타내는 비정상 조직의 표시를 관찰하거나 청취한다.
도4f는 절제 장치(도4g 참조)의 절제부의 유체 통로에 배치된 센서(110)의 단면도이다. 센서(110)는 외과용 장치의 내부 캐뉼러(350)의 내부에 배치되며, 실시간 병리 결과를 사용자(140)에게 제공하기 위해 대체로 센서(110)가 절제 장치의 유체 통로 또는 조직 통로내에 어떻게 배치되는 가를 서술하고 있다. 이것은 천공 팁(430)(도4e에 도시)에 배치되었을 때의 센서(110)와 비교되고 있다. 도4f는 남아있는(환자에 부착되었을 때) 외부 조직이 아니라 절단된 조직 또는 유체를 분석하도록 작동된다. 진공이 적용되었을 때, 절제된 조직(474)의 일부는 내부 캐뉼러(350)를 통해 센서(110)로 이동된다. 진공은 절제된 조직(474)을 센서(110)로 당기며, 센서(110)가 생체검사 감지를 실행하게 한다.
도4g는 절제 장치(470)에 부착부로서 배치된 센서(110)의 단면도로서, 상기 부착부는 절제 장치(470)와 적절한 조직 수집 필터(480) 사이에 배치된다. 절제 장치(470)는 핸드피스(482), 외부 캐뉼러(360), 샘플링 개구(410), 내부 캐뉼러(350), 조직 수집 필터(480)를 포함한다. 내부 캐뉼러(350)는 샘플링 개구(410)로 탈출된 조직을 절단한다. 진공 라인(484)은 절단된 조직을 내부 캐뉼러를 통해 실시간 병리 모듈(490)로 인출한다. 실시간 병리 모듈(490)은 센서(110)를 포함하며, 핸드피스(482)와 수집 필터(480) 사이에 배치되도록 형성된다. 실시간 병리 모듈(490)은 조직을 유지하기 위해 다른 장치와 복수의 센서(110)를 포함한다. 수집 필터(480)는 필요할 경우 나중의 병리 테스팅을 위한 그 어떤 비정상 샘플을 보존하는데 사용된다.
실시간 병리 모듈(490)은 다양한 절제 장치와의 사용을 허용하기 위해 핸드피스(482)와 비틀림 계합되도록 형성된다. 실시간 병리 모듈(490)을 위한 모듈형 시스템은 시스템이 외부 조직 수집 장치를 사용하는 유산(legacy) 절제 장치와 사용되는 것도 허용한다.
도4h는 폐쇄구(492)에 배치되는 센서(110)를 도시한 측면도이다. 폐쇄구(492)는 사용자(140)로 하여금 영상 양식(예를 들어, MRI 및/또는 초음파)을 사용하여 폐쇄구(492)의 위치를 결정하게 하는 목표 링(494)(예를 들어, 원하는 영상 양식에 인공물을 생산하는 기질을 포함하는 링)을 포함하는 국부적인 폐쇄구가다. 센서(110)는 사용자(140)가 의심스러운 조직을 영상에 위치시킬 수 있도록 목표 링(494) 근처에 배치된다. 의심스러운 조직의 위치를 결정한 후, 사용자(140)는 외과용 사이트 마커를 관심 위치와 벌크 절제 조직에 배치하며, 및/또는 계속적인 분석을 위해 생체검사를 실시한다. 전형적으로, 폐쇄구(492)는 삽입기 캐뉼러(460)(도4d)를 통해 환자에 삽입된다. 선택적으로, 폐쇄구(492)는 목표 링(494)을 포함하지 않을 수도 있으며, 선택된 위치에서 주로 실시간 분석을 위해 사용될 수도 있다.
대체로, 목표 링(494)은 마진 테스트가 실행되고 있는 곳을 결정하는데 유용한 예를 들어 절제 공동의 외벽에 대해 실시간 병리가 실행되는 곳을 시각화하는데 사용된다. 국부적인 폐쇄구의 예는 그 내용이 모두 본 발명에 참조인용되었으며 2006년 9월 6일자 출원되고 발명의 명칭이 "국부적인 폐쇄구" 인 계류중인 미국 특허출원 제11/516,277호 및 발명의 명칭이 "최소 침입 외과용 시스템" 이고 공동양수된 미국 특허 제7,347,829호에서 발견될 수 있다.
도5a는 실시간 병리 시스템(100)를 위해 마진 테스트가 실행되기 전에 절제된 공동의 단면도를 도시하고 있다. 도5a에서, 조직은 절제되었으며, 남아있는 공동벽(520)은 외부 캐뉼러(460) 및 센서(110A, 110B)로부터 멀리 배치되도록 도시되었다. 조직은 다량의 조직이 제거될 때까지 또는 실시간 병리 시스템(100)이 비정상 조직이 존재하지 않음을 나타낼 때까지 샘플링 개구(410)를 통해 절제된다.
도5b는 특정 위치를 위해 실행된 마진 테스트를 도시하고 있다. 외부 캐뉼러(460)는 조직을 절제하여 공동을 형성하도록 회전될 수 있지만, 센서(110A, 110B)를 정렬하기 위해 회전될 수도 있다. 일단 절제가 완료되면, 모든 비정상 조직이 환자로부터 제거될 기회를 개선하기 위해 적절한 마진이 절제되었는지의 여부를 결정하도록 공동벽(520)이 테스트된다. 사용자(140)는 남아있는 피를 제거하고 조직 및 염분을 완화하기 위해 벌크 절제후 염분 및 진공 시스템을 사용하여 절제 공동의 세척을 실행할 것을 결정한다.
그때, 사용자(140)는 공동벽(520)의 마진을 테스트하기 위해 실시간 병리 시스템(100)을 이용한다. 도시된 바와 같이, 사용자(140)는 9시 위치에서 공동벽(520)을 테스트하고 있다. 진공(530)은 실시간 병리 분석이 실행될 수 있도록 공동벽(520)을 센서(110A, 110B)에 대해 국부적으로 견인하기 위해 외부 캐뉼러를 통해 견인된다. 도5c에 도시된 바와 같이, 사용자(140)는 의심스러운 조직을 위해 마진을 전체적으로 테스트하기 위해 공동벽(520)에 대해 상이한 방위로 이 방법을 이용한다. 예를 들어, 도5c는 위치(550A-550H)에서 마진 테스트를 실행하기 위해 외부 캐뉼러(460)[그리고 필연적으로 센서(110A, 110B)]의 회전을 도시하고 있다. 외부 캐뉼러(460)의 회전 방법은 절제된 공동의 벽을 조사함으로써 마진을 분석하도록 외과용 장치가 환자내에 배치될 수 있게 한다. 또한, 실시간 병리 시스템(100)이 연속적인 샘플링을 위해 형성될 때, 사용자(140)는 오직 특정 방위[예를 들어, 방위(550A-550H)]에서의 샘플링이 아니라, 공동벽(520)의 연속적인 청소를 실행하도록 외부 캐뉼러(460)를 회전시킨다.
도6은 조직 절제후 공동에서의 실시간 병리 마진 결정의 방법을 도시하고 있다. 마진 결정은 전형적으로 벌크 조직 절제부가 공동을 떠난 후 실행되며, 모든 비정상 조직이 제거되었는지의 여부와 마진의 안정성을 제공하기 위해 추가적인 조직의 제거 여부는 알려져 있지 않다. 단계(610)에서, 프로세서(220)는 외과용 장치[예를 들어, 도4g의 절제 장치(470)]가 샘플을 취할 것을 명령한다. 센서(110)가 예를 들어 외부 캐뉼러(360)의 외주상에 있을 때, 샘플은 센서(110)로부터의 실시간 측정값이다. 그러나, 이 동작을 위해서는 진공이 필요하며, 이 경우 프로세서(220)는 진공을 제공할 것을 밸브에 명령한다. 선택적으로, 센서(110)가 절제 장치(도4g 참조)의 유체 통로에 배치될 경우, 프로세서(220)는 절제 장치가 조직의 일부를 절단할 것을 명령하며, 절제된 조직을 센서(110)로 이송하기 위해 진공을 사용한다.
이어서, 단계(620)에서, 프로세서(220)는 테스팅을 시작하고 정보를 프로세서(220)에 전송할 것을 센서(110)에 명령한다. 센서(110)는 조명 소스를 작동시키거나, 또는 감지를 실행하기 위해 화학적 또는 생물학적 약품을 방출한다. 그후, 센서(110)는 전형적으로 정보를 신호 라인(450A, 450B)(도4b 참조)을 통해 프로세서(220)로 전송한다.
그후, 단계(630)에서 프로세서(220)는 조직이 의심스러운지 또는 비정상인지의 여부를 결정하기 위해 정보를 분석한다. 프로세서(220)는 샘플링된 조직이 여기에 서술되는 바와 같이 비정상인지의 여부를 결정하기 위해 임계 분석, 퍼지 로직, 통계적 방법 등을 사용한다.
그후, 단계(635)에서, 프로세서(220)는 조직이 정상 또는 비정상으로 간주되는 지의 여부를 결정한다. 만일 조직이 비정상이라면, 제어는 단계(680)로 진행된다. 만일 조직이 비정상이라면, 제어는 단계(640)로 진행된다.
그후, 단계(640)에서, 프로세서(220)는 상당한 개수의 샘플이 조직 공동을 취했는지의 여부를 결정한다. 예를 들어, 프로세서(220)는 깨끗한 마진 표시가 사용자(140)에 제공되기 전에, 절제 공동(도5h 참조)의 외주 주위에서 적어도 4개의 위치가 테스트될 것을 요구한다. 만일 더 많은 샘플이 필요한다면, 제어는 단계(650)로 진행된다. 그렇지 않을 경우, 제어는 단계(660)로 진행된다.
그후 단계(650)에서, 프로세서(220)는 센서(110)[외부 캐뉼러(360)를 통해]를 공동내에서 상이한 위치[예를 들어, 도5c의 위치(550A-550H)]로 회전시킬 것을 사용자(140)[또는 제어가능한 자동회전 능력이 설치된 경우 예를 들어 도4g의 절제 장치(70)]에게 명령한다. 그후, 제어는 더 많은 조직이 샘플링되는 단계(610)으로 진행된다.
그후, 단계(660)에서, 깨끗한 마진의 표시를 제공하는 실시간 병리 시스템(100)에서 처리가 종료된다. 사용자는 실시간 병리 시스템(100)을 제거하고, 추가적인 보조 치료를 제공하며, 외과용 사이트 마커를 배치하고, 및/또는 폐쇄전에 사이트를 청소한다. 조직 마진 및 보조 치료의 예는 그 내용이 모두 여기에 포함되며 2006년 10월 17일자 출원되고 발명이 명칭이 "최소 침입 질병 요법" 인 계류중인 미국 특허출원 제11/550,209호에 서술되어 있다.
그후, 단계(680)에서, 조직이 비정상으로 간주되었을 때, 마진이 깨끗하지 않다는 신호를 사용자(140)에게 제공하며, 처리는 종료된다. 그후, 사용자는 더 많은 조직 절제를 실행하거나 추가적인 치료를 적용한다.
도7은 단일 샘플 모드(710), 연속적인 샘플링 모드(720), 마진 결정 모드(730)를 포함하는 실시간 병리 시스템(100)을 위한 복수의 작동 모드를 서술하고 있다. 프로세서(220)는 실시간 병리 시스템(100)과 이를 이용하기 위해 사용되는 외과용 장치를 제어한다. 예를 들어, 단일 샘플 모드(710)중, 프로세서(220)는 외과용 장치[예를 들어, 도4g의 절제 장치(470)]가 조직의 단일 샘플을 절제할 것을 명령한다. 프로세서(220)는 분석을 위해 센서(110)가 정보를 프로세서(220)로 전송할 것을 명령한다. 그후, 프로세서(220)는 다른 분석을 위해 외과용 장치가 그 절제된 조직을 수집 캐니스터에 흡인할 것을 명령한다. 데이터 습득중 센서(10)가 조직 샘플을 센서(110)에 대해 가압하는 진공이 존재할 것을 요구하기 때문에, 시컨스는 외과용 장치의 전형적인 사용과는 상이하다. 선택적으로, 외과용 장치의 제어는 오직 장치의 높은 레벨 제어만을 허용하는 프로세서(220)로부터 추출된다. 이 경우, 예를 들어 외과용 장치는 기능을 포함하며, 제어는 센서(110) 및 프로세서(220)와 인터페이스될 것을 요구한다.
사용자(140)가 처음에 목표 영역을 위치시킬 때 연속적인 샘플링 모드(720)가 이용된다. 예를 들어, 목표 영역(예를 들어, 외과용 사이트 마커를 사용하여)의 초기의 시각화에 따라, 사용자는 외과용 장치를 목표 위치에 삽입한다. 위치를 확인하기 위하여, 외과용 기구 및 외과용 사이트 마커의 시각화가 실행된다. 2차적으로, 연속적인 샘플링 모드(720)는 사용자가 의심스러운 영역이 절제되었는지의 여부를 확인할 것을 허용한다. 예를 들어, 사용자(140)가 외과용 기구를 목표 사이트로부터 멀리 이동시킬 때, 의심스러운 조직의 표시가 존재하지 않는다. 이것은 사용자(140)에게 병변이 그 영역에서 완전히 제거되었음을 나타낸다. 그러나, 사용자(140)는 의심스러운 조직의 비표시가 계속될 때까지 조직을 다른 방향으로 절제할 것을 요구한다. 그후, 사용자는 병변이 완전히 제거되었음을 추론한다.
그후, 사용자는 더욱 상세한 분석 또는 선택적 분석 방법을 제공하는 마진 결정 모드(730)와 계합하기를 원한다. 예를 들어, 마진이 제거되었는지의 여부를 결정하기 위해 염료가 사용되는 곳에서, 실시간 병리 시스템(100)은 염료를 배출하고, 미리 결정된 시간을 기다리며, 그후 병리 테스팅을 실행하기 위해 조직을 샘플링한다.
도8은 실시간 병리 결정의 방법(800)을 도시하고 있다. 단계(810)에서, 프로세서(220)는 외과용 장치[예를 들어, 도4g의 절제 장치(470)]가 샘플을 취할 것을 명령한다. 이것은 사용자(140)에 의해 시작되거나, 또는 외과용 장치에 의해 자동으로 시작된다. 전형적으로, 외과용 장치는 조직을 개구를 통해 탈출시키기 위해 진공을 당긴다. 그후, 외과용 장치는 탈출된 조직의 일부를 절제하기 위해 기계적 커터를 이동시킨다. 외과용 장치는 절제된 조직을 센서(110)[예를 들어 도4f에 도시된 바와 같이 센서(110)가 유체 통로에 있는]로 이송하기 위해 진공을 사용한다. 다른 실시예에서, 진공은 절제된 조직을 절제 개구 근처의 센서(110)에 대해 유지시키는데 사용된다.
다음, 단계(820)에서, 프로세서(220)는 조직을 테스트하고, 데이터를 수집하고, 상기 데이터를 프로세서(220)에 전송할 것을 센서(110)에 명령한다. 일 실시예에서, 조직 세포에 의해 흡수되도록 절제된 조직에 가깝게 1회용 화학적 마커가 방출된다. 다른 실시예에서, 전기천공을 위하여 소형 탐침이 전기장에 유도되고, 그후 화학적 마커가 배출된다. 또한, 센서(110)는 분석을 위하여 측정 데이터를 프로세서(220)에 전송한다.
다음, 단계(830)에서, 프로세서(220)는 센서(110)로부터 전송된 데이터의 분석을 실행한다. 일 실시예에서, 센서(110)가 광학 센서인 경우, 프로세서(220)는 조직으로부터 반사된 광에 주파수가 존재하는지의 여부를 결정하기 위해 상기 데이터를 평가한다. 만일 그렇다면, 프로세서(220)는 처음에 조직이 의심스러운 것으로 결정하고, 조직의 특성을 결정하기 위해 사용자는 계속 테스팅을 실행한다. 예를 들어, 혈액의 존재로 인한 오염에 민감한 염료가 사용된 경우, 프로세서(220)는 외과용 장치가 진공을 유지하고 및/또는 오염 문제를 감소시키기 위해 절제된 조직을 염분으로 세척할 것을 명령한다. 또한, 프로세서(220)는 의심을 확인하기 위하여 상이한 분석이 실행될 것을 요구한다.
다음, 단계(840)에서, 프로세서(220)는 분석 결과가 조직이 의심스럽다는 결정할만한 가치가 있는지의 여부를 결정한다. 예를 들어, 조직 건강을 결정하는 임계값은 단일 샘플 모드(710), 연속적인 샘플링 모드(720), 마진 결정 모드(730) 마다 각각 상이하다. 단일 샘플링 모드(710)에서, 프로세서(220)는 정확성을 개선하기 위해 더욱 상세한 처리 방법을 포함하는 단일 결정 처리를 명령한다. 선택적으로, 연속적인 샘플링 모드(720)에서 프로세서는 단일 샘플 모드(710)의 정확성을 갖는 것이 아니라 센서(110)를 통과하는 많은 조직 절제와 높은 비율로 보조를 맞출 수 있는 더욱 "신속한" 처리를 명령할 수도 있다. 선택적으로, 샘플링의 정확도 및 속도에서 차이가 없을 수도 있으며, 센서(110)에 더 많은 조직이 존재하기 때문에 연속적인 샘플링 모드(720)가 단일 샘플 모드(710) 보다 더욱 정확할 수도 있다. 만일 조직이 비정상(예를 들어, 조직은 출처가 의심스러운 인디케이터 또는 마커를 포함한다)으로 결정된 경우, 제어는 단계(850)로 진행된다. 그렇지 않을 경우, 만일 조직이 비정상이 아니라고 결정된다면, 제어는 단계(360)로 진행된다.
단계(850)에서, 프로세서(220)는 사용자(140)에게 그 테스팅된 조직이 출력부(280)(도2 참조)에서 비정상임을 나타낸다. 실시예에서, 프로세서(220)는 소리를 나타내거나 또는 사용자에게 의심스러운 조직이 존재할 수 있다는 것을 경고하기 위해 적색광을 밝힌다. 그후, 처리가 종료된다.
단계(860)에서, 프로세서(220)가 조직이 의심스럽지 않은 것으로 결정된 경우, 소리가 발생되지 않고, 녹생광이 밝혀지며, 및/또는 광이 밝혀지지 않는다. 그후, 처리가 종료된다.
본 발명은 단지 본 발명을 실시하기 위한 최적의 모드를 나타내는 상술한 실시예를 참조하여 특별히 도시 및 서술되었다. 본 기술분야의 숙련자라면 하기의 청구범위에 서술된 본 발명의 정신 및 범주로부터의 일탈없이 여기에 서술된 본 발명의 실시예의 다양한 대안이 이용될 수 있음을 인식할 것이다. 하기의 청구범위는 본 발명의 범주를 한정하며 그에 따라 청구범위 및 그 등가물의 범주내의 방법 및 장치가 커버되도록 의도되었다. 본 발명의 이 서술은 여기에 서술된 요소들의 신규의 모든 명백하지 않은 조합을 포함하며 청구범위는 이들 요소들의 그 어떤 신규의 명백하지 않은 조합에의 적용 및 차후 적용에 제공되었음을 인식해야 한다. 또한, 상술한 실시예는 예시적이며, 이 적용 또는 차후 적용에 청구된 가능한 모든 조합에 단일의 특성 또는 요소가 기본적이지 않다.
여기에 서술된 처리, 방법, 체험 등에 관해, 상기 처리 등의 단계가 어떤 정연한 시컨스에 따라 발생되는 것으로 서술되었더라도 이런 처리는 여기에 서술된 순서가 아니라 순서대로 실행된 서술된 단계로 실행된다. 어떤 단계들은 동시에 실행될 수 있으며 다른 단계들이 추가되거나 또는 여기에 서술된 어떤 단계들이 생략될 수 있음도 인식해야 한다. 달리 말하면, 여기에 서술된 처리의 서술은 어떤 실시예를 나타내기 위해 제공되었으며, 결코 청구된 발명을 제한하는 것으로 인식되지 않는다.
상기 서술은 예시적이며 제한되지 않은 것으로 인식되어야 한다. 상기 설명을 읽음에 따라 본 기술분야의 숙련자에게 많은 실시예와 제공된 실시예 이외의 적용이 명백해질 것이다. 본 발명의 범주는 상기 서술을 참조하여 결정되는 것이 아니라 첨부의 청구범위가 정해진 등가물의 전체 범주에 따라 결정되어야 한다. 미래에 여기에 서술된 분야가 발달될 것으로 예측되며, 서술된 시스템 및 방법은 미래의 실시예에 통합될 것이다. 요컨대, 본 발명은 수정 및 변형이 가능하며 하기의 청구범위에서만 제한된다는 것을 인식해야 한다.
청구범위에 사용된 모든 용어에는 그와는 다른 명확한 표시가 이루어지지 않는 한 본 기술분야의 숙련자가 인식하는 바와 같이 가장 넓은 합리적인 구성 및 그 평범한 의미가 제공되도록 의도되었다. 본 발명은 양호한 실시예를 참조로 서술되었기에 이에 한정되지 않으며, 본 기술분야의 숙련자라면 첨부된 청구범위로부터의 일탈없이 본 발명에 다양한 변형과 수정이 가해질 수 있음을 인식해야 한다.
100: 실시간 병리 시스템 110: 센서
140: 사용자 220: 프로세서
230: 디스플레이 250: 제어부
280: 출력부

Claims (18)

  1. 환자의 조직을 검출하기 위한 시스템에 있어서,
    환자에 선택적으로 삽입되도록 형성된 외과용 기구와,
    상기 환자의 조직의 적어도 하나의 특성을 검출하도록 형성된 센서를 포함하며,
    상기 외과용 기구는 캐뉼러의 말단부에 인접하게 배치된 조직 절단 개구를 갖는 캐뉼러를 부가로 포함하며, 상기 센서는 외과용 기구가 환자내에 삽입될 때 조직과 접촉되도록 캐뉼러상에 배치되는 것을 특징으로 하는 조직 검출 시스템.
  2. 제1항에 있어서, 기부 개구와 말단 개구를 갖는 삽입기 캐뉼러를 부가로 포함하며, 환자로의 선택적 삽입에 앞서 상기 삽입기 캐뉼러에 절단 캐뉼러가 삽입되는 것을 특징으로 하는 조직 검출 시스템.
  3. 제1항에 있어서, 센서에 인접하게 진공을 분배하는 진공 소스를 부가로 포함하는 것을 특징으로 하는 조직 검출 시스템.
  4. 제1항에 있어서, 상기 외과용 기구는 조직 절제 장치인 것을 특징으로 하는 조직 검출 시스템.
  5. 제4항에 있어서, 상기 조직 절제 장치는 샘플링 개구를 포함하는 것을 특징으로 하는 조직 검출 시스템.
  6. 제5항에 있어서, 상기 센서는 샘플링 개구에 근접하게 배치되는 것을 특징으로 하는 조직 검출 시스템.
  7. 제4항에 있어서, 상기 센서는 샘플링 개구의 하류에 배치되는 것을 특징으로 하는 조직 검출 시스템.
  8. 제1항에 있어서, 상기 센서와 전기적으로 통신되는 프로세서를 부가로 포함하며, 상기 프로세서는 센서로부터의 데이터를 분석하는 것을 특징으로 하는 조직 검출 시스템.
  9. 제1항에 있어서, 상기 센서는 삽입기 캐뉼러에 대해 선택적으로 회전가능한 것을 특징으로 하는 조직 검출 시스템.
  10. 제1항에 있어서, 인디케이터를 부가로 포함하는 것을 특징으로 하는 조직 검출 시스템.
  11. 제10항에 있어서, 상기 인디케이터는 사용자에게 환자의 조직의 비정상을 나타내는 것을 특징으로 하는 조직 검출 시스템.
  12. 환자의 조직의 특성을 검출하기 위한 시스템에 있어서,
    기부 개구와 말단 개구를 갖는 삽입기 캐뉼러와,
    상기 삽입기 캐뉼러의 말단 개구에 대해 환자의 비정상 조직을 검출하도록 형성된 센서와,
    상기 캐뉼러를 통해 삽입되도록 형성된 조직 절제 장치를 포함하며,
    상기 조직 절제 장치는 삽입기 캐뉼러의 말단 개구에 대해 배치되고 환자로부터 조직을 절단하도록 형성되고 그 절단된 조직을 이송하도록 형성된 조직 절단 개구를 부가로 포함하는 것을 특징으로 하는 환자의 조직의 특성을 검출하기 위한 시스템.
  13. 제12항에 있어서, 상기 센서 근처에 진공 소스를 부가로 포함하는 것을 특징으로 하는 환자의 조직의 특성을 검출하기 위한 시스템.
  14. 제12항에 있어서, 상기 센서는 샘플링 개구에 인접하게 배치되는 것을 특징으로 하는 환자의 조직의 특성을 검출하기 위한 시스템.
  15. 제12항에 있어서, 상기 센서와 전기적으로 통신되는 프로세서를 부가로 포함하며, 상기 프로세서는 센서로부터의 데이터를 분석하는 것을 특징으로 하는 환자의 조직의 특성을 검출하기 위한 시스템.
  16. 제12항에 있어서, 상기 센서는 삽입기 캐뉼러에 대해 선택적으로 회전가능한 것을 특징으로 하는 환자의 조직의 특성을 검출하기 위한 시스템.
  17. 제12항에 있어서, 조직의 비정상의 결정과 관련된 인디케이터를 부가로 포함하는 것을 특징으로 하는 환자의 조직의 특성을 검출하기 위한 시스템.
  18. 제12항에 있어서, 상기 조직 절제 장치는 내부 절단 캐뉼러와 외부 캐뉼러를 포함하고, 조직 절단 개구는 외부 캐뉼러에 형성되며, 상기 내부 절단 캐뉼러는 외부 캐뉼러내에 배치되고, 상기 내부 절단 캐뉼러는 조직을 절단하기 위해 상기 조직 절단 개구를 가로질러 선택적으로 이동가능하며, 상기 센서는 내부 절단 캐뉼러상에 배치되는 것을 특징으로 하는 환자의 조직의 특성을 검출하기 위한 시스템.
KR1020117009838A 2008-09-30 2009-06-30 실시간 병리 KR101541210B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/241,644 US8206315B2 (en) 2008-09-30 2008-09-30 Real-time pathology
US12/241,644 2008-09-30

Publications (2)

Publication Number Publication Date
KR20110082152A true KR20110082152A (ko) 2011-07-18
KR101541210B1 KR101541210B1 (ko) 2015-07-31

Family

ID=40996833

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117009838A KR101541210B1 (ko) 2008-09-30 2009-06-30 실시간 병리

Country Status (9)

Country Link
US (1) US8206315B2 (ko)
EP (2) EP2330980B1 (ko)
JP (1) JP5639593B2 (ko)
KR (1) KR101541210B1 (ko)
CN (1) CN102149334A (ko)
AU (1) AU2009300306A1 (ko)
BR (1) BRPI0917250A2 (ko)
CA (1) CA2731793C (ko)
WO (1) WO2010039316A1 (ko)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120283563A1 (en) * 2011-05-03 2012-11-08 Moore Kyle P Biopsy device with manifold alignment feature and tissue sensor
US20140039343A1 (en) 2006-12-13 2014-02-06 Devicor Medical Products, Inc. Biopsy system
US20100280409A1 (en) * 2008-09-30 2010-11-04 Mark Joseph L Real-time pathology
US8535240B2 (en) 2010-03-30 2013-09-17 Siteselect Medical Technologies, Inc. Tissue excision device with a retracting stylet blade
EP2642928B1 (en) * 2010-11-24 2019-07-17 Hologic Inc. System for improved tissue handling and in line analysis of the tissue
AU2015200471B2 (en) * 2011-05-03 2016-07-21 Devicor Medical Products, Inc Biopsy device with manifold alignment feature and tissue sensor
KR101168368B1 (ko) * 2011-09-26 2012-08-29 (주)메다스 가이딩부를 포함하는 반자동 조직생검용 장치
JP6470173B2 (ja) * 2012-07-12 2019-02-13 デューン メディカル デヴァイシズ リミテッドDune Medical Devices Ltd. 組織性状診断及び治療で用いる医療装置
US9724075B2 (en) 2013-02-08 2017-08-08 Variable Guage Catheter Inc. Biopsy method and apparatus
US20140228661A1 (en) * 2013-02-08 2014-08-14 Liviu Popa-Simil Biopsy method and gun set devices
EP2961327B1 (en) 2013-02-27 2018-07-11 Koninklijke Philips N.V. Optical guided vacuum assisted biopsy device
JP2015016300A (ja) * 2013-06-13 2015-01-29 キヤノン株式会社 生検支援装置及び生検支援方法
WO2015003134A1 (en) * 2013-07-03 2015-01-08 Saranas, Inc. Introducer-based bleed detection technique
US20160341712A1 (en) * 2013-10-23 2016-11-24 Brigham And Women's Hospital, Inc. System and method for analyzing tissue intra-operatively using mass spectrometry
US9757273B2 (en) 2013-12-20 2017-09-12 Novartis Ag Tissue-sensing vitrectomy surgical systems and methods
US11547446B2 (en) 2014-01-13 2023-01-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
WO2015134277A1 (en) 2014-03-05 2015-09-11 Faxitron Bioptics, Llc System and method for multi-axis imaging of specimens
EP3185783B1 (en) * 2014-08-28 2019-11-13 Koninklijke Philips N.V. Side-looking lung biopsy device
WO2016149701A1 (en) 2015-03-19 2016-09-22 The Regents Of The University Of Michigan System for analyzing tissue
WO2016174193A1 (en) * 2015-04-30 2016-11-03 Henrik Bjursten Tissue cutting device and system
CN107835672B (zh) * 2015-07-06 2021-12-24 赫墨斯创新有限公司 手术系统及使用方法
KR101743283B1 (ko) * 2015-08-31 2017-06-02 재단법인 의약바이오컨버젼스연구단 생체 내 폐조직 미세영상 획득을 위한 미세흡인 기반 폐 윈도우 장치 및 이를 이용한 영상 획득 방법
WO2017040977A1 (en) 2015-09-04 2017-03-09 Faxitron Bioptics, Llc Multi-axis specimen imaging device with embedded orientation markers
BR112018068833A2 (pt) 2016-03-17 2019-01-22 Trice Medical Inc dispositivos de evacuação e visualização de coágulo e métodos de uso
WO2017201203A1 (en) 2016-05-17 2017-11-23 Rebound Therapeutics Corporation Methods and devices for color detection to localize the blood mass of an intracerebral hematoma
WO2018059744A1 (de) * 2016-09-27 2018-04-05 Siemens Aktiengesellschaft Endoskop und verfahren zum betreiben eines endoskops
WO2018085719A1 (en) 2016-11-04 2018-05-11 Hologic, Inc. Specimen radiography system
CN115192090A (zh) * 2016-11-23 2022-10-18 巴德股份有限公司 单插入多试样的活检装置
JP6844842B2 (ja) * 2017-03-08 2021-03-17 学校法人 芝浦工業大学 医療用鉗子および医療用鉗子システム
US10952654B2 (en) * 2017-03-14 2021-03-23 International Business Machines Corporation PH sensitive surgical tool
WO2018237187A2 (en) 2017-06-23 2018-12-27 Intuitive Surgical Operations, Inc. SYSTEMS AND METHODS FOR NAVIGATING A TARGET LOCATION DURING A MEDICAL ACT
US11426180B2 (en) 2017-08-04 2022-08-30 University College Cork—National University Of Ireland Cork Tissue penetrating surgical systems and methods
US11317881B2 (en) 2017-09-11 2022-05-03 Faxitron Bioptics, Llc Imaging system with adaptive object magnification
WO2019112998A1 (en) * 2017-12-05 2019-06-13 Devicor Medical Products, Inc. Biopsy device with applied imaging
NL2020329B1 (en) * 2018-01-26 2019-07-31 Stichting Het Nederlands Kanker Inst Antoni Van Leeuwenhoek Ziekenhuis Surgical instrument and surgical system
US20220330929A1 (en) * 2019-09-20 2022-10-20 Bard Peripheral Vascular, Inc. Biopsy System having Tissue Sample Impedance Measurement

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841984A (en) * 1985-09-16 1989-06-27 Armoor Ophthalmics, Inc. Fluid-carrying components of apparatus for automatic control of intraocular pressure
JPH0754855Y2 (ja) * 1989-06-16 1995-12-18 アロカ株式会社 光音響センサ
US5409453A (en) 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US6564087B1 (en) * 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5383460A (en) * 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5349954A (en) * 1993-07-23 1994-09-27 General Electric Company Tumor tissue characterization apparatus and method
US5526822A (en) * 1994-03-24 1996-06-18 Biopsys Medical, Inc. Method and apparatus for automated biopsy and collection of soft tissue
US5575293A (en) * 1995-02-06 1996-11-19 Promex, Inc. Apparatus for collecting and staging tissue
US5769086A (en) * 1995-12-06 1998-06-23 Biopsys Medical, Inc. Control system and method for automated biopsy device
US6109270A (en) * 1997-02-04 2000-08-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multimodality instrument for tissue characterization
US6142955A (en) * 1997-09-19 2000-11-07 United States Surgical Corporation Biopsy apparatus and method
CA2701455C (en) * 1998-11-25 2011-08-23 United States Surgical Corporation Biopsy system
US6299622B1 (en) * 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
AU2001251134B2 (en) * 2000-03-31 2006-02-02 Angiodynamics, Inc. Tissue biopsy and treatment apparatus and method
US7228165B1 (en) * 2000-06-26 2007-06-05 Boston Scientific Scimed, Inc. Apparatus and method for performing a tissue resection procedure
US6758824B1 (en) * 2000-11-06 2004-07-06 Suros Surgical Systems, Inc. Biopsy apparatus
US6632183B2 (en) * 2001-02-12 2003-10-14 Thermal Technologies, Inc. Perfusion sensitive biopsy extractor
WO2007083310A2 (en) * 2006-01-18 2007-07-26 Dune Medical Devices Ltd. System and method for analysis and treatment of a body tissue
US7347829B2 (en) * 2002-10-07 2008-03-25 Suros Surgical Systems, Inc. Introduction system for minimally invasive surgical instruments
US20070260267A1 (en) * 2002-10-07 2007-11-08 Nicoson Zachary R Localizing obturator
US7322929B2 (en) * 2003-06-18 2008-01-29 Xoft, Inc. Method for radiation treatment
CN100473336C (zh) * 2003-07-24 2009-04-01 沙丘医疗设备有限公司 用于检查特别是组织的物质以表征其类型的方法和设备
US8172770B2 (en) * 2005-09-28 2012-05-08 Suros Surgical Systems, Inc. System and method for minimally invasive disease therapy
JP4533615B2 (ja) * 2003-10-14 2010-09-01 オリンパス株式会社 穿刺針及び超音波内視鏡システム
US7017416B1 (en) * 2004-10-22 2006-03-28 Honeywell International, Inc. Disposable pressure diaphragm and wireless sensor systems and methods
DE102005033474A1 (de) 2005-07-18 2007-01-25 Heywang-Köbrunner, Sylvia, Prof. Dr. Verfahren zur Untersuchung von Gewebeproben, Vorrichtung dafür und neue Verwendung von Fluoreszenzmarkern
EP1913877A1 (en) * 2005-08-12 2008-04-23 Olympus Corporation Endoscope accessory, biotissue analytical processing system and method of sampling for tissue analytical processing
US8187294B2 (en) 2005-09-26 2012-05-29 Suros Surgical Systems, Inc. Rotating surgical cutter
JP2010511463A (ja) * 2006-12-06 2010-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 組織の光学的特性を取得する方法
WO2008109760A2 (en) 2007-03-06 2008-09-12 Broncus Technologies, Inc. Blood vessel sensing catheter having working lumen for medical appliances

Also Published As

Publication number Publication date
CA2731793A1 (en) 2010-04-08
WO2010039316A1 (en) 2010-04-08
KR101541210B1 (ko) 2015-07-31
EP2330980B1 (en) 2016-02-10
EP3005950B1 (en) 2019-09-25
EP3005950A1 (en) 2016-04-13
EP2330980A1 (en) 2011-06-15
CN102149334A (zh) 2011-08-10
AU2009300306A1 (en) 2010-04-08
US8206315B2 (en) 2012-06-26
BRPI0917250A2 (pt) 2015-11-10
US20100081964A1 (en) 2010-04-01
JP5639593B2 (ja) 2014-12-10
JP2012504015A (ja) 2012-02-16
CA2731793C (en) 2017-07-18

Similar Documents

Publication Publication Date Title
KR101541210B1 (ko) 실시간 병리
US20100280409A1 (en) Real-time pathology
JP3955374B2 (ja) 柔軟組織の採取方法および採取装置
US7720532B2 (en) Clean margin assessment tool
CA2490072C (en) Apparatus and method for accessing a body site
US7904145B2 (en) Clean margin assessment tool
EP1093757B1 (en) Device for collection of soft tissue
US6712775B2 (en) Tissue acquisition system and method of use
US20040030263A1 (en) Undamaged tissue collection assembly and method
JP2002360581A (ja) 組織マーカー要素を備えた生検装置
US20070255169A1 (en) Clean margin assessment tool
JP2004033751A (ja) Mri適合性生検装置用の位置決め機構
US20210393332A1 (en) Methods and devices for navigating a tissue resection device
KR20230117694A (ko) 조직 절제 제어 시스템 및 방법
Mah et al. NASA Smart Surgical Probe Project

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180713

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190712

Year of fee payment: 5