KR20110068292A - Dammarenediol synthase gene from centella asiatica l. urban and uses thereof - Google Patents

Dammarenediol synthase gene from centella asiatica l. urban and uses thereof Download PDF

Info

Publication number
KR20110068292A
KR20110068292A KR1020090125173A KR20090125173A KR20110068292A KR 20110068292 A KR20110068292 A KR 20110068292A KR 1020090125173 A KR1020090125173 A KR 1020090125173A KR 20090125173 A KR20090125173 A KR 20090125173A KR 20110068292 A KR20110068292 A KR 20110068292A
Authority
KR
South Korea
Prior art keywords
leu
gene
gly
glu
ala
Prior art date
Application number
KR1020090125173A
Other languages
Korean (ko)
Other versions
KR101174490B1 (en
Inventor
김옥태
김영창
현동윤
방경환
차선우
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020090125173A priority Critical patent/KR101174490B1/en
Publication of KR20110068292A publication Critical patent/KR20110068292A/en
Application granted granted Critical
Publication of KR101174490B1 publication Critical patent/KR101174490B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/06Hydroxylating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01125Dammarenediol II synthase (4.2.1.125)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A Centella asiatica L. Urban-derived dammarenediol synthease gene is provided to produce a large amount of dammarenediol. CONSTITUTION: A Centella asiatica L. Urban-derived dammarenediol synthease gene has a base sequence of sequence number 1. A recombinant vector contains a gene encoding the synthease. A transformed cell is prepared by transforming host cells with the recombinant vector. The host cell is yeast or E.coli.

Description

병풀 유래의 담마레네디올 합성효소 유전자 및 이의 용도{Dammarenediol synthase gene from Centella asiatica L. Urban and uses thereof}Dammarenediol synthase gene from Centella asiatica L. Urban and uses approximately}

본 발명은 병풀 유래의 담마레네디올 합성효소 유전자 및 이의 용도에 관한 것으로, 더욱 상세하게는 병풀 유래의 담마레네디올 합성효소 단백질, 상기 단백질을 코딩하는 유전자, 상기 유전자를 포함하는 재조합 벡터, 상기 재조합 벡터로 형질전환된 숙주세포, 상기 재조합 벡터로 숙주세포를 형질전환시켜 담마레네디올 합성효소 유전자를 과발현하는 단계를 포함하는 담마레네디올을 생산하는 방법에 관한 것이다.The present invention relates to a yammarendiol synthase gene derived from a camouflage and its use, and more particularly, to a yammarendiol synthase protein derived from a camouflage, a gene encoding the protein, a recombinant vector comprising the gene, and the recombinant A host cell transformed with a vector, and transforming the host cell with the recombinant vector, the present invention relates to a method for producing dammarenediol, comprising overexpressing a dammareenediol synthase gene.

병풀(Centella asiatica L. Urban)은 아시아티코사이드(asiaticoside), 마데카소사이드(madecassoside), 아시아틱 애시드(asiatic acid) 및 마데카식 애시드(madecassic acid)와 같이 우르산 타입(ursane-type)의 트리터르펜 사포닌(triterpene saponin)을 잎에 다량으로 함유하고 있다. 예로부터 병풀의 잎은 이처럼 유용한 약리성분을 함유하고 있어 피부 질환 및 상처 치료에 탁월하고 치매 예방, 천식, 두통, 임질, 매독, 피부병, 나병, 위장병 등에 효과가 있어 질병 치료제의 원료로 사용되고 있다. 특히 손상된 피부의 재생 능력이 뛰어나 피부 질환 치 료제 원료로 많이 사용되고 있다. Centella asiatica L. Urban is a ursane-type tree such as asiaticoside, madecassoside, asiatic acid and madecassic acid. Triterpene saponin is contained in the leaves in large amounts. Since the leaves of Centella have such useful pharmacological ingredients, they are excellent for treating skin diseases and wounds and are effective in preventing dementia, asthma, headache, gonorrhea, syphilis, skin diseases, leprosy and gastrointestinal diseases. In particular, it has been used as a raw material for the treatment of skin diseases because of its excellent ability to regenerate damaged skin.

식물에서 중요 약리활성을 보이는 트리터르펜 사포닌으로서 올레아난(oleanane), 우르산(ursane) 및 담마란(dammarane) 타입의 화합물들이 최근 많이 보고되고 있는데 인삼의 주요 사포닌은 4환 고리성 담마레네디올(도 1)에서 유래한 사포닌인 것으로 보고되고 있다. 이들 생합성 과정을 간략히 기술하면 트리터르펜 사포닌과 식물스테롤(phytosterol) 생합성은 스쿠아렌 합성효소(squalene synthase)에 의해서 C30 units인 스쿠아렌을 합성한다. 다음 단계에서 30개의 탄소로 구성된 옥시도스쿠아렌(2,3-oxidosqualene)의 고리화반응으로 완결되는데, 이 반응은 사포닌과 식물스테롤 생합성에 있어 결정적인 단계로서 옥시도스쿠아렌 고리화효소(oxidosqualene cyclase)가 합성해내는 종류에 따라 베타아미린 합성효소(beta-amyrin synthase), 알파아미린 합성효소(alpha-amyrin synthase) , 담마레네디올 합성효소 (dammarenediol synthase) 및 사이클로아르테놀 합성효소 (cycloartenol synthase) 등으로 나누어져 사포닌과 식물스테롤의 전구체로서 사용 된다(도 2). 또한, 이 단계는 제한적 단계로서 식물에서 적은 양으로 존재하면서 전체 사포닌 생산을 조절하는 것으로 알려져 있다. 인삼에서 담마레네디올은 지금까지 보고된 29여 종의 진세노사이드(ginsenoside)의 합성을 이끄는 화합물이다. 따라서, 담마레네디올 합성 유전자는 인삼의 진세노사이드 생합성에 가장 중요한 역할을 하는 유전자로 보고되어 있으며, 담마란 타입의 트리터르펜 화합물들은 다른 식물에서 많이 보고되었지만, 담마레네디올을 합성하는 유전자는 인삼에서만 보고되었다 (Han et al. 2006, Plant Cell Physiol 47:1653-1662; Tansakul et al. 2006, 580:5143-5149). 병풀에서 분리된 이 유전자는 유전자발현 분석 및 이 유전자 관련 물질 분석을 통해 베타아미린 합성효소로 추측하였지만, 직접적인 증거는 제시하지 못하였다(Kim et al. 2005, Plant Cell Rep 24:304-311). 따라서 본 발명은 병풀 유래의 담마레네디올 합성효소를 코딩하고 있는 유전자의 기능을 규명하고 이를 이용하여 이 물질을 대량생산하기 위한 균주를 개발하고자 하였다. Triterpene saponins, which show important pharmacological activity in plants, have recently been reported in the form of oleanane, ursane, and dammarane compounds. The main saponins of ginseng are the tetracyclic cyclic malemalediol. It is reported that it is saponin derived from (FIG. 1). Briefly describing these biosynthesis processes, triterpene saponin and phytosterol biosynthesis synthesize squalene, a C30 unit, by squalene synthase. In the next step, a 30-carbon oxidose squalene (2,3-oxidosqualene) cyclization reaction is completed. This reaction is a crucial step in saponin and phytosterol biosynthesis, and oxidosqualene cyclase Beta-amyrin synthase, alpha-amyrin synthase, dammarenediol synthase and cycloartenol synthase And used as a precursor of saponin and phytosterol (FIG. 2). This step is also known to regulate overall saponin production while present in small amounts in plants as a limiting step. In ginseng, dammarenediol is a compound that leads to the synthesis of about 29 ginsenosides reported so far. Therefore, the dammarenediol synthesis gene is reported to be the most important gene for ginsenoside biosynthesis of ginseng. Although the dammarane-type triterpene compounds have been reported in other plants, the gene for synthesizing dammarenediol is Only reported in ginseng (Han et al. 2006, Plant Cell Physiol 47: 1653-1662; Tansakul et al. 2006, 580: 5143-5149). The gene isolated from the cultivars was estimated to beta-amirin synthase through gene expression analysis and analysis of this gene-related substance, but did not provide direct evidence (Kim et al. 2005, Plant Cell Rep 24: 304-311). . Therefore, the present invention was to investigate the function of the gene encoding the yammarendiol synthase derived from Centella asiatic and to develop a strain for mass production of this material.

한국공개특허 제2009-0078050호에는 병풀로부터 고효율의 아시아티코사이드 생산 방법이 개시되어있으며, 한국공개특허 제2009-0122049호에는 병풀로부터 아시아틱산과 아시아티코사이드의 추출 및 분리 방법이 개시되어 있다. Korean Patent Publication No. 2009-0078050 discloses a method for producing high efficiency Asian Ticoside from a centella, and Korean Patent Publication No. 2009-0122049 discloses a method for extracting and separating Asiantic acid and Asian Ticoside from a centella.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 병풀 잎으로부터 cDNA를 제조하여 담마레네디올 합성효소를 코딩하고 있는 전체 염기서열을 유전자 증폭기술을 이용하여 분리하고, 효모 발현 벡터에 삽입하여 과발현 후 그 산물을 분석하고 동정하여 담마레네디올 합성효소임을 규명함으로써 본 발명을 완성하게 되었다. The present invention is derived from the above-mentioned demands. The present inventors have prepared cDNA from the leaves of the herbaceous plant, and isolated the entire nucleotide sequence encoding the dammarerendiol synthase using gene amplification and inserted into the yeast expression vector. After overexpression, the product was analyzed and identified to determine that it was a dhamrenedidiol synthase, thereby completing the present invention.

상기 과제를 해결하기 위해, 본 발명은 병풀 유래의 담마레네디올 합성효소 단백질을 제공한다. In order to solve the above problems, the present invention provides a dammarendiol synthase protein derived from Centella.

또한, 본 발명은 상기 단백질을 코딩하는 유전자를 제공한다. The present invention also provides a gene encoding the protein.

또한, 본 발명은 상기 유전자를 포함하는 재조합 벡터를 제공한다. The present invention also provides a recombinant vector comprising the gene.

또한, 본 발명은 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다. The present invention also provides a host cell transformed with the recombinant vector.

또한, 본 발명은 상기 재조합 벡터로 숙주세포를 형질전환시켜 담마레네디올 합성효소 유전자를 과발현하는 단계를 포함하는 담마레네디올을 생산하는 방법을 제공한다. In another aspect, the present invention provides a method for producing dammarenediol comprising the step of transforming the host cell with the recombinant vector overexpressing the dammareene diol synthase gene.

본 발명에서 기술하는 병풀 유래의 담마레네디올 합성효소 유전자를 인삼 및 벼를 비롯한 타 작물의 게놈(genome)에 도입할 경우 담마레네디올 타입의 사포닌을 생산할 가능성이 있으며, 또한 담마레네디올은 항바이러스 작용 등 다양한 약리활 성을 보이는 것으로 보고되고 있다. 따라서, 효모 및 대장균과 같은 미생물에 도입하여 담마레네디올을 대량으로 생산할 수 있어 산업적 파급효과가 높을 것으로 기대된다.When introduced into the genome of other crops, including ginseng and rice, the plant extract derived from the centella as described in the present invention, there is a possibility of producing saponin of the dammareendiol type, and also dammarendiol antiviral It has been reported to show various pharmacological activities such as action. Therefore, it is expected to have a high industrial ripple effect because it can be introduced into microorganisms such as yeast and E. coli to produce a large amount of dammarenediol.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 2로 표시되는 아미노산 서열로 이루어진, 병풀 유래의 담마레네디올 합성효소 단백질을 제공한다. In order to achieve the object of the present invention, the present invention provides a dhammarenediol synthase protein derived from the centella, consisting of the amino acid sequence represented by SEQ ID NO: 2.

본 발명에 따른 담마레네디올 합성효소 단백질의 범위는 병풀로부터 분리된 서열번호 2로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 식물체 내에서 옥시도스쿠알렌을 담마레네디올로 전환시키는 활성을 의미한다.The range of dammarenediol synthase proteins according to the present invention includes proteins having an amino acid sequence represented by SEQ ID NO: 2 isolated from a centella and functional equivalents of the proteins. "Functional equivalent" means at least 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least 70% of the amino acid sequence represented by SEQ ID NO: 2 as a result of the addition, substitution, or deletion of the amino acid Is 95% or more of sequence homology, and refers to a protein that exhibits substantially homogeneous physiological activity with the protein represented by SEQ ID NO: 2. By "substantially homogeneous physiological activity" is meant the activity of converting oxidose squalene to dammarerendiol in plants.

또한, 본 발명은 상기 담마레네디올 합성효소 단백질을 코딩하는 유전자를 제공한다. 본 발명의 유전자는 담마레네디올 합성효소 단백질을 코딩하는 게놈 DNA와 cDNA를 모두 포함한다. 바람직하게는, 본 발명의 유전자는 서열번호 1로 표시되는 염기서열을 포함할 수 있다.In addition, the present invention provides a gene encoding the dalmenediol synthase protein. The gene of the present invention includes both genomic DNA and cDNA encoding the dammarenediol synthase protein. Preferably, the gene of the present invention may include the nucleotide sequence shown in SEQ ID NO: 1.

또한, 상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.Variants of the above base sequences are also included within the scope of the present invention. Specifically, the gene has a base sequence having a sequence homology of at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% with the nucleotide sequence of SEQ ID NO: 1, respectively. It may include. The "% sequence homology" for a polynucleotide is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).

또한, 본 발명은 본 발명에 따른 담마레네디올 합성효소 유전자를 포함하는 재조합 벡터를 제공한다. 상기 재조합 벡터는 바람직하게는 효모 재조합 벡터일 수 있으나, 이에 제한되지 않는다. In another aspect, the present invention provides a recombinant vector comprising a dammarenediol synthase gene according to the present invention. The recombinant vector may be preferably a yeast recombinant vector, but is not limited thereto.

용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid. The recombinant cell can express a gene or a gene fragment that is not found in the natural form of the cell in one of the sense or antisense form. In addition, the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적 인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.The term "vector" is used to refer to a DNA fragment (s), nucleic acid molecule, which is transferred into a cell. The vector replicates the DNA and can be independently regenerated in the host cell. The term "carrier" is often used interchangeably with "vector". The term “expression vector” refers to a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence essential for expressing the coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.

본 발명의 벡터는 전형적으로 클로닝 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, trp 프로모터, lac 프로모터, T7 프로모터, tac 프로모터 등), 해독의 개시를 위한 리보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 대장균(E. coli)이 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위, 그리고 파아지 λ의 좌향 프로모터 (pLλ프로모터)가 조절 부위로서 이용될 수 있다.Vectors of the invention can typically be constructed as vectors for cloning or expression. In addition, the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts. For example, when the vector of the present invention is an expression vector and the prokaryotic cell is a host, a strong promoter (for example, a pLλ promoter, a trp promoter, a lac promoter, a T7 promoter, a tac promoter, etc.) capable of promoting transcription, It is common to include ribosomal binding sites and transcription / detox termination sequences for initiation of translation. When E. coli is used as a host cell, a promoter and an operator site of the E. coli tryptophan biosynthetic pathway, and a phage λ left promoter (pLλ promoter) can be used as regulatory sites.

한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, ColE1, pBR322, pUC8/9, pHC79, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 (예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.On the other hand, vectors that can be used in the present invention are plasmids (eg, pSC101, ColE1, pBR322, pUC8 / 9, pHC79, pGEX series, pET series and pUC19, etc.) which are often used in the art, phage (e.g. λgt4.λB , λ-Charon, λΔz1 and M13, etc.) or viruses (eg SV40, etc.).

한편, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 게놈으로부터 유래된 프로모터 (예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서 열을 일반적으로 갖는다.On the other hand, when the vector of the present invention is an expression vector and the eukaryotic cell is a host, a promoter derived from the mammalian cell genome (for example, metallothionine promoter) or a promoter derived from a mammalian virus (for example, adeno) Late viral promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter and tk promoter of HSV) can be used and generally have a polyadenylation sequence as a transcription termination sequence.

본 발명의 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함할 수 있으며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.The vector of the present invention may include an antibiotic resistance gene commonly used in the art as an optional marker, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin And resistance genes for tetracycline.

본 발명은 또한, 본 발명의 재조합 벡터로 형질전환된 숙주세포를 제공한다. 본 발명의 벡터를 원핵세포에 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주세포는 당업계에 공지된 어떠한 숙주세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다. 숙주세포는 바람직하게는 대장균(E. coli)이다.The present invention also provides a host cell transformed with the recombinant vector of the present invention. The host cell capable of continuously cloning and expressing the vector of the present invention in a prokaryotic cell while being stable can be used in any host cell known in the art, for example, E. coli JM109, E. coli BL21, E. coli RR1. , Bacillus genus strains, such as E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcensons, and various Pseudomonas Enterobacteria such as species and strains. The host cell is preferably E. coli.

또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주세포로서, 효모(Saccharomyce cerevisiae), 곤충세포, 사람세포 (예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있다. 숙주세포는 바람직하게는 효모이다. In addition, when transforming a vector of the present invention to eukaryotic cells, yeast ( Saccharomyce) as a host cell cerevisiae ), insect cells, human cells (eg, CHO cell lines (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN and MDCK cell lines), and plant cells. The host cell is preferably yeast.

본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 숙주 세포가 원핵 세포인 경우, CaCl2 방법, 하나한 방법 (Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기천공 방법 등에 의해 실시될 수 있다. 또한, 숙주세포가 진핵세포인 경우에는, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.The method of carrying the vector of the present invention into a host cell is performed by using the CaCl 2 method or one method (Hanahan, D., J. Mol. Biol., 166: 557-580 (1983)) when the host cell is a prokaryotic cell. And the electroporation method. When the host cell is a eukaryotic cell, the vector is injected into the host cell by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, and gene bombardment .

본 발명은 또한, 병풀 유래의 담마레네디올 합성효소 유전자를 포함하는 재조합 벡터로 숙주세포를 형질전환시켜 담마레네디올 합성효소 유전자를 과발현하는 단계를 포함하는 담마레네디올을 생산하는 방법을 제공한다. 본 발명의 방법에서, 담마레네디올 합성효소 유전자 및 재조합 벡터는 전술한 바와 같다. 또한, 상기 숙주 세포는 바람직하게는 효모 또는 대장균이다.The present invention also provides a method for producing dammarerendiol, comprising overexpressing a dammareenediol synthase gene by transforming a host cell with a recombinant vector comprising a stem-derived dammareenediol synthase gene. In the method of the present invention, the dammarenediol synthase gene and the recombinant vector are as described above. In addition, the host cell is preferably yeast or E. coli.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

실시예Example 1:  One: 담마레네디올Dammarenediol 합성효소를 코딩하고 있는 완전한  Complete coding for the enzyme cDNAcDNA 의 분리Separation of

병풀 식물체를 3% 수크로스(sucrose), pH 5.8로 조정된 MS 액체 배지에서 5주간 배양 후, 잎 부분만 절취하여 액체질소에 얼린 후 트리졸(Trizol) 시약을 이용하여 total RNA를 추출하였다. 병풀의 cDNA는 2μg total RNA, 2 ng oligo-dT(15) 프라이머, 10 mM dNTP, 30 유닛(units)의 AMV 역전사효소(reverse-transcriptase) 및 40 유닛의 RNA분해효소 억제제(RNase inhibitor)를 포함하는 버퍼에서 42℃, 1시간 동안 반응시켜 합성되었다. 병풀의 완전한 담마레네디올 합성 효소 유전자를 증폭하기 위해 합성된 cDNA를 주형(template)으로 하여 순방향 프라이머 (5'-ATGTGGAAGCTGAAGATA-3'; 서열번호 3)와 역방향 프라이머 (5'-TCAATTGGAGAGCCACAAG-3'; 서열번호 4)를 이용하여 DNA 합성효소 (Ex-Taq DNA polymerase, TAKARA)에 의해 완전한 유전자가 증폭되었다. Centellar plants were incubated for 5 weeks in MS liquid medium adjusted to 3% sucrose, pH 5.8, and only leaf portions were cut and frozen in liquid nitrogen, and total RNA was extracted using Trizol reagent. The cDNAs of the cultivars include 2 μg total RNA, 2 ng oligo-dT (15) primers, 10 mM dNTP, 30 units of AMV reverse-transcriptase and 40 units of RNase inhibitor. It was synthesized by reacting for 1 hour at 42 ℃ in a buffer. CDNA synthesized to amplify the complete dameneradiol synthase gene of the centella as a template, the forward primer (5'-ATGTGGAAGCTGAAGATA-3 '; SEQ ID NO: 3) and the reverse primer (5'-TCAATTGGAGAGCCACAAG-3'; The complete gene was amplified by DNA synthase (Ex-Taq DNA polymerase, TAKARA) using SEQ ID NO: 4).

실시예Example 2: 효모 과잉발현 벡터 제작 2: Yeast Overexpression Vector Production

상기 과정에서 증폭된 완전한 담마레네디올 합성효소 유전자는 효모 발현 벡터 pYES2 TOPO TA (Invitrogen)에 T4 ligase 효소를 이용하여 삽입 후, 대장균(E. coli)에 형질전환 시켰다. 형질전환된 세포들은 37℃에서 15시간 배양 후 10개 클론을 선발하였다. 선발된 10개의 클론으로부터 플라스미드를 추출 후 DNA 염기서열을 해독하여 완전하게 담마레네디올 합성효소 유전자의 염기서열과 일치되는 1개의 클론을 최종으로 선발하여 이들로 제조된 플라스미드를 효모 형질전환에 사용하였다.The complete amplified DNA gene was amplified in the above process and inserted into the yeast expression vector pYES2 TOPO TA (Invitrogen) using the T4 ligase enzyme, and transformed into E. coli . Transformed cells were selected 10 clones after 15 hours incubation at 37 ℃. After extracting the plasmid from the 10 selected clones, the DNA sequence was decoded to finally select one clone that completely matches the nucleotide sequence of the Dammarenediol synthase gene, and the plasmid prepared therefrom was used for yeast transformation. .

실시예 3: 효모 형질전환 및 추출물 제조Example 3: Yeast Transformation and Extract Preparation

라노스테롤(lanosterol)을 합성하지 못하는 돌연변이 효모 균주 (MATa erg7 ura3-1 trp1 -1)는 프랑스의 F.Kars, Colmar로부터 분양받아 형질전환에 이용되었다. 효모의 형질전환은 Kushiro 등 (1998, Eur J Biochem 238-244)이 수행했던 방법으로 실시하였다. 우라실이 없는 배지에서 선발된 클론은 도입된 담마레네디올 합성효소 유전자의 과잉발현을 위해 우라실이 포함되지 않고 에르고스테 롤(ergosterol) 20 mg/L, 헤민 13 mg/L 및 트윈80 5 g/L 가 함유된 SC(synthetic complete) 배지 1000 mL에서 30℃ 220 rpm에서 2일간 배양하였다. 배양 후 상기에 기술한 동일한 배지에 갈락토스 2%를 추가하여 1일간 유전자 발현을 유도하였다. 유도 후 0.1M 포타시움 포스페이트(potassium phosphate) 용액에서 1일간 배양하여 효모들을 하나의 튜브에 모아서 20% KOH/50% KOH 50mL 넣고 100℃에서 30분간 반응시켰다. 반응액에 동량의 헥산(hexane)을 첨가하여 3회 반복하여 추출하였고 이들 용액을 농축하여 액체 크로마토그래피(liquid chromatography) 분석에 사용하였다.Mutant yeast strain that cannot synthesize lanosterol ( MATa erg7 ura3-1 trp1 -1 ) was distributed from F.Kars and Colmar of France and used for transformation. Transformation of yeast was carried out by the method performed by Kushiro et al. (1998, Eur J Biochem 238-244). Clones selected from uracil-free medium contained 20 mg / L of ergosterol, 13 mg / L of hemin, and 13 g / L of Tween80 for overexpression of the introduced dammarenediol synthase gene. Incubated for 2 days at 30 ℃ 220 rpm in 1000 mL of SC (synthetic complete) medium containing. After incubation, 2% of galactose was added to the same medium described above to induce gene expression for 1 day. After induction, incubated for one day in 0.1M potassium phosphate solution, yeasts were collected in one tube, and 50mL of 20% KOH / 50% KOH was reacted at 100 ° C for 30 minutes. An equal amount of hexane was added to the reaction solution, followed by extraction three times. The solutions were concentrated and used for liquid chromatography analysis.

실시예Example 4:  4: 담마레네디올의Dhammarendiol 액체 크로마토그래피 분석 및  Liquid chromatography analysis and LCLC -- APCIAPCI -- MSMS 분석 analysis

상기 실시예 3에서 기술된 효모 추출물은 담마레네디올 화합물을 동정하기 위해 사용되었다. Surveyor liquid chromatography system (Thermo Finnigan) 기기를 이용하여 Capcell pak C18 컬럼, 아세토니트릴(acetonitrile)과 물의 비율을 90:10(v/v), 유속을 0.2 ml/min, 컬럼 온도를 40℃로 조정하여 효모 추출물을 분석하였다. 그 결과 담마레네디올 합성효소 유전자가 삽입되지 않은 벡터를 포함하는 효모의 추출물에서는 담마레네디올의 피크가 나타나지 않았지만 담마레네디올 합성효소 유전자가 삽입된 벡터를 포함하는 효모의 추출물에서는 표준물질과 일치하는 피크를 관찰할 수 있었다(도 3). 이 피크가 담마레네디올의 피크 인지를 더 확실히 확인하기 위해서 LC-APCI-MS(liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry) 분석법을 실시하였다. 질량스펙트럼 분석 결과 보고된 다른 문헌의 담마레네디올의 질량스펙트럼과 일치하여 효모에 삽입된 유전자는 담마레네디올 합성효소 유전자임을 확인하였다(도 4).The yeast extract described in Example 3 above was used to identify the dammarenediol compound. Using a Surveyor liquid chromatography system (Thermo Finnigan) instrument, the ratio of Capcell pak C18 column, acetonitrile and water was 90:10 (v / v), the flow rate was 0.2 ml / min, and the column temperature was adjusted to 40 ° C. Yeast extract was analyzed. As a result, there was no peak of dammareenediol in the extract of yeast containing the vector without the insertion of dammareenediol synthase gene, but the extract of yeast containing the vector into which the dammareenediol synthase gene was inserted was consistent with the standard. Peaks could be observed (FIG. 3). Liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) analysis was performed to more clearly confirm that the peak was the peak of dammarenediol. Mass spectrum analysis confirmed that the gene inserted into the yeast coincided with the mass spectrum of the reported densemarendiol of another document (Dammarenediol synthase gene) (Fig. 4).

도 1은 담마레네디올의 구조식을 나타낸 것이다. Figure 1 shows the structural formula of dammarenediol.

도 2는 담마레네디올의 생합성 과정을 나타낸 것이다. Figure 2 shows the biosynthesis process of dammarenediol.

도 3은 병풀 유래의 담마레네디올 합성효소 유전자가 도입된 효모 추출물의 액체 크로마토그래피(LC) 분석을 나타낸 것이다.Figure 3 shows the liquid chromatography (LC) analysis of the yeast extract to which the Dammarenediol synthase gene derived from Centella asiatica.

A: authentic 담마레네디올-II, B: β-아미린, C: 빈 벡터로 형질전환된 효모 추출물, D: 담마레네디올 합성효소 유전자가 삽입된 벡터를 포함하는 효모 추출물A: authentic dammarenediol-II, B: β-amirin, C: yeast extract transformed with an empty vector, D: yeast extract comprising a vector into which the dammareenediol synthase gene is inserted

도 4는 LC-APCI-MS 분석법을 통해 담마레네디올의 질량스펙트럼을 확인한 것이다. Figure 4 confirms the mass spectrum of dammarenediol through LC-APCI-MS analysis.

<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> Dammarenediol synthase gene from Centella asiatica L. Urban and uses thereof <130> PN09270 <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 2562 <212> DNA <213> Centella asiatica <400> 1 aaagaagatt ttattttatt tttttcagca aaaaaaagtt gaaaaaataa gaaattgata 60 gatcgagcta ggggagatgt ggaagctgaa gatagcagag ggtaatggag catacttgta 120 cagcaccaac aactttgtgg ggagacagat atgggagtat gatcctgatg ctggaactcc 180 tgaagagcga ctagaggtcg agaaacttcg agaaacttac aaatataatc tcatcaacaa 240 tgggattcac ccttgtggtg atatgctcat gaggttgcag ctgataaagg agagtgggct 300 ggatcttttg agcataccgc cggtgagact tggagaacaa gaagaagtga attatcaagt 360 agtgacgacg gctgttaaga aagctctgcg gttaaaccgc gcaatccaag ctcacgacgg 420 tcactggcca gctgaaaatg ctggacctat gttttttaca ccacccctca tcatagcgct 480 atacatcagc ggagcaattg acactcatct aacaatacaa cacaagaagg agatgattcg 540 ttttatttac ctccaccaaa acaaagatgg aggatgggga ttctatatag agggacatag 600 cacgatgata gggtcagcac ttagctacgt ggcgttacgt ttgctgggag aagggcctga 660 tgacggcgat ggtgcagtgg agagagcaag aaaatggatc cttgaccatg gtggtgctgc 720 ttctataccc tcctggggta agacttatct tgcggttctt ggggtatacg agtgggaagg 780 gtgtaacccc ctgcccccag aattttggct tttccctgaa gctttacctt atcatccagc 840 aaaaatgtgg tgttactgtc gcacaacata catgccgatg tcgtatttgt atgggaagaa 900 atatcatggt ccaattacgg atcttgttat atctttaaga aaagaaatac accccattcc 960 ttatgagaag ataaattgga acaaacagcg ccataactgt aacaaggagg atctttacta 1020 ccctcatagc tttatacagg atttgctatg ggatggtctt cactatttta ctgaacctat 1080 cattaaaatg tggcccttca ataagttgcg aaagaaaggg atgaaaagag ccattgaact 1140 tatgcgctac ggaggttatg agagcagatt cattaccatt ggatgtgtat ccaagagtct 1200 agatatgatg tgttggtggg cagagaaccc gaatggtcca gaattcaaac atcacttagc 1260 tagagtacct gattacttgt ggcttgcaga ggatggaatg aagatgcaga gttttggtag 1320 tcaattatgg gactgtgttc ttgctactca agctgtcatg tctactggta tggttgatga 1380 atatggggat tgtcttaaga aagcacattt ctatattaaa gaatcacagt gcaagaaaaa 1440 tccgtcagga gattatgcaa gtatgtgccg gtattttaca aaaggatcat ggacattttc 1500 tgatcaagat cagggttggg ttgtctctga ttgcacagct gaagcgctga agtgtctatt 1560 agcactttct caaatgccag aggaaattgc aggggaaaag gcagatgttg agcgattata 1620 tgatgccgta aacgtcctcc tctacttgca aagccctata agtgggggtt ttgccatttg 1680 ggagccacca gttccaagac catacttgca ggtgttgaat ccttcggaga tttttgccga 1740 catcgttgtc gaaaaagagc atacggagtg cacagcatca ataatagcag ctctggtagc 1800 attcaaacgt ttgcatccgg gtcatcggtc gaaagaaata agtgttgcca tcgcaaaagc 1860 tgtacatttt cttgaaggaa aacaattgga agatggttca tggtatggct actggggaat 1920 atgctttttg tatggcacat tttttgcgtt agctgggtta gcttctgtgg gacagactta 1980 tgaaaacagt gaaaccgttc gtaaagctgt taagtttttc ctttctacac aaaatgaaga 2040 aggtggttgg ggagaaagtc ttgaatcatg tccgagcgag atattcacac cattagaagg 2100 aaacagaaca aatttagtac aaacatcatg ggcaatgctt ggtctcatgt ttggtggaca 2160 ggccacgaga gatccaactc cattgcatag agcagcaaag ttattgatta atgcacaatt 2220 gaataacgga gatttccctc agcaggaaac aactggagtg tacatgaaga attgtatgtt 2280 gcattatgcc gagtatagaa atgtatttcc gttatgggca cttggagagt accgcaaacg 2340 cttgtggctc tccaattgaa gtactttggt tccaaaacat atatcgatcc atttataaat 2400 gcatatatat ggggtgtatg tttaagagtc tcaagttatt gtaatcttta tatatattta 2460 ttaattaatt gtaatgtcaa agagaacatt tgaaaacatt tgtagttgct taattgatgc 2520 atatgtcatt gcaatttact tttaaaaaaa aaaaaaaaaa aa 2562 <210> 2 <211> 760 <212> PRT <213> Centella asiatica <400> 2 Met Trp Lys Leu Lys Ile Ala Glu Gly Asn Gly Ala Tyr Leu Tyr Ser 1 5 10 15 Thr Asn Asn Phe Val Gly Arg Gln Ile Trp Glu Tyr Asp Pro Asp Ala 20 25 30 Gly Thr Pro Glu Glu Arg Leu Glu Val Glu Lys Leu Arg Glu Thr Tyr 35 40 45 Lys Tyr Asn Leu Ile Asn Asn Gly Ile His Pro Cys Gly Asp Met Leu 50 55 60 Met Arg Leu Gln Leu Ile Lys Glu Ser Gly Leu Asp Leu Leu Ser Ile 65 70 75 80 Pro Pro Val Arg Leu Gly Glu Gln Glu Glu Val Asn Tyr Gln Val Val 85 90 95 Thr Thr Ala Val Lys Lys Ala Leu Arg Leu Asn Arg Ala Ile Gln Ala 100 105 110 His Asp Gly His Trp Pro Ala Glu Asn Ala Gly Pro Met Phe Phe Thr 115 120 125 Pro Pro Leu Ile Ile Ala Leu Tyr Ile Ser Gly Ala Ile Asp Thr His 130 135 140 Leu Thr Ile Gln His Lys Lys Glu Met Ile Arg Phe Ile Tyr Leu His 145 150 155 160 Gln Asn Lys Asp Gly Gly Trp Gly Phe Tyr Ile Glu Gly His Ser Thr 165 170 175 Met Ile Gly Ser Ala Leu Ser Tyr Val Ala Leu Arg Leu Leu Gly Glu 180 185 190 Gly Pro Asp Asp Gly Asp Gly Ala Val Glu Arg Ala Arg Lys Trp Ile 195 200 205 Leu Asp His Gly Gly Ala Ala Ser Ile Pro Ser Trp Gly Lys Thr Tyr 210 215 220 Leu Ala Val Leu Gly Val Tyr Glu Trp Glu Gly Cys Asn Pro Leu Pro 225 230 235 240 Pro Glu Phe Trp Leu Phe Pro Glu Ala Leu Pro Tyr His Pro Ala Lys 245 250 255 Met Trp Cys Tyr Cys Arg Thr Thr Tyr Met Pro Met Ser Tyr Leu Tyr 260 265 270 Gly Lys Lys Tyr His Gly Pro Ile Thr Asp Leu Val Ile Ser Leu Arg 275 280 285 Lys Glu Ile His Pro Ile Pro Tyr Glu Lys Ile Asn Trp Asn Lys Gln 290 295 300 Arg His Asn Cys Asn Lys Glu Asp Leu Tyr Tyr Pro His Ser Phe Ile 305 310 315 320 Gln Asp Leu Leu Trp Asp Gly Leu His Tyr Phe Thr Glu Pro Ile Ile 325 330 335 Lys Met Trp Pro Phe Asn Lys Leu Arg Lys Lys Gly Met Lys Arg Ala 340 345 350 Ile Glu Leu Met Arg Tyr Gly Gly Tyr Glu Ser Arg Phe Ile Thr Ile 355 360 365 Gly Cys Val Ser Lys Ser Leu Asp Met Met Cys Trp Trp Ala Glu Asn 370 375 380 Pro Asn Gly Pro Glu Phe Lys His His Leu Ala Arg Val Pro Asp Tyr 385 390 395 400 Leu Trp Leu Ala Glu Asp Gly Met Lys Met Gln Ser Phe Gly Ser Gln 405 410 415 Leu Trp Asp Cys Val Leu Ala Thr Gln Ala Val Met Ser Thr Gly Met 420 425 430 Val Asp Glu Tyr Gly Asp Cys Leu Lys Lys Ala His Phe Tyr Ile Lys 435 440 445 Glu Ser Gln Cys Lys Lys Asn Pro Ser Gly Asp Tyr Ala Ser Met Cys 450 455 460 Arg Tyr Phe Thr Lys Gly Ser Trp Thr Phe Ser Asp Gln Asp Gln Gly 465 470 475 480 Trp Val Val Ser Asp Cys Thr Ala Glu Ala Leu Lys Cys Leu Leu Ala 485 490 495 Leu Ser Gln Met Pro Glu Glu Ile Ala Gly Glu Lys Ala Asp Val Glu 500 505 510 Arg Leu Tyr Asp Ala Val Asn Val Leu Leu Tyr Leu Gln Ser Pro Ile 515 520 525 Ser Gly Gly Phe Ala Ile Trp Glu Pro Pro Val Pro Arg Pro Tyr Leu 530 535 540 Gln Val Leu Asn Pro Ser Glu Ile Phe Ala Asp Ile Val Val Glu Lys 545 550 555 560 Glu His Thr Glu Cys Thr Ala Ser Ile Ile Ala Ala Leu Val Ala Phe 565 570 575 Lys Arg Leu His Pro Gly His Arg Ser Lys Glu Ile Ser Val Ala Ile 580 585 590 Ala Lys Ala Val His Phe Leu Glu Gly Lys Gln Leu Glu Asp Gly Ser 595 600 605 Trp Tyr Gly Tyr Trp Gly Ile Cys Phe Leu Tyr Gly Thr Phe Phe Ala 610 615 620 Leu Ala Gly Leu Ala Ser Val Gly Gln Thr Tyr Glu Asn Ser Glu Thr 625 630 635 640 Val Arg Lys Ala Val Lys Phe Phe Leu Ser Thr Gln Asn Glu Glu Gly 645 650 655 Gly Trp Gly Glu Ser Leu Glu Ser Cys Pro Ser Glu Ile Phe Thr Pro 660 665 670 Leu Glu Gly Asn Arg Thr Asn Leu Val Gln Thr Ser Trp Ala Met Leu 675 680 685 Gly Leu Met Phe Gly Gly Gln Ala Thr Arg Asp Pro Thr Pro Leu His 690 695 700 Arg Ala Ala Lys Leu Leu Ile Asn Ala Gln Leu Asn Asn Gly Asp Phe 705 710 715 720 Pro Gln Gln Glu Thr Thr Gly Val Tyr Met Lys Asn Cys Met Leu His 725 730 735 Tyr Ala Glu Tyr Arg Asn Val Phe Pro Leu Trp Ala Leu Gly Glu Tyr 740 745 750 Arg Lys Arg Leu Trp Leu Ser Asn 755 760 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer <400> 3 atgtggaagc tgaagata 18 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer <400> 4 tcaattggag agccacaag 19 <110> REPUBLIC OF KOREA (MANAGEMENT: RURAL DEVELOPMENT ADMINISTRATION) <120> Dammarenediol synthase gene from Centella asiatica L. Urban and          uses according <130> PN09270 <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 2562 <212> DNA <213> Centella asiatica <400> 1 aaagaagatt ttattttatt tttttcagca aaaaaaagtt gaaaaaataa gaaattgata 60 gatcgagcta ggggagatgt ggaagctgaa gatagcagag ggtaatggag catacttgta 120 cagcaccaac aactttgtgg ggagacagat atgggagtat gatcctgatg ctggaactcc 180 tgaagagcga ctagaggtcg agaaacttcg agaaacttac aaatataatc tcatcaacaa 240 tgggattcac ccttgtggtg atatgctcat gaggttgcag ctgataaagg agagtgggct 300 ggatcttttg agcataccgc cggtgagact tggagaacaa gaagaagtga attatcaagt 360 agtgacgacg gctgttaaga aagctctgcg gttaaaccgc gcaatccaag ctcacgacgg 420 tcactggcca gctgaaaatg ctggacctat gttttttaca ccacccctca tcatagcgct 480 atacatcagc ggagcaattg acactcatct aacaatacaa cacaagaagg agatgattcg 540 ttttatttac ctccaccaaa acaaagatgg aggatgggga ttctatatag agggacatag 600 cacgatgata gggtcagcac ttagctacgt ggcgttacgt ttgctgggag aagggcctga 660 tgacggcgat ggtgcagtgg agagagcaag aaaatggatc cttgaccatg gtggtgctgc 720 ttctataccc tcctggggta agacttatct tgcggttctt ggggtatacg agtgggaagg 780 gtgtaacccc ctgcccccag aattttggct tttccctgaa gctttacctt atcatccagc 840 aaaaatgtgg tgttactgtc gcacaacata catgccgatg tcgtatttgt atgggaagaa 900 atatcatggt ccaattacgg atcttgttat atctttaaga aaagaaatac accccattcc 960 ttatgagaag ataaattgga acaaacagcg ccataactgt aacaaggagg atctttacta 1020 ccctcatagc tttatacagg atttgctatg ggatggtctt cactatttta ctgaacctat 1080 cattaaaatg tggcccttca ataagttgcg aaagaaaggg atgaaaagag ccattgaact 1140 tatgcgctac ggaggttatg agagcagatt cattaccatt ggatgtgtat ccaagagtct 1200 agatatgatg tgttggtggg cagagaaccc gaatggtcca gaattcaaac atcacttagc 1260 tagagtacct gattacttgt ggcttgcaga ggatggaatg aagatgcaga gttttggtag 1320 tcaattatgg gactgtgttc ttgctactca agctgtcatg tctactggta tggttgatga 1380 atatggggat tgtcttaaga aagcacattt ctatattaaa gaatcacagt gcaagaaaaa 1440 tccgtcagga gattatgcaa gtatgtgccg gtattttaca aaaggatcat ggacattttc 1500 tgatcaagat cagggttggg ttgtctctga ttgcacagct gaagcgctga agtgtctatt 1560 agcactttct caaatgccag aggaaattgc aggggaaaag gcagatgttg agcgattata 1620 tgatgccgta aacgtcctcc tctacttgca aagccctata agtgggggtt ttgccatttg 1680 ggagccacca gttccaagac catacttgca ggtgttgaat ccttcggaga tttttgccga 1740 catcgttgtc gaaaaagagc atacggagtg cacagcatca ataatagcag ctctggtagc 1800 attcaaacgt ttgcatccgg gtcatcggtc gaaagaaata agtgttgcca tcgcaaaagc 1860 tgtacatttt cttgaaggaa aacaattgga agatggttca tggtatggct actggggaat 1920 atgctttttg tatggcacat tttttgcgtt agctgggtta gcttctgtgg gacagactta 1980 tgaaaacagt gaaaccgttc gtaaagctgt taagtttttc ctttctacac aaaatgaaga 2040 aggtggttgg ggagaaagtc ttgaatcatg tccgagcgag atattcacac cattagaagg 2100 aaacagaaca aatttagtac aaacatcatg ggcaatgctt ggtctcatgt ttggtggaca 2160 ggccacgaga gatccaactc cattgcatag agcagcaaag ttattgatta atgcacaatt 2220 gaataacgga gatttccctc agcaggaaac aactggagtg tacatgaaga attgtatgtt 2280 gcattatgcc gagtatagaa atgtatttcc gttatgggca cttggagagt accgcaaacg 2340 cttgtggctc tccaattgaa gtactttggt tccaaaacat atatcgatcc atttataaat 2400 gcatatatat ggggtgtatg tttaagagtc tcaagttatt gtaatcttta tatatattta 2460 ttaattaatt gtaatgtcaa agagaacatt tgaaaacatt tgtagttgct taattgatgc 2520 atatgtcatt gcaatttact tttaaaaaaa aaaaaaaaaa aa 2562 <210> 2 <211> 760 <212> PRT <213> Centella asiatica <400> 2 Met Trp Lys Leu Lys Ile Ala Glu Gly Asn Gly Ala Tyr Leu Tyr Ser   1 5 10 15 Thr Asn Asn Phe Val Gly Arg Gln Ile Trp Glu Tyr Asp Pro Asp Ala              20 25 30 Gly Thr Pro Glu Glu Arg Leu Glu Val Glu Lys Leu Arg Glu Thr Tyr          35 40 45 Lys Tyr Asn Leu Ile Asn Asn Gly Ile His Pro Cys Gly Asp Met Leu      50 55 60 Met Arg Leu Gln Leu Ile Lys Glu Ser Gly Leu Asp Leu Leu Ser Ile  65 70 75 80 Pro Pro Val Arg Leu Gly Glu Gln Glu Glu Val Asn Tyr Gln Val Val                  85 90 95 Thr Thr Ala Val Lys Lys Ala Leu Arg Leu Asn Arg Ala Ile Gln Ala             100 105 110 His Asp Gly His Trp Pro Ala Glu Asn Ala Gly Pro Met Phe Phe Thr         115 120 125 Pro Pro Leu Ile Ile Ala Leu Tyr Ile Ser Gly Ala Ile Asp Thr His     130 135 140 Leu Thr Ile Gln His Lys Lys Glu Met Ile Arg Phe Ile Tyr Leu His 145 150 155 160 Gln Asn Lys Asp Gly Gly Trp Gly Phe Tyr Ile Glu Gly His Ser Thr                 165 170 175 Met Ile Gly Ser Ala Leu Ser Tyr Val Ala Leu Arg Leu Leu Gly Glu             180 185 190 Gly Pro Asp Asp Gly Asp Gly Ala Val Glu Arg Ala Arg Lys Trp Ile         195 200 205 Leu Asp His Gly Gly Ala Ala Ser Ile Pro Ser Trp Gly Lys Thr Tyr     210 215 220 Leu Ala Val Leu Gly Val Tyr Glu Trp Glu Gly Cys Asn Pro Leu Pro 225 230 235 240 Pro Glu Phe Trp Leu Phe Pro Glu Ala Leu Pro Tyr His Pro Ala Lys                 245 250 255 Met Trp Cys Tyr Cys Arg Thr Thr Tyr Met Pro Met Ser Tyr Leu Tyr             260 265 270 Gly Lys Lys Tyr His Gly Pro Ile Thr Asp Leu Val Ile Ser Leu Arg         275 280 285 Lys Glu Ile His Pro Ile Pro Tyr Glu Lys Ile Asn Trp Asn Lys Gln     290 295 300 Arg His Asn Cys Asn Lys Glu Asp Leu Tyr Tyr Pro His Ser Phe Ile 305 310 315 320 Gln Asp Leu Leu Trp Asp Gly Leu His Tyr Phe Thr Glu Pro Ile Ile                 325 330 335 Lys Met Trp Pro Phe Asn Lys Leu Arg Lys Lys Gly Met Lys Arg Ala             340 345 350 Ile Glu Leu Met Arg Tyr Gly Gly Tyr Glu Ser Arg Phe Ile Thr Ile         355 360 365 Gly Cys Val Ser Lys Ser Leu Asp Met Met Cys Trp Trp Ala Glu Asn     370 375 380 Pro Asn Gly Pro Glu Phe Lys His His Leu Ala Arg Val Pro Asp Tyr 385 390 395 400 Leu Trp Leu Ala Glu Asp Gly Met Lys Met Gln Ser Phe Gly Ser Gln                 405 410 415 Leu Trp Asp Cys Val Leu Ala Thr Gln Ala Val Met Ser Thr Gly Met             420 425 430 Val Asp Glu Tyr Gly Asp Cys Leu Lys Lys Ala His Phe Tyr Ile Lys         435 440 445 Glu Ser Gln Cys Lys Lys Asn Pro Ser Gly Asp Tyr Ala Ser Met Cys     450 455 460 Arg Tyr Phe Thr Lys Gly Ser Trp Thr Phe Ser Asp Gln Asp Gln Gly 465 470 475 480 Trp Val Val Ser Asp Cys Thr Ala Glu Ala Leu Lys Cys Leu Leu Ala                 485 490 495 Leu Ser Gln Met Pro Glu Glu Ile Ala Gly Glu Lys Ala Asp Val Glu             500 505 510 Arg Leu Tyr Asp Ala Val Asn Val Leu Leu Tyr Leu Gln Ser Pro Ile         515 520 525 Ser Gly Gly Phe Ala Ile Trp Glu Pro Pro Val Pro Arg Pro Tyr Leu     530 535 540 Gln Val Leu Asn Pro Ser Glu Ile Phe Ala Asp Ile Val Val Glu Lys 545 550 555 560 Glu His Thr Glu Cys Thr Ala Ser Ile Ile Ala Ala Leu Val Ala Phe                 565 570 575 Lys Arg Leu His Pro Gly His Arg Ser Lys Glu Ile Ser Val Ala Ile             580 585 590 Ala Lys Ala Val His Phe Leu Glu Gly Lys Gln Leu Glu Asp Gly Ser         595 600 605 Trp Tyr Gly Tyr Trp Gly Ile Cys Phe Leu Tyr Gly Thr Phe Phe Ala     610 615 620 Leu Ala Gly Leu Ala Ser Val Gly Gln Thr Tyr Glu Asn Ser Glu Thr 625 630 635 640 Val Arg Lys Ala Val Lys Phe Phe Leu Ser Thr Gln Asn Glu Glu Gly                 645 650 655 Gly Trp Gly Glu Ser Leu Glu Ser Cys Pro Ser Glu Ile Phe Thr Pro             660 665 670 Leu Glu Gly Asn Arg Thr Asn Leu Val Gln Thr Ser Trp Ala Met Leu         675 680 685 Gly Leu Met Phe Gly Gly Gln Ala Thr Arg Asp Pro Thr Pro Leu His     690 695 700 Arg Ala Ala Lys Leu Leu Ile Asn Ala Gln Leu Asn Asn Gly Asp Phe 705 710 715 720 Pro Gln Gln Glu Thr Thr Gly Val Tyr Met Lys Asn Cys Met Leu His                 725 730 735 Tyr Ala Glu Tyr Arg Asn Val Phe Pro Leu Trp Ala Leu Gly Glu Tyr             740 745 750 Arg Lys Arg Leu Trp Leu Ser Asn         755 760 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer <400> 3 atgtggaagc tgaagata 18 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer <400> 4 tcaattggag agccacaag 19  

Claims (8)

서열번호 2의 아미노산 서열로 이루어진, 병풀 유래의 담마레네디올 합성효소(dammarenediol synthase) 단백질.A dammarenediol synthase protein derived from a herbaceous plant, consisting of the amino acid sequence of SEQ ID NO: 2. 제1항의 단백질을 코딩하는 유전자. Gene encoding the protein of claim 1. 제2항에 있어서, 상기 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 유전자. According to claim 2, wherein the gene is a gene, characterized in that consisting of the nucleotide sequence of SEQ ID NO: 1. 제2항의 유전자를 포함하는 재조합 벡터.A recombinant vector comprising the gene of claim 2. 제4항의 재조합 벡터로 형질전환된 숙주 세포.A host cell transformed with the recombinant vector of claim 4. 제5항에 있어서, 상기 숙주 세포는 효모 또는 대장균인 것을 특징으로 하는 형질전환된 숙주 세포. The transformed host cell of claim 5, wherein the host cell is yeast or E. coli. 병풀 유래의 담마레네디올 합성효소 유전자를 포함하는 재조합 벡터로 숙주 세포를 형질전환시켜 담마레네디올 합성효소 유전자를 과발현하는 단계를 포함하는 담마레네디올을 생산하는 방법.A method of producing dammarenediol, comprising overexpressing a dammareenediol synthase gene by transforming a host cell with a recombinant vector comprising a stem-derived dammareene diol synthase gene. 제7항에 있어서, 상기 숙주 세포는 효모 또는 대장균인 것을 특징으로 하는 방법. 8. The method of claim 7, wherein said host cell is yeast or E. coli.
KR1020090125173A 2009-12-16 2009-12-16 Dammarenediol synthase gene from Centella asiatica L. Urban and uses thereof KR101174490B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090125173A KR101174490B1 (en) 2009-12-16 2009-12-16 Dammarenediol synthase gene from Centella asiatica L. Urban and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090125173A KR101174490B1 (en) 2009-12-16 2009-12-16 Dammarenediol synthase gene from Centella asiatica L. Urban and uses thereof

Publications (2)

Publication Number Publication Date
KR20110068292A true KR20110068292A (en) 2011-06-22
KR101174490B1 KR101174490B1 (en) 2012-08-22

Family

ID=44400564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090125173A KR101174490B1 (en) 2009-12-16 2009-12-16 Dammarenediol synthase gene from Centella asiatica L. Urban and uses thereof

Country Status (1)

Country Link
KR (1) KR101174490B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293756A (en) * 2014-09-19 2015-01-21 黄璐琦 Dammarenediol synthase gene of panax japonicus var and applications thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293756A (en) * 2014-09-19 2015-01-21 黄璐琦 Dammarenediol synthase gene of panax japonicus var and applications thereof

Also Published As

Publication number Publication date
KR101174490B1 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
AU2014342939B2 (en) Recombinant production of steviol glycosides
Wang et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts
US10174355B2 (en) Method for glycosylation of ginsenoside using a glycosyltransferase derived from panax ginseng
US20230203458A1 (en) Group of udp-glycosyltransferase for catalyzing carbohydrate chain elongation and application thereof
KR101802547B1 (en) Recombinant Production of Steviol Glycosides
EP2900812B1 (en) Novel udp-glycosyltransferase derived from ginseng and use thereof
KR101098027B1 (en) Ginsenoside glycosidase from Rhodanobacter ginsenosidimutans KCTC22231T and use thereof
CN105087739B (en) A kind of new catalyst system and its application for preparing rare ginsenoside
JP2018516081A (en) Heat treatment to produce glycosides
CN114507676B (en) PgJAR1 gene for regulating ginsenoside synthesis and encoding protein and application thereof
WO2018210208A1 (en) Glycosyltransferase, mutant, and application thereof
WO2021043189A1 (en) Hyoscyamine aldehyde reductase
CN114207108A (en) Genetically modified host cells producing glycosylated cannabinoids
CN111154790B (en) Oxidosqualene cyclase gene GpOSC1 and encoding product and application thereof
CA2867572C (en) Method for producing steviol glycoside
Zhang et al. De novo biosynthesis of oleanane-type ginsenosides in Saccharomyces cerevisiae using two types of glycosyltransferases from Panax ginseng
CN114032223B (en) Esculin and ash bark glycoside glycosyltransferase protein, and coding gene and application thereof
KR101533352B1 (en) Recombinant microorganism with kaurene production ability and method for preparing kaurene using the same
KR101174490B1 (en) Dammarenediol synthase gene from Centella asiatica L. Urban and uses thereof
KR101808749B1 (en) Production method of ginsenoside 20(S)-Rg3 and 20(S)-Rh2 using ginsenoside glycosidase
KR101771969B1 (en) Novel gene promoting biosynthesis of oleanolic acid and ursolic acid and uses thereof
KR101284707B1 (en) Composition for promoting and activating biosynthesis of protopanaxadiol
KR101446391B1 (en) Genes for the Biosynthesis of Protopanaxatriol and Composition for Promoting and Activating Biosynthesis of Protopanaxatriol
CN107929296B (en) Preparation method and application of non-natural ginsenoside
KR20130055217A (en) NOVEL β-GLUCOSIDASE PROTEIN AND USE THEREOF

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant