KR20110067941A - Dna markers for detecting increase of muscle fiber type i within porcine muscle - Google Patents

Dna markers for detecting increase of muscle fiber type i within porcine muscle Download PDF

Info

Publication number
KR20110067941A
KR20110067941A KR1020090124732A KR20090124732A KR20110067941A KR 20110067941 A KR20110067941 A KR 20110067941A KR 1020090124732 A KR1020090124732 A KR 1020090124732A KR 20090124732 A KR20090124732 A KR 20090124732A KR 20110067941 A KR20110067941 A KR 20110067941A
Authority
KR
South Korea
Prior art keywords
muscle
muscle fiber
dna
seq
increase
Prior art date
Application number
KR1020090124732A
Other languages
Korean (ko)
Inventor
홍기창
김준모
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020090124732A priority Critical patent/KR20110067941A/en
Publication of KR20110067941A publication Critical patent/KR20110067941A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A DNA marker for detecting increase of muscle fiber type I is provided to select an individual with improved meat quality. CONSTITUTION: A DNA marker for detecting increase of muscle fiber type I in the porcine muscle comprise 15-500 serial sequence containing 678th T base in a sequence of sequence number 1. A method for confirming the increase of muscle fiber type I comprises: a step of isolating genomic DNA from a pig; a step of amplifying a specific site containing 678th base of PPARGC1A gene exon 8; a step of treating the amplified DNA with AluI; and a step of comparing gene fragments with restriction fragment length polymorphism(RFLP).

Description

돼지의 근육 내 근섬유 타입 I 증가 확인용 DNA 표지인자 {DNA markers for detecting increase of muscle fiber type I within porcine muscle}DNA markers for detecting increase of muscle fiber type I within porcine muscle}

본 발명은 돼지의 근육 내 근섬유 타입 I 증가 확인용 DNA 표지인자에 관한 것으로, 더욱 구체적으로 서열번호 1의 염기서열에서 678번째 T염기를 포함하는 15-500개의 연속서열로 구성되는, 돼지의 근육 내 근섬유 타입 I 증가 여부 확인용 DNA 표지인자에 관한 것이다.The present invention relates to a DNA marker for identifying an increase in muscle fiber type I in pigs, more specifically, consisting of 15-500 consecutive sequences including the 678th T base in SEQ ID NO: 1. The present invention relates to a DNA marker for checking the increase in myofibrillar type I.

오랜 기간 돼지육종은 사료효율과 성장률을 증가시키는 방향으로 이루어져 왔으며, 등지방을 비롯한 지방량을 줄이고 적육비율을 높인 살코기형 돈육생산 방향으로 진행되어 왔다 (Brocks 등, 2000). 현재 적육생산 효율면에서 상당한 발전을 가져왔으나 이는 주로 근세포의 크기 성장에 의한 결과로 해석되고 있으며 (Rehfeldt 등, 2000), 이러한 결과로 스트레스에 민감한 돼지가 발생하고 이상돈육 발생이 증가하는 등 육질의 저하를 가져오게 되었다 (Cameron, 1990). 따라서, 기존의 적육생산능력과 함께 육질을 향상시키기 위한 개량체계의 마련은 시급하다.For a long time, pig breeding has been aimed at increasing feed efficiency and growth rate, and has been progressing towards lean pork production, which has reduced fat and other fats and increased red meat ratio (Brocks et al., 2000). At present, there have been significant developments in red meat production efficiency, but this is mainly interpreted as a result of the growth of muscle cells (Rehfeldt et al., 2000). It caused degradation (Cameron, 1990). Therefore, it is urgent to prepare an improvement system for improving the meat quality together with the existing red meat production capacity.

골격근의 성장과 발달을 이해하는 것은 육용가축의 적육생산량과 육질적 측면에서 매우 중요한 의미를 지니고 있다 (Karlsson 등, 1993). 근육은 근섬유로 이루어져 있으며 근육생산량은 근섬유의 수와 크기에 의해 결정되는데, 출생 전 결정되는 근섬유의 수와 출생 후 근섬유 크기 성장을 통해 적육생산량이 증가하게 된다 (Rehfeldt and Fiedler, 1984). 그러나 육질의 경우는, 근섬유 수와 크기보다는 근섬유조성에 의해 크게 영향을 받는다 (Ryu and Kim, 2005). Understanding the growth and development of skeletal muscle is of great importance in terms of meat production and meat quality of livestock livestock (Karlsson et al., 1993). Muscles are composed of muscle fibers, and muscle production is determined by the number and size of muscle fibers. Red meat production increases through the number of muscle fibers determined before birth and by the growth of muscle fibers after birth (Rehfeldt and Fiedler, 1984). However, in the case of meat quality, it is influenced by the composition of muscle fibers rather than the number and size of muscle fibers (Ryu and Kim, 2005).

돼지의 근육내 근섬유는 ATPase 활성을 담당하는 미오신-중쇄(myosin-heavy chain)의 종류에 따라서 크게 세 가지 형태로 구분이 된다 (Brooke and Kaiser, 1970). 근섬유 타입 I(type I)의 경우는 느린-산화작용(slow-oxidative)의 성질을 띠어 사후 대사속도를 지연시켜 함량이 높을 경우 육질에 긍정적인 영향을 미치게 되며, 이와는 반대로 타입 IIb(type IIb)의 경우는 빠른-당분해(fast-glycolytic)의 성질을 갖게 되어 빠른 사후 대사속도로 인해 함량이 많을 경우 돈육질이 육색이 창백하고, 조직이 흐물거리며 육즙이 많이 나오는(pale, soft, exudative; PSE) 이상육으로 판정될 가능성이 높아진다 (Klont 등, 1998). 나머지 하나인 타입 IIa(type IIa)는 이들 둘과 중간의 성질인 느린-당분해(slow-glycolytic)의 성질을 갖는다. 이들 세 가지 형태의 근섬유형에 따라서 근섬유조성이 결정되어 지며, 돼지의 등심근(longissimus dorsi)은 대부분 백색근 계열로써 타입 IIb의 비율은 80% 정도를 차지하여, 근육내 근섬유 조성 중 타입 I의 비율을 높여주기 위한 연구가 필요하다고 볼 수 있다.Muscle muscle fibers in pigs can be classified into three types according to the type of myosin-heavy chain responsible for ATPase activity (Brooke and Kaiser, 1970). Myofibrillar type I (slow-oxidative) slows down the metabolic rate and has a positive effect on meat quality at high content, on the contrary, type IIb (type IIb) In the case of fast-glycolytic (fast-glycolytic) properties due to the rapid post-metabolism rate is high because the meat content is pale flesh, pale tissue tissue sulky and juicy (pale, soft, exudative; PSE) increases the likelihood of being identified as abnormal (Klont et al., 1998). The other, type IIa, has a slow-glycolytic property that is intermediate to both. Myofibrillar muscle composition is determined according to these three types of myofibrils. Porcine longissimus dorsi is mostly white muscle type, and the proportion of type IIb accounts for about 80%. Research to increase the ratio is needed.

근섬유조성을 포함하는 근섬유특성은 유전적인 요인에 의해 크게 영향을 받 는다. 특히, 돼지의 경우 근세포조성의 유전력이 근섬유형별로 37~58%로서 높고, 육질관련 형질과의 유전상관 관계도 높기 때문에 유전적인 개량을 통해서 각 개체의 근세포조성의 조절이 가능할 것으로 판단되어 진다 (Larzul 등, 1997). DNA 표지인자를 이용한 선발 방법인 MAS(Marker Assisted Selection)는 가축의 육종에 있어서 선발의 정확도를 높이고 개량속도를 증가시켜, 유전적 개량량을 극대화할 수 있는 방법으로써 최근 첨단 분자육종기법으로 각광받고 있다. 근섬유조성의 변이가 대부분 유전적 요인에 의해 발생한다는 점은 MAS를 접목한 개량이 매우 효율적일 수 있음을 시사한다.Muscle fiber properties, including muscle fiber composition, are strongly influenced by genetic factors. In particular, pigs have a high heritability of 37-58% for each myofibrillar type and a high genetic correlation with meat-related traits. Larzul et al., 1997). Marker Assisted Selection (MAS), a selection method using DNA markers, increases the accuracy of selection and increases the rate of improvement in livestock breeding and maximizes genetic improvement. have. Much of the variation in myofibril composition is caused by genetic factors, suggesting that MAS-based improvements can be very efficient.

그러나, 근세포 특성은 도체의 등심근에서만 측정이 가능한 형질로써, 생체에서의 측정이 불가능하다. 따라서, 이를 위주로 한 선발과 개량을 위해서는 도축을 하지 않고도 개체의 근세포 특성을 예측할 수 있는 방법이 필요하다. 바로 이러한 점에서 DNA 표지인자의 개발이 근본적으로 요구되며, 후보유전자의 개발과 유전자 구조 분석을 통한 유전자원확보가 필수적으로 선행되어야 한다.However, myocyte characteristics are traits that can only be measured in the cartilage of the carcass, and cannot be measured in vivo. Therefore, for selection and improvement based on this, there is a need for a method capable of predicting the myocyte characteristics of the individual without slaughter. In this regard, the development of DNA markers is fundamentally required, and the development of candidate genes and the securing of genetic resources through gene structure analysis must be essential.

포유동물의 근섬유 형성은 배발달과정에서 결정되며 이에 관여하는 유전자로 현재 MyoD gene family가 제안되고 있는데 (te Pas 등, 2000), 근섬유조성에 관여하는 유전자에 관한 연구는 미미하다. 근섬유조성을 조절하는 생화학적인 기전은 현재까지 명확하게 밝혀지진 않았지만, 에너지흡수 및 대사에 따라서 좌우되는 것으로 보고되고 있다 (Berchtold 등, 2000). PPARGC1A(Peroxisome proliferator-activated receptor-gamma coactivator-1) 유전자는 PGC1의 전구체로서 적응대사량(adaptive thermogenesis)과 지방세포 분화(adipocyte differentiation)에 깊게 관여함으로써 동물의 에너지대사에 깊게 관여하여 (Puigserver 등, 1998), 가축의 육질관련 후보유전자로 최근 거론되고 있다 (Erkens 등, 2006). 더욱이, 이 유전자가 마우스의 근섬유 타입 I 형성을 유도하는 주요한 역할을 하는 것으로 보고됨으로써 (Lin 등, 2002), 본 발명자들은 PPARGC1A 유전자를 돼지의 근섬유조성, 특히 타입 I 형성에 관여하고 육질향상과 관련이 있는 후보유전자로 선정하였다.MyofD formation in mammals is determined during embryonic development and the MyoD gene family has been proposed as a gene involved in this (te Pas et al., 2000). The biochemical mechanisms that control myofibrillar composition have not been elucidated so far, but have been reported to depend on energy absorption and metabolism (Berchtold et al., 2000). The Perogsome proliferator-activated receptor-gamma coactivator-1 (PPARGC1A) gene is a precursor of PGC1 and is deeply involved in animal metabolism by deeply involved in adaptive thermogenesis and adipocyte differentiation (Puigserver et al., 1998). Recently, it has been recently mentioned as a candidate for meat quality in livestock (Erkens et al., 2006). Moreover, since this gene has been reported to play a major role in inducing myofiber type I formation in mice (Lin et al., 2002), we have found that the PPARGC1A gene is involved in porcine myofiber, in particular type I formation and associated with meat quality improvement. Was selected as a candidate gene.

본 발명에서는 돼지의 요크셔 품종을 대상으로 실제 근섬유형질과 육질형질을 측정하고, PPARGC1A 유전자의 Cys430Ser 다형성좌위에서 유전자형 분석결과를 토대로 연관성 분석을 실시하였다. 이를 통해서 본 발명의 유전자의 해당좌위에서의 근섬유조성 타입 I 증대와 이를 통한 육질향상관련 기능을 규명하였고, 관련 DNA 마커로서의 효용성을 검증하였다.In the present invention, the actual muscle fiber and meat quality was measured in the Yorkshire varieties of pigs, and the correlation analysis was performed based on the genotyping results at the Cys430Ser polymorphic locus of the PPARGC1A gene. Through this, muscle fiber composition type I augmentation at the corresponding locus of the gene of the present invention and a function related to meat quality improvement were identified, and its efficacy as a related DNA marker was verified.

따라서, 본 발명의 주된 목적은 돼지의 PPARGC1A 유전자의 특정부위의 SNP를 이용하여 근섬유 조성 중 근섬유 타입 I의 비율을 증가시킴으로서 육질을 향상시키는 돼지 근섬유 타입 I 관련 DNA 표지인자 및 이를 이용한 SNP 분석용 키트를 제공하는 데 있다.Therefore, the main object of the present invention is to increase the ratio of myofibrillar type I in the myofibrillar composition of the PPARGC1A gene of pigs by increasing the ratio of myofibrillar type I DNA markers related to pig myofiber and SNP analysis kit. To provide.

본 발명의 한 양태에 따르면, 본 발명은 서열번호 1의 염기서열에서 678번째 T염기를 포함하는 15 내지 500개의 연속서열로 구성되는, 돼지의 근육 내 근섬유 타입 I 증가 여부 확인용 DNA 표지인자를 제공한다. 본 발명자들은 서열번호 1로 표시된 PPARGC1A 유전자의 엑손 8에서 돼지의 근육 내 근섬유 조성과 관련된 단염기다형성(single nucleotide polymorphism, SNP)을 찾아내고, 이러한 SNP가 돼지 개체로부터 근육 내 근섬유 조성 및 유전자형과의 연관성을 분석하였다. 상기 DNA 표지인자는 가축의 육질관련 후보유전자로 최근 연구되고 있는 PPARGC1A 유전자의 서열 중 일부로서, 특정부위에서 A 또는 T로 염기가 치환된 SNP(single nucleotide polymorphism) 부위를 포함한다.According to an aspect of the present invention, the present invention comprises a DNA marker for confirming the increase in muscle fiber type I in pigs, consisting of 15 to 500 consecutive sequences including the 678th T base in the nucleotide sequence of SEQ ID NO: 1 to provide. The inventors found a single nucleotide polymorphism (SNP) associated with intramuscular muscle fiber composition in pigs in exon 8 of the PPARGC1A gene represented by SEQ ID NO: 1, and the SNP was associated with intramuscular muscle fiber composition and genotypes from pig individuals. Association was analyzed. The DNA marker is a part of the sequence of the PPARGC1A gene, which has recently been studied as a meat-related candidate gene for livestock, and includes a single nucleotide polymorphism (SNP) site in which a base is substituted with A or T at a specific site.

상기 SNP는 PPARGC1A 유전자의 엑손 8의 Cys430Ser 변이를 일으키게 되는데, 간단히 설명하면, 상기 SNP는 PPARGC1A 유전자의 엑손 8에 존재하고 PPARGC1A 유전자의 전체 아미노산 서열 중 430번째의 아미노산을 코딩하는 유전암호를 AGC 혹은 TGC로 유발하여 각각 Ser 혹은 Cys으로 서로 다른 아미노산을 코팅하는 변이(Cys430Ser)를 발생시키게 된다.The SNP causes a Cys430Ser mutation of exon 8 of the PPARGC1A gene. In brief, the SNP is present in exon 8 of the PPARGC1A gene and the genetic code for encoding the 430th amino acid of the entire amino acid sequence of the PPARGC1A gene is AGC or TGC. Induces a mutation (Cys430Ser) to coat different amino acids with Ser or Cys, respectively.

본 발명은 PPARGC1A 유전자의 전체 서열 중에서 근섬유 타입 I 증가를 일으키는 SNP (A→T 치환) 부위를 밝혀내고 이를 포함하는 DNA 단편의 “돼지의 근육 내 근섬유 타입 I 증가여부 확인용 DNA 표지인자”로서의 신규한 용도에 관한 것이다. The present invention identifies a SNP (A → T substitution) site that causes an increase in myofibrillar type I in the entire sequence of the PPARGC1A gene, and is a novel DNA marker for confirming whether the myofibrillar myofibrillar type I increases in pigs. It is about one use.

상기 PPARGC1A 유전자는 포유동물에서 에너지 대사에 관여한다는 것이 이미 알려져 있고, 또한 가축의 육질관련 후보유전자로 다양한 연구가 진행되고 있으며, 특히 마우스의 근섬유 타입 I 형성을 유도하는 주요한 역할을 하는 것으로도 알려져 있다. 그러나, 돼지의 PPARGC1A 유전자에서 특정 부위의 SNP를 이용하여 근섬유 타입 I이 증가되어 육질이 향상된 개체를 선별하는 방법은 전혀 알려져 있지 않으며, 본 발명자들이 이러한 근섬유 타입 I 증가 관련 SNP를 처음으로 밝혔다.The PPARGC1A gene is known to be involved in energy metabolism in mammals, and various studies have been conducted as a candidate for meat quality in livestock, and in particular, it is known to play a major role in inducing muscle fiber type I formation in mice. . However, there is no known method for selecting an individual having improved muscle fiber type I by using SNPs of a specific region in the pig PPARGC1A gene and improving meat quality, and the inventors first disclosed the SNP related to this muscle fiber type I increase.

본 발명에 있어서, 상기 DNA 단편은 돼지 근섬유 조성과 관련한 PPARGC1A 유전자 엑손 8의 새로운 유전적 변이 부위(SNP site)인 678번째 T염기를 포함하는 DNA 표지인자이다. 이 유전적 변이 부위는 A→T로 염기가 치환되어 유전자의 발현에 차이를 주게 되어 결과적으로 근섬유 조성 중 타입 I의 비율이 증가되어 육질 향상에 영향을 미친다. 상기 DNA 단편의 크기는 전체 유전자의 full length가 아닌한 상기 SNP 부위를 포함하는 어떤 단편 크기일 수 있으나, 바람직하게는 15 내지 수백 염기일 수 있으며, 더욱 바람직하게는 15 내지 500 염기일 수 있다. 특히 15 내지 30 염기의 경우는 상기 SNP를 탐지하기 위한 프로브(probe)나 프라이머로 이 용될 수 있으며, 그 이상의 크기를 갖는 염기의 경우는 본 발명의 실시예에서와 같이, PCR-RFLP 방법으로 탐지하는데 이용될 수 있다. 예를 들어, 도 1과 같이, 상기 SNP 부위를 포함하는 200 bp 크기(서열번호 4)의 DNA 단편을 DNA 표지인자로 이용하였다.In the present invention, the DNA fragment is a DNA marker comprising the 678th T base, which is a new genetic variation (SNP site) of the PPARGC1A gene exon 8 related to pig muscle fiber composition. This genetic mutation site is a substitution of a base from A to T, and the difference in gene expression, resulting in an increase in the proportion of type I in the composition of muscle fibers, which affects meat quality. The size of the DNA fragment may be any fragment size including the SNP site, unless it is the full length of the entire gene, but preferably 15 to several hundred bases, more preferably 15 to 500 bases. Especially 15 to 30 base can be used as a probe (probe) or a primer for detecting the SNP, in the case of a base having a size larger than that in the PCR-RFLP method, as in the embodiment of the present invention It can be used to For example, as shown in Figure 1, the DNA fragment of 200 bp size (SEQ ID NO: 4) including the SNP site was used as a DNA marker.

또한 본 발명에 있어서, 상기 육질의 향상은 pH의 증가 및 육색의 감소를 포함하는 것을 특징으로 한다. 본 발명의 실시예 2에서와 같이, SNP에 따른 유전자형(AA, AT, TT)과 근섬유형질 및 육질의 연관성 분석을 분석하여 T allele를 갖는 AT, TT 유전자형이 근섬유 타입 I이 증가된 근섬유 조성을 가지며 이로 인해 향상된 육질을 나타냄을 확인하였다.In addition, in the present invention, the improvement of meat quality is characterized by including an increase in pH and a decrease in meat color. As in Example 2 of the present invention, the analysis of the correlation analysis of genotypes (AA, AT, TT) and myofiber and meat quality according to SNP, AT, TT genotype with T allele has muscle fiber composition with increased muscle fiber type I This confirmed that the improved meat quality.

본 발명에서, “근섬유 타입 I의 증가”란 SNP로 인한 개체별 유전자형(AA, AT, TT)에 따라 돼지의 근섬유 조성 중 근섬유 타입 IIa, IIb와 비교하여 근섬유 타입 I의 비율이 상대적으로 높게 나타나는 것을 의미한다. 즉, AA 유전자형 개체와 비교하여 근섬유 타입 I의 조성비율이 증가된 상태를 의미한다.In the present invention, "increase in muscle fiber type I" refers to a relatively high proportion of muscle fiber type I compared to muscle fiber type IIa, IIb in the muscle fiber composition of pigs according to individual genotypes (AA, AT, TT) due to SNP Means that. That is, the composition ratio of muscle fiber type I is increased compared to AA genotype individuals.

본 발명에 사용된 “PCR-RFLP” 방법은 가축의 유전적 특성이나 능력개량을 위한 다양한 DNA 분석기술 중, PCR(Polymerase Chain Reaction)기술을 이용한 유전자 단편들의 다형성(Restriction Fragment length polymorphism)을 분석하는 기법으로, 특정 점 돌연변이(point mutation) 부위에 제한효소 인지부위가 존재할 경우, 각 개체의 유전자형 차이에 따라 제한효소에 의해 절단되어 생기는 절편의 길이가 다양하게 나타나는 DNA의 다형성을 비교하여 각 개체의 바람직한 유전자형을 보다 신속하고 정확하게 판정하는 방법이다.The “PCR-RFLP” method used in the present invention analyzes restriction fragment length polymorphism of gene fragments using PCR (Polymerase Chain Reaction) technology among various DNA analysis techniques for improving genetic characteristics or ability of livestock. In this technique, when restriction enzyme recognition sites exist at specific point mutation sites, the polymorphisms of DNAs varying in the length of fragments generated by restriction enzymes according to the genotype difference of each individual are compared. It is a faster and more accurate method of determining the desired genotype.

본 발명에서, 돼지의 육질특성은 고기의 질을 pH, 육색, 근내지방도, 지방색, 조직감, 성숙도 등에 따라 등급을 구분하게 되는데, 이 중 특히 pH와 육색은 돼지고기의 육질 특성을 나타내는데 중요한 판별 기준이 된다. 최근 돼지고기의 가격이 급등하고 있기 때문에 육질이 우수한 돼지를 선발하고 육종 및 생산함으로써 품질이 향상된 고급육의 개발이 중요하다. 따라서 본 발명의 DNA 표지인자를 이용하면 근섬유 타입 I이 증가된 개체를 조기에 진단하고 선별하여 육질이 향상된 고급육을 손쉽게 선별할 수 있다.In the present invention, the meat properties of pigs are classified into grades of meat quality according to pH, meat color, intramuscular fat degree, fat color, texture, maturity, etc. Among them, pH and meat color are particularly important criteria for indicating meat quality of pork. Becomes Since the price of pork is soaring recently, it is important to develop high quality meat with improved quality by selecting, breeding and producing pigs with excellent meat quality. Therefore, by using the DNA marker of the present invention, early diagnosis and screening of individuals with increased muscle fiber type I can easily select high-quality meat with improved meat quality.

본 발명의 다른 양태에 따르면, 본 발명은 서열번호 2와 서열번호 3으로 표시된 올리고뉴클레오티드로 구성되는, 돼지 PPARGC1A 유전자의 근육 내 근섬유 타입 I 증가 관련 SNP를 탐색하기 위한 프라이머를 제공한다. 본 발명의 실시예에서는 Genebank (accession no. AY484500)에 등록된 유전자 서열에 기초하여 본 발명의 PPARGC1A 유전자에 존재하는 SNP를 탐색할 수 있는 프라이머를 제작하였다. 본 발명의 프라이머는 종래 밝혀지지 않은 SNP를 포함하는 유전자 단편을 증폭하기 위한 것으로, 돼지 PPARGC1A 유전자 서열 중 특정 부위(서열번호 1에서 678번째 염기)에서 SNP를 포함하는 유전자 단편을 제조할 수 있게 해준다.According to another aspect of the present invention, the present invention provides a primer for searching for SNPs related to muscle fiber type I increase in muscle of the porcine PPARGC1A gene, consisting of oligonucleotides represented by SEQ ID NO: 2 and SEQ ID NO: 3. In the embodiment of the present invention, a primer for searching for SNP present in the PPARGC1A gene of the present invention was prepared based on the gene sequence registered in Genebank (accession no. AY484500). The primers of the present invention are for amplifying gene fragments containing SNPs, which are not known in the prior art, and enable the preparation of gene fragments containing SNPs at specific sites (SEQ ID NOs: 1 to 678th base) in the porcine PPARGC1A gene sequence. .

본 발명의 다른 양태에 따르면, 본 발명은 상기 프라이머와 PCR 반응혼합물 및 RFLP 분석용 제한효소인 AluI을 포함하는 돼지의 근육 내 근섬유 타입 I 증가 관련 SNP 분석용 키트를 제공한다. 본 발명의 SNP 분석용 키트는 PCR-RFLP 기법을 이용하는 것으로, PPARGC1A 유전자의 발현 조절 즉, 근섬유 조성에 관여하는 유전자의 다양한 발현을 분석하기 위하여 특정한 제한효소인 AluI을 포함한다. 이러한 특정 제한효소는 본 발명자들이 근섬유 조성의 변화를 일으키는 SNP를 밝혀내고 이 SNP에 기초하여 선택된 것이다. 따라서 본 발명의 SNP를 탐색하기 위한 키트는 상기 구성요소를 반드시 포함하여야 한다.According to another aspect of the present invention, the present invention provides a kit for SNP analysis related to muscle fiber type I increase in pigs comprising Alu I, a primer and a PCR reaction mixture and a restriction enzyme for RFLP analysis. The SNP analysis kit of the present invention uses a PCR-RFLP technique, and includes a specific restriction enzyme Alu I to analyze various expressions of genes involved in the regulation of expression of PPARGC1A gene, that is, the muscle fiber composition. Such specific restriction enzymes have been selected by the inventors to identify SNPs that cause changes in muscle fiber composition. Therefore, the kit for searching the SNP of the present invention must include the above components.

본 발명의 실시예에서는 구체적으로, 본 발명의 상기 SNP 부위를 인식할 수 있는 제한효소인 AluI의 처리에 따라서 다르게 나타나는 밴드 패턴을 파악하여 유전자형을 구분하였다. 예를 들어, 서열번호 2와 서열번호 3의 프라이머로 증폭하였을 경우 유전자형은 AA, AT, TT로 나타나며, A allele는 61 bp, 60 bp, 31 bp, 27 bp, 21 bp로, T allele는 121 bp, 31 bp, 27 bp, 21 bp로 밴드가 나타남을 확인하였다 (도 1 참조).In the embodiment of the present invention, genotypes were distinguished by grasping a band pattern appearing differently according to the treatment of Alu I, a restriction enzyme capable of recognizing the SNP site of the present invention. For example, when amplified by primers of SEQ ID NO: 2 and SEQ ID NO: 3, the genotypes are AA, AT, TT, A allele is 61 bp, 60 bp, 31 bp, 27 bp, 21 bp, T allele is 121 It was confirmed that the band appeared at bp, 31 bp, 27 bp, 21 bp (see FIG. 1).

본 발명의 다른 양태에 따르면, 본 발명은 하기 단계들을 포함하는 돼지의 근육 내 근섬유 타입 I 증가여부를 확인하는 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for determining whether intramuscular muscle fiber type I increase in pigs comprises the following steps:

a) 돼지로부터 게노믹 DNA를 분리하는 단계;a) separating genomic DNA from pigs;

b) 상기 a)단계의 DNA를 주형으로 하여 서열번호 1로 표시된 PPARGC1A 유전자 엑손 8의 678번째 염기를 포함하는 특정부위를 증폭시키는 단계;b) amplifying a specific site including the 678th base of the PPARGC1A gene exon 8 represented by SEQ ID NO: 1 using the DNA of step a) as a template;

c) 상기 b)단계에서 증폭된 DNA를 제한효소 AluI으로 처리하는 단계; 및c) treating the DNA amplified in step b) with restriction enzyme Alu I; And

d) 상기 c)단계에서 얻어진 유전자 단편들에서 다형성(RFLP; restriction fragment length polymorphism)을 비교하는 단계.d) comparing the restriction fragment length polymorphism (RFLP) in the gene fragments obtained in step c).

본 발명의 방법에서, 상기 b)단계에서 서열번호 2와 서열번호 3으로 표시된 프라이머를 이용하여 증폭시키는 것을 특징으로 한다. 상기 b)단계의 DNA 증폭은 PPARGC1A 유전자 엑손 8의 678번째 염기인 SNP가 포함된 특정부위를 증폭시킬 수 있는 어떤 프라이머일 수 있으나, 바람직하게는 서열번호 2와 서열번호 3으로 표시된 올리고뉴클레오티드로 구성된 프라이머를 이용하여 증폭시킬 수 있다.In the method of the present invention, characterized in that the amplification using the primers shown in SEQ ID NO: 2 and SEQ ID NO: 3 in step b). The DNA amplification of step b) may be any primer capable of amplifying a specific region including SNP, which is the 678th base of the PPARGC1A gene exon 8, but is preferably composed of oligonucleotides represented by SEQ ID NO: 2 and SEQ ID NO: 3 Amplification can be accomplished using primers.

본 발명의 방법에서, 상기 유전자 단편들의 다형성은 상기 SNP 부위를 인식할 수 있는 어떠한 제한효소로 처리하는 것이 가능하나, 바람직하게는 제한효소 AluI으로 처리하는 것이 적당하다. 본 발명은 상기 SNP 부위 인식에서 표지유전자를 한 번의 PCR 반응과 효소처리로서 탐색하고 진단해 낼 수 있는 가장 효율적인 방법의 하나로 PCR-RFLP 방법을 이용한 탐색기법을 개발하였다. 구체적으로, 본 발명의 상기 SNP 부위를 인식할 수 있는 제한효소인 AluI의 처리에 따라 다르게 나타나는 밴드 패턴을 파악하여 유전자형을 구분하였다.In the method of the present invention, the polymorphism of the gene fragments can be treated with any restriction enzyme capable of recognizing the SNP site, but it is preferable to treat with the restriction enzyme Alu I. The present invention has developed a search method using the PCR-RFLP method as one of the most efficient methods for detecting and diagnosing a marker gene as a single PCR reaction and enzyme treatment in SNP site recognition. Specifically, genotypes were distinguished by grasping band patterns that appear differently according to the treatment of Alu I, a restriction enzyme capable of recognizing the SNP site of the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.

실시예 1. 돼지 사육 및 유전자형 분석Example 1 Pig Breeding and Genotyping

실험에 사용된 돼지는 공시돈으로 총 152두의 요크셔(Yorkshire) 순종 돼지 가 사용되었고 (거세 수컷 54, 암컷 98), 같은 농장의 서로 다른 우리에서 동일한 사료를 먹여 사육되었다. 각각 172.2±6.22, 174.6±5.15와, 176.6±9.01 일령시에 세 번에 걸쳐서 한국 등급판정관리 아래 표준적으로 산업 도살장에서 도살되었다. The pigs used in the experiments were a total of 152 Yorkshire purebred pigs (castration male 54 and female 98) as feed pigs and were fed with the same feed in different cages on the same farm. Three times at 172.2 ± 6.22, 174.6 ± 5.15, and 176.6 ± 9.01 days of age, respectively, they were slaughtered in industrial slaughterhouses under the Korean grading control.

게노믹 DNA는 DNA 정제 키트(DNA isolation kit; G-DexTMII, Intronbio., Korea)를 사용하여 등심근(longissimus dorsi)의 근육 샘플에서 채취하였고, 돼지의 PPARGC1A 유전자의 exon 8에 있는 Cys430Ser 다형성은 Kunej et al(2005)의 PCR-RFLP 방법으로 유전자형을 분석하였다.Genomic DNA was collected from muscle samples of the longissimus dorsi using a DNA isolation kit (G-DexTMII, Intronbio., Korea), and the Cys430Ser polymorphism in exon 8 of the pig PPARGC1A gene was Kunej. Genotyping was performed by the PCR-RFLP method of et al (2005).

PCR 반응 시 사용된 프라이머는 GenBank (Accession no. AY484500)(서열번호 1)에 등록된 서열에 기초하여 각각 forward primer (5'-TAAAGATGCCGCCTCTGACT-3')(서열번호 2) 및 reverse primer (5'-CTGCTTCGTCGTCAAAAACA-3')(서열버호 3)로 제작하여 이를 총 부피 20 μl의 PCR 반응을 위해 1 μl씩 첨가하였고, 그 외 반응 첨가물은 게노믹 DNA 100 ng, dNTP mix(각 0.25 mM), 10 x PCR 버퍼(300 mM tris-HCl, 300 mM Salts consisting of K+ and NH4, 20 mM Mg2+), 및 DNA 중합효소 1.25 U (i-MaxTM II, Intronbio., Korea)였다.The primers used in the PCR reaction were forward primer (5'-TAAAGATGCCGCCTCTGACT-3 ') (SEQ ID NO: 2) and reverse primer (5'-) based on the sequence registered in GenBank (Accession no. AY484500) (SEQ ID NO: 1), respectively. CTGCTTCGTCGTCAAAAACA-3 ') (SEQ ID NO: 3) and a total volume of 20 μl 1 μl was added for PCR reaction, and the other reaction additives were 100 ng of genomic DNA, dNTP mix (0.25 mM each), 10 × PCR buffer (300 mM tris-HCl, 300 mM Salts consisting of K + and NH 4). , 20 mM Mg 2+ ), and DNA polymerase 1.25 U (i-MaxTM II, Intronbio., Korea).

PCR 반응에는 Mastercycler gradient(Eppendorf Co., Germany) 기기를 사용하였고, PCR 반응조건은 94 ℃에서 10분간 pre-denaturation한 후; 94℃에서 denaturation 1분, 61℃에서 annealing 1분, 72℃에서 extension 40초를 1 cycle로 하여 30 cycle을 반복한 후; 마지막으로 72℃에서 10분으로 PCR 반응을 종료하였다.For the PCR reaction, a Mastercycler gradient (Eppendorf Co., Germany) instrument was used, and PCR reaction conditions were pre-denaturated at 94 ° C. for 10 minutes; 1 cycle of denaturation at 94 ° C. for 1 minute, annealing at 61 ° C. for 1 minute, and extension of 40 seconds at 72 ° C. for 1 cycle; Finally, the PCR reaction was terminated at 72 ° C. for 10 minutes.

이렇게 확보된 PPARGC1A 유전자의 단편 (도 2)을 restriction mapper software program (http://www.restrictionmapper.org/)을 이용하여 찾아낸 AluI 제한효소(restriction endonuclease)로 처리하였다.A fragment of the PPARGC1A gene thus obtained (FIG. 2) was treated with an Alu I restriction enzyme (restriction endonuclease) found using a restriction mapper software program (http://www.restrictionmapper.org/).

AluI 제한효소 처리 첨가물은 AluI enzyme 2 μl (2 unit/μl; New England Biolabs, USA), 10 x Enzyme buffer 1.5 μl, 10 x BSA 1.5 μl, 10 x S-adenosylmethionine(SAM, 200㎛/㎕) 1.5 μl, ddH2O 5.5 μl, PCR product 3 μl로 총 volume이 15 μl였다. 이 혼합물을 25℃ Incubator에서 약 16시간 동안 반응시키고, PAGE(Poly-acrylamide Gel Electrophoresis)를 이용하여 그 밴드 패턴을 확인하였다 (도 1). Alu I restriction enzyme treatment additives include Alu I enzyme 2 μl (2 unit / μl; New England Biolabs, USA), 10 x Enzyme buffer 1.5 μl, 10 x BSA 1.5 μl, 10 x S-adenosylmethionine (SAM, 200 μm / μl ) The total volume was 15 μl with 1.5 μl, ddH 2 O 5.5 μl and PCR product 3 μl. The mixture was reacted in a 25 ° C. incubator for about 16 hours, and its band pattern was confirmed using poly-acrylamide gel electrophoresis (PAGE) (FIG. 1).

상기 PCR 반응 혼합물 5 마이크로리터를 2.5 U의 제한효소 AluI (New England Biolabs, USA)을 포함하는 5 μl의 반응혼합물에 첨가하였다. 반응(digestion)은 37℃에서 밤새 수행하였으며, DNA 단편들은 2% 아가로즈 겔 상의 1 x TAE 버퍼에서 30분간 100V로 분리하여 그 밴드 패턴을 확인하였다 (도 1 참조). 제한 부위(restriction site)의 유전자형은 소화되지 않은(undigested) 대립유전자는 T allele, 소화된(digested) 대립유전자는 A allele로 나타내었다. 5 microliters of the PCR reaction mixture to 2.5 U restriction enzyme Alu I 5 μl of reaction mixture containing (New England Biolabs, USA) was added. Digestion was performed overnight at 37 ° C., and DNA fragments were separated at 100 V for 30 min in 1 × TAE buffer on 2% agarose gel to confirm the band pattern (see FIG. 1). The genotype of the restriction site is indicated by the T allele for the undigested allele and A allele for the digested allele.

도 1은 PPARGC1A 유전자의 exon 8번에 위치한 AluI site에 대한 PCR-RFLP 단편을 나타낸다. 사이즈 마커는 1kb plus ladder size marker(Invitrogen, USA)를 이용하였다. 200 bp의 PCR product(서열번호 4)는 제한효소 AluI에 의해 121 bp와 31 bp, 27 bp, 21 bp의 단편이 만들어진다 (TT유전자형). 31 bp, 27 bp, 21 bp의 단편은 모든 유전자형에서 동일하게 나타나며, AA 유전자형의 경우 121 bp가 절단되어 60 bp와 61 bp의 단편이 만들어진다. 또한 이형접합체(AT)의 경우 121 bp와 60 bp, 61 bp의 단편이 모두 나타난다. 겔 로딩 특성상 60 bp와 61 bp의 두 절편이 하나의 밴드로 나타나며, 31 bp, 27 bp, 21 bp의 절편도 하나의 밴드로 나타나는데 유전자형 구분 시에는 영향을 주지 않는다.1 shows a PCR-RFLP fragment for an Alu I site located at exon 8 of the PPARGC1A gene. As a size marker, 1kb plus ladder size marker (Invitrogen, USA) was used. The 200 bp PCR product (SEQ ID NO: 4) produced 121 bp, 31 bp, 27 bp, and 21 bp fragments (TT genotype) by restriction enzyme Alu I. The fragments of 31 bp, 27 bp and 21 bp appear identical in all genotypes, and in the AA genotype, 121 bp are cleaved to produce 60 bp and 61 bp fragments. In the case of heterozygotes (AT), both 121 bp, 60 bp, and 61 bp fragments appear. Due to the gel loading characteristics, two segments of 60 bp and 61 bp appear as one band, and segments of 31 bp, 27 bp and 21 bp also appear as one band.

공시돈인 총 152두 요크셔(Yorkshire) 품종의 유전자형 분석결과에 대하여, 돼지 PPARGC1A 유전자의 Cys430Ser 좌위에서의 대립유전자와 유전자형 빈도를 하기 표 1에 나타내었다. 유전자형 빈도(Genotype frequency)는 AT 유전자형을 가진 개체가 가장 높았으며, 대립유전자(allele)는 A allele과 T allele이 유사한 빈도로 분포하였다.For genotyping results of a total of 152 yolkshire varieties, alleles and genotype frequencies at the Cys430Ser locus of the pig PPARGC1A gene are shown in Table 1 below. The genotype frequency was highest in individuals with AT genotype, and alleles were similarly distributed between A and T allele.

[표 1]. 요크셔 품종에서 PPARGC1A 유전자의 Cys430Ser 다형성(polymorphism)에 대한 유전자형 및 대립유전자 빈도TABLE 1 Genotype and Allele Frequency for Cys430Ser Polymorphism of PPARGC1A Gene in Yorkshire Varieties

Figure 112009077465114-PAT00001
Figure 112009077465114-PAT00001

N, number of pigs.N, number of pigs.

실시예 2. 유전자형과 근섬유형질 및 육질의 연관성 분석Example 2. Analysis of association between genotype, muscle fiber and meat quality

1) 근섬유특성 분석1) muscle fiber characteristics analysis

근섬유특성 분석을 위하여, 사후 45분이 지난 8번 흉추의 등심근의 근육샘플을 수집하였고, 0.5-×0.5-×1.0-cm의 조각으로 자르고, 액체질소로 재빠르게 얼리고, 분석 전까지는 -80℃에서 보관되었다. 횡단부분(10 μm thick)은 20℃상에서 크라이오스태트(cryostat; CM1850, Leica, Germany) 기계로 준비되었고, 근섬유형 식별 분석을 위해 타입 I, IIa와 IIb 섬유를 프리인큐베이션(acid preincubation, pH 4.35)을 처리한 액토미오신(actomyosin) ATPase 방법으로 염색하여 분류하였다. 모든 샘플은 CCD 카메라(charge-coupled device color camera; IK-642K, Toshiba, Japan)와 이미지 분석 시스템(the image analysis system; Image-Pro Plus, Media Cybernetics, USA) 장치를 이용하여 근섬유 특성이 분석되었다. 근섬유 밀도(표 2의 Fiber number per unit area)는 섬유당 mm2 당 평균 근섬유수로 계산되었다. 총 섬유수(total fibers mumbers)와 섬유밀도는 등심근 단면적(loin eye area, cm2)을 곱해서 추정하였다. 결과는 하기 표 2에 나타내었다.For muscle fiber characterization, 45 minutes post mortem muscle samples of the dorsum muscles of the thoracic vertebrae were collected, cut into pieces of 0.5- × 0.5- × 1.0-cm, quickly frozen with liquid nitrogen, and -80 ° C until analysis. Were kept at. The transverse section (10 μm thick) was prepared on a cryostat (CM1850, Leica, Germany) machine at 20 ° C. and preincubated with type I, IIa and IIb fibers for myofiblot identification analysis (acid preincubation, pH 4.35). ) Was stained and classified using the actomyosin ATPase method. All samples were characterized by muscle fiber characterization using a CCD camera (charge-coupled device color camera; IK-642K, Toshiba, Japan) and an image analysis system (Image-Pro Plus, Media Cybernetics, USA). . Muscle fiber density (Fiber number per unit area in Table 2) was calculated as the average number of muscle fibers per mm 2 per fiber. Total fibers mumbers and fiber density were estimated by multiplying the loin eye area (cm 2 ). The results are shown in Table 2 below.

2) 육질 분석2) meat analysis

근육의 pH는 사후 45분에 스피어-형 전극(spear-type electrode)의 사용으로 등뼈 13번/14번 부분에서 측정되었다. 육색(Lightness)은 색도계(chromameter; CR-300, Minolta Camera Co., Japan)를 사용하여 등심근의 사후 45분경에 측정하였다. 유리육즙량(drip loss)은 2℃에서 48시간 동안 플라스틱 백에서 표면에 있는 근육 샘플의 양의 차이를 측정하는 방법으로 분석되었다 (Honikel 1987). 결과는 하기 표 2에 나타내었다.Muscle pH was measured at spine 13/14 at 45 minutes post mortem using a spear-type electrode. Lightness was measured at 45 minutes post mortem muscle of the sirloin using a colorimeter (CR-300, Minolta Camera Co., Japan). Drip loss was analyzed by measuring the difference in the amount of muscle sample on the surface in a plastic bag for 48 hours at 2 ° C (Honikel 1987). The results are shown in Table 2 below.

3) 유전자형과 형질과의 연관성 분석3) Analysis of association between genotype and trait

유전자형과 형질과의 연관성 분석을 위한 일반 선형분석모델은 다음과 같았다. 모델: yijklm = μ + Gi + Sj +Pk + eijkl, where yijklm represented the observation, μ 는 집단 평균, Gi는 유전자형 i에 따른 고정효과, Sj는 성별 j에 따른 고정효과, Pk는 도축시기 k에 따른 고정효과, 그리고 eijkl는 임의오차이다. 유의차는 평균값(mean values)의 표준오차로 구분했고, 최소자승법(least squares means)을 이용하였다. 근섬유형끼리 발생하는 70% 이상의 조성차로 인하여 연관성분석시에는 대수변환과 각도변환법을 적용하였다. 통계 프로그램은 SAS 9.13 (SAS Institute Inc., 2001)으로 사용하였다.The general linear analysis model for the association between genotype and trait was as follows. Model: y ijklm = μ + G i + S j + P k + e ijkl, where y ijklm represented the observation, μ the population mean, G i is a fixed effect, S j is a fixed effect of sex j according to the genotype i , P k is the fixed effect of slaughter time k, and e ijkl is random error. Significant differences were divided by standard errors of mean values, and least squares means were used. Algebraic and angular transformations were applied in the correlation analysis due to composition differences of more than 70%. The statistical program was used as SAS 9.13 (SAS Institute Inc., 2001).

유전자형과 근섬유형질 및 육질등의 측정형질과의 연관성 분석결과는 하기 표 2에 나타내었다. 분석결과 나타난 근섬유조성 중 타입 I 수(type I number)(P < 0.01)와 area (P < 0.05) 에서의 유전자형간의 유의적인 차이는 PPARGC1A의 타입 I 형성과 관련한 기능을 입증해 줄 수 있으며, 근섬유크기 (CSA of fibers, cross-sectional area of fibers)와 단위면적당 근섬유수 (fiber number per units) 등에서 유의적인 차이(P < 0.05)가 관찰되어짐으로써, 본 발명의 후보유전자가 근섬유특성과 관련하여 깊은 관련이 있음을 확인할 수 있었다.The results of the correlation analysis between genotype and measurement traits such as muscle fiber quality and meat quality are shown in Table 2 below. Significant differences between genotypes in type I number (P <0.01) and area (P <0.05) of the myofibrillar composition showed the function related to type I formation of PPARGC1A. Significant differences (P <0.05) were observed in the size (CSA of fibers, cross-sectional area of fibers) and fiber number per units, suggesting that the candidate gene of the present invention was deeply related to muscle fiber properties. Relevant.

[표 2]. 요크셔 돼지에서 Cys430Ser 다형성이 근섬유 특성 및 육질 특성에 미치는 영향TABLE 2 Effect of Cys430Ser Polymorphism on Muscle Fiber Quality and Meat Quality in Yorkshire Pigs

Figure 112009077465114-PAT00002
Figure 112009077465114-PAT00002

a, b Least-square means and their standard errors within a row with no common superscript significantly differ. a, b Least-square means and their standard errors within a row with no common superscript significantly differ.

Levels of significance: NS = not significance, † P<0.1, *P<0.05, **P<0.01, ***P<0.001.Levels of significance: NS = not significance, † P <0.1, * P <0.05, ** P <0.01, *** P <0.001.

1 N showed in bracket is the number of pigs genotyped. 1 N showed in bracket is the number of pigs genotyped.

2 Cross-sectional area. 2 Cross-sectional area.

표 2의 결과에서, 유전자형에 따른 각 개체들에서 총 섬유수(total fibers number)는 차이가 없었고, 근섬유 하나 당 섬유의 크기를 나타내는 CSA of fibers는 TT 유전자형에서 크게 나타났으며 단위 면적당 섬유수(fiber number per unit area)도 TT 유전자형에서 크게 나타났다. 섬유 수 조성(fiber number composition)은 T allele를 갖는 AT, TT 유전자형에서 근섬유 타입 I이 높게 나타났으며 섬유 면적 조성(fiber area composition)도 AT, TT 유전자형에서 타입 I이 높게 나타났다. 이는 근섬유 조성과 관련하여 AT, TT 유전자형이 타입 I의 증가된 개체임을 의미하는 것이다. 또한 육질 특성(meat quality traits)에서는, AT, TT 유전자형이 육질의 가장 중요한 특성인 pH는 높고 육색(lightness)은 나타남으로써 향상된 육질을 갖는 개체로 판단할 수 있었다. 따라서 본 발명의 돼지 PPARGC1A 유전자의 Cys430Ser 다형성, 즉 서열번호 1의 678번째에서 A염기가 T염기로 치환(substitution)된 경우 근섬유 타입 I이 증가하고 육질이 향상된 것으로 판단할 수 있으므로, 본 발명의 SNP가 근섬유 타입 I 증가 여부를 확인하는 DNA 표지인자로서 사용될 수 있음을 증명하였다.In the results of Table 2, there was no difference in the total fibers number in each individual according to the genotype, and the CSA of fibers representing the size of fibers per muscle fiber was large in the TT genotype and the number of fibers per unit area ( Fiber number per unit area was also significant in the TT genotype. The fiber number composition showed a high muscle fiber type I in the AT and TT genotypes with T allele and a high fiber type I type in the AT and TT genotypes. This means that the AT, TT genotype is an increased individual of type I with respect to muscle fiber composition. In terms of meat quality traits, the AT and TT genotypes could be judged as individuals with improved meat quality by showing high pH and lightness, the most important characteristics of meat quality. Therefore, the Cys430Ser polymorphism of the porcine PPARGC1A gene of the present invention, that is, when the A base is substituted with the T base in the 678th sequence of SEQ ID NO: 1 can be judged that muscle fiber type I is increased and the meat quality is improved. Has been shown to be able to be used as a DNA marker to check for increased muscle fiber type I.

이상에서, 상기와 같은 타입 I 근섬유 수와 크기의 조성에 있어서 Cys430Ser 다형성은 육질의 특성과도 밀접하게 연관되어 있었다. 이는 유전자형 간에 따라 사후 45분 등심근의 pH (P < 0.001)와 육색 (P < 0.01)에 유의적인 차이를 보이는 것으로부터 확인할 수 있었으며, 타입 I의 수나 크기의 조성이 작은 AA 유전형 그룹은 상대적으로 타입 I의 조성이 큰 AT, TT 유전형 그룹보다 pH는 낮고, 밝기는 더 높았다. 이와 같은 본 발명의 결과와 유사하게, 이전의 연구결과들은 타입 I 근섬유 수와 크기 조성에서의 증가는 사후 45분 등심근 pH 증가와 육색 감소와 관련이 있다고 보고한 바 있다 (Ryu & Kim 2005; Ryu et al. 2008). 또한, PSE 같은 이상돈육은 일반적인 돈육보다 낮은 pH, 높은 밝기, 높은 사후 대사율을 가지는 것으로 보고되었다 (Ryu & Kim 2006). 따라서 본 발명에 따라 타입 I이 증가된 개체인 AT, TT 유전자형은 향상된 육질을 나타내는 것으로 판단할 수 있다.In the above, Cys430Ser polymorphism was closely related to meat quality in the composition of type I muscle fibers. It was confirmed that the genotype showed significant difference in pH (P <0.001) and flesh color (P <0.01) of the ventricular myocardium after 45 minutes. Type I had a lower pH and higher brightness than the larger AT and TT genotyping groups. Similar to the results of the present invention, previous studies have reported that the increase in the number and size composition of type I muscle fibers is associated with a 45-minute increase in mesenchymal pH and reduction in color (Ryu & Kim 2005; Ryu et al. 2008). In addition, abnormal pork such as PSE has been reported to have lower pH, higher brightness, and higher post-mortem metabolic rate than normal pork (Ryu & Kim 2006). Therefore, the AT, TT genotypes of the type I increased individuals according to the present invention can be determined to exhibit improved meat quality.

이상 설명한 바와 같이, 본 발명에 따르면 PPARGC1A 유전자의 엑손 8의 Cys430Ser 변이는 돼지 등심근(longissimus dorsi) 근육의 타입 I 근섬유 형성에 영향을 미치는 것으로 판단할 수 있으며, 이러한 근섬유 조성 변화 특히, 타입 I 조성의 변화가 근육의 사후대사에 영향을 미쳐 최종 육질에도 영향을 주는 것으로 유추할 수 있다. 따라서, 본 발명의 유전적 변이(SNP)는 돼지의 근섬유 조성과 관련한 기능을 갖으며, 이러한 특성을 통해서 육질개량과 관련한 DNA 마커로서 유용할 것으로 예상된다.As described above, according to the present invention, the Cys430Ser mutation of exon 8 of the PPARGC1A gene can be judged to affect the type I muscle fiber formation of porcine longissimus dorsi muscles. It can be inferred that the change in affects the post-metabolism of muscles and affects the final meat quality. Therefore, the genetic variation (SNP) of the present invention has a function related to the muscle fiber composition of pigs, and is expected to be useful as a DNA marker related to meat improvement through this property.

[참고문헌][references]

Berchtold, M. W., H. Brinkmeier, et al. (2000). "Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease." Physiol. Rev. 80(3): 1215-1265.Berchtold, MW, H. Brinkmeier, et al. (2000). "Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease." Physiol. Rev. 80 (3): 1215-1265.

Brocks, L., R. E. Klont, et al. (2000). "The effects of selection of pigs on growth rate vs leanness on histochemical characteristics of different muscles." J. Anim Sci. 78(5): 1247-1254.Brocks, L., RE Klont, et al. (2000). "The effects of selection of pigs on growth rate vs leanness on histochemical characteristics of different muscles." J. Anim Sci. 78 (5): 1247-1254.

Cameron, N., P. Warris, et al. (1990). "Comparison of Duroc and British Landrace pigs for meat and eating quality." Meat Sci 27: 227-247.Cameron, N., P. Warris, et al. (1990). "Comparison of Duroc and British Landrace pigs for meat and eating quality." Meat Sci 27: 227-247.

Erkens, T., M. Van Poucke, et al. (2006). "Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A." BMC Biotechnol 6: 41.Erkens, T., M. Van Poucke, et al. (2006). "Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A." BMC Biotechnol 6: 41.

Honikel, K. O. (1987). How to measure the water-holding capacity of meat Recommendation of standardized methods. Evaluation and control of meat quality in pigs . Dordrecht, The Netherlands: Martinus Nijhoff, In P. V. Tarrant, G. Eikelenboom, & G. Monin (Eds.): 129-142.Honikel, KO (1987). How to measure the water-holding capacity of meat Recommendation of standardized methods. Evaluation and control of meat quality in pigs . Dordrecht, The Netherlands: Martinus Nijhoff, In PV Tarrant, G. Eikelenboom, & G. Monin (Eds.): 129-142.

Jacobs, K., G. Rohrer, et al. (2006). "Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping." Cytogenet Genome Res 112(1- 2): 106-113.Jacobs, K., G. Rohrer, et al. (2006). "Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping." Cytogenet Genome Res 112 (1-2): 106-113.

Karlsson, A., A. C. Enfalt, et al. (1993). "Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs." J. Anim Sci. 71(4): 930-938.Karlsson, A., AC Enfalt, et al. (1993). "Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs." J. Anim Sci. 71 (4): 930-938.

Klont, R. E., L. Brocks, et al. (1998). "Muscle fibre type and meat quality." Meat Science 49(Supplement 1): S219-S229.Klont, RE, L. Brocks, et al. (1998). "Muscle fiber type and meat quality." Meat Science 49 (Supplement 1): S219-S229.

Kunej, T., X. L. Wu, et al. (2005). "Frequency distribution of a Cys430Ser polymorphism in peroxisome proliferator-activated receptor-gamma coactivator-1 (PPARGC1) gene sequence in Chinese and Western pig breeds." J Anim Breed Genet 122(1): 7-11.Kunej, T., XL Wu, et al. (2005). "Frequency distribution of a Cys430Ser polymorphism in peroxisome proliferator-activated receptor-gamma coactivator-1 (PPARGC1) gene sequence in Chinese and Western pig breeds." J Anim Breed Genet 122 (1): 7-11.

Larzul, C., L. Lefaucheur, et al. (1997). "Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs." J. Anim Sci. 75(12): 3126-3137.Larzul, C., L. Lefaucheur, et al. (1997). "Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs." J. Anim Sci. 75 (12): 3126-3137.

Lin, J., H. Wu, et al. (2002). "Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres." Nature 418(6899): 797-801.Lin, J., H. Wu, et al. (2002). "Transcriptional co-activator PGC-1 [alpha] drives the formation of slow-twitch muscle fibers." Nature 418 (6899): 797-801.

Puigserver, P., Z. Wu, et al. (1998). "A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis." Cell 92(6): 829-839.Puigserver, P., Z. Wu, et al. (1998). "A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis." Cell 92 (6): 829-839.

Rehfeldt, C. and I. Fiedler (1984). "[Postnatal development of muscle fibres in growing skeletal muscle of laboratory mice]." Arch. Exp. Vet. med. 38: 178-192.Rehfeldt, C. and I. Fiedler (1984). "[Postnatal development of muscle fibers in growing skeletal muscle of laboratory mice]." Arch. Exp. Vet. med. 38: 178-192.

Rehfeldt, C., I. Fiedler, et al. (2000). "Myogenesis and postnatal skeletal muscle cell growth as influenced by selection." Livestock Production Science 66(2): 177-188.Rehfeldt, C., I. Fiedler, et al. (2000). "Myogenesis and postnatal skeletal muscle cell growth as influenced by selection." Livestock Production Science 66 (2): 177-188.

Ryu, Y. C., Y. M. Choi, et al. (2008). "Comparing the histochemical characteristics and meat quality traits of different pig breeds." Meat Sci. doi:10.1016/j.meatsci.2007.12.020.Ryu, YC, YM Choi, et al. (2008). "Comparing the histochemical characteristics and meat quality traits of different pig breeds." Meat Sci. doi: 10.1016 / j.meatsci.2007.12.020.

Ryu, Y. C. and B. C. Kim (2005). "The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle." Meat Science 71(2): 351-357.Ryu, YC and BC Kim (2005). "The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle." Meat Science 71 (2): 351-357.

Ryu, Y. C. and B. C. Kim (2006). "Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality." J. Anim Sci. 84(4): 894-901.Ryu, YC and BC Kim (2006). "Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality." J. Anim Sci. 84 (4): 894-901.

Stachowiak, M., M. Szydlowski, et al. (2006). "SNPs in the Porcine PPARGC1a Gene: Interbreed Differences and Their Phenotypic Effects." Cell Mol Biol Lett.Stachowiak, M., M. Szydlowski, et al. (2006). "SNPs in the Porcine PPARGC1a Gene: Interbreed Differences and Their Phenotypic Effects." Cell Mol Biol Lett .

te Pas, M. F., F. J. Verburg, et al. (2000). "Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate." J. Anim Sci. 78(1): 69-77.te Pas, MF, FJ Verburg, et al. (2000). "Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate." J. Anim Sci. 78 (1): 69-77.

도 1은 PPARGC1A 유전자의 엑손 8번에 위치한 AluI site에 대한 PCR-RFLP 단편을 나타낸다. 사이즈 마커는 1kb plus ladder size marker(Invitrogen, USA)를 이용하였다.1 shows a PCR-RFLP fragment for an Alu I site located at exon 8 of the PPARGC1A gene. As a size marker, 1kb plus ladder size marker (Invitrogen, USA) was used.

도 2는 PPARGC1A 유전자 엑손 8의 염기서열에서 678번째 염기가 A/T로 치환된 SNP임을 나타낸다.2 shows that the 678th base in the base sequence of the PPARGC1A gene exon 8 is SNP substituted with A / T.

<110> Korea University Industrial and Academic Collaboration Foundation <120> DNA markers for detecting increase of muscle fiber type I within porcine muscle <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 2098 <212> DNA <213> Sus scrofa <400> 1 gggcgtccga agtacaaaat atcatcactg cgactgmatc ctcccgtcgt aagatcccgt 60 cttttcttgg ggtcaggggc ttcgggcaca gagtcacttt ctcaggtctt gtcatgaatt 120 tagcttcctc ctttttcaca gcgttttaac cactgtccgc aatctcagaa acgttaagaa 180 aacgtaccct ggcatttacc attctccctg tctcttctct ctcccccccc tacccttttt 240 ttctcccccc tcttatttta ggcctaactc cacccacaac tcctcctcat aaagccaacc 300 aagataaccc ttttagggct tctccaaagc tgaagccccc ttgcaagact gtggtacctc 360 cgccatcgaa gaagacccgg tacagtgagt cttcggggac ccacggcaac aactccacca 420 agaaagggcc cgagcagtcc gagctgtacg cgcagctcag caagacgtcc gcgctcggcg 480 gcggacacga ggaacggaag gccaggcggc ccagtctgcg gctatttggt gaccatgact 540 attgtcagtc gattaattcc aaagcggaaa tcctcatcaa tatatcgcag gagctccacg 600 actccagaca actagactct aaagatgccg cctctgactg gcagaggcag atgtgttctt 660 ccacagactc agaccagtgc tacctgaccg agacgtcgga ggcgagcagg caggtctctc 720 cgggcagcgc ccgaaaacag ctccaagacc aggaaatccg agccgagctg aacaagcact 780 tcggtcatcc cagtcaagct gtttttgacg acgaagcaga caagaccagt gaactgaggg 840 acagtgattt cagtaacgaa caattctcca aactacctat gtttataaat tcaggactag 900 ccatggatgg cctgtttgat gacagcgaag atgaaagtga taaactgaac tccccttggg 960 atggcacgca gtcctattca ttgttcgatg tgtcgccttc ttgttcttct tttaactctc 1020 cgtgtagaga ttccgtatca ccacccaaat ccttattttc tcaaagaccc caaaggatgc 1080 gctctcgttc aaggtccttt tctcaacaca ggtcgtgttc tcgatcacca tattccaggt 1140 caagatcaag gtccccaggc agtagatcct cttcaaggta aaccttggca aaacctaccc 1200 aaagcctaag gcatccccag gaagtcaaaa aaaaaaaaaa ttcaaaaccc acaggcatcc 1260 ggtgctgcca gaactatgag attgttggtg cccatacatt tctccccttt gtgtcttaaa 1320 tctgtcgtcc ttgggcacag ggccttgagt cagtcagatc agagggagca atttgtaaga 1380 aacctgccca tctagctttt cccattacct gcagagctgc cttagtacca ggatagttgc 1440 gatccatgcg agataaagct gacagcatcc cagactggcg tttgcgggag ataccgcgag 1500 agaacgcatc cctcccagcc ctctaaccaa ctagctgatc acagacggtc actgggaaac 1560 ctcactagtt actgtgaagc aaaagcctgt ttatgtgata cggagctcca ggggccattc 1620 agtcatgccc atggtaatct ggggttcacg ggagttgcaa tgccctttgt gtgtgtcccc 1680 ctctcttgta gatcttgcta ctactctgag tcaggccact gcagacaccg cacgcaccga 1740 aattctcccc tgtgcgccag atcacgttca agatctccct acagccggcg gcccaggtaa 1800 tgaccttcca ctccttgcat ccccaccctt ggatgccgag tcgtggcccc aagccctgcc 1860 ctctccccag tttgtgattc attctgcggg tgcagatgga ggtggtggac tgaatgctga 1920 agttctgttt ctcaggtatg acagctacga ggaatatcag cacgagaggc tgaagaggga 1980 agaataccgc agagagtatg agaagcggga gtctgaaagg gccaagcaga gggagaggca 2040 gaggcagaag gcaattgtaa gcagcctgga gctcactttc gttttacagg agggtttc 2098 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for PCR-RFLP <400> 2 taaagatgcc gcctctgact 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for PCR-RFLP <400> 3 ctgcttcgtc gtcaaaaaca 20 <210> 4 <211> 200 <212> DNA <213> Sus scrofa <400> 4 taaagatgcc gcctctgact ggcagaggca gatgtgttct tccacagact cagaccagtg 60 ctacctgacc gagacgtcgg aggcgagcag gcaggtctct ccgggcagcg cccgaaaaca 120 gctccaagac caggaaatcc gagccgagct gaacaagcac ttcggtcatc ccagtcaagc 180 tgtttttgac gacgaagcag 200 <110> Korea University Industrial and Academic Collaboration Foundation <120> DNA markers for detecting increase of muscle fiber type I within          porcine muscle <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 2098 <212> DNA <213> Sus scrofa <400> 1 gggcgtccga agtacaaaat atcatcactg cgactgmatc ctcccgtcgt aagatcccgt 60 cttttcttgg ggtcaggggc ttcgggcaca gagtcacttt ctcaggtctt gtcatgaatt 120 tagcttcctc ctttttcaca gcgttttaac cactgtccgc aatctcagaa acgttaagaa 180 aacgtaccct ggcatttacc attctccctg tctcttctct ctcccccccc tacccttttt 240 ttctcccccc tcttatttta ggcctaactc cacccacaac tcctcctcat aaagccaacc 300 aagataaccc ttttagggct tctccaaagc tgaagccccc ttgcaagact gtggtacctc 360 cgccatcgaa gaagacccgg tacagtgagt cttcggggac ccacggcaac aactccacca 420 agaaagggcc cgagcagtcc gagctgtacg cgcagctcag caagacgtcc gcgctcggcg 480 gcggacacga ggaacggaag gccaggcggc ccagtctgcg gctatttggt gaccatgact 540 attgtcagtc gattaattcc aaagcggaaa tcctcatcaa tatatcgcag gagctccacg 600 actccagaca actagactct aaagatgccg cctctgactg gcagaggcag atgtgttctt 660 ccacagactc agaccagtgc tacctgaccg agacgtcgga ggcgagcagg caggtctctc 720 cgggcagcgc ccgaaaacag ctccaagacc aggaaatccg agccgagctg aacaagcact 780 tcggtcatcc cagtcaagct gtttttgacg acgaagcaga caagaccagt gaactgaggg 840 acagtgattt cagtaacgaa caattctcca aactacctat gtttataaat tcaggactag 900 ccatggatgg cctgtttgat gacagcgaag atgaaagtga taaactgaac tccccttggg 960 atggcacgca gtcctattca ttgttcgatg tgtcgccttc ttgttcttct tttaactctc 1020 cgtgtagaga ttccgtatca ccacccaaat ccttattttc tcaaagaccc caaaggatgc 1080 gctctcgttc aaggtccttt tctcaacaca ggtcgtgttc tcgatcacca tattccaggt 1140 caagatcaag gtccccaggc agtagatcct cttcaaggta aaccttggca aaacctaccc 1200 aaagcctaag gcatccccag gaagtcaaaa aaaaaaaaaa ttcaaaaccc acaggcatcc 1260 ggtgctgcca gaactatgag attgttggtg cccatacatt tctccccttt gtgtcttaaa 1320 tctgtcgtcc ttgggcacag ggccttgagt cagtcagatc agagggagca atttgtaaga 1380 aacctgccca tctagctttt cccattacct gcagagctgc cttagtacca ggatagttgc 1440 gatccatgcg agataaagct gacagcatcc cagactggcg tttgcgggag ataccgcgag 1500 agaacgcatc cctcccagcc ctctaaccaa ctagctgatc acagacggtc actgggaaac 1560 ctcactagtt actgtgaagc aaaagcctgt ttatgtgata cggagctcca ggggccattc 1620 agtcatgccc atggtaatct ggggttcacg ggagttgcaa tgccctttgt gtgtgtcccc 1680 ctctcttgta gatcttgcta ctactctgag tcaggccact gcagacaccg cacgcaccga 1740 aattctcccc tgtgcgccag atcacgttca agatctccct acagccggcg gcccaggtaa 1800 tgaccttcca ctccttgcat ccccaccctt ggatgccgag tcgtggcccc aagccctgcc 1860 ctctccccag tttgtgattc attctgcggg tgcagatgga ggtggtggac tgaatgctga 1920 agttctgttt ctcaggtatg acagctacga ggaatatcag cacgagaggc tgaagaggga 1980 agaataccgc agagagtatg agaagcggga gtctgaaagg gccaagcaga gggagaggca 2040 gaggcagaag gcaattgtaa gcagcctgga gctcactttc gttttacagg agggtttc 2098 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for PCR-RFLP <400> 2 taaagatgcc gcctctgact 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for PCR-RFLP <400> 3 ctgcttcgtc gtcaaaaaca 20 <210> 4 <211> 200 <212> DNA <213> Sus scrofa <400> 4 taaagatgcc gcctctgact ggcagaggca gatgtgttct tccacagact cagaccagtg 60 ctacctgacc gagacgtcgg aggcgagcag gcaggtctct ccgggcagcg cccgaaaaca 120 gctccaagac caggaaatcc gagccgagct gaacaagcac ttcggtcatc ccagtcaagc 180 tgtttttgac gacgaagcag 200  

Claims (7)

서열번호 1의 염기서열에서, 678번째 T염기를 포함하는 15 내지 500개의 연속서열로 구성되는, 돼지의 근육 내 근섬유 타입 I 증가 여부 확인용 DNA 표지인자.In the nucleotide sequence of SEQ ID NO: 1, consisting of 15 to 500 consecutive sequences including the 678th T base, DNA marker for confirming whether muscle fiber type I increase in pigs. 제 1항에 있어서, 상기 DNA 표지인자는 돼지의 근육 내 근섬유 조성 중 근섬유 타입 I의 비율을 증가시켜 육질을 향상시키는 것을 특징으로 하는 DNA 표지인자.The method of claim 1, wherein the DNA marker is a DNA marker, characterized in that to improve the meat quality by increasing the ratio of muscle fiber type I in the muscle fiber composition of the pig. 제 2항에 있어서, 상기 육질의 향상은 pH의 증가 및 육색의 감소를 포함하는 것을 특징으로 하는 DNA 표지인자.3. The DNA marker according to claim 2, wherein the improvement of meat quality comprises an increase in pH and a decrease in meat color. 서열번호 2와 서열번호 3으로 표시된 올리고뉴클레오티드로 구성되는, 돼지 PPARGC1A 유전자의 근육 내 근섬유 타입 I 증가 관련 SNP를 탐색하기 위한 프라이머.A primer for searching for an SNP related to muscle fiber type I increase in the porcine PPARGC1A gene, consisting of oligonucleotides represented by SEQ ID NO: 2 and SEQ ID NO: 3. 제 4항의 프라이머와 PCR 반응혼합물 및 RFLP 분석용 제한효소인 AluI을 포함하는 돼지의 근육 내 근섬유 타입 I 증가 관련 SNP 분석용 키트.SNP analysis kit related to muscle fiber type I increase in pigs comprising the primer of claim 4 and a PCR reaction mixture and Alu I, a restriction enzyme for RFLP analysis. 하기 단계들을 포함하는, 돼지의 근육 내 근섬유 타입 I 증가여부를 확인하는 방법:A method for determining whether muscle fibers type I increase in pigs, comprising the following steps: a) 돼지로부터 게노믹 DNA를 분리하는 단계;a) separating genomic DNA from pigs; b) 상기 a)단계의 DNA를 주형으로 하여 서열번호 1로 표시된 PPARGC1A 유전자 엑손 8의 678번째 염기를 포함하는 특정부위를 증폭시키는 단계;b) amplifying a specific site including the 678th base of the PPARGC1A gene exon 8 represented by SEQ ID NO: 1 using the DNA of step a) as a template; c) 상기 b)단계에서 증폭된 DNA를 제한효소 AluI으로 처리하는 단계; 및c) treating the DNA amplified in step b) with restriction enzyme Alu I; And d) 상기 c)단계에서 얻어진 유전자 단편들에서 다형성(RFLP; restriction fragment length polymorphism)을 비교하는 단계.d) comparing the restriction fragment length polymorphism (RFLP) in the gene fragments obtained in step c). 제 6항에 있어서, 상기 b)단계에서 서열번호 2와 서열번호 3으로 표시된 프라이머를 이용하여 증폭시키는 것을 특징으로 하는 방법.The method of claim 6, wherein the amplification using the primers represented by SEQ ID NO: 2 and SEQ ID NO: 3 in step b).
KR1020090124732A 2009-12-15 2009-12-15 Dna markers for detecting increase of muscle fiber type i within porcine muscle KR20110067941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090124732A KR20110067941A (en) 2009-12-15 2009-12-15 Dna markers for detecting increase of muscle fiber type i within porcine muscle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090124732A KR20110067941A (en) 2009-12-15 2009-12-15 Dna markers for detecting increase of muscle fiber type i within porcine muscle

Publications (1)

Publication Number Publication Date
KR20110067941A true KR20110067941A (en) 2011-06-22

Family

ID=44400295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090124732A KR20110067941A (en) 2009-12-15 2009-12-15 Dna markers for detecting increase of muscle fiber type i within porcine muscle

Country Status (1)

Country Link
KR (1) KR20110067941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766653A (en) * 2012-06-25 2012-11-07 西北农林科技大学 Plasmid-type adenovirus vector pAd-PPARGC1A and construction method thereof
KR101330398B1 (en) * 2011-10-25 2013-11-15 고려대학교 산학협력단 DNA fragment markers for detecting improvement of porcine meat quality using SNPs in region of muscle specific microRNA-1
CN110117667A (en) * 2019-06-06 2019-08-13 中国农业科学院北京畜牧兽医研究所 A kind of method and its primer pair of muscle fibre density size that identifying pig

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330398B1 (en) * 2011-10-25 2013-11-15 고려대학교 산학협력단 DNA fragment markers for detecting improvement of porcine meat quality using SNPs in region of muscle specific microRNA-1
CN102766653A (en) * 2012-06-25 2012-11-07 西北农林科技大学 Plasmid-type adenovirus vector pAd-PPARGC1A and construction method thereof
CN110117667A (en) * 2019-06-06 2019-08-13 中国农业科学院北京畜牧兽医研究所 A kind of method and its primer pair of muscle fibre density size that identifying pig
CN110117667B (en) * 2019-06-06 2022-04-26 中国农业科学院北京畜牧兽医研究所 Method for identifying density of pig muscle fibers and primer pair used by method

Similar Documents

Publication Publication Date Title
EP3321379B1 (en) Genetic marker for determining meat quality traits of pigs and use thereof
CN110257529B (en) SNP molecular marker related to lean meat percentage, eye muscle area and eye muscle thickness on pig No. 6 chromosome and application
CN110218798B (en) SNP molecular marker located on pig chromosome 7 and related to eye muscle area and eye muscle thickness and application
KR101224007B1 (en) Method of diagnosing meat quality of pig with biomarker and kit therof
KR100804310B1 (en) 4 DNA marker of adipocyte-fatty acid binding protein gene related the intramuscular fat content in beef cattle
KR20110067941A (en) Dna markers for detecting increase of muscle fiber type i within porcine muscle
CN101805739A (en) Identification method of PPARD major gene, establishment of molecular breeding method and application thereof
CN112941198B (en) SNP marker for detecting pig eye muscle area and application thereof
KR102235340B1 (en) SNP marker set for predicting growth traits of Korean native chicken and uses thereof
CN114921568B (en) SNP molecular marker related to Qinchuan cattle body ruler and meat quality traits and application thereof
CN113699247B (en) SNP molecular marker related to pig residual feed intake on pig chromosome 1 and application thereof
KR101243345B1 (en) DNA markers for detecting increase of porcine meat quality
KR101567020B1 (en) Novel biomarker and method for predicting back fat traits in pigs
KR101438524B1 (en) DNA marker for detecting increase of porcine meat quality using a SNP in porcine MYF5 gene
CN113699248A (en) SNP molecular marker related to pig backfat thickness and application thereof
KR101663404B1 (en) Single nucleotide polymorphism marker in TDRKH gene for diagnosis of meat quality in Hanwoo and method for diagnosis of meat quality in Hanwoo using same marker
Chung et al. Association between SNP marker of uncoupling protein 3 gene and meat yield and marbling score traits in Korean cattle
KR101307008B1 (en) Diagnosis method of high meat producing Hanwoo using the DNA marker associated with marbling score
KR101696692B1 (en) SNP Novel SNP marker for discriminating level of muscle fiber type within porcine muscle and use thereof
KR101417389B1 (en) Development of genetic marker related to maturity score in Hanwoo
KR101618948B1 (en) Diagnosis method of meat quality using allele specific-PCR in Korean cattle
ES2452791A1 (en) Polymorphisms associated with the degree of unsaturation of intramuscular fat in pigs
KR20120049624A (en) Method for selecting pigs with excellent meat color trait
Eneva et al. Effectiveness of applying different methods of molecular genetics in swine selection (A review).
KR101797876B1 (en) Diagnostic method for longissimus muscle area by using SNP markers in Korean cattle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application