KR101567020B1 - Novel biomarker and method for predicting back fat traits in pigs - Google Patents
Novel biomarker and method for predicting back fat traits in pigs Download PDFInfo
- Publication number
- KR101567020B1 KR101567020B1 KR1020130129028A KR20130129028A KR101567020B1 KR 101567020 B1 KR101567020 B1 KR 101567020B1 KR 1020130129028 A KR1020130129028 A KR 1020130129028A KR 20130129028 A KR20130129028 A KR 20130129028A KR 101567020 B1 KR101567020 B1 KR 101567020B1
- Authority
- KR
- South Korea
- Prior art keywords
- grip1
- seq
- acid sequence
- nucleic acid
- dna
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/124—Animal traits, i.e. production traits, including athletic performance or the like
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 바이오마커에 관한 것으로 더 상세하게는 서열번호 1의 핵산서열로 표시되는 폴리뉴클레오티드에서, 205번째 염기가 G 또는 G인 단일 핵산 다형(SNP)을 검출할 수 있는 검출수단을 포함하는 돼지 등지방 두께 예측용 키트를 제공한다.The present invention relates to a biomarker, and more particularly to a biomarker comprising a detection means capable of detecting a single nucleotide polymorphism (SNP) with a 205th base of G or G, in a polynucleotide represented by the nucleic acid sequence of SEQ ID NO: A kit for estimating backfill thickness is provided.
Description
본 발명은 바이오마커에 관한 것으로 더 상세하게는 새로운 돼지 등지방두께 진단용 바이오마커 및 그의 선별방법에 관한 것이다.The present invention relates to a biomarker, and more particularly, to a biomarker for diagnosis of a new back ground thickness and a method of selecting the biomarker.
가축 육종은 능력이 우수한 개체를 선발하고 선발된 가축을 이용하여 후대를 생산하고, 다시 이들 후대의 능력을 검정하여 우수한 가축을 선발하는 일련의 과정을 반복하여 수행하고 있다. 기존의 경우 통계적 방법에 따라 가축이 사육과정에서 발현되는 표현형 정보를 바탕으로 육종가치를 추정하고 이를 근거로 선발하는 것을 기본으로 설정되어 왔다. 따라서, 사람들에게 보다 효용성이 높은 가축을 얻기 위해서는 다음 세대의 가축을 생산하는데 쓰일 우수한 종축(breeding stock)을 잘 선발(selection)하여야 한다. 선발을 통한 개량 대상으로 하는 가축의 형질(산유량, 체중 등)은 대부분 많은 수의 유전자에 의해 영향을 받는 양적 형질(quantitative trait)이다. 양적 형질은 일반적으로 많은 수의 유전자에 의하여 영향을 받을 뿐만 아니라 여러 가지 환경요인에 의해서도 상당히 영향을 받는다. 따라서 양적 형질에 있어서는 이에 영향하는 개별적인 유전자 작용이나 특성과 같은 것을 구명하는 것이 질적 형질(qualitative trait)보다 극히 곤란하다. 때문에, 양적 형질의 유전을 연구하는데 통계적 방법이 강력한 수단으로 사용되고 있으며 양적 형질에 영향하는 유전적 요인을 여러 환경 요인으로부터 분리하여 효과적으로 추정하고자 하는 연구가 여러 학자들에 의해 수행되어 왔다. 가축 개량을 위한분자 유전학적 기법의 이용은 DNA 수준에서의 개체의 유전적 소질에 대한 연구를 가능토록 할 수 있을 것이며, 개량 대상형질에 관련된 유전자, 즉 주유전자(major gene) 혹은 양적 형질 유전자좌위(QTL: Quantitative Trait Loci)에 대한 직접적인 선발 혹은 양적 형질 유전자좌위(QTL)에 연관되어 있는 유전적 표지(genetic marker)에 대한 선발을 통해 유전적 소질을 실현시킬 수 있는 도구를 제공할 수 있다. 표현형 정보에만 의존하는 것이 아니라 분자 유전학적인 정보의 추가적인 이용을 통해 유전적 개량을 보다 가속화할 수 있을 것이다. DNA 수준에서의 정보는 생산자뿐만 아니라 육종가들에게도 특정한 주요 변이체를 선발하는데 중요한 정보를 제공해준다. 이러한 DNA 정보는 표지인자 도움 선발(marker-assisted selection; MAS)이라고 하는 양적 형질(quantitative trait)의 선발에 활용될 수 있다. 또한, 분자표지인자는 종축 등의 선발 정확도를 높이고 성별에 제한적인 형질의 선별할 수 있게 하며, 육질과 같은 도체 형질에 대해서 매우 유용하게 활용될 수 있다. 현재까지 몇몇 유전자 또는 표지인자가 실제로 양돈 산업에 활용되고 있다. 지금까지는 종돈을 선발하기 위한 기존 방법으로서 단지 표현형 값에 근거하는 선발 지수식을 사용하였다. 그러나, 최근 분자 표지인자를 활용한 변이체의 선발 또는 도태가 단일 유전자에 의하여 조절되는 형질뿐만 아니라 양적 유전좌위(quantitative trait loci, QTL)에 의해 조절되는 형질에서도 표지인자 도움 선발 (MAS)이 효과적으로 활용될 수 있다는 것이 시뮬레이션을 통해 확인되어 보고되고 있다. 종돈에 있어서 생산성과 관계되는 형질, 즉 경제형질은 복당산자수, 이유두수, 일당증체량, 사료요구율, 등지방 두께, 도체율, 정육율, 체형 및 내구성(연산성)등이 있다. 등지방 두께과 같은 산육 및 도체형질과 체형에 관련된 형질은 부계라인으로 유전력이 높으며, 등지방 두께의 유전력은 40~55%이다. The livestock breeding has been repeatedly carried out a series of processes to select excellent individuals, to produce later generations using the selected livestock, and to test the ability of the later generations to select superior livestock. In the past, it has been established based on the statistical method to estimate the breeding value based on the phenotypic information expressed in the breeding process of the livestock, and to select the breeding value based on this information. Therefore, in order to obtain more efficient livestock for people, good breeding stock to be used to produce the next generation of livestock should be well selected. The quality of the livestock (milk production, weight, etc.) to be improved through selection is mostly a quantitative trait that is affected by a large number of genes. Quantitative traits are generally affected not only by a large number of genes but also by various environmental factors. Thus, in quantitative traits, it is extremely difficult to qualify traits such as individual gene actions or traits that affect them. Therefore, statistical methods have been used as a powerful tool for studying quantitative traits, and studies have been conducted by several scholars to effectively isolate genetic factors affecting quantitative traits from various environmental factors. The use of molecular genetic techniques to improve livestock will enable research on the genetic predisposition of individuals at the DNA level, and it is expected that the gene related to the trait to be improved, that is, the major gene or the locus of the quantitative trait (QTL), or selection of genetic markers associated with quantitative trait loci (QTLs) can provide a tool for realizing a genetic locus. By using molecular genetic information rather than relying solely on phenotypic information, genetic improvement can be accelerated. Information at the DNA level provides important information to select breeders as well as producers for specific key variants. Such DNA information can be used to select a quantitative trait called marker-assisted selection (MAS). In addition, the molecular markers can be used to enhance selection accuracy such as the vertical axis, to select sex-restricted traits, and to be useful for carcass traits such as meat quality. To date, several genes or markers have been used in the swine industry. Up to now, we have used a selection index formula based on phenotype values as an existing method to select breeds. However, in recent years, the use of marker assisted selection (MAS) has been effectively utilized in traits that are controlled by quantitative trait loci (QTL) as well as traits that are controlled by a single gene, such as selection or screening of mutants using molecular markers It is confirmed and reported through simulation. The traits related to productivity, ie, economic traits, are the number of recipients, the number of reasons, the amount of daily gain, the rate of feed demand, the backfat thickness, the rate of carcass, the size of meat, the shape and durability (operability). Traits related to carcass traits and body traits such as backfat thickness are paternal lines, with a high heritability, and the heritability of backfat thickness is 40 to 55%.
그러나, 아직까지 분자표지를 이용한 예측용 바이오마커의 개발은 초기단계에 있다. 이에 본 발명은 등지방 두께 예측용 바이오마커에 관한 것으로서, 신규 돼지 등지방 두께 예측용 바이오마커 및 이를 이용한 돼지 등지방 두께의 예측방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, the development of biomarkers for prediction using molecular markers is still in the early stage. Accordingly, it is an object of the present invention to provide a biomarker for predicting backfat thickness and a method for predicting the backfat thickness using the same. However, these problems are exemplary and do not limit the scope of the present invention.
본 발명자들은 돼지 종돈 선발 시 표지인자 도움 선발(marker-assisted selection, MAS)에 활용할 수 있는 돼지 등지방 두께 예측용 바이오마커를 개발하기 위하여 노력을 계속한 결과, 돼지의 GRIP1(Glutamate receptor interacting protein1) 유전자의 과오돌연변이(missense mutation)와 등지방 두께(Back fat thickness, BFT)와 연관이 있음을 확인하였다. The present inventors have continued efforts to develop a biomarker for predicting the back thickness of pork which can be used for marker-assisted selection (MAS) in the selection of pig breeds, and as a result, it has been found that the GRIP1 (Glutamate receptor interacting protein 1) We have confirmed that the gene is associated with missense mutation and back fat thickness (BFT).
본 발명의 일 관점에 따르면, 서열번호 1의 핵산서열로 표시되는 폴리뉴클레오티드에서, 205번째 염기가 G 또는 C인 단일 핵산 다형(SNP)를 검출할 수 있는 검출수단을 포함하는 돼지 등지방 두께 예측용 키트가 제공된다.According to one aspect of the present invention, in a polynucleotide represented by the nucleic acid sequence of SEQ ID NO: 1, a pig backgrowth thickness prediction including detection means capable of detecting a single nucleotide polymorphism (SNP) having a 205th base of G or C A kit is provided.
상기 키트에 있어서, 상기 검출수단은 상기 SNP를 검출할 수 있는 프로브 또는 상기 폴리뉴클레오티드를 증폭할 수 있는 프라이머 쌍일 수 있고, 상기 프라이머 쌍은 서열번호 2의 핵산서열로 표시되는 포워드 프라이머 및 서열번호 3의 핵산서열로 표시되는 리버스 프라이머로 구성될 수 있다.Wherein the detection means may be a probe capable of detecting the SNP or a pair of primers capable of amplifying the polynucleotide, wherein the primer pair comprises a forward primer represented by the nucleic acid sequence of SEQ ID NO: 2 and a forward primer represented by SEQ ID NO: And a reverse primer represented by the nucleic acid sequence of SEQ ID NO:
본 발명의 일 관점에 따르면, 돼지로부터 게놈 DNA를 추출하는 게놈 DNA 추출단계; According to one aspect of the present invention, a genomic DNA extraction step of extracting genomic DNA from a pig;
상기 게놈 DNA를 대상으로 PCR 반응을 통해 GRIP1을 암호화하는 게놈 핵산분자를 증폭하는 단계; 및Amplifying a genomic DNA molecule encoding GRIP1 through a PCR reaction with the genomic DNA; And
서열번호 1의 핵산서열로 표시되는 폴리뉴클레오티드에서 205번째 염기가 G인지 또는 C인지 확인하는 단계를 포함하는 돼지 등지방 두께 예측 방법이 제공된다.And determining whether the 205th base is G or C in the polynucleotide represented by the nucleic acid sequence of SEQ ID NO: 1.
상기 방법에 있어서, 상기 205번째 염기가 C일 경우 등지방 두께가 두꺼울 것으로 예측하는 단계가 추가적으로 포함될 수 있다.In the above method, if the 205th base is C, a step of predicting that the backfill thickness is thick may be additionally included.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 등지방 두께는 현재 도체 등급을 평가하는 중요한 요인 중의 하나이므로 우수 종돈의 국내 육성에 크게 기여할 수 있다. 따라서 종축 개량에 있어서 세계적인 추세에 따라 본 발명의 새로운 돼지 등지방두께 진단용 바이오마커는 돼지 선발에 유전적 DNA 마커로서 매우 효과적이다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to the embodiment of the present invention as described above, since the backfill thickness is one of the important factors for evaluating the current conductor grade, it can contribute greatly to the upbringing of the good piglets. Accordingly, the new biomarker for the diagnosis of pig back ground thickness according to the global trend in breeding is very effective as a genetic DNA marker in selection of pigs. Of course, the scope of the present invention is not limited by these effects.
도 1a 내지 1g는 본 발명의 일 실시예에 따른 랜드레이스(Landrace)와 한국재래돼지(KNP)의 F2 잡종교배 집단의 GRIP1 유전자에 대한 염기서열 결정 결과 나타난 8 개의 엑손성 단일염기 다형성(SNP, single nucleotide polymorphism)의 위치 및 종류를 기준 핵산서열인 GenBank 등록번호 XM_005663960.1에 개시된 핵산서열과 비교하여 나타낸 정렬도이다.
도 2a 내지 2c는 본 발명의 일 실시예에 따른 랜드레이스(Landrace)와 한국재래돼지(KNP)의 F2 잡종교배 집단의 GRIP1 유전자에 대한 염기서열 결정 결과 나타난 8 개의 엑손성 SNP를 반영한 유전자로부터 암호화된 GRIP1 단백질의 아미노산 서열을 기준 아미노산 서열인 GenPept 등록번호 XP_005664017.1에 개시된 아미노산 서열과 비교하여 나타낸 정렬도이다.
도 3은 본 발명의 일 실시예에 따른 GRIP1 단백질의 아미노산 변이 부분을 포함하는 아미노산 서열과 다른 종의 GRIP1 단백질의 아미노산 서열과의 비교를 나타낸 아미노산 정렬도이다. 유전자의 다중 정렬한 결과를 나타낸 그림이다. FIGS. 1A to 1G are graphs showing the results of eight exon single nucleotide polymorphisms (SNPs) in the F2 hybridization group of Landrace and KNP according to an embodiment of the present invention, single nucleotide polymorphism) is compared with the nucleotide sequence disclosed in GenBank registration number XM_005663960.1 which is the reference nucleic acid sequence.
FIGS. 2A to 2C are diagrams showing the results of gene coding for the GRIP1 gene in the F2 hybrid crossbred group of Landrace and KNP according to an embodiment of the present invention. And comparing the amino acid sequence of the GRIP1 protein with the amino acid sequence disclosed in GenPept Accession No. XP_005664017.1 which is the reference amino acid sequence.
FIG. 3 is an amino acid sequence diagram showing a comparison between the amino acid sequence containing the amino acid mutation portion of the GRIP1 protein and the amino acid sequence of the GRIP1 protein of another species according to an embodiment of the present invention. This figure shows the result of multiple alignment of genes.
이하, 실시예 및 실험예를 통해 발명을 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예 및 실험예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하 실시예 및 실험예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전히 알려주기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples. It should be understood, however, that the invention is not limited to the disclosed embodiments and examples, but may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. It is provided to fully inform the scope of the invention to the person.
실시예 1: 다형성 검출 및 유전자형(genotyping) 분석Example 1 Polymorphism Detection and Genotyping Analysis
본 발명에서는 GRIP1의 엑손 내의 단일염기다형성(SNP) 마커와 돼지 등지방 두께 관련 형질 간의 관계를 조사하였으며, 랜드레이스(Landrace)와 한국재래돼지(KNP)의 F2 잡종교배 집단을 사용하여, GRIP1 유전자와 등지방 두께 형질의 관계를 평가하는 위치적 후보 유전자(positional candidate gene)의 분석을 수행하였다. 본 발명자에 의한 종래 연구에서 SSC5에 등지방 두께(BFT) 형질에 영향을 미치는 양적 형질 유전자좌위(quantitative trait loci; QTL) 영역(SW1482-SW963)은 GRIP1 유전자를 포함하고 있음을 확인하였다(Yoo et al., Mol. Biol. Rep., 39: 8327-3833, 2012).In the present invention, the relationship between single base polymorphism (SNP) markers in the exon of GRIP1 and porcine backbone related traits was investigated. Using the F2 hybrid crossbreeding group of Landrace and Korean native pig (KNP) (Positional candidate gene) for evaluating the relationship between backbone thickness traits. Quantitative trait gene locus in SSC5 in the prior study affecting backfat thickness (BFT) transfected by the present inventors (quantitative trait loci; QTL) region (SW1482-SW963) confirmed that includes GRIP1 genes (Yoo et al., Mol. Biol. Rep., 39: 8327-3833, 2012).
SNP 마커를 검출을 위해 F2의 잡종교배에 사용된 랜드레이스(n=5)와 KNP (n=5)의 게놈 DNA 샘플은 GRIP1 유전자(GenBank Accession No.XM_005663960.1)를 포함하여 전체 게놈을 HiSeq2000 시퀀싱기술(Illumina Inc., 미국)로 재염기서열결정(resequenced)하였다. 그 결과, 돼지 GRIP1 유전자의 cDNA 서열에서 총 8개의 엑손성 SNP 마커를 동정하였고, 상기 8개의 SNP마커는 파이로시퀀싱(pyrosequencing) 방법(Biotage AB, 스웨덴)으로 확인하였다(도 1). 파이로시퀀싱을 위한 프라이머 서열은 표 1과 같다. 이들 중 하나의 비동의 SNP 마커(non-synonymous SNP marker)[c.3451 C> G (G1151R), 서열번호 1]를 확인하였으며(도 2), 상기 SNP는 NCBI SNP 데이터베이스에서 등록번호 rs342221788로 등록된 공지의 SNP임을 확인하였다. 상기 서열번호 1은 돼지 GRIP1 유전자의 엑손 23의 핵산서열의 일부이다. 이에 본 발명자들은 전체 F2 산자(N=1,105)를 대상으로 상기 SNP마커의 유전자형(genotyping)을 파이로시퀀싱 방법을 사용하여 분석하였다. 상기 c.3451 C>G SNP의 유전자형과 소수 대립유전자 빈도(minor allele frequency)는 표 2에 나타난 바와 같다. Genomic DNA samples of landrace (n = 5) and KNP (n = 5) used for hybridization of F2 for detection of SNP markers were cloned into the entire genome, including the GRIP1 gene (GenBank Accession No.XM_005663960.1) Sequencing technology (Illumina Inc., USA). As a result, a total of eight exon SNP markers were identified in the cDNA sequence of the porcine GRIP1 gene, and the eight SNP markers were confirmed by a pyrosequencing method (Biotage AB, Sweden) (Fig. 1). Primer sequences for pyrosequencing are shown in Table 1. One of these non-synonymous SNP markers (c.3451 C> G (G1151R), SEQ ID NO: 1) was identified (Fig. 2) and the SNP was registered with the registration number rs342221788 in the NCBI SNP database Lt; RTI ID = 0.0 > SNP. ≪ / RTI > SEQ ID NO: 1 is part of the nucleic acid sequence of exon 23 of the porcine GRIP1 gene. Therefore, the present inventors analyzed the genotyping of the SNP markers on the whole F2 acid (N = 1,105) using a pyrosequencing method. The c.3451 C> G SNP genotype and minor allele frequency are shown in Table 2.
번호order
number
(bp)size
(bp)
(℃)Temperature
(° C)
1
One
exon23
exon23
331
331
66
66
*3*2
* 3
exon18exon18
exon18
239
239
63
63
4
4
exon15
exon15
258
258
63
63
5
5
exon13
exon13
285
285
63
63
6
6
exon12
exon12
271
63
7
7
exon8
exon8
273
273
63
63
8
8
exon4
exon4
295
295
63
63
*SNP No. 2및 3은 단일 내부 시퀀싱 프라이머를 사용하여 스크리닝함Internal Sequencing Primer
* SNP No. 2 and 3 were screened using a single internal sequencing primer
0.1786CC 219
0.1786
0.5318CG 652
0.5318
0.2896GG (355)
0.2896
실시예2: 연관 규칙 분석(Association analysis)Example 2: Association analysis
네 가지 등지방 형질(BF traits)는 1,010두 이상의 F2 동물에서 측정하였다(표 3). 가족 연관(familial relatedness)을 산출하기 위해, 본 발명에서 혼합효과모형(mixed-effect model)을 F2 잡종 교배 집단에서 SNP 유전자형[c.3451 C>G (G1151R)], 성, 산차(parity), 배치(batch) 및 도체중량(carcass weight)의 임의요인(random effect)와 고정요인(fixed effect)으로서 다유전자성 동물효과(polygenic animal effect) 이용 모델을 가지고 ASREML(VSN international, 영국)을 이용하여 SNP 마커와 등지방 두께 형질 사이의 연관성을 분석하였다. 상기 SNP 마커는 BFT(P = 9.814 x 10-14), 4번과 5번 흉추 사이의 BFT(P = 1.474 x 10-3), 11번과 12번 흉추 사이의 BFT(P = 4.739 x 10-5), 마지막 흉추와 첫번째 요추의 BFT(P = 2.031 x 10-12)와 연관되었음이 확인되었다(표 3). KNP와 랜드레이스의 F2 잡종교배에서 GRIP1 유전자의 과오돌연변이[c.3451 C>G (G1151R)]와 BFT 사이의 연관분석을 통한 통계, 유전자형-값 및 P-값을 나타낸 것이다(표 3).Four backfat traits (BF traits) were measured in more than 1,010 F2 animals (Table 3). In order to calculate familial relatedness, a mixed-effect model is used in the present invention to determine SNP genotype [c.3451 C> G (G1151R)], sex, parity, ASREML (VSN international, UK) was used to model the use of polygenic animal effects as a random and fixed effect of batch and carcass weights. The relationship between the SNP markers and back - thickness traits was analyzed. The SNP markers BFT (P = 9.814 x 10 -14 ), 4 times with BFT between 5 thoracic (P = 1.474 x 10 -3) , 11 times and 12 times, between the thoracic BFT (P = 4.739 x 10 - 5 ), and BFT of the last thoracic and lumbar spine (P = 2.031 x 10 -12 ) (Table 3). Genotypic and genotypic values and P-values of the GRIP1 gene mutation [c.3451 C> G (G1151R)] and BFT in the F2 hybridization between KNP and Landrace are shown in Table 3.
(SE)Average
(SE)
(SE) b CC
(SE)
(SE) b CG
(SE)
(SE) b GG
(SE)
(0.22)22.93
(0.22)
(0.90)25.00
(0.90)
(0.85)23.36
(0.85)
(0.87)21.56
(0.87)
(0.24)34.02
(0.24)
(0.92)35.23
(0.92)
(0.86)34.47
(0.86)
(0.89)33.36
(0.89)
(0.23)27.99
(0.23)
(0.97)29.25
(0.97)
(0.92)28.42
(0.92)
(0.94)27.13
(0.94)
(0.22)26.15
(0.22)
(0.89)27.73
(0.89)
(0.84)26.93
(0.84)
(0.87)24.63
(0.87)
b는 예측된 유전자형 평균값과 혼합효과모형 분석으로부터 획득한 SE,
c는 등지방두께=[(11번과 12번 흉추 사이의 BFT)+(마지막 흉추와 첫번째 요추의 BFT)]/2.a is the number of animals,
b is the predicted genotype average and SE,
c is back thickness = [(BFT between 11th and 12th thoracic spine) + (BFT of last thoracic spine and first lumbar spine)] / 2.
표 3에서 나타난 바와 같이, 등지방 두께 형질과 함께 GRIP1 유전자 [c.3451 C>G (G1151R)]가 과오돌연변이(missense mutation)에 연관되어 있고, 특히 유전자형 CC를 갖는 경우 등지방이 더 두꺼움을 알 수 있었다. 결국 기능적인 측면에서 보자면, 엑손 23에 글리신(GGA)에서 아르기닌(CGA)로의 변화는 GRIP1 유전자의 기능에 영향을 주어, 등지방 두께에 영향을 주는 것으로 보인다. As shown in Table 3, the GRIP1 gene [c.3451 C> G (G1151R)] is associated with missense mutation together with the isoflavy trait, especially when the genotype CC is present, I could. Finally, from a functional point of view, the change from glycine (GGA) to arginine (CGA) in exon 23 affects the function of the GRIP1 gene and appears to influence backfat thickness.
아울러, 본 발명자들은 상기 SNP 마커의 중요성을 평가하기 위해 KNP 돼지 GRIP1의 아미노산 서열뿐 만 아니라 인간(NP_001171545.1), 말(XP_001492766.3), 개(XP_003431500.1), 소(XP_603945.5), 돼지(XP_003355559.1)의 단백질을 대상으로 Clustal X.를 이용하여 다중 단백질 서열 정렬분석(multiple protein sequence alignment analysis)을 수행하였다. 그 결과, 도 3에서 나타난 바와 같이, c.3451 C>G (G1151R) 과오돌연변이에서 R은 KNP를 제외한 다른 다양한 종에서 높은 수준으로 보존되어 있고, 따라서, 상기 SNP가 GRIP1 유전자에 있어서 잠재적으로 중요한 역할을 수행함을 시사한다.
In order to evaluate the significance of the SNP markers, the present inventors used human (NP_001171545.1), horse (XP_001492766.3), dog (XP_003431500.1), and ox (XP_603945.5) as well as the amino acid sequence of KNP pig GRIP1. , And XP_003355559.1) were subjected to multiple protein sequence alignment analysis using Clustal X. As a result, as shown in Fig. 3, in the c.3451 C > G (G1151R) hypermutation, R is conserved at a high level in various other species except KNP, and thus the SNP is potentially important for the GRIP1 gene Suggesting that they will play a role.
<110> Industry-Academic Cooperation Foundation Gyeongsang University <120> Novel biomarker and method for predicting back fat traits in pigs <130> PD13-0693 <160> 22 <170> KopatentIn 2.0 <210> 1 <211> 484 <212> DNA <213> Sus scrofa <400> 1 gttaatcacg tccgaacaag agacttcgac tgctgccttg ttgtgcccct catagcagaa 60 tctggtaaca agctggacct ggtaattagc agaaatccac tggcttcaca gaagtccaca 120 gaacagactc taccgggagg agaatggagt gaacagaaca gtgctttttt ccaacagcct 180 agccatggtg gtaatttgga gatacgagaa cccactaata cattatagca atgcttttta 240 taaagcagga caaaagacaa tatctacatg gtgctaaaaa aaaaaatccc tttaagattt 300 ctgtgccatt tgatgcacag ataatcacgt ggcattaact gcaagcacag gggtctttta 360 aatctcatgg ctcatgttca cgtccctttt caagttgaag aggtttcttt gttgacgatc 420 actaaggtat atgacaggca atcccctgcc aagctcaagg gtacagaaaa aaacaaacaa 480 aaaa 484 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 23 <400> 2 ccctgtgctt gcagttaatg 20 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 23 <400> 3 gacttcgact gctgccttgt t 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 23 <400> 4 ctataatgta ttagtgggtt c 21 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 18 <400> 5 ccccaatgac aaatttcctg 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 18 <400> 6 aagcccagtc agcatcaagt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencign GRIP1 exon 18 <400> 7 accttgattc ccatagctgg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 15 <400> 8 tcacactgct ggaggatctg 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 15 <400> 9 actggcaaac aagggatttg 20 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 15 <400> 10 catggagcaa ttgtccagc 19 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 13 <400> 11 ctggctccac atctccgtat 20 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 13 <400> 12 tgactgatgc tccattcttc c 21 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 13 <400> 13 cactgctcgg gatgacag 18 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 12 <400> 14 ctgttgttcc tcccccatc 19 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 12 <400> 15 caacctgtaa catgtggttc taaa 24 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 12 <400> 16 gacagagtgc tggccatta 19 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 8 <400> 17 ttgcgaaaag aaggcacttt 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 8 <400> 18 agaccgacat caggctgaac 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 8 <400> 19 acttccacta ggagtggcc 19 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 4 <400> 20 cctgggcttg tatgctcatc 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 4 <400> 21 ggcaaaaata cggtgcatct 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 4 <400> 22 aacctggcca aattccgcc 19 <110> Industry-Academic Cooperation Foundation Gyeongsang University <120> Novel biomarker and method for predicting back fat traits in pigs <130> PD13-0693 <160> 22 <170> Kopatentin 2.0 <210> 1 <211> 484 <212> DNA <213> Sus scrofa <400> 1 gttaatcacg tccgaacaag agacttcgac tgctgccttg ttgtgcccct catagcagaa 60 tctggtaaca agctggacct ggtaattagc agaaatccac tggcttcaca gaagtccaca 120 gaacagactc taccgggagg agaatggagt gaacagaaca gtgctttttt ccaacagcct 180 agccatggtg gtaatttgga gatacgagaa cccactaata cattatagca atgcttttta 240 taaagcagga caaaagacaa tatctacatg gtgctaaaaa aaaaaatccc tttaagattt 300 ctgtgccatt tgatgcacag ataatcacgt ggcattaact gcaagcacag gggtctttta 360 aatctcatgg ctcatgttca cgtccctttt caagttgaag aggtttcttt gttgacgatc 420 actaaggtat atgacaggca atcccctgcc aagctcaagg gtacagaaaa aaacaaacaa 480 aaaa 484 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 23 <400> 2 ccctgtgctt gcagttaatg 20 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 23 <400> 3 gacttcgact gctgccttgt t 21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 23 <400> 4 ctataatgta ttagtgggtt c 21 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 18 <400> 5 ccccaatgac aaatttcctg 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 18 <400> 6 aagcccagtc agcatcaagt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencign GRIP1 exon 18 <400> 7 accttgattc ccatagctgg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 15 <400> 8 tcacactgct ggaggatctg 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 15 <400> 9 actggcaaac aagggatttg 20 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 15 <400> 10 catggagcaa ttgtccagc 19 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 13 <400> 11 ctggctccac atctccgtat 20 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 13 <400> 12 tgactgatgc tccattcttc c 21 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 13 <400> 13 cactgctcgg gatgacag 18 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 12 <400> 14 ctgttgttcc tcccccatc 19 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 12 <400> 15 caacctgtaa catgtggttc taaa 24 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 12 <400> 16 gacagagtgc tggccatta 19 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 8 <400> 17 ttgcgaaaag aaggcacttt 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 8 <400> 18 agaccgacat caggctgaac 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 8 <400> 19 acttccacta ggagtggcc 19 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for GRIP1 exon 4 <400> 20 cctgggcttg tatgctcatc 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for GRIP1 exon 4 <400> 21 ggcaaaaata cggtgcatct 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer for sequencing GRIP1 exon 4 <400> 22 aacctggcca aattccgcc 19
Claims (5)
상기 검출수단은 상기 폴리뉴클레오티드에 특이적인 프로브 또는 프라이머 쌍인, 키트.The method according to claim 1,
Wherein the detecting means is a pair of probes or primers specific to the polynucleotide.
상기 프라이머 쌍은 서열번호 2의 핵산서열로 표시되는 포워드 프라이머 및 서열번호 3의 핵산서열로 표시되는 리버스 프라이머로 구성되는, 키트.3. The method of claim 2,
Wherein the primer pair comprises a forward primer represented by the nucleic acid sequence of SEQ ID NO: 2 and a reverse primer represented by the nucleic acid sequence of SEQ ID NO: 3.
상기 게놈 DNA를 대상으로 PCR 반응을 통해 GRIP1을 암호화하는 게놈 핵산분자를 증폭하는 단계; 및
서열번호 1의 핵산서열로 표시되는 폴리뉴클레오티드에서 205번째 염기가 G인지 또는 C인지 확인하는 단계를 포함하는 돼지 등지방 두께 예측 방법.Genomic DNA extraction step for extracting genomic DNA from pigs;
Amplifying a genomic DNA molecule encoding GRIP1 through a PCR reaction with the genomic DNA; And
And determining whether the 205th base is G or C in the polynucleotide represented by the nucleic acid sequence of SEQ ID NO: 1.
상기 205번째 염기가 C인 경우, 등지방 두께가 두꺼울 것으로 예측 단계를 추가적으로 포함하는, 방법.
5. The method of claim 4,
Further comprising the step of predicting that if the 205th base is C, the backfill thickness is thick.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130129028A KR101567020B1 (en) | 2013-10-29 | 2013-10-29 | Novel biomarker and method for predicting back fat traits in pigs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130129028A KR101567020B1 (en) | 2013-10-29 | 2013-10-29 | Novel biomarker and method for predicting back fat traits in pigs |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150050614A KR20150050614A (en) | 2015-05-11 |
KR101567020B1 true KR101567020B1 (en) | 2015-11-09 |
Family
ID=53388309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130129028A KR101567020B1 (en) | 2013-10-29 | 2013-10-29 | Novel biomarker and method for predicting back fat traits in pigs |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101567020B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101784163B1 (en) | 2015-11-12 | 2017-10-16 | 대한민국 | Novel SNP marker for discriminating reduction of backfat thickness and use thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102081569B1 (en) * | 2018-12-11 | 2020-02-26 | 대한민국 | SNP marker for predicting backfat thickness of pig |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101193055B1 (en) | 2010-03-26 | 2012-10-23 | 경남과학기술대학교 산학협력단 | DNA marker - based diagnostic tools using ENO3 and KIAA1717 genes related to porcine backfat thickness |
KR101295288B1 (en) | 2011-05-26 | 2013-08-12 | 박화춘 | Markers for porcine meat quality |
-
2013
- 2013-10-29 KR KR1020130129028A patent/KR101567020B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101193055B1 (en) | 2010-03-26 | 2012-10-23 | 경남과학기술대학교 산학협력단 | DNA marker - based diagnostic tools using ENO3 and KIAA1717 genes related to porcine backfat thickness |
KR101295288B1 (en) | 2011-05-26 | 2013-08-12 | 박화춘 | Markers for porcine meat quality |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101784163B1 (en) | 2015-11-12 | 2017-10-16 | 대한민국 | Novel SNP marker for discriminating reduction of backfat thickness and use thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20150050614A (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ovilo et al. | Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross | |
Uemoto et al. | Effects of porcine leptin receptor gene polymorphisms on backfat thickness, fat area ratios by image analysis, and serum leptin concentrations in a Duroc purebred population | |
AU2018353819B2 (en) | Single nucleotide polymorphisms and feeding efficiency in cattle | |
KR101224007B1 (en) | Method of diagnosing meat quality of pig with biomarker and kit therof | |
KR101236298B1 (en) | Single nucleotide polymorphism (SNP) markers associated with backfat thickness trait in pig and their methods for evaluation | |
KR101248068B1 (en) | Method for selection of breeding stock using single nucleotide polymorphism (SNP) markers associated with intramuscular fat contents trait in pig | |
KR101295288B1 (en) | Markers for porcine meat quality | |
KR100804310B1 (en) | 4 DNA marker of adipocyte-fatty acid binding protein gene related the intramuscular fat content in beef cattle | |
KR101567020B1 (en) | Novel biomarker and method for predicting back fat traits in pigs | |
KR20190034125A (en) | Novle Single Nucleotide Polymorphisms Markers for Predicting Lifetime Production Ability Trait of Sow and Uses Thereof | |
KR102235340B1 (en) | SNP marker set for predicting growth traits of Korean native chicken and uses thereof | |
CN115820879B (en) | Molecular marker related to intramuscular fat traits of pigs in pig AOPEP gene and application thereof | |
CN115927667B (en) | Molecular marker and primer related to intramuscular fat traits of pigs and application of molecular marker and primer | |
CN116083598B (en) | SNP molecular marker related to intramuscular fat traits of pigs and application thereof | |
KR20190034124A (en) | Novle Single Nucleotide Polymorphisms Markers for Predicting Lifetime Production Ability Trait of Sow and Uses Thereof | |
US20120122089A1 (en) | Gene Marker For Evaluating Genetic Potential For Marbling In Bovine Individual And Method For Evaluating Genetic Potential For Marbling Using The Same | |
KR20180082741A (en) | SNP marker for the prediction of carcass weight traits of hybrid pigs | |
KR101663404B1 (en) | Single nucleotide polymorphism marker in TDRKH gene for diagnosis of meat quality in Hanwoo and method for diagnosis of meat quality in Hanwoo using same marker | |
KR101307008B1 (en) | Diagnosis method of high meat producing Hanwoo using the DNA marker associated with marbling score | |
KR20110067941A (en) | Dna markers for detecting increase of muscle fiber type i within porcine muscle | |
Park et al. | Joint linkage and linkage disequilibrium mapping reveals association of BRMS1L with total teat number in a large intercross between Landrace and Korean native pigs | |
KR101417389B1 (en) | Development of genetic marker related to maturity score in Hanwoo | |
KR101618948B1 (en) | Diagnosis method of meat quality using allele specific-PCR in Korean cattle | |
KR101653480B1 (en) | Single nucleotide polymorphism marker in ADAM15 gene for diagnosis of meat quality in Hanwoo and method for diagnosis of meat quality in Hanwoo using same marker | |
CN116837107A (en) | LTBP2 gene SNP as molecular marker related to pig carcass and fattening traits and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20181016 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20191029 Year of fee payment: 5 |