KR20110059616A - 광추출이 향상된 인버터 led구조 - Google Patents

광추출이 향상된 인버터 led구조 Download PDF

Info

Publication number
KR20110059616A
KR20110059616A KR1020117005989A KR20117005989A KR20110059616A KR 20110059616 A KR20110059616 A KR 20110059616A KR 1020117005989 A KR1020117005989 A KR 1020117005989A KR 20117005989 A KR20117005989 A KR 20117005989A KR 20110059616 A KR20110059616 A KR 20110059616A
Authority
KR
South Korea
Prior art keywords
layer
light
substrate
led
active layer
Prior art date
Application number
KR1020117005989A
Other languages
English (en)
Inventor
굴람 하스나인
Original Assignee
브리지럭스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브리지럭스 인코포레이티드 filed Critical 브리지럭스 인코포레이티드
Publication of KR20110059616A publication Critical patent/KR20110059616A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명에 따른 광원(30)과 광원 제조방법이 개시되어 있다. 광원(30)은 기판과 발광구조를 포함한다. 기판(24)은 제 1 면과 제 2 면을 갖고, 제 2 면은 기판의 제 1 면에 대해 만곡된 볼록면(39)을 포함한다. 발광구조는 제 1 면 위에 놓인 제 1 전도성 타입의 재료로 된 제 1 층(21)과, 상기 제 1 층 위에 놓이고, 홀과 전자가 내에서 재결합될 때 광을 발생하는 활성층(22)과, 상기 활성층 위에 놓인 제 2 전도성 타입의 재료와 상기 제 1 면의 맞은 편에 있는 제 2 면을 포함하는 제 2 층(23)을 갖는다. 미러층(25)이 발광구조 위에 놓인다.

Description

광추출이 향상된 인버터 LED구조{Inverted LED Structure with Improved Light Extraction}
발광다이오드(LEDs)는 전기에너지를 빛으로 변환시키는 중요한 부류의 고체상태 디바이스이다. 이들 디바이스의 향상으로 종래 백열 및 형광 광원을 대체하도록 설계된 조명설비에 사용되어 왔다. LEDs는 수명이 상당히 더 길고, 몇몇 경우, 전기에너지를 빛으로 변환하는 효율이 상당히 더 높다.
LEDs의 비용 및 변환효율은 이 신기술이 종래 광원을 대체하고 고전력 애플리케이션에 이용되는 비율을 결정하는데 있어 중요 요인들이다. 많은 고전력 애플리케이션들은 개개의 LEDs가 수 와트로 제한되기 때문에 필요로 하는 전력 레벨을 달성하기 위해 다수의 LEDs를 필요로 한다. 또한 LEDs는 상대적으로 협소한 스펙트럼 대역의 광을 발생한다. 따라서, 특정 컬러의 광원을 필요로 하는 애플리케이션에서, 다른 광대역의 스펙트럼 방출을 갖는 많은 LEDs로부터 광이 조합된다. 따라서, LEDs를 바탕으로 한 많은 광원들의 비용은 개개의 LEDs의 비용의 수 배이다.
개개의 LEDs의 변환효율은 고전력 LED 광원의 비용을 해결하는 데 있어 중요 요인이다. LED의 변환효율은 LED에 의해 방출된 광전력 대 소실된 전력의 비(比)인 것으로 정의된다. LED에서 광으로 변환되지 않은 전력은 LED의 온도를 올리는 열로 변환된다. 열방사는 LED가 동작하는 전력레벨에 제한을 둔다. 또한, LEDs는 열방사를 제공하는 구조에 장착되어야 하며, 차례로, 광원 비용을 더 높인다. 따라서, LED의 변환효율이 높아질 수 있으면, 단일 LED에 의해 제공될 수 있는 최대 광량도 또한 증가될 수 있어, 이에 따라, 주어진 광원에 필요한 LEDs의 개수가 줄어들 수 있다. 또한, LED의 동작비용도 또한 변환효율에 반비례한다. 때문에, LEDs의 변환효율을 향상하도록 지향된 상당히 많은 노력이 있어 왔다.
이 논의를 위해, LED는 3개의 층들을 갖는 것으로 간주될 수 있고, 활성층이 p-i-n 다이오드 구조를 형성하는 2개의 다른 층들 간에 사이에 끼워져 있다. 이들 층들은 일반적으로 사파이어와 같은 기판에 증착된다. 각각의 이들 층들은 일반적으로 많은 서브층들을 포함하는 것에 유의해야 한다.
재료에 있어 향상이 활성층에 발생되는 광의 효율에 향상을 초래한다. GaN 기반의 LEDs가 활성층에 대해 증가된 광변환효율 면에서 특별한 가망을 보여왔다. 불행히도, 이들 재료는 굴절률이 매우 높아서, 광이 공기-LED 경계에서 또는 높은 굴절률의 재료 속을 지나는 광이 낮은 굴절률의 재료와 조우하는 다른 경계에서 전반사로 인해 LED 내부에 갇힐 수 있다. 갇힌 광의 상당 부분은 GaN 재료에서 흡수로 인해 상실된다. 사파이어 구조상에 종래 GaN 기반의 LEDs의 경우, 단순한 평면층의 LED 구조가 변경되지 않는 한 활성층에 의해 방출된 광의 대략 70%가 LED 내부에 갇힌 채로 있다.
이런 타입의 내부 갇힘을 최소화함으로써 LEDs로부터 광추출을 향상시키기 위한 여러 가지 기술들이 설명되었다. 기술들 중 한가지 부류는 전반사 경계를 타격하는 광선이 상기 경계로부터 반사되는 각도를 랜덤화함으로써 동작된다. LED가 평행한 평면층으로 구성되면, 굴절률이 다른 2개 층들 간의 경계면에서 임계각보다 큰 각도로 제 1 경계에 입사한 광선은 제 2 경계를 향해 내부 반사된다. 이 광선은 제 1 경계에 입사한 동일한 각도로 제 2 경계에 입사하며, 따라서, 동일한 각도로 제 1 경계를 향해 다시 반사된다. 때문에, 광선은 경계 사이에서 갇히고 결국 재료에 의해 흡수되거나 LED의 측면을 통해 나간다. 경계들 중 하나를 거칠게 함으로써, 광선이 제 1 반사시 경계에 입사한 각도와 강선이 제 2 반사시 경계를 입사한 각도 간에 상관관계가 상당히 줄어들거나 없어진다. 따라서, 매번 광선이 경계에 입사할 때마다, 광선은 광선의 이전 반사시 내부적으로 반사되었더라도 유한한 탈출 기회를 갖는다.
그러나, 다른 방식을 통해 LED의 효율에 영향을 주는 다른 문제들을 일으키지 않고도 달성될 수 있는 러프닝(roughening) 정도에는 한계가 있다.
LED의 상단면의 형성을 통해 얻을 수 있는 러프닝 정도는 p층의 두께에 의해 제한되며, 상기 p층은 주로 층들이 제조된 후 노출되는 층이다. p층 재료는 성장온도가 상당히 더 높고, 따라서 이 층의 두께는 하부의 활성층의 열화를 방지하기 위해 에피텍셜 성장동안 최소로 유지되어야 한다. 그러나, 상기 층은 층에 입사하는 광을 산란시키기 충분하게 층이 거칠어 질 수 있을 정도로 충분히 두꺼워야 한다. 산란 구조는 효율적인 산란을 제공하기 위해 산란되는 광 파장의 크기인 치수를 가져야 한다. 따라서, p층은 활성층에서 발생된 광파장의 크기의 특징을 제공하며 여전히 원래대로 유지될 수 있도록 거칠어 질 수 있는 두께를 가져야 한다. 이런 상쇄는 LED의 표면을 러프닝함으로써 전반사 문제가 해결될 수 있는 정도를 제한한다.
광 갇힘 문제를 해결하는 또 다른 세트의 기술들은 광이 나가는 LED의 면에 만곡면을 제공하는 것을 포함한다. LED에 비해 만곡면이 크면, 임의의 각도에서 LED를 나간 광은 임계각보다 적은 각도로 표면과 조우하여 탈출하게 된다. 이 방안은 일반적으로 볼록면을 갖는 재료층으로 LED를 덮음으로써 패키징 레벨에서 적용된다. 그러나, 재료층은 LED가 구성되는 GaN층들의 굴절률보다 상당히 작은 굴절률을 갖는다. 따라서, 이 경계층으로 방출된 광이 고효율로 나가는 반면, 내부층과 LED의 경계에서 전반사로 인해 광은 여전히 LED에 갇혀 진다.
또한, 이 방안은 LED보다 훨씬 더 큰 표면을 필요로 하며, 따라서, 광원의 크기를 증가시킨다. 더욱이, 경계면 구조는 광원 제조업체가 패키징 공정의 일부로 경계면 구조를 몰딩하는 것을 필요로 하는 점에서 LED의 패키징을 복잡하게 한다.
본 발명은 광원과 광원 제조방법을 포함한다. 광원은 기판과 발광구조를 포함한다. 기판은 제 1 면과 제 2 면을 갖고, 제 2 면은 기판의 제 1 면에 대해 만곡된 볼록면을 포함한다. 발광구조는 제 1 표면 위에 놓인 제 1 전도성 타입으로 된 재료의 제 1 층과, 상기 제 1 층 위에 놓인 활성층과, 상기 활성층 위에 놓인 제 2 전도성 타입으로 된 재료의 제 2 층과 상기 제 1 표면의 맞은 편에 제 2 표면을 포함하고, 상기 활성층은 홀과 전자가 내부에서 재결합될 때 광을 발생한다. 미러층이 발광구조 위에 놓인다.
본 발명의 일태양으로, 만곡된 볼록면은 전반사로 인해 표면에서 초기에 반사되는 활성층에 발생된 광선이 연이어 표면의 지점에서 표면에 대한 임계각보다 적은 각도로 만곡된 볼록면에 입사하도록 선택된다.
본 발명의 또 다른 일태양으로, 만곡된 볼록면은 포토레지스트층이 상기 만곡된 볼록면과 유사한 표면 프로파일을 갖는 상기 기판상에 포토레지스트층을 패턴화함으로써 형성된다. 그런 후, 포토레지스트층과 기판은 양 표면을 침범하는 에칭 시스템을 이용해 에칭된다.
본 발명의 내용에 포함됨.
도 1a 및 도 1b는 종래 기술의 GaN 기반의 인버터 LED 구조의 간략한 횡단면도이다.
도 2는 본 발명의 일태양에 따른 LED(30)를 포함한 웨이퍼의 일부분의 간략한 횡단면도이다.
도 3은 본 발명에 따른 제조방법을 위한 흐름도이다.
도 4a 내지 도 4f는 제조공정시 다양한 지점들에 웨이퍼의 일부분의 횡단면도이다.
본 발명의 이점을 제공하는 방식은 종래 기술의 GaN 기반의 인버터 LED 구조의 간략한 횡단면인 도 1a 및 도 1b를 참조로 더 쉽게 이해될 수 있다. LED(10)는 사파이어 기판(24)상에 3개 층들을 성장시킴으로써 구성된다. 제 1 층(21)은 n형 GaN 재료이다. 제 2 층(23)은 p형 GaN 재료이다. 제 3 층(22)은 층(21 및 23)으로부터 홀과 전자가 내부에 결합될 때 광을 방출하는 활성층이다. 이들 서브층들의 기능은 해당기술분야에 잘 알려져 있고 본 논의의 핵심이 아니기 때문에, 이들 서브층들에 대한 상세한 내용은 도면의 아래의 논의에서 생략하였다.
층(22)에서 발생된 광은 모든 가능한 각도에서 층(22)을 나간다. 경계(28 및 29)를 지나간 후 LED를 성공적으로 떠난 광의 예가 27A로 도시되어 있다. 도 1a에서 27B로 도시된 바와 같이 층(22)을 떠난 광의 일부가 전반사를 받기에 충분히 큰 각도로 LED 층(21)과 기판(24) 사이의 경계(28)에 부닥치고, 경계(28)와 미러(25) 사이에 갇히게 된다. 도 1a에서 27C로 도시된 바와 같이 층(22)을 나간 광의 또 다른 일부는 경계에 대한 임계각 아래의 각도로 경계(28)에 부닥쳐 지나지만, 그런 후 전반사를 받기에 충분히 큰 각도로 기판(24)과 공기 사이의 경계(29)에 부닥쳐 경계(29)와 미러(25) 사이에 갇히게 된다.
광은 두 경계들 사이에 갇히게 되는데, 이는 광이 연이은 반사시 경계에 입사하는 각도와 제 1 반사동안 상기 경계에 광이 입사하는 각도 간에 상관관계가 있기 때문이다. 예컨대, 광이 임계각보다 더 큰 각도로 경계에 입사하기 때문에 광이 경계(29)로부터 반사되면, 상기 광은 미러(25)로 다시 지향되고 그런 후 경계(29)로 다시 반사된다. 경계는 평행하기 때문에, 이 광은 이전에 경계(29)에 입사한 광이 상기 경계와 부닥치는 동일한 각도로 경계(29)에 다시 입사한다. 따라서, 광은 경계(29)에 의해 다시 반사된다. 때문에, 두 경계 사이에 광이 갇히게 되고 LED의 재료에 흡수되거나 LED의 끝에서 나간다.
미러(25)와 어느 한 경계(28 또는 29) 사이에 갇힌 광의 양은 도 1b에 도시된 바와 같이 거친 표면(26)을 제공함으로써 줄어들 수 있다. LED(20)는 층(23)의 상단면이 26으로 도시된 에칭에 의해 거칠게 되는 것을 제외하고는 LED(10)와 유사하게 구성된다. 거친 표면(26)은 표면(26)에 입사한 광이 연이어 경계(28 및 29)에 입사하는 각도를 랜덤하게 한다. 경계(28)를 고려하자. 임계각보다 더 큰 각도로 경계(28)에 입사한 광은 미러(25)를 향해 다시 반사된다. 거친 표면은 광이 미러(25)를 나가는 각도를 랜덤하게 한다. 즉, 미러(25)에 입사한 광의 반사 각도가 퍼지게 된다. 따라서, 미러(25)를 나간 광의 일부는 임계각보다 적은 각도로 경계(28)에 입사하고 27D 및 27E로 도시된 바와 같이 경계를 지나간다. 나머지 광도 다시 미러(25)로 지향되고 경계(2()를 향해 다시 각도 범위에 걸쳐 반사된다. 따라서, 거친 표면(26)은 도 1b의 종래 기술의 구조에서 LED의 추출 효율을 향상시킨다.
층(23)의 표면 러프닝은 LED(10)에 대한 LED(20)의 광추출 효율을 향상시키지만, 러프닝은 다른 문제를 야기한다. 첫째, 미러는 일반적으로 층(23)의 상단면에 은 또는 알루미늄과 같은 금속층을 증착함으로써 형성된다. 층(23)의 상단면이 거칠어 지면, 표면 플라즈몬(surface plasmon) 효과로 인해 미러의 반사도가 실질적으로 감소된다. 따라서, 광의 상당 부분이 상실된다.
둘째, 상단면의 형성을 통해 제공될 수 있는 표면 러프닝의 양은 층(23)의 두께에 의해 제한된다. 층(23)은 일반적으로 p형 반도체층이다. GaN와 같은 많은 반도체 재료 시스템들에 대해, p형 재료는 매우 높은 저항을 갖는다. 또한, 이 p형층은 하부 활성층의 성장온도보다 상당히 더 큰 성장온도를 필요로 한다. 활성층의 열화를 최소화하기 위해, p-GaN층의 두께는 가능한 한 작게 선택된다. 적절한 러프닝을 제공하기 위해, 층은 원래대로의 연속층을 여전히 제공하는 한편 활성층에 형성된 광 파장의 크기로 되는 산란 특징을 제공하는 두께를 가져야 한다. 따라서, 내부 양자효율과 광산란효율 간에 상쇄가 있다.
본 발명은 러프닝 기판(23)이 없더라도 미러(25)와 표면(29) 간에 갇힌 광의 양이 연이어 표면에 입사한 광의 표면에 대한, 법선에 대한, 입사각도가 광이 이전 반사에서 표면에 입사한 입사각도보다 작아서 이에 따라 광이 탈출할 수 있도록 구조(29)의 형태를 변경함으로써 줄어들 수 있는 관찰을 기초로 한다.
본 발명의 일태양에 따른 LED(30)를 포함한 웨이퍼의 일부분의 간략한 횡단면도인 도 2를 참조하라. LED(30)는 ED(20)에 대해 상술한 바와 유사한 방식으로 하지만 반드시 어떠한 거친 표면을 포함할 필요없이 기판(24)상에 층(21-23)을 증착하고 미러층(25)을 증착함으로써 구성된다. 기판(24)의 하단면(39)은 볼록 곡률을 갖는다. 광선(31)을 고려하자. 기판(24)의 하단면(39)이 33으로 도시된 바와 같이 평평하면, 광선(31)은 32로 도시된 바와 같이 층(21)으로 다시 반사된다. 대신, 광선(31)은 점(34a)에서 기판(39)의 만곡면에 입사한다. 이 점에서 기판(24)의 곡률로 인해 광선(31)의 입사각이 임계각보다 작아지고, 따라서, 광선(31)이 탈출한다.
층(22 및 21)으로 수직 입사시 활성층(22)을 나가는 광선(37)을 고려하자. 이 광선은 층(21)에 평행한 평평면을 갖는 LED로부터 수직으로 탈출한다. 그러나, 광선(37)은 점(34b)에서 임계각보다 더 큰 각도(35)로 표면(39)에 입사하고, 따라서, 지점(34c)에서 표면(39)에 입사한다. 표면(39)은 이 광선이 표면(39)에 입사하는 입사각도(36)가 각도(35)보다 더 크고 따라서 이 광선도 또한 기판(34)에서 나가도록 선택된다.
일반적으로, 표면(39)은 전반사로 인해 표면(39)으로부터 초기에 반사되는 광이 연이어 표면(39)상의 지점에서 표면(39)에 대한 임계각보다 적은 각도로 표면(39)에 입사하도록 선택된다. 탈출이 일어나는 반사는 다음 반사이거나 표면(39) 및/또는 미러(35)와 같은 LED(30)의 다른 표면 또는 층(21-23)의 일단면으로부터 많은 반사 후에 일어나는 반사일 수 있다. 본 발명의 일태양으로, 표면(39)은 비구면 볼록면이다. 예컨대, 표면(39)은 대략 포물선 면일 수 있다.
본 발명에 따른 한가지 LED 제조방법을 나타낸 흐름도인 도 3 및 도 4a 내지 도 4f를 참조하라. 도 3은 상기 방법에 대한 흐름도이고, 도 4a 내지 도 4f는 제조공정시 다양한 지점들에 웨이퍼의 일부분의 횡단면도이다. 공정은 사파이어 기판(44) 상에 종래 3층 LED 구조(43)의 증착으로 시작한다. 도 4a 및 단계(301)에 도시된 바와 같이, 기판(43)의 상단층은 미러층(45)으로 덮여 있고 그런 후 인광층이 기판(42)에 증착된다. 단계(302)에서, 도 4b에 도시된 인광층은 소정 볼록구조에 해당하는 위치들에서 아일랜드(42A 및 42B)를 형성하도록 패턴화된다. 도시된 웨이퍼의 일부분에서, 각각의 2개의 인접한 LED에 대해 하나씩 2개 구조들이 형성된다.
단계(304)에서, 도 4c에 도시된 포토레지스트가 연화 및 유동하도록 열이 가해진다. 열이 제거된 후, 표면장력으로 인해 포토레지스트 아일랜드의 재형성이 유발된다. 포토레지스트 아일랜드가 완전히 용융되게 하면, 도 4d에서 47A 및 47B로 도시된 바와 같이 각각의 아일랜드에 실질적으로 볼록면이 형성된다. 가열기기의 크기와 측면 프로파일은 특별한 소정의 표면 프로파일을 달성하기 위해 선택될 수 있다.
그런 후, 단계(305)에서, 도 4e에 도시된 바와 같이 포토레지스트층과 하부 기판을 에칭함으로써, 포토레지스트 패턴이 하부 기판에 전달된다. 이온빔 밀링이 에칭공정을 위해 이용될 수 있다. 포토레지스트에 의해 덮여 있는 기판(44)의 이들 부분들은 위에 놓인 포토레지스트층이 이온빔에 의해 제거될 때까지 에칭되지 않는다. 따라서, 볼록면 영역(49A 및 49B)은 도 4f에 도시된 바와 같이 에칭공정의 마지막에 남아 있다.
기판에 최종 형성된 구조의 높이 프로파일은 포토레지스트의 프로파일과 이온빔 에칭공정의 상대 선택도 모두에 따른다. 이온빔 공정이 실질적으로 포토레지스트와 동일한 속도로 하부 기판을 에칭하면, 볼록 부분이 실질적으로 포토레지스트층의 해당 구조와 동일한 높이를 갖도록 포토레지스트의 패턴이 기판에 전달된다. 이온빔 에칭이 기판보다 더 빨리 포토레지스트를 침식하면, 패턴은 동일한 형태를 가지나, 높이가 줄어든 채 형성된다.
볼록 구조의 생성은 웨이퍼 스케일에서 수행되고, 따라서, LEDs의 비용을 실질적으로 증가시키기지 않는다. 이에 대해, 기판은 웨이퍼를 개개의 다이들로 분리를 용이하게 하기 위해 종래 공정 시스템에서 종종 얇아지는 것에 유의해야 한다. 사파이어 기판의 경우, 다이는 소정 위치에서 웨이퍼에 새김 선을 긋고 그런 후 웨이퍼를 꺾어 분리된다. 신뢰가능한 분리를 제공하기 위해, 웨이퍼는 도 3의 306에 도시된 바와 같이 선 긋기 및 꺾기 공정 이전에 일반적으로 약 100 마이크론 두께로 얇아진다. 웨이퍼는 다이들, 즉, 볼록 구조가 도 4f의 51에 도시된 바와 같이 적어도 수직 두께를 갖는 면적들 사이 위치에서 선이 그어지므로, 다이를 분리하는데 전혀 추가적인 얇게 할 필요가 없다.
상술한 실시예에서, 볼록 구조는 최종 LEDs를 생산하는 웨이퍼 공정의 마지막에 또는 부근에 제조된다. 그러나, LED층의 증착 이전에 볼록 광추출 구조가 제조될 수 있는 실시예들도 또한 구성될 수 있다. 이 경우, 웨이퍼를 제공하는 엔티티는 적소에 이미 광추출 형태를 웨이퍼에 제공한다. LED 제조업체는 단지 볼록 구조들과 적절히 정렬되는 식으로 LED 관련 구조들을 생성할 필요만 있다. 웨이퍼가 종래 공정 동안 얇아지기 때문에, 웨이퍼는 공정 동안 꺾기에 필요한 저항을 제공하는 캐리어에 접합될 수 있다.
볼록 광추출 표면은 기판으로부터 구성되고, 따라서 동일한 굴절률을 갖는 것에 유의해야 한다. 따라서, 굴절률이 다른 층들을 간에 새로운 경계면이 전혀 없이 생성된다. 광을 추출하기 위한 볼록면을 이용하는 종래 방식은 LED에 대한 큰 볼록 렌즈를 LED에 결합하는데 따르고 일반적으로 사파이어보다 실질적으로 굴절률이 더 낮은 재료 또는 LED층이 구성되는 재료를 이용한다. 효과적이기 위해, 렌즈는 LED로부터 소정 거리에 위치되어야 하고 LED보다 직경이 수배 더 커야 한다. 그 결과, 렌즈는 광원 어셈블리의 패키징 단계에서 개별적으로 생성 또는 부착되어야 한다. 이는 최종 발생한 광원의 비용을 높인다.
렌즈는 LED의 직경의 수배인 직경을 가져야 하고, LED를 떠난 임의의 광이 임계각보다 더 적은 각도로 만곡면에 입사하도록 LED로부터 소정 거리에 위치되어야 하는 것에 유의해야 한다. 이는 몇몇 애플리케이션에 불만족스러운 광원의 크기에 대한 하한을 둔다.
또한, LED와 만곡면 사이의 공간은 LED 층에 비해 상대적으로 낮은 굴절률을 갖는 재료로 채워진다. 이는 LED와 광추출 렌즈 간에 경계가 평평하게 하며, 여기서 경계가 다른 굴절률의 두 영역들을 분리한다. 따라서, 광의 일부가 이 경계에서 LED로 다시 반사된다.
본 발명은 GaN 군의 재료 및 사파이어와 실리콘 카바이드와 같은 높은 굴절률을 갖는 다른 재료의 시스템으로 구성된 LED에 특히 유용하다. 본 논의를 위해, GaN 군의 재료는 AlGaN, InGaN, 및 GaN으로 정의된다. 그러나, 본 발명은 다른 군의 재료로 구성된 LED에 적용될 수 있다.
본 발명의 상술한 실시예들은 본 발명의 다양한 태양들을 예시하기 위해 제공되었다. 그러나, 본 발명의 다른 태양들도 다른 특정 실시예들이 도시된 본 발명의 다른 실시예들을 제공하기 위해 결합될 수 있음이 이해된다. 또한, 본 발명의 다양한 변형들이 상술한 설명과 첨부도면으로부터 당업자에게 명백할 것이다. 따라서, 본 발명은 특허청구범위에 의해서만 국한되어야 한다.

Claims (9)

  1. 제 1 면과 제 2 면을 가지며, 상기 제 2 면은 기판의 상기 제 1 면에 대해 만곡된 볼록면을 갖는 기판과,
    상기 제 1 면 위에 놓이고, 제 1 전도성 타입의 재료를 포함하는 제 1 층과,
    상기 제 1 층 위에 놓이고, 홀과 전자가 내에서 재결합될 때 광을 발생하는 활성층과,
    제 2 전도성 타입의 재료를 포함하고, 상기 활성층 위에 놓인 제 1 면과 상기 제 1 면의 맞은 편에 있는 제 2 면을 가지며, 활성층에 의해 발생된 광에 투명한 제 2 층을 구비하는 디바이스.
  2. 제 1 항에 있어서,
    상기 제 1 층, 상기 제 2 층 및 상기 활성층은 GaN 군의 재료로 된 재료들을 구비하는 디바이스.
  3. 제 1 항에 있어서,
    상기 기판은 사파이어를 구비하는 디바이스.
  4. 제 1 항에 있어서,
    상기 만곡된 볼록면은 전반사로 인해 상기 표면으로부터 초기에 반사된 상기 활성층에서 생성된 광선이 상기 표면상의 지점에서 상기 표면에 대해 임계각보다 적은 각도로 상기 표면에 입사하도록 선택되는 디바이스.
  5. 제 1 항에 있어서,
    상기 만곡된 볼록면은 비구면인 디바이스.
  6. 제 1 항에 있어서,
    상기 만곡된 볼록면은 실질적으로 포물선인 디바이스.
  7. 제 1 면과 제 2 면이 실질적으로 서로 평행한 기판을 제공하는 단계와,
    상기 제 1 면에 발광구조를 제조하는 단계와,
    만곡된 볼록면을 상기 제 1 면에 제공하기 위해 상기 기판의 상기 제 2 면을 에칭하는 단계를 포함하고,
    상기 발광구조는
    상기 기판에 증착된 제 1 전도성 타입의 반도체 재료로 된 제 1 층과,
    상기 제 1 층 위에 놓인 활성층과,
    상기 활성층 위에 놓인 상기 제 1 전도성 타입의 반대 전도성 타입의 반도체 재료로 된 제 2 층을 구비하는 발광 디바이스 제조방법.
  8. 제 7 항에 있어서,
    상기 기판의 상기 제 2 면을 에칭하는 단계는
    상기 제 2 면에 포토레지스트층을 증착하는 단계와,
    상기 증착된 포토레지스트층을 패턴화하는 단계와,
    상기 포토레지스트층의 표면이 만곡된 볼록한 모양을 띠는 온도로 상기 포토레지스트를 가열하는 단계와,
    상기 포토레지스트층과 상기 기판을 에칭하는 단계를 포함하는 발광 디바이스 제조방법.
  9. 제 7 항에 있어서,
    상기 만곡된 볼록면은 전반사로 인해 상기 만곡된 볼록면으로부터 초기에 반사된 상기 활성층에서 생성된 광선이 상기 면상의 지점에서 상기 면에 대해 임계각보다 적은 각도로 상기 만곡된 볼록면에 입사하도록 선택되는 발광 디바이스 제조방법.
KR1020117005989A 2008-09-15 2009-08-20 광추출이 향상된 인버터 led구조 KR20110059616A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/210,845 US7741134B2 (en) 2008-09-15 2008-09-15 Inverted LED structure with improved light extraction
US12/210,845 2008-09-15

Publications (1)

Publication Number Publication Date
KR20110059616A true KR20110059616A (ko) 2011-06-02

Family

ID=42005698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117005989A KR20110059616A (ko) 2008-09-15 2009-08-20 광추출이 향상된 인버터 led구조

Country Status (6)

Country Link
US (2) US7741134B2 (ko)
JP (1) JP5743890B2 (ko)
KR (1) KR20110059616A (ko)
CN (1) CN102138231B (ko)
TW (1) TWI469385B (ko)
WO (1) WO2010030488A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653546B2 (en) * 2009-10-06 2014-02-18 Epistar Corporation Light-emitting device having a ramp
CN102270717B (zh) * 2011-07-15 2013-03-06 华灿光电股份有限公司 一种弯曲衬底侧面的发光二极管芯片及其制备方法
US20130278064A1 (en) * 2011-10-19 2013-10-24 Creative Electron, Inc. Ultra-Low Noise, High Voltage, Adjustable DC-DC Converter Using Photoelectric Effect
US20150355084A1 (en) * 2012-12-19 2015-12-10 University Of California Optimizing analysis and identification of particulate matter
JP2016171277A (ja) * 2015-03-16 2016-09-23 株式会社東芝 半導体発光素子及びその製造方法
CN110931615B (zh) * 2019-12-19 2021-10-22 马鞍山杰生半导体有限公司 一种深紫外led外延结构及其制备方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165474A (en) * 1977-12-27 1979-08-21 Texas Instruments Incorporated Optoelectronic displays using uniformly spaced arrays of semi-sphere light-emitting diodes
US5079130A (en) * 1990-05-25 1992-01-07 At&T Bell Laboratories Partially or fully recessed microlens fabrication
TW305035B (ko) * 1993-01-19 1997-05-11 Canon Kk
US5396350A (en) * 1993-11-05 1995-03-07 Alliedsignal Inc. Backlighting apparatus employing an array of microprisms
US5598281A (en) * 1993-11-19 1997-01-28 Alliedsignal Inc. Backlight assembly for improved illumination employing tapered optical elements
US5779924A (en) * 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
JP3362836B2 (ja) * 1997-12-26 2003-01-07 日亜化学工業株式会社 光半導体素子の製造方法
US6657233B2 (en) * 1998-08-19 2003-12-02 Ricoh Company, Ltd. Light emitting devices with layered III-V semiconductor structures, and modules and systems for computer, network and optical communication, using such device
US20020017652A1 (en) * 2000-08-08 2002-02-14 Stefan Illek Semiconductor chip for optoelectronics
US7064355B2 (en) * 2000-09-12 2006-06-20 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
TW536841B (en) * 2001-03-21 2003-06-11 Mitsubishi Cable Ind Ltd Semiconductor light emitting element
JP2003014938A (ja) * 2001-04-12 2003-01-15 Mitsubishi Engineering Plastics Corp 透明樹脂製の導光板及びその成形方法、入れ子、金型組立体、並びに、面状光源装置
JP2004179116A (ja) * 2002-11-29 2004-06-24 Alps Electric Co Ltd 背面照明装置及び液晶表示装置
US7102162B2 (en) * 2002-12-12 2006-09-05 Che-Kuei Mai Plane light source structure for planar display
EP1573374B1 (en) * 2002-12-16 2007-02-28 Casio Computer Co., Ltd. Illumination device and electronic apparatus
US6831302B2 (en) * 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
US7102175B2 (en) * 2003-04-15 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
JP2003347586A (ja) * 2003-07-08 2003-12-05 Toshiba Corp 半導体発光素子
US7012279B2 (en) * 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
JP2005158795A (ja) * 2003-11-20 2005-06-16 Sumitomo Electric Ind Ltd 発光ダイオード及び半導体発光装置
US7048385B2 (en) * 2004-06-16 2006-05-23 Goldeneye, Inc. Projection display systems utilizing color scrolling and light emitting diodes
KR100608933B1 (ko) 2004-11-19 2006-08-08 광주과학기술원 기판에 건식식각을 수행하여 개선된 광추출 효율을 가지는고효율 ⅲ-ⅴ 질화물계 플립칩 구조의 반도체 발광소자제조방법
JP4785033B2 (ja) * 2005-03-22 2011-10-05 スタンレー電気株式会社 光学式水滴センサ
JP2006324324A (ja) * 2005-05-17 2006-11-30 Sumitomo Electric Ind Ltd 発光装置、発光装置の製造方法および窒化物半導体基板
JP4992282B2 (ja) * 2005-06-10 2012-08-08 ソニー株式会社 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器
JP4524255B2 (ja) * 2006-02-07 2010-08-11 富士フイルム株式会社 面状照明装置
KR20090016694A (ko) * 2006-06-12 2009-02-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 재발광 반도체 구성 및 광학 요소를 갖는 led 소자
US20090050905A1 (en) * 2007-08-20 2009-02-26 Abu-Ageel Nayef M Highly Efficient Light-Emitting Diode
US8082387B2 (en) * 2007-10-29 2011-12-20 Micron Technology, Inc. Methods, systems, and devices for management of a memory system

Also Published As

Publication number Publication date
US20100065866A1 (en) 2010-03-18
JP5743890B2 (ja) 2015-07-01
WO2010030488A3 (en) 2010-05-06
US20100219440A1 (en) 2010-09-02
US7741134B2 (en) 2010-06-22
CN102138231A (zh) 2011-07-27
CN102138231B (zh) 2013-08-28
WO2010030488A2 (en) 2010-03-18
JP2012514848A (ja) 2012-06-28
TW201019510A (en) 2010-05-16
TWI469385B (zh) 2015-01-11
US7915621B2 (en) 2011-03-29

Similar Documents

Publication Publication Date Title
US9893253B2 (en) LED with scattering features in substrate
US6015719A (en) Transparent substrate light emitting diodes with directed light output
US5793062A (en) Transparent substrate light emitting diodes with directed light output
CN109643745B (zh) 具有反射性侧涂层的半导体发光器件
JP5511114B2 (ja) 光抽出を向上させた微小発光ダイオードアレイ
TWI636584B (zh) 發光二極體組件、包括該發光二極體組件的發光二極體、及微光學多層結構
US20070221867A1 (en) Wavelength conversion chip for use in solid-state lighting and method for making same
US20080035944A1 (en) Radiation emitting element
JP2008047906A5 (ko)
JP2008515177A (ja) オプトエレクトロニクス薄膜チップ
KR20110059616A (ko) 광추출이 향상된 인버터 led구조
CN106025028A (zh) 倒装发光二极管芯片及其制作方法
JP2003179255A (ja) 光の抽出を改善すべくフリップチップ発光ダイオードに量子井戸を選択的に設ける方法
US20180212107A1 (en) Optoelectronic Semiconductor Chip
KR102645382B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR101986982B1 (ko) 광대역 미러
KR101582329B1 (ko) 발광 다이오드 소자, 발광 다이오드 모듈 및 이의 제조 방법

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right