KR20110056033A - Method for recovering cobalt from waste lithium ion battery - Google Patents
Method for recovering cobalt from waste lithium ion battery Download PDFInfo
- Publication number
- KR20110056033A KR20110056033A KR20090112706A KR20090112706A KR20110056033A KR 20110056033 A KR20110056033 A KR 20110056033A KR 20090112706 A KR20090112706 A KR 20090112706A KR 20090112706 A KR20090112706 A KR 20090112706A KR 20110056033 A KR20110056033 A KR 20110056033A
- Authority
- KR
- South Korea
- Prior art keywords
- solvent
- solution
- cobalt
- lithium ion
- ion battery
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 31
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 30
- 239000010941 cobalt Substances 0.000 title claims abstract description 30
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000002699 waste material Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000002904 solvent Substances 0.000 claims abstract description 49
- 239000012535 impurity Substances 0.000 claims abstract description 36
- 238000002386 leaching Methods 0.000 claims abstract description 31
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 18
- 238000004448 titration Methods 0.000 claims abstract description 18
- 238000011084 recovery Methods 0.000 claims abstract description 12
- 239000007800 oxidant agent Substances 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 10
- 239000000243 solution Substances 0.000 claims description 48
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 28
- 238000000605 extraction Methods 0.000 claims description 23
- 238000000638 solvent extraction Methods 0.000 claims description 21
- 229910052602 gypsum Inorganic materials 0.000 claims description 20
- 239000010440 gypsum Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 10
- 238000005554 pickling Methods 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- -1 2-ethyl hexyl Chemical group 0.000 claims description 5
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 230000003472 neutralizing effect Effects 0.000 claims description 3
- 239000004808 2-ethylhexylester Substances 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- QUXFOKCUIZCKGS-UHFFFAOYSA-N bis(2,4,4-trimethylpentyl)phosphinic acid Chemical compound CC(C)(C)CC(C)CP(O)(=O)CC(C)CC(C)(C)C QUXFOKCUIZCKGS-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000007127 saponification reaction Methods 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000008346 aqueous phase Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 229910003251 Na K Inorganic materials 0.000 description 5
- 238000000658 coextraction Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000010979 pH adjustment Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 239000006184 cosolvent Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000012074 organic phase Substances 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 229910020632 Co Mn Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
- C22B23/0415—Leaching processes with acids or salt solutions except ammonium salts solutions
- C22B23/043—Sulfurated acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0453—Treatment or purification of solutions, e.g. obtained by leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Secondary Cells (AREA)
Abstract
Description
본 발명은 폐리튬이온전지로부터의 코발트 회수방법에 관한 것으로, 보다 상세하게는, 폐리튬이온전지 시료를 황산환원침출, 중화적정, 고액분리 및 용매추출/역추출 공정에 순차적으로 적용시킨 뒤, 코발트를 회수하는 것을 특징으로 하는, 폐리튬이온전지로부터의 코발트 회수방법에 관한 것이다.The present invention relates to a cobalt recovery method from a waste lithium ion battery, and more particularly, after the waste lithium ion battery sample is sequentially applied to the sulfuric acid reduction leaching, neutralization titration, solid-liquid separation and solvent extraction / back extraction process, A cobalt recovery method from a waste lithium ion battery, characterized in that the cobalt is recovered.
리튬전지 중 최근에 들어 그 사용량이 급증하고 있는 리튬이차전지는 양극(cathod), 음극(anode), 유기전해질(organic electrolyte) 및 유기분리막(organic separator)으로 구성되어 있다. 그리고, 양극 활물질(active materials)로는 가역성이 우수하고, 낮은 자가방전율, 고용량 및 고에너지밀도를 가지며, 합성이 용이한 리튬코발트 산화물이 상용화되어 있다.Lithium secondary batteries, which have recently increased in usage among lithium batteries, are composed of a cathode, an anode, an organic electrolyte, and an organic separator. In addition, lithium cobalt oxide, which has excellent reversibility, low self discharge rate, high capacity and high energy density, and is easily synthesized, is commercially available as a positive electrode active material.
특히, 리튬이온전지는 경량성으로 인하여 소형 휴대장비의 동력원으로 많이 사용되고 있으며, 최근에는 이동통신 단말기의 폭발적인 증가로 그 수요도 이에 비 례하여 증가하고 있다. 또한, 리튬이온전지의 수요가 증가하는 만큼 폐리튬이온전지의 발생량도 급증하고 있는 추세이다.In particular, lithium-ion batteries are widely used as a power source for small portable devices due to their light weight, and in recent years, demand for them has increased in proportion to the explosion of mobile communication terminals. In addition, as the demand for lithium ion batteries increases, the amount of generated lithium ion batteries is also rapidly increasing.
이러한 폐리튬이온전지는 성상이 간단하고 양극활물질로서 비교적 고가인 리튬과 코발트 등의 유가금속이 다량 함유되어 있어 경제적인 가치가 있는 폐자원으로 인식되어 재활용이 요구된다. This waste lithium ion battery is simple in appearance and contains a large amount of valuable metals such as lithium and cobalt, which are relatively expensive as a cathode active material, and thus, it is recognized as an economically valuable waste resource and requires recycling.
그러나, 양극활물질로서 리튬코발트 산화물을 채택한 리튬이온전지의 경우에는 코발트나 리튬과 같은 유가금속이 재활용되어야하고, 리튬이온전지의 효율적 재활용을 위해서는 유가금속의 효율적인 회수뿐만 아니라 폐리튬전지의 재활용 공정중에서 발생되는 유해폐기물도 적절히 처리하여야만 한다.However, in the case of a lithium ion battery employing lithium cobalt oxide as a cathode active material, valuable metals such as cobalt and lithium should be recycled, and for efficient recycling of lithium ion batteries, not only efficient recovery of valuable metals but also during recycling of waste lithium batteries Hazardous wastes generated should be properly disposed of.
특히, 폐리튬이온전지를 기계적으로 처리하는 방법 중에 금속리튬은 수분과 격렬하게 반응하면서 산화되므로 매우 위험할 수 있어 폐리튬이온전지로부터 코발트를 효율적으로 회수하기 위해서는 안정적인 기계적 처리 및 유해성분을 최소화시키는 것이 중요하다.In particular, during the mechanical treatment of waste lithium ion batteries, metal lithium is oxidized while reacting violently with moisture, which can be very dangerous. Therefore, in order to efficiently recover cobalt from waste lithium ion batteries, it is necessary to provide stable mechanical treatment and minimize harmful components It is important.
이에, 본 발명자들은 폐리튬이온전지로부터 효율적인 코발트 회수방법을 개발하고자 예의 노력한 결과, 폐리튬이온전지를 대상으로 황산환원침출, 불순물 제거(중화적정 및 고액분리) 및 용매추출/역추출의 공정을 순차적으로 적용시킬 경우, 불순물이 제거된 고순도의 코발트를 회수할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다. Accordingly, the present inventors have diligently tried to develop an efficient cobalt recovery method from waste lithium ion batteries. When applied sequentially, it was confirmed that high purity cobalt from which impurities were removed can be recovered, thereby completing the present invention.
본 발명의 목적은 효율적인 폐리튬이온전지로부터의 코발트 회수방법을 제공하는데 있다.It is an object of the present invention to provide an efficient cobalt recovery method from waste lithium ion batteries.
상기 목적을 달성하기 위하여 본 발명은, (a) 폐리튬이온전지 분말을 황산환원침출하는 단계; (b) 상기 (a) 단계에서 황산환원침출한 후 수득한 침출용액을 중화적정하여 불순물을 제거하는 단계; (c) 상기 (b) 단계에서 중화적정된 침출용액에 산화제를 첨가하여 Mn을 제거하는 단계; (d) 상기 (c) 단계에서 Mn이 제거된 용액을 용액과 잔사로 고액분리하는 단계; 및 (e) 상기 (d) 단계에서 고액분리된 용액을 용매추출 및 역추출하여 코발트를 회수하는 단계를 포함하는, 폐리튬이온전지로부터의 코발트 회수방법을 제공한다.The present invention to achieve the above object, (a) sulfuric acid reduction leaching the waste lithium ion battery powder; (b) neutralizing the leaching solution obtained after the sulfuric acid reduction leaching in step (a) to remove impurities; (c) removing Mn by adding an oxidizing agent to the leaching solution neutralized in step (b); (d) solid-liquid separation of the solution from which Mn is removed in step (c) into a solution and a residue; And (e) recovering cobalt by solvent extraction and back extraction of the solid-liquid separated solution in step (d).
본 발명에 따르면, 폐리튬이온전지로부터 코발트를 회수하되, 불순물의 제거율 및 코발트의 회수율을 높임으로써, 고순도의 코발트를 회수할 수 있다.According to the present invention, while recovering cobalt from a waste lithium ion battery, cobalt of high purity can be recovered by increasing the removal rate of impurities and the recovery rate of cobalt.
본 발명은 일 관점에서, (a) 폐리튬이온전지 분말을 황산환원침출하는 단계; (b) 상기 (a) 단계에서 황산환원침출한 후 수득한 침출용액을 중화적정하여 불순물을 제거하는 단계; (c) 상기 (b) 단계에서 중화적정된 침출용액에 산화제를 첨가하여 Mn을 제거하는 단계; (d) 상기 (c) 단계에서 Mn이 제거된 용액을 용액과 잔사로 고액분리하는 단계; 및 (e) 상기 (d) 단계에서 고액분리된 용액을 용매추출 및 역추출하여 코발트를 회수하는 단계를 포함하는, 폐리튬이온전지로부터의 코발트 회수방법에 관한 것이다 (도 1).The present invention in one aspect, (a) sulfuric acid reduction leaching the waste lithium ion battery powder; (b) neutralizing the leaching solution obtained after the sulfuric acid reduction leaching in step (a) to remove impurities; (c) removing Mn by adding an oxidizing agent to the leaching solution neutralized in step (b); (d) solid-liquid separation of the solution from which Mn is removed in step (c) into a solution and a residue; And (e) recovering cobalt by solvent extraction and back extraction of the solution separated from the solid-liquid separation in step (d) (FIG. 1).
본 발명에서 사용하는 폐리튬이온전지 분말은 본 발명자의 선행특허인 한국등록특허 제860972호의 물리적 처리 방법으로 수득할 수 있으며, 0mesh < 입도 < 8mesh 인 분말을 사용하는 것이 바람직하다.The waste lithium ion battery powder used in the present invention may be obtained by a physical treatment method of Korean Patent No. 860972, which is the prior patent of the present inventor, and it is preferable to use a powder having 0mesh <particle size <8mesh.
폐리튬이온전지에는 코발트, 리튬 등의 유가금속 이외에도 다량의 불순물이 함유되어 있다. 따라서, 상기 (a) 단계에서 폐리튬이온전지 분말을 황산환원침출시킨 후 수득한 용액으로부터 불순물을 제거하기 위하여, 중화적정을 실시한다.Waste lithium ion batteries contain a large amount of impurities in addition to valuable metals such as cobalt and lithium. Therefore, in order to remove impurities from the solution obtained after sulfuric acid reduction leaching of the lithium ion battery powder in step (a), neutralization titration is performed.
본 발명에 있어서, 상기 (b)단계의 중화적정은 CaO, Ca(OH)2 및 CaCO3로 구성된 군에서 선택되는 칼슘화합물; NaOH 또는 NH4OH인 알칼리용액; 및 이들의 혼합물로 구성된 군에서 선택되는 물질에 의해 pH 5.5~6.5로 조정되는 것을 특징으로 할 수 있다.In the present invention, the neutralization titration of step (b) is a calcium compound selected from the group consisting of CaO, Ca (OH) 2 and CaCO 3 ; Alkaline solution which is NaOH or NH 4 OH; And it may be characterized in that the pH is adjusted to 5.5 ~ 6.5 by the material selected from the group consisting of a mixture thereof.
중화적정에 의해 침출용액으로부터 제거될 수 있는 불순물은 Fe, Cu, Al 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, Co, Li 등과 같이 재활용 가능한 유가금속 이외의 불순물이라면 이에 국한되는 것은 아니다.Impurities that can be removed from the leaching solution by neutralization titration may be selected from the group consisting of Fe, Cu, Al and mixtures thereof, but is limited to impurities other than recyclable valuable metals such as Co and Li. It doesn't happen.
중화적정에 의해 불순물이 제거된 침출용액에 있어서, 산화제에 이용하여 상기 침출용액 내에 포함되어 있는 Mn을 제거할 수 있다. 이때, 상기 (c) 단계의 산화제는 공기, 산소, 오존, KMnO4 및 NaClO로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, Mn을 제거할 수 있는 산화제라면 이에 국한되는 것은 아니다.In the leaching solution from which impurities are removed by neutralization titration, Mn contained in the leaching solution can be removed using an oxidizing agent. At this time, the oxidizing agent of step (c) may be selected from the group consisting of air, oxygen, ozone, KMnO 4 and NaClO, but is not limited to any oxidizing agent capable of removing Mn.
또한, 상기 잔사에는 Fe, Cu, Al 등의 불순물 뿐만 아니라, Co도 일부 포함되어 있어, (d)단계에서 고액분리된 잔사를 수세척한 후, 상기 잔사 내에 함유되어 있는 잔여 코발트를 회수하는 단계를 추가로 포함할 수 있다. 한편, Co 이외에 잔사에 포함되어 있는 Fe, Cu, Al 등의 불순물은 제거한다.In addition, the residue includes not only impurities such as Fe, Cu, and Al, but also some Co, and after washing the residue separated in solid-liquid in step (d), recovering the remaining cobalt contained in the residue It may further include. On the other hand, impurities such as Fe, Cu, and Al contained in the residue other than Co are removed.
또한, 본 발명은 상기 수세척된 잔사를 산세척하여 석고를 회수하는 단계를 추가로 포함하는 것을 특징으로 할 수 있다. 잔사를 산세척하여 고순도의 석고를 회수하고 여기서 발생한 잔여물은 폐기한다.In addition, the present invention may further comprise the step of recovering gypsum by pickling the washed residue. The residue is pickled to recover high purity gypsum and the residues generated are discarded.
한편, 고액분리 후, 중화적정 및 산화제에 의해 Mn이 제거된 침출용액을 용매추출 및 역추출하여 Co를 회수할 수 있다. 여기서, 역추출이란, 용매추출의 역조작으로서, 추출 용매로 유기 물질을 썼을 경우, 유기층에 추출된 물질을 거꾸로 물층으로 넘기는 조작이다. Meanwhile, after solid-liquid separation, Co can be recovered by solvent extraction and back extraction of the leaching solution from which Mn is removed by neutralization titration and oxidizing agent. Here, the reverse extraction is a reverse operation of the solvent extraction, and when the organic material is used as the extraction solvent, the reverse extraction is an operation of turning over the material extracted in the organic layer to the water layer.
이때, 상기 (e)단계의 용매추출시 사용되는 용매는 di-2-ethyl hexyl phosporic acid 계 용매, 2-ethyl hexyl phosponic acid 계 용매, mono-2-ethyl hexyl ester 계 용매, di-2,4,4-trimethyl penthyl phosphpinic acid 계 용매, di-2-ethyl hexyl phospinic acid 계 용매, di-2,4,4-trimethyl penthyl dithiophosphpinic acid 계 용매 및 di-2,4,4-trimethyl penthyl monothiophosphpinic acid 계 용매로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.At this time, the solvent used in the solvent extraction of step (e) is di-2-ethyl hexyl phosporic acid solvent, 2-ethyl hexyl phosponic acid solvent, mono-2-ethyl hexyl ester solvent, di-2,4 , 4-trimethyl penthyl phosphpinic acid solvent, di-2-ethyl hexyl phospinic acid solvent, di-2,4,4-trimethyl penthyl dithiophosphpinic acid solvent and di-2,4,4-trimethyl penthyl monothiophosphpinic acid solvent It may be characterized in that selected from the group consisting of.
또한, 상기 용매추출시 사용되는 상기 용매는 알칼리용액에 의해 비누화된 것이 바람직하며, 이때, 30~50% 비누화된 용매를 사용함으로써, Co의 회수율을 높이고 불순물의 발생은 최소화할 수 있다. 또한, 상기 용매추출시 사용되는 용매를 비누화하면 용매추출시 pH 변화를 방지하여 용매추출의 효율을 높일 수 있다.In addition, the solvent used during the solvent extraction is preferably saponified by an alkaline solution, by using a 30 ~ 50% saponified solvent, it is possible to increase the recovery of Co and minimize the generation of impurities. In addition, saponification of the solvent used during the solvent extraction can prevent the pH change during solvent extraction to increase the efficiency of solvent extraction.
예를 들어, 용매추출시 bis(2,4,4-trimethyl pentyl) phosphinic acid(Cyanex 272, Cytec Inc., USA)를 용매로 사용하여 Co를 추출 및 역추출(탈거)하는 반응은 반응식 (1)과 같다. 여기서, R은 C16H34PO2 -이다.For example, the reaction of extracting and back-extracting (removing) Co using bis (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272, Cytec Inc., USA) as a solvent is performed using the reaction formula (1). ) Wherein, R is C 16 H 34 PO 2 - a.
Co2+ + 2HR ↔ CoR2 + 2H+ (1)Co 2+ + 2HR ↔ CoR 2 + 2H + (1)
이때, 상기 Cyanex 272은 분자량 290, 점도 142cp(25℃), 비중 0.92gm/cc(24℃) 및 순도 85%이며, 분자식은 C16H34PO2H이고, 화학식 I과 같은 구조를 가진다.In this case, the Cyanex 272 has a molecular weight of 290, viscosity 142cp (25 ℃), specific gravity 0.92gm / cc (24 ℃) and purity of 85%, the molecular formula is C 16 H 34 PO 2 H, has the same structure as formula (I).
(I) (I)
반응식 (1)의 반응이 진행됨에 따라 (e) 단계의 고액분리된 용액의 pH가 감소하므로, pH 감소를 억제하기 위하여 용매추출시 사용하는 용매를 NaOH, NH4OH 등과 같은 알칼리용액을 이용하여 비누화한 다음(반응식 (2)), 용매추출에 사용하였다 (반응식 (3)).As the reaction of Scheme (1) proceeds, the pH of the solid-liquid separated solution of step (e) decreases, so that the solvent used for extracting the solvent is used an alkaline solution such as NaOH, NH 4 OH, etc. After saponification (Scheme (2)), it was used for solvent extraction (Scheme (3)).
HR + NaOH (or NH4OH) ↔ NaR (or NH4R) + H2O (2)HR + NaOH (or NH 4 OH) ↔ NaR (or NH 4 R) + H 2 O (2)
Co2+ + NaR (or NH4R) ↔ CoR2 + 2Na+ (or 2NH4 +) (3)Co 2+ + NaR (or NH 4 R) ↔ CoR 2 + 2Na + (or 2NH 4 + ) (3)
반응식 (2)는 용매의 비누화 과정을 나타낸 반응식으로, 용매의 H+ 이온을 Na+ 또는 NH4 + 이온으로 치환하게 되며, 따라서 반응식 (3)과 같이 용매에 의해 Co2+ 이온이 추출될 때 반응식 (2)에서 치환되어진 Na+ 또는 NH4 + 이온이 용액상으로 배출되기 때문에 용액의 pH 변화를 방지할 수 있다. Scheme (2) is a reaction scheme illustrating the saponification process of the solvent, and the H + ions of the solvent are replaced with Na + or NH 4 + ions. Thus, when
이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by way of examples. These examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
실시예 1: 폐리튬이온전지로부터 코발트 회수Example 1 Cobalt Recovery from Waste Lithium-ion Battery
1-1: 황산환원침출1-1: sulfuric acid reduction leaching
침출액으로서 2M의 H2SO4 용액과 환원제인 6vol% H2O2의 혼합용액을 이용하여 16mesh의 폐리튬이온전지 분말을 침출시켰다. 이때, 반응조건은 반응온도 60℃, 교반응속도 250rpm, 고액비 100g/L 및 반응시간 2hr로 하여, 폐리튬이온전지 분말을 황산환원침출하였다.As a leachate, 16 mesh waste lithium ion battery powder was leached using a mixed solution of 2M H 2 SO 4 solution and a reducing agent 6vol% H 2 O 2 . At this time, the reaction conditions were 60 ℃, the reaction rate 250rpm, solid solution ratio 100g / L and the reaction time 2hr, sulfuric acid reduction leaching the waste lithium ion battery powder.
이때, 상기 폐리튬이온전지 분말은 한국등록특허 제860972호에 개시된 바와 같은 물리적 처리에 의해서 수득하였다.At this time, the waste lithium ion battery powder was obtained by physical treatment as disclosed in Korean Patent No. 860972.
1-2: 중화적정1-2: neutralization titration
1-1에서 황산환원침출 후 수득한 침출용액 500mL에 대하여 50% CaCO3 용액 150mL 및 4M NaOH 용액 25mL를 이용하여 상온에서 400rpm으로 교반하면서 중화적정한 후, pH를 6으로 조정하였다. To 500 mL of the leaching solution obtained after sulfuric acid reduction leaching in 1-1, neutralization titration was performed using 150 mL of 50% CaCO 3 solution and 25 mL of 4M NaOH solution at room temperature with stirring at 400 rpm, and then the pH was adjusted to 6.
1-3: 산화제를 이용한 Mn 제거1-3: Mn removal using oxidant
1-2에서 중화적정된 용액 500mL에 10% KMnO4 용액 1.75ml를 첨가한 후, 상온에서 200rpm으로 10분 동안 교반하여 Mn을 제거하였다. 이때, 상기 Mn이 제거된 용액에서 Co의 농도는 19420mg/L였다. After adding 1.75 ml of a 10% KMnO 4 solution to 500 mL of the neutralized solution at 1-2, Mn was removed by stirring at 200 rpm for 10 minutes at room temperature. At this time, the concentration of Co in the solution Mn was removed was 19420mg / L.
표 1에 나타난 바와 같이, 산화제를 이용한 Mn의 제거효율은 82.57%의 높은 효율을 나타낸다는 것을 확인할 수 있었다.As shown in Table 1, it was confirmed that the removal efficiency of Mn using the oxidant shows a high efficiency of 82.57%.
표 2 및 도 2는 용매추출 전 각 공정에서 수득한 용액의 조성을 나타낸 것으로, 실시예 1-1(황산환원침출 용액), 1-2(중화적정 후 불순물 제거용액) 및 1-3(고액분리 후 잔여물을 세척한 용액)의 각 공정이 끝난 후 용액의 조성 및 각 조성물의 제거율이며, Fe, Cu 및 Al이 대부분 제거된 것을 확인할 수 있었다.Table 2 and Figure 2 shows the composition of the solution obtained in each process before solvent extraction, Example 1-1 (sulfuric acid reduction leaching solution), 1-2 (impact removal solution after neutralization titration) and 1-3 (solid-liquid separation) After the process of washing the residue after the end), the composition of the solution and the removal rate of each composition, it was confirmed that the Fe, Cu and Al were mostly removed.
1-4: 고액분리1-4: solid-liquid separation
1-3에서 중화적정 및 Mn이 제거된 침출용액을 필터프레스로 고액분리하여, 용액과 잔여물로 분리하였다. 여기서, 상기 필터프레스 대신 여과지를 사용하는 것도 가능하다.The leaching solution from which neutralization titration and Mn was removed at 1-3 was solid-liquid separated by a filter press, and separated into a solution and a residue. It is also possible to use filter paper instead of the filter press.
이때, 잔여물은 증류수를 이용하여 세척한 후, 잔여물에 포함되어 있는 잔여 Co는 회수하여 1-1의 황산환원침출 단계에서 재사용하고, 잔여물에 포함되어 있는 Fe, Cu, Al 등의 불순물은 제거하였다.At this time, the residue is washed with distilled water, the residual Co contained in the residue is recovered and reused in the sulfuric acid reduction leaching step 1-1, impurities such as Fe, Cu, Al contained in the residue Removed.
1-5: 용매추출 및 역추출1-5: solvent extraction and back extraction
1-4에서 고액분리 후 수득한 용액(Co 농도 19420mg/L)에 대하여, Mixer-settler를 이용하여 Co 용매추출 및 탈거(역추출)실험을 실시하였다. The solvent (Co concentration 19420mg / L) obtained after solid-liquid separation at 1-4 was subjected to Co solvent extraction and stripping (back extraction) experiment using a Mixer-settler.
Co 용매추출 및 탈거(역추출)시에, 추출 용매로 40% 비누화된 0.7M bis(2,4,4-trimethyl pentyl) phosphinic acid(Cyanex 272, Cytec Inc., USA) 및 탈거 용매로 H2SO4를 사용하였다. 이때, 상기 Cyanex 272은 유기상(organic phase)이고, H2SO4은 수상(aqueous phase)이며, 0/A(Organic/Aqueous) = 2 에서 수상의 flow rate가 7.5ml/min인 조건으로 실험을 실시하였다. Co 용매추출 및 탈거실험 후 3시간 경과 뒤의 모습을 관찰하였다.In Co solvent extraction and stripping (back extraction), 0.7 M bis (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272, Cytec Inc., USA) 40% saponified with extraction solvent and H 2 as stripping solvent SO 4 was used. In this case, the Cyanex 272 is an organic phase (H 2 SO 4 ) is an aqueous phase (aqueous phase), the experiment was conducted under the condition that the flow rate of the water phase is 7.5ml / min at 0 / A (Organic / Aqueous) = 2 Was carried out. After Co solvent extraction and stripping experiment, the appearance after 3 hours was observed.
그 결과, 도 2에 나타난 바와 같이, 라피네이트(raffinate)는 무색으로 코발트가 모두 추출된 것을 확인할 수 있었고 (도 2의 (c)), 탈거 후 Cyanex 272 및 탈거 후 용매(도 2의 (a))의 색으로부터 코발트가 없음을 알 수 있었다. 또한, 3상의 발생이 전혀 없이 추출, 탈거가 잘 이뤄지는 것을 확인할 수 있었다. 8시간째까지 추출실험을 진행한 결과, Mixer-settler 내에 3상이 생기지 않는 조건에서 추출반응이 비교적 잘 이뤄진 것을 알 수 있었다. 이때, 3상이란 용매추출을 위한 유기상과 수상의 섞임 과정에서 유기상과 수상이 에멀젼 형태로 결합하여 분리되지 않는 상을 의미한다.As a result, as shown in Figure 2, raffinate (raffinate) was confirmed that all cobalt was extracted colorless (Fig. 2 (c)), Cyanex 272 after stripping and the solvent after stripping (a The color of)) showed no cobalt. In addition, it was confirmed that extraction and removal were well performed without any occurrence of three phases. As a result of the extraction experiment up to 8 hours, it was found that the extraction reaction was relatively well under the condition that three phases did not occur in the mixer-settler. In this case, the three phase refers to a phase in which the organic phase and the aqueous phase are not separated by combining the organic phase and the aqueous phase in the form of an emulsion in the process of mixing the organic phase and the aqueous phase for solvent extraction.
40% 비누화된 0.7M bis(2,4,4-trimethyl pentyl) phosphinic acid(Cyanex 272, Cytec Inc., USA) 용매를 이용한 Mixer-settler 실험결과 하기 표 2, 표 3 및 표 4에 나타내었다.Mixer-settler experiments using 40% saponified 0.7M bis (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272, Cytec Inc., USA) solvent are shown in Tables 2, 3 and 4 below.
그 결과, 표 3에 나타난 바와 같이, Mixer-settler에서 8시간 경과 후 raffinate의 Co 손실은 약 1~2mg/L 정도로 Co의 추출율이 약 99.9% 이상임을 확인할 수 있었다.As a result, as shown in Table 3, after 8 hours in the Mixer-settler, Co loss of raffinate was confirmed that Co extraction rate of about 99.9% or more to about 1 ~ 2mg / L.
또한, 표 4에 나타난 바와 같이, 탈거액 내의 Co 함량은 8.1% 정도이나, 불순물로서 Li 22mg/L와 Na 17.8mg/L이 함유되어 있는 것을 확인할 수 있었다.As shown in Table 4, the Co content in the stripping solution was about 8.1%, but it was confirmed that Li contained 22 mg / L and Na 17.8 mg / L as impurities.
또한, 표 5에 나타난 바와 같이, 탈거 후 최종적으로 제조된 황산코발트 용액 내의 Co 함량이 96000mg/L이고, 불순물 함량이 50.2mg/L였다.In addition, as shown in Table 5, the Co content in the cobalt sulfate solution finally prepared after stripping was 96000 mg / L, the impurity content was 50.2 mg / L.
실험예 1: 용매의 비누화도에 따른 Co 추출 효율 시뮬레이션 테스트 Experimental Example 1: Co extraction efficiency simulation test according to the degree of saponification of the solvent
실시예 1-4에서 Mn이 제거된 용액(Co 농도 19420mg/L)에 대하여, 추출 용매로 0.7M bis(2,4,4-trimethyl pentyl) phosphinic acid(Cyanex 272, Cytec Inc., USA)를 사용하여 Co 추출 효율 시뮬레이션 테스트를 실시하였다.For Mn-free solution (
상기 추출 용매의 비누화도에 따른 Co 추출 효율을 비교하기 위하여, 0.7M Cyanex 272의 30%, 35%, 40% 및 50% 비누화 용매의 2 step count current simulation extraction (향류다단 모의 추출) 테스트를 실시하였다 (도 4).In order to compare the Co extraction efficiency according to the saponification degree of the extraction solvent, a two step count current simulation extraction test of 30%, 35%, 40% and 50% saponification solvent of 0.7M Cyanex 272 was performed. (FIG. 4).
그 결과, 표 6에 나타난 바와 같이, 추출 용매의 비누화도가 40%인 경우에 추출되는 총 Co 추출 효율은 높으면서, Li 및 Ni의 추출 효율은 낮아 Co의 선택적인 추출이 가능한 것으로 나타났다.As a result, as shown in Table 6, when the saponification degree of the extraction solvent is 40%, the total Co extraction efficiency is high, the extraction efficiency of Li and Ni is low, it was shown that the selective extraction of Co is possible.
30%
35%
40%
50%
실시예 2: 중화적정 및 Mn 제거시 발생된 잔사의 재활용Example 2: Recycling of residues generated during neutralization titration and Mn removal
실시예 1-2에서 중화적정 및 Mn 제거시 발생된 잔사를 증류수로 세척하고, 고액분리하여 잔여 Co를 회수하고 세척잔사를 분리하였다. 이때, 고체로 남는 것은 불순물을 포함하고 있는 석고이므로, 석고 내의 불순물을 제거한 뒤 순수한 석고를 회수하는 실험을 실시하였다.In Example 1-2, the residue generated during neutralization titration and Mn removal was washed with distilled water, solid-liquid separation, residual Co was recovered, and the washing residue was separated. At this time, since the gypsum containing impurities remains as a solid, an experiment was performed to recover pure gypsum after removing impurities in the gypsum.
상기 불순물을 포함하고 있는 석고에서 불순물을 제거하기 위하여, 2M H2SO4을 이용하여 60℃, 250rpm 고액비 50g/500mL의 반응 조건에서 1시간 동안 침출시켰다.In order to remove impurities from the gypsum containing the impurity, 2M H 2 SO 4 was used for 1 hour at 60 ° C, 250 rpm solid solution ratio of 50g / 500mL reaction conditions.
그 결과, 표 7 및 표 8에 나타난 바와 같이, pH 조절 잔사를 침출 후 수득한 석고 내의 불순물 함량이 0.0547%에 불과한 반면, 표 9 및 도 5에 나타난 바와 같이, 회수된 석고의 불순물 제거율이 높게 나타나, 순수한 석고를 수득할 수 있음을 확인하였다.As a result, as shown in Table 7 and Table 8, the impurity content in the gypsum obtained after leaching the pH-controlled residue was only 0.0547%, while as shown in Table 9 and Figure 5, the removal rate of the recovered gypsum is high It was confirmed that pure gypsum could be obtained.
또한, 도 6에 나타난 바와 같이, pH 조절 잔사를 침출 후 수득한 석고에 대한 XRD 분석 결과에서도 순수한 석고를 수득할 수 있다는 것을 알 수 있었다.In addition, as shown in Figure 6, it can be seen that the pure gypsum can also be obtained from the XRD analysis of the gypsum obtained after leaching the pH control residue.
또한, 도 7에 나타난 바와 같이, 석고의 불순물 제거 전후의 색변화를 통해서, 불순물 제거후에 순수한 석고를 수득할 수 있다는 것을 확인하였다.In addition, as shown in Figure 7, it was confirmed that through the color change before and after the removal of impurities of the gypsum, pure gypsum can be obtained after the removal of the impurities.
실시예 3: 용매의 재생Example 3: Regeneration of Solvent
실시예 1-5의 Mixer-settler 실험시 사용한 40% 비누화된 0.7M bis(2,4,4-trimethyl pentyl) phosphinic acid(Cyanex 272, Cytec Inc., USA) 용매를 재생하기 위하여 산세 및 수세를 실시하였다. 이때, 산세는 2M의 황산용액을 이용하였고, 수세는 증류수를 이용하여 실시하였다.Pickling and washing were performed to regenerate the 40% saponified 0.7M bis (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272, Cytec Inc., USA) solvent used in the Mixer-settler experiment of Example 1-5. Was carried out. At this time, pickling was performed using a sulfuric acid solution of 2M, water washing was performed using distilled water.
산세 및 수세가 완료된 용매를 샘플링하여 실험실에서 세척된 용매의 세척산용액 및 증류수세척액의 Na 농도 분석 결과, 표 9에 나타난 바와 같이, 0.2mg/L인 것으로 측정되었다. 따라서, 상기 용매 내에 Na가 거의 없으며, 용매재생과정에서 Na가 모두 씻겨나감을 확인할 수 있었다.As a result of analyzing the Na concentration of the washed acid solution and the distilled water wash solution of the solvent washed in the laboratory by sampling the solvents completed with pickling and washing, it was determined to be 0.2 mg / L. Therefore, almost no Na in the solvent, it was confirmed that all Na is washed off during the solvent regeneration process.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
도 1은 폐리튬이온전지로부터 코발트를 회수하는 공정도를 나타낸 것이다.1 shows a process chart for recovering cobalt from a spent lithium ion battery.
도 2는 폐리튬이온전지로부터의 코발트 회수방법에서 각 단계별로 수득한 용액의 조성 및 불순물 제거율을 나타낸 그래프이다.Figure 2 is a graph showing the composition and impurity removal rate of the solution obtained in each step in the cobalt recovery method from the waste lithium ion battery.
도 3은 Co 용매추출 및 탈거실험 후의 모습을 관찰한 사진이다 (a: 탈거 후 용매, b: 탈거액, c: raffinate).3 is a photograph observing the state after the Co solvent extraction and stripping experiment (a: solvent after stripping, b: stripping solution, c: raffinate).
도 4는 0.7M Cyanex 272 각각의 30% (a), 35% (b), 40% (c) 및 50% (d) 비누화 용매를 이용한 Co 회수 시뮬레이션 테스트 모식도이다.4 is a schematic diagram of Co recovery simulation test using 30% (a), 35% (b), 40% (c) and 50% (d) saponification solvent of 0.7M Cyanex 272.
도 5는 중화적정시 증류수로 세척한 pH 조절 잔사를 고액분리하여 회수한 석고에서의 불순물 제거율을 나타낸 그래프이다.Figure 5 is a graph showing the removal rate of impurities in the gypsum recovered by solid-liquid separation of the pH adjustment residue washed with distilled water when neutralization titration.
도 6은 중화적정시 증류수로 세척한 pH 조절 잔사를 고액분리하여 회수한 석고에 대한 XRD 분석결과를 나타낸 그래프이다.Figure 6 is a graph showing the XRD analysis of the gypsum recovered by the solid-liquid separation of the pH adjustment residue washed with distilled water when neutralization titration.
도 7은 중화적정시 증류수로 세척한 pH 조절 잔사를 고액분리하여 회수한 석고의 불순물 제거 전·후의 색변화를 관찰한 결과이다.7 is a result of observing the color change before and after removing the impurities of the gypsum recovered by the solid-liquid separation of the pH adjustment residue washed with distilled water during neutralization titration.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090112706A KR101066166B1 (en) | 2009-11-20 | 2009-11-20 | Method for Recovering Cobalt from Waste Lithium Ion Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090112706A KR101066166B1 (en) | 2009-11-20 | 2009-11-20 | Method for Recovering Cobalt from Waste Lithium Ion Battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110056033A true KR20110056033A (en) | 2011-05-26 |
KR101066166B1 KR101066166B1 (en) | 2011-09-20 |
Family
ID=44364669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20090112706A KR101066166B1 (en) | 2009-11-20 | 2009-11-20 | Method for Recovering Cobalt from Waste Lithium Ion Battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101066166B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105803483A (en) * | 2016-04-06 | 2016-07-27 | 王贺 | Preparation method for electro-deposited nickel and cobalt |
WO2016190669A1 (en) * | 2015-05-26 | 2016-12-01 | 부경대학교 산학협력단 | Method for recovering cobalt powder from lithium-cobalt oxide |
WO2023010969A1 (en) * | 2021-08-03 | 2023-02-09 | 广东邦普循环科技有限公司 | Method for recycling spent lithium-ion batteries |
WO2024130850A1 (en) * | 2022-12-19 | 2024-06-27 | 宜昌邦普循环科技有限公司 | Method for removing impurities from waste lithium battery leachate |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107130113A (en) * | 2017-05-26 | 2017-09-05 | 金川集团股份有限公司 | The method that active material and aluminium foil are reclaimed from waste lithium ion cell anode material |
KR102332465B1 (en) | 2019-12-27 | 2021-11-30 | (주)다원화학 | Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery |
KR102576614B1 (en) | 2021-05-17 | 2023-09-07 | 목포대학교산학협력단 | Method for recovering valuable metals from waste lithium ion batteries |
KR20240048982A (en) | 2022-10-07 | 2024-04-16 | (주)다원화학 | Method for collecting LiCO3 from ceramic container having cathode material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100358528B1 (en) | 2000-05-22 | 2002-10-25 | 김인석 | recycling method of lithium ion secondary battery |
KR100339964B1 (en) * | 2000-05-27 | 2002-06-10 | 고석노 | Recycling of waste lithium secondary battery |
JP4215547B2 (en) | 2003-03-31 | 2009-01-28 | Dowaホールディングス株式会社 | Cobalt recovery method |
JP4388091B2 (en) | 2007-03-22 | 2009-12-24 | 日鉱金属株式会社 | Noble metal recovery method from Co, Ni, Mn containing battery |
-
2009
- 2009-11-20 KR KR20090112706A patent/KR101066166B1/en active IP Right Grant
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016190669A1 (en) * | 2015-05-26 | 2016-12-01 | 부경대학교 산학협력단 | Method for recovering cobalt powder from lithium-cobalt oxide |
CN105803483A (en) * | 2016-04-06 | 2016-07-27 | 王贺 | Preparation method for electro-deposited nickel and cobalt |
WO2023010969A1 (en) * | 2021-08-03 | 2023-02-09 | 广东邦普循环科技有限公司 | Method for recycling spent lithium-ion batteries |
WO2024130850A1 (en) * | 2022-12-19 | 2024-06-27 | 宜昌邦普循环科技有限公司 | Method for removing impurities from waste lithium battery leachate |
Also Published As
Publication number | Publication date |
---|---|
KR101066166B1 (en) | 2011-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101066166B1 (en) | Method for Recovering Cobalt from Waste Lithium Ion Battery | |
KR101089519B1 (en) | Method for Producing CMB Catalyst recycled with Lithium Ion Battery and Ternary Cathode Materials | |
KR102154599B1 (en) | Method for Separation and Recovery of Valuable Metals from Cathode Active Material | |
JP6314814B2 (en) | Method for recovering valuable metals from waste lithium-ion batteries | |
KR101420501B1 (en) | Method for separating metal in metal mixed solution | |
KR101325176B1 (en) | Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide | |
JP5539942B2 (en) | Method for separating iron and aluminum | |
US20230080556A1 (en) | A process for recovering metals from recycled rechargeable batteries | |
KR20120037736A (en) | Method for recovering valuable metals from lithium secondary battery wastes | |
CN108390120A (en) | A kind of method of lithium in selective recovery waste lithium ion cell anode material | |
KR102442036B1 (en) | Method for recovery of manganese compounds from cathode active material of waste lithium ion battery | |
KR20170061206A (en) | Collection method of precursor material using disposed lithum-ion battery | |
KR101021180B1 (en) | Method for producing high purity cobalt surfate | |
KR101447324B1 (en) | Method for separating aluminium and manganese | |
JP4215547B2 (en) | Cobalt recovery method | |
JP5902601B2 (en) | Method for separating metal in mixed metal solution | |
KR101351523B1 (en) | Method of recovering cadmiun from mixed spent batteries | |
JP6314730B2 (en) | Method for recovering valuable metals from waste nickel metal hydride batteries | |
JP2013181247A (en) | Method of separating metal mixed solution | |
JP5161379B1 (en) | Method for separating mixed metal solution | |
KR101372622B1 (en) | Method for preparing nmc(ni-co-mn) hydroxide from ni ore | |
KR20220134387A (en) | Method for recovering valuable metals from spent cathodic active material | |
KR20210032229A (en) | Method for recovering lithium from lithium containing metal salt solution | |
KR101109031B1 (en) | Method for Producing CMB Catalyst recycled with Lithium Ion Battery and Ternary Cathode Materials | |
Ma et al. | Hydrometallurgical treatment for mixed waste battery material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140630 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150619 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160629 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170626 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20180625 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20190626 Year of fee payment: 9 |