KR20110033336A - Electrically conductive carbon composite material containing composite material carbon nanotube - Google Patents

Electrically conductive carbon composite material containing composite material carbon nanotube Download PDF

Info

Publication number
KR20110033336A
KR20110033336A KR1020090090780A KR20090090780A KR20110033336A KR 20110033336 A KR20110033336 A KR 20110033336A KR 1020090090780 A KR1020090090780 A KR 1020090090780A KR 20090090780 A KR20090090780 A KR 20090090780A KR 20110033336 A KR20110033336 A KR 20110033336A
Authority
KR
South Korea
Prior art keywords
composite material
carbon
carbon nanotube
metal
conductive carbon
Prior art date
Application number
KR1020090090780A
Other languages
Korean (ko)
Inventor
황종선
최용성
황준원
Original Assignee
전남도립대학산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남도립대학산학협력단 filed Critical 전남도립대학산학협력단
Priority to KR1020090090780A priority Critical patent/KR20110033336A/en
Publication of KR20110033336A publication Critical patent/KR20110033336A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Abstract

PURPOSE: An electrically conductive carbon composite material containing a composite material carbon nanotube is provided to improve itself properties of metal or ceramic using excellent thermal conductivity, electric conductivity, and strength of the carbon nanotube. CONSTITUTION: An electrically conductive carbon composite material containing a composite material carbon nanotube is prepared by the steps of: preparing at least one kind of metal or alloy to a paste state; and carbonizing the prepared carbon nanotube after the paste is mixed with carbon nanotubes and carbon nanofibers. The metal or alloy is selected from gold, platinum, silver, copper, nickel, zinc, iron, lead, palladium, silicon, magnesium, aluminum, indium, nichrome, chrome, bismuth, antimony, titanium, stainless, beryllium, beryllia, brass, kanthal and inconel.

Description

카본나노튜브를 혼합한 도전성 탄소복합재료{ELECTRICALLY CONDUCTIVE CARBON COMPOSITE MATERIAL CONTAINING COMPOSITE MATERIAL CARBON NANOTUBE}Conductive carbon composite material mixed with carbon nanotubes {ELECTRICALLY CONDUCTIVE CARBON COMPOSITE MATERIAL CONTAINING COMPOSITE MATERIAL CARBON NANOTUBE}

본 발명은 카본나노튜브 자체가 갖는 뛰어난 전기전도와 열전도성, 강성을 적극적으로 이용함으로써, 금속이나 세라믹 그 자체가 갖는 특성을 향상시켜 제품의 소형화, 고성능화, 장수명화를 향상시킨 카본나노튜브를 혼합한 도전성 탄소복합재료에 관한 것이다.According to the present invention, carbon nanotubes, in which carbon nanotubes themselves have excellent electrical conductivity, thermal conductivity, and rigidity, are used to improve the characteristics of metals or ceramics themselves, thereby minimizing the product size, high performance, and long life. It relates to a conductive carbon composite material.

현재, 지구환경 보호를 위해 각종 산업분야에서 자원절약, 생력화를 부르짖고 있다. 전기/전자부품이나 몰레큘러시브(Molecular Sieve:분자여과기) 소재로서, 금속, 세라믹, 유리 및 그 복합재가 사용되고 있는데, 이들 기존의 것 보다 더 나은 물리/화학 특성을 가지며, 또한 수명이 긴 신소재 개발이 전망된다. 땜 업계에서는 세계적으로 RoHS지령 등 영향을 받아 기존에 사용하던 주석-납 합금 납땜을 대신에 납을 사용하지 않은 Pb프리 땜재(대표적인 것으로 주석96.5%, 은3%, 동0.5%라는 ECO 땜 등)가 주류가 되고 있다. Pb프리 땜재는 기존의 납이 함유된 공정(eutectic:공융혼합물)땜(조성예, 주석63%, 납37%)에 비해 고가이고, 도 용융점이 높아서(Pb프리-210~220℃, 공정183.3℃), 실제 땜질 시에 부품에 대한 열의 영 향도 문제가 되었다.At present, we are calling for resource conservation and vitalization in various industries to protect the global environment. As electrical / electronic parts or Molecular Sieve materials, metals, ceramics, glass, and composites are used, which have better physical / chemical properties and longer lifespan than conventional ones. Development is expected. In the solder industry, Pb-free solders (lead-free, 96.5% tin, 3% silver, and 0.5% copper ECO solders) are used instead of the existing tin-lead alloy solders that have been affected by the RoHS directive. Is becoming mainstream. Pb-free solders are more expensive than conventional leaded eutectic solders (composition examples, tin 63%, lead 37%) and have a higher melting point (Pb-free-210 ~ 220 ° C, process 183.3). ℃), the effect of heat on the part during the actual soldering also became a problem.

최근, C60 플라렌, 카본나노섬유, 그라파이트나노섬유 등 나노메타 구조의 크기를 갖는 나노구조 탄소가 주목받고 있다. 앞에 언급한 나노구조탄소는, 그 특수한 구조 때문에 특수한 기능적 성질, 구조적 성질을 갖추고 있다. 예를 들면, 카본나노섬유는 수천Gpa 영률(young's modulus)을 갖는 것으로 예측되며, 각종 재료와의 혼합재로 사용함으로써 고강도화가 기대되고 있다. Recently, nanostructured carbon having a size of nanometa structure, such as C60 flaren, carbon nanofibers, graphite nanofibers, has attracted attention. The nanostructured carbon mentioned above has special functional and structural properties because of its special structure. For example, carbon nanofibers are expected to have thousands of Gpa young's modulus, and high strength is expected to be used as a mixture with various materials.

예컨대, 뛰어난 강도와 성형성 및 도전성을 함께 갖춘 성형체를 만들 목적으로, 평균 직경이 1~45mm, 평균 애스팩트(양상) 비가 5이상인 카본나노튜브를 탄소섬유, 금속피복탄소섬유, 카본분말, 유리섬유 등 분진재를 섞어 갠 에폭시수지, 불포화 폴리에스텔수지 등 수지 중에 분산시킨 카본 함유의 수지조성물을 가공, 형성하여 얻는 것을 (특허개시 200-12939)제안하고 있다. 또 알루미늄 합금재의 열전도율, 항장력 강도를 개선할 목적으로, 알루미늄 합금재의 함유성분인 Si, Mg, Mn 중 적어도 1종류를 카본나노섬유와 화합시켜 카본나노섬유를 알루미늄 모체에 함유시킨 알루미늄 합금재를 제안하고 있다. 이것은, 카본나노섬유를 0.1~5vol% 용융알루미늄 합금재 내에 혼입하여 섞은 후 빌릿(billet)으로 만들어, 해당 빌릿을 압출 성형하여 얻어진 알루미늄합금재의 압출형재로서 제공(특허공개 2002-363716)하고 있다. For example, carbon nanotubes having an average diameter of 1 to 45 mm and an average aspect ratio of 5 or more are used for the purpose of making molded articles having excellent strength, formability and conductivity, including carbon fibers, metal-coated carbon fibers, carbon powder, and glass. It is proposed to obtain and process a carbon-containing resin composition dispersed in a resin such as an epoxy resin mixed with a dust material such as fiber and an unsaturated polyester resin (Patent Publication 200-12939). In order to improve the thermal conductivity and tensile strength of the aluminum alloy material, at least one of Si, Mg and Mn, which are components of the aluminum alloy material, is combined with carbon nanofibers, and an aluminum alloy material containing carbon nanofibers in the aluminum matrix is proposed. Doing. The carbon nanofibers are mixed into 0.1-5 vol% molten aluminum alloy material, mixed into a billet, and provided as an extruded shape member of an aluminum alloy material obtained by extrusion molding the billet (Patent Publication 2002-363716).

나아가, 연료전지의 세퍼레이터 등에 적용 가능한 성형성이 뛰어난 고도전성재료를 얻는 것을 목적으로, PPS나 LCP등 유동성이 뛰어난 열가역성 수지에 금속화합물(붕화물:Tib2, WB, MoB, CrB, AIB2, MgB, 탄화물:WC, 질화물:TiN 등) 및 카본 나노튜브를 적정량 배합함으로써 성형성과 도전성을 양립시킨 수지성형체를 제안(특허공개2003-34751)하고 있다.Furthermore, in order to obtain a highly conductive material having excellent moldability applicable to separators of fuel cells, metal compounds (borides: Tib2, WB, MoB, CrB, AIB2, MgB) are made of a thermally reversible resin having excellent fluidity such as PPS and LCP. , A carbide: WC, a nitride: TiN, etc.) and a carbon nanotube are blended in an appropriate amount to propose a resin molded body having both moldability and conductivity (Patent Publication 2003-34751).

카본나노튜브를 함유한 필드 이미터(emitter)로서, 인듐, 비스무트 또는 납처럼 나노튜브 습윤성(wettability) 원소로 이루어진 금속합금, Ag, Au나 Sn의 경우처럼 비교적 부드럽고 연성이 있는 금속분체 등 도전성 재료분체와 카본나노튜브를 프레스 성형하여 절단이나 연마 후에 표면에 돌출되어 나노튜브를 형성하고, 해당 표면을 에칭(etching)하여 나노튜브 선단(先端)을 형성, 그 후 금속표면을 재용해하여 돌출된 나노튜브를 정렬시키는 공정으로 제조하는 방법을 제안(특허공개2000-223004)하고 있다.Field emitters containing carbon nanotubes, such as metal alloys made of nanotube wettability elements such as indium, bismuth or lead, and conductive materials such as relatively soft and ductile metal powders such as Ag, Au or Sn. Press-molding powder and carbon nanotubes to protrude the surface after cutting or polishing to form nanotubes, and etching the surface to form a nanotube tip, and then remelting the metal surface to protrude. A method for producing nanotubes by the process of aligning has been proposed (Patent Publication 2000-223004).

다양한 기능을 다면적으로 실현하고 기능을 최적화하기 위한 세라믹 복합 나노 구조체를 목적으로, 어떤 기능을 목적으로 선정하는 복수의 다가 금속원소 산화물로 구성되도록, 예컨대 다른 종류의 금속원소가 산소를 매개로 결합하는 제조방법을 선정하고 나아가 공지한 갖가지 방법으로 단축단면 최대경이 500nm이하의 주상체 제조를 제안(특허공개203-268120)하고 있다.For the purpose of ceramic composite nanostructures for realizing various functions and optimizing various functions, for example, different types of metal elements are combined with oxygen to be composed of a plurality of multivalent metal element oxides selected for a certain function. In order to select a manufacturing method, and to manufacture a columnar body having a maximum diameter of 500 nm or shorter in a shorter cross-section by various known methods (Patent Publication 203-268120).

그러나, 위에서 언급한 수지 중이나 알루미늄 합금 중에 분산시키려고 하는 카본나노튜브는, 얻을 수 있는 복합재료 제조성이나 소요 성형성을 얻는다는 것을 고려하여 분산성이 높은 것을 이용하는 것이며, 카본나노튜브 자체가 갖는 뛰어난 전기전도와 열전도 특성, 강성을 유효하게 활용하고자 하는 것이 아니다.However, the carbon nanotubes to be dispersed in the above-mentioned resins or aluminum alloys are those which have high dispersibility in consideration of obtaining the obtained composite material manufacturability and required moldability. It is not intended to effectively utilize electrical conductivity, thermal conductivity characteristics, and rigidity.

본 발명은 상기 문제점에 해결하기 위한 것으로 본 발명의 해결하고자 하는 과제는 카본나노튜브 자체가 갖는 뛰어난 전기전도와 열전도성, 강성을 적극적으로 이용함으로써, 금속이나 세라믹 그 자체가 갖는 특성을 향상시켜 제품의 소형화, 고성능화, 장수명화를 향상시킨 카본나노튜브를 혼합한 도전성 탄소복합재료를 제공하는 것이다.The present invention has been made to solve the above problems, and the problem to be solved by the present invention is to actively use the excellent electrical conductivity, thermal conductivity, and rigidity of carbon nanotubes themselves, thereby improving the characteristics of the metal or ceramic itself product It is to provide a conductive carbon composite material in which carbon nanotubes having improved miniaturization, high performance, and long life are mixed.

본 발명의 다른 과제는 절연성이지만 내부식성, 내열성을 갖는 세라믹이나 금속분체기재가 갖는 특성과 함께 카본나노튜브 자체 본래의 긴 사슬 구조나 망상 구조를 갖는 뛰어난 전기전도와 열전도특성 및 강도특성을 최대한 활용한 카본나노튜브를 혼합한 도전성 탄소복합재료을 제공하는 것이다.Another object of the present invention is to utilize the excellent electrical conductivity, thermal conductivity and strength characteristics of carbon nanotubes inherently long chain or network structure together with the properties of ceramics or metal powder materials having insulation but corrosion resistance and heat resistance. It is to provide a conductive carbon composite material in which a carbon nanotube is mixed.

본 발명의 카본나노튜브를 혼합한 도전성 탄소복합재료는 금, 백금, 은, 동, 니켈, 아연, 철, 납, 파라듐, 실리콘, 마그네슘, 알루미늄, 인듐, 니크롬, 크롬, 비스무트, 안티몬, 티탄, 스텐레스, 베릴륨, 산화베릴륨, 황동, 칸탈, 인코넬 가운데서 선택된 1종류 이상의 금속 및 합금을 페이스트 상태로 만들어 카본나노튜브 및 카본나노섬유에 혼합하여 탄소화된 특징으로 한다.The conductive carbon composite material incorporating the carbon nanotubes of the present invention is gold, platinum, silver, copper, nickel, zinc, iron, lead, palladium, silicon, magnesium, aluminum, indium, nichrome, chromium, bismuth, antimony, titanium One or more metals and alloys selected from stainless steel, beryllium, beryllium oxide, brass, cantal, and inconel are made into a paste and mixed with carbon nanotubes and carbon nanofibers.

바람직하게, 상기 도전성 탄소복합재료는 파우더로 플럭스(flux)와 혼합하여 유동화시켰음을 특징으로 한다.Preferably, the conductive carbon composite material is characterized in that the fluidized by mixing with the flux (flux) as a powder.

본 발명의 카본나노튜브를 혼합한 도전성 탄소복합재료는 의복, 종이, 목재 등 섬유에 카본나노튜브 또는 카본나노섬유를 흡착시킴으로써 탄소복합섬유재료 및 항산화 시트재를 얻을 수 있다.In the conductive carbon composite material in which the carbon nanotubes of the present invention are mixed, a carbon composite fiber material and an antioxidant sheet material can be obtained by adsorbing carbon nanotubes or carbon nanofibers to fibers such as clothing, paper, and wood.

또한, 탄소복합섬유재료 및 항산화 시트재를 의복이나 모발용 가발 재료로 이용할 수 있으며, 본나노튜브 및 카본나노섬유는 방열성도 뛰어나기 때문에, 칠(漆)과 혼합함으로써 열 특성이 뛰어난 도료와 접착제를 만들 수 있다. 특히 이 도료와 접착제는 문화재 보수에 아주 적합하다.In addition, carbon composite fiber material and antioxidant sheet material can be used as clothing or hair wig material.Bon nanotubes and carbon nanofibers have excellent heat dissipation properties. I can make it. In particular, the paints and adhesives are well suited for the repair of cultural property.

카본나노튜브를 혼합한 도전성 탄소복합재료는 도전성 탄소복합재료를 세라믹과 혼합 또는 소결한 것이 반도체 소재 및 항산화 세라믹 및 납땜 칩으로 사용할 수 있다..The conductive carbon composite material in which carbon nanotubes are mixed may be used as a semiconductor material, an antioxidant ceramic, and a solder chip in which a conductive carbon composite material is mixed or sintered with a ceramic.

또한, 넓게는 나노테크 응용기술이며, 특히 코일재, 열전대, 보상도선, 단자, 필라멘트, LED발광재, 전극, 부스바 리더선, 페르체재, 히터재, IC, IC칩, 저항, 콘덴서, 모터 권선코일재, 센서재, 센서코일재 등 전자장치나 칼날, 공구, 자동차, 선박, 우주선, 의료, 바이오, 유통산업, 환경, 로봇, 스포츠용품 등의 소재로서 널리 적용할 수 있다.In addition, nanotech is widely applied technology, especially coil material, thermocouple, compensation wire, terminal, filament, LED light emitting material, electrode, busbar leader wire, fer material, heater material, IC, IC chip, resistor, capacitor, motor It can be widely applied as a material for electronic devices such as winding coil materials, sensor materials, sensor coil materials, blades, tools, automobiles, ships, spacecraft, medical, biotechnology, distribution industry, environment, robots, and sporting goods.

본 발명의 도전성 탄소복합재료 제조방법으로는, 먼저 카본나노튜브 및 카본나노섬유(파이버)에 금속 및 그 합금을 페이스트(paste)상태로 혼합하여 유동화된 혼합물을 얻는다. 앞에서 언급한 페이스트는, 액상이어도 되고 가열 방법 등으로 유동화되는 분체인 펠릿(pellet)이어도 된다. In the method for producing a conductive carbon composite material of the present invention, first, a metal and an alloy thereof are mixed with a carbon nanotube and a carbon nanofiber (fiber) in a paste state to obtain a fluidized mixture. The paste mentioned above may be a liquid or pellet which is a powder fluidized by a heating method or the like.

본 발명에 개시되는 탄소복합재료의 바람직한 하나의 양태로는, 카본나노튜브 및 카본나노섬유와 혼합하는 금속 및 합금은 금, 백금, 은, 동, 니켈, 아연, 철, 납, 파라듐, 실리콘, 마그네슘, 알루미늄, 인듐, 니크롬, 크롬, 비스무트, 안티몬, 티탄, 스텐레스, 베릴륨, 산화베릴륨, 황동, 칸탈, 인코넬 가운데서 선택된 1종류 이상의 금속 및 합금이다.In a preferred embodiment of the carbon composite material disclosed in the present invention, the metal and alloy mixed with carbon nanotubes and carbon nanofibers are gold, platinum, silver, copper, nickel, zinc, iron, lead, palladium, silicon. At least one metal and alloy selected from magnesium, aluminum, indium, nichrome, chromium, bismuth, antimony, titanium, stainless steel, beryllium, beryllium oxide, brass, cantal, and inconel.

앞서 언급한 카본나노튜브 및 카본나노섬유와 금속과의 혼합물을 얻는 방법으로서, 예를 들면 단련을 들 수 있다.As a method of obtaining the mixture of the above-mentioned carbon nanotube, carbon nanofiber, and a metal, annealing is mentioned, for example.

또 본 발명의 제조방법으로는, 앞에 기술한 전도성 탄소복합재료는 파우더로 하여 플럭스(flux)와 혼합시킴으로써 유동화할 수 있다.In the manufacturing method of the present invention, the conductive carbon composite material described above can be fluidized by mixing with flux as a powder.

이로써 카본나노튜브에 금속이 갖는 습윤성을 부가할 수 있으므로, 높은 전도성을 가진 땜 칩 등의 소재가 되며, 땜재로 이용할 경우 파우더, 페이스트, 선(線)땜, 수지함유선(線)땜, 봉(棒)땜, 워셔스프링 등에 응용 가능하다.As a result, the wettability of metals can be added to the carbon nanotubes, and thus, it becomes a material such as a solder chip having high conductivity, and when used as a solder material, powder, paste, wire solder, resin-containing wire solder, rod (I) It is applicable to soldering and washer springs.

유동화시킨 도전성 탄소복합재료는, 질소제조장치 흡착제로서도 이용된다.The fluidized conductive carbon composite material is also used as an adsorbent for nitrogen production equipment.

또, 본 발명의 제조방법으로는, 도전성 탄소복합재료를 세라믹과 혼합 또는 소결함으로써 반도체소재 또는 한산화 세라믹을 얻을 수 있다.In the manufacturing method of the present invention, a semiconductor material or a ceramic oxide can be obtained by mixing or sintering a conductive carbon composite material with a ceramic.

앞서 언급한 도전성 탄소복합재료와 세라믹과의 소결에는, 예컨대 N2 분위기하에서 열압(熱壓) 소결을 이용할 수 있다. For the sintering of the aforementioned conductive carbon composite material and ceramic, for example, hot-pressure sintering may be used in an N 2 atmosphere.

본 발명에 개시된 반도체소재의 올바른 하나의 형태로는, 앞에 언급한 세라믹으로는, 알루미나, 지르코니아 등의 산화물, 질화알루미늄, 진화티탄, 질화규소 등의 질화물, 탄화규소, 탄화티탄, 탄화탄탈, 탄화텅스텐 등의 탄화물, 붕화티탄, 붕화지르코니아, 붕화크롬 등의 붕화물 등 알려진 각종 기계적 기능이나 역성변형시 입계slip을 향상시키는 기능을 갖는 세라믹을 채용할 수 있다. 예를 들면, 내부식성, 내열성 등 필요로 하는 기능을 발휘하는 기능성 세라믹을 채용해도 좋다.As a correct form of the semiconductor material disclosed in the present invention, the ceramics mentioned above include oxides such as alumina and zirconia, nitrides such as aluminum nitride, titanium oxide, silicon nitride, silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide Ceramics having a variety of known mechanical functions, such as carbides such as carbides, titanium borides, zirconia borides, and chromium borides, and a function of improving grain boundary slip at the time of reverse deformation can be employed. For example, you may employ | adopt the functional ceramic which exhibits the required function, such as corrosion resistance and heat resistance.

본 발명의 탄소복합재료는 내부식성, 내열성이 뛰어난 세라믹, 내식성과 방열성이 뛰어난 금속분재 소결체를 기체(주물질)로 하고, 앞에 언급한 재료 자체가 본래 부식성이나 고온환경 하에서 뛰어난 내구성을 갖고 있고 여기에 카본나노튜브를 균일하게 분산시킴으로써 카본나노튜브 자체가 갖는 뛰어난 전기전도와 열전도 특성 및 강도가 어우러져 소요특성의 증강, 상승효과, 또는 새로운 기능을 발휘시킬 수 있다. The carbon composite material of the present invention is made of a ceramic (sintering material) having excellent corrosion resistance and heat resistance, a ceramic powder sintered body having excellent corrosion resistance and heat dissipation, and the aforementioned material itself has excellent durability under corrosive or high temperature environment. By uniformly dispersing the carbon nanotubes in the carbon nanotubes, the excellent electrical conductivity and thermal conductivity and strength of the carbon nanotubes themselves are combined to enhance the required characteristics, synergistic effects, or new functions.

특히 본 발명의 탄소복합재료는, 기계강도와 함께 탄성, 내열성, 열전도성 및 도전성 면에서 대단히 뛰어난 특성을 갖는 구조재를 실현하였다. 그 때문에 스프링재료, 비스(vis 나사), 너트, 워셔, 볼트, 기어, 공구, 야구(연장), 칼날, 연마제, 윤활제, 접착제, 축수의류, 주택, 샤프트, 기둥, 지붕, 기와, 통 등의 건축재, FA기기, TV, 냉장고 등 가전기기용 소재로 이용하며 극히 고성능으로 가능하다In particular, the carbon composite material of the present invention has realized a structural material having extremely excellent properties in terms of elasticity, heat resistance, thermal conductivity, and conductivity as well as mechanical strength. For this reason, spring materials, vis screws, nuts, washers, bolts, gears, tools, baseballs (extensions), blades, abrasives, lubricants, adhesives, bearing clothing, housing, shafts, columns, roofs, roof tiles, barrels, etc. It is used as a material for home appliances such as building materials, FA equipment, TV, refrigerator, etc.

나아가 본 발명의 탄소복합재료는 땜 칩 재료로서도 아주 적합하다. 기존의 땜 칩은 내구성이 약하고 빈번하게 교환해야 할 필요가 있었으나, 언급한 탄소복합재료는 뛰어난 내구성과 도전성을 갖고 있기 때문에 용식(침식)성이 적고, 교환 빈도를 대폭 개선 가능하다.Furthermore, the carbon composite material of the present invention is also very suitable as a solder chip material. Conventional solder chips have low durability and need to be replaced frequently, but the carbon composite materials mentioned above have excellent durability and conductivity, and thus have low corrosion resistance and can significantly improve the replacement frequency.

또 본 발명의 제조방법에서는, 전도성 페이스트재에 카본나노튜브를 혼합함 으로써 전도성 페이스트재를 얻을 수 있다.Moreover, in the manufacturing method of this invention, a conductive paste material can be obtained by mixing a carbon nanotube with a conductive paste material.

상기 도전성 페이스트재는, 예컨대 열경화성 수지와 도전성 필러(filler)를 함유하고 있다.The conductive paste material contains, for example, a thermosetting resin and a conductive filler.

본 발명의 전도성 페이스트재는, 접착강도, 도전성이 뛰어날 뿐 아니라 접착강도 및 도전성 밸런스도 뛰어나다. 따라서 본 발명의 도전성 페이스트재를 이용한 반도체 장치는 고온 다습한 환경에서도 접착강도, 도전성이 저하되지 않고 뛰어난 전기적 특성을 유지할 수 있다.The conductive paste material of the present invention is not only excellent in adhesive strength and conductivity, but also excellent in adhesive strength and conductivity balance. Therefore, the semiconductor device using the conductive paste material of the present invention can maintain excellent electrical characteristics without deterioration in adhesive strength and conductivity even in a high temperature and high humidity environment.

또한 언급한 도전성 페이스트재를 세라믹과 혼합 또는 소결함으로써 내열성 도전성 페이스트재를 얻을 수 있다.In addition, a heat resistant conductive paste material can be obtained by mixing or sintering the aforementioned conductive paste material with a ceramic.

이하, 본 발명이 적용분야에 대하여 설명하고자 한다.Hereinafter, the present invention will be described with respect to the field of application.

카본나노튜브에 금속을 혼합함으로써, 주석합금 땜이 온도에서 용융하여 칩 선단(끝) 금속과 확산반응이 일어나고 중력 방향과 반대로 쉽게 떨어지지 않는, 소위 습윤성이 좋은 상태가 된다. 또 카본나노튜브의 특성으로 인해 금속만으로 이루어진 칩에 비해 열전도율, 도전률이 높고, 열에 의한 마모도 적어진다.By mixing the metal with the carbon nanotubes, the tin alloy solder melts at a temperature, so that the so-called wettability is in a good state that the diffusion reaction occurs with the chip tip metal and does not easily fall in the opposite direction to the direction of gravity. In addition, due to the characteristics of carbon nanotubes, the thermal conductivity and electrical conductivity are higher than those of metal-only chips, and the wear caused by heat is reduced.

또한, 질소발생장치에 사용하는 산소흡착제로서 본 발명을 이용하면 통 속에 채운 카본나노큐브재, 또는 복합체의 몰레큘러시브가 산소를 흡착하여 질소가스가 제거된다. 기존의 몰레큘러시브보다도 흡착성이 높기 때문에 소형화할 수 있다. In addition, when the present invention is used as the oxygen adsorbent used in the nitrogen generating device, the carbon nanocube material or the molecular sieve of the composite filled in the cylinder adsorbs oxygen to remove nitrogen gas. Since the adsorption property is higher than that of the conventional molecular sieve, it can be miniaturized.

Claims (2)

금, 백금, 은, 동, 니켈, 아연, 철, 납, 파라듐, 실리콘, 마그네슘, 알루미늄, 인듐, 니크롬, 크롬, 비스무트, 안티몬, 티탄, 스텐레스, 베릴륨, 산화베릴륨, 황동, 칸탈, 인코넬 가운데서 선택된 1종류 이상의 금속 및 합금을 페이스트 상태로 만들어 카본나노튜브 및 카본나노섬유에 혼합하여 탄소화된 것을 특징으로 하는 카본나노튜브를 혼합한 도전성 탄소복합재료.Among gold, platinum, silver, copper, nickel, zinc, iron, lead, palladium, silicon, magnesium, aluminum, indium, nichrome, chromium, bismuth, antimony, titanium, stainless, beryllium, beryllium oxide, brass, cantal, inconel A conductive carbon composite material in which carbon nanotubes are mixed with carbon nanotubes and carbon nanofibers by mixing one or more selected metals and alloys in a paste state. 제1항에 있어서, 상기 도전성 탄소복합재료는 파우더로 플럭스(flux)와 혼합하여 유동화시킨 것을 특징으로 하는 카본나노튜브를 혼합한 도전성 탄소복합재료.The conductive carbon composite material of claim 1, wherein the conductive carbon composite material is powdered and mixed with flux to fluidize the carbon nanotubes.
KR1020090090780A 2009-09-25 2009-09-25 Electrically conductive carbon composite material containing composite material carbon nanotube KR20110033336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090090780A KR20110033336A (en) 2009-09-25 2009-09-25 Electrically conductive carbon composite material containing composite material carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090090780A KR20110033336A (en) 2009-09-25 2009-09-25 Electrically conductive carbon composite material containing composite material carbon nanotube

Publications (1)

Publication Number Publication Date
KR20110033336A true KR20110033336A (en) 2011-03-31

Family

ID=43937745

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090090780A KR20110033336A (en) 2009-09-25 2009-09-25 Electrically conductive carbon composite material containing composite material carbon nanotube

Country Status (1)

Country Link
KR (1) KR20110033336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349161B1 (en) * 2012-02-07 2014-01-10 현대자동차주식회사 Polymer nanocomposites containing glass fiber coated with metal-carbonnanotube and graphite and a fabrication process thereof
KR101349160B1 (en) * 2012-02-07 2014-01-10 현대자동차주식회사 Functionality nanocomposites containing glass fiber coated with carbonnanotube and graphite and a fabrication process thereof
CN114713245A (en) * 2022-04-08 2022-07-08 中南大学 Multi-family multi-element alloy/carbon nano tube catalytic material and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349161B1 (en) * 2012-02-07 2014-01-10 현대자동차주식회사 Polymer nanocomposites containing glass fiber coated with metal-carbonnanotube and graphite and a fabrication process thereof
KR101349160B1 (en) * 2012-02-07 2014-01-10 현대자동차주식회사 Functionality nanocomposites containing glass fiber coated with carbonnanotube and graphite and a fabrication process thereof
CN114713245A (en) * 2022-04-08 2022-07-08 中南大学 Multi-family multi-element alloy/carbon nano tube catalytic material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101654523B1 (en) Hybrid Composite Solder Alloys and Their Fabrication Methods
Gain et al. Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder
EP1477467B1 (en) Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
KR101738007B1 (en) Lead-free and antimony-free tin solder reliable at high temperatures
JP4964009B2 (en) Power semiconductor module
JP2008300342A (en) Metal solder material containing carbon nanotube, conductive material, and semiconducting material
US20180102464A1 (en) Advanced Solder Alloys For Electronic Interconnects
JP2004528992A (en) Lead-free brazing material
JPWO2006080247A1 (en) Conductive paste
Manikam et al. Sintering of silver–aluminum nanopaste with varying aluminum weight percent for use as a high-temperature die-attach material
KR20130072400A (en) Polymer complex having enhanced electro-conductivity, thermal stability and mechanic property, and pb free solder comprising the same
JP5614507B2 (en) Sn-Cu lead-free solder alloy
WO2009041246A1 (en) Process for producing contact member, contact member, and switch
Mou et al. Enhanced heat dissipation of high-power light-emitting diodes by Cu nanoparticle paste
KR20110033336A (en) Electrically conductive carbon composite material containing composite material carbon nanotube
JP2009043672A (en) Conductive carbon composite material mixed with carbon nanotube, metal solder material, conductive material, and semiconductive material
CN1442868A (en) Alloy type hot melt fuse and fuse component
CN1269165C (en) Alloy type hot melt fuse and fuse component
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
JP2003338641A (en) Thermoelectric element
JP4524383B2 (en) Thermoelectric element with integrated electrode and method for producing the same
JP2011240352A (en) Lead-free solder composition for vehicle
JP4772611B2 (en) Method for joining members with different coefficients of thermal expansion
JP2005223237A (en) Highly strong thermoelectric material
CN1269164C (en) Alloy type hot melt fuse and fuse component

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application