JP2008300342A - Metal solder material containing carbon nanotube, conductive material, and semiconducting material - Google Patents

Metal solder material containing carbon nanotube, conductive material, and semiconducting material Download PDF

Info

Publication number
JP2008300342A
JP2008300342A JP2007171189A JP2007171189A JP2008300342A JP 2008300342 A JP2008300342 A JP 2008300342A JP 2007171189 A JP2007171189 A JP 2007171189A JP 2007171189 A JP2007171189 A JP 2007171189A JP 2008300342 A JP2008300342 A JP 2008300342A
Authority
JP
Japan
Prior art keywords
materials
mixed
wire
carbon nanotube
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007171189A
Other languages
Japanese (ja)
Inventor
Yoshimasa Matsubara
賢政 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI KAKEN KK
Taisei Kaken KK
Original Assignee
TAISEI KAKEN KK
Taisei Kaken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI KAKEN KK, Taisei Kaken KK filed Critical TAISEI KAKEN KK
Priority to JP2007171189A priority Critical patent/JP2008300342A/en
Publication of JP2008300342A publication Critical patent/JP2008300342A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cope with a problem of expected development of an inexpensive and high-quality material, since how to achieve energy-saving and resource-saving influences on protection of earth environment, and rising cost of a solder material or electronic components due to rise of metal prices in a world-wide scale could not overlook, in the present industrial world. <P>SOLUTION: By using excellent characteristics of a carbon nanotube, and using it as a raw material, a device can be downsized, energy-saved, and last long. Especially in a solder industry, an inexpensive solder material or electric component material can be developed for substituting of lead-free soldering. This invention is not only for above, but also has a lot of possibilities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はカーボンナノチューブと金属やセラミックス、ガラス等と混合させた複合材を作り、線材、はんだ材、その他各種素材として利用するころを目的とする。An object of the present invention is to make a composite material in which carbon nanotubes are mixed with metal, ceramics, glass, and the like, and use them as wire materials, solder materials, and other various materials.

技術背景Technical background

現在、地球環境の保護のため、様々な産業分野で省資源省エネルギー化が叫ばれている。電気・電子部品やモレキュラーシーブの素材として、金属、セラミックス、ガラス及びそれらの混合材が使用されているが、これら従来品よりも高い物理・化学特性を持ち、かつ長寿命な新素材の開発が望まれている。はんだ業界においては、世界的にRoHS指令等の影響を受け、従来使用されている錫−鉛合金はんだに代わり鉛を使用しないPbフリーはんだ材(代表的なものに錫96.5%、銀3%、銅0.5%のECOはんだ等)が主流になりつつある。Pbフリーはんだは従来の鉛入り共晶はんだ(組成例、錫63%、鉛37%)に比べて高価で、また溶融点が高く(Pbフリー210〜220℃、共晶183.3℃)なっており、実装はんだ付け時の部品の熱影響も問題となってきている。Currently, in order to protect the global environment, resource saving and energy saving are being screamed in various industrial fields. Metals, ceramics, glass and mixed materials are used as materials for electrical and electronic parts and molecular sieves, but new materials with higher physical and chemical properties and longer life than these conventional products have been developed. It is desired. In the solder industry, Pb-free solder materials that do not use lead in place of the conventionally used tin-lead alloy solder (typically 96.5% tin, silver 3) %, 0.5% copper ECO solder, etc.) are becoming mainstream. Pb-free solder is more expensive and has a higher melting point (Pb-free 210-220 ° C, eutectic 183.3 ° C) than conventional lead-containing eutectic solder (composition example, 63% tin, 37% lead). The thermal effect of components during mounting soldering has also become a problem.

本発明は上記の問題点に鑑み、新素材としてのカーボンナノチューブに着目した。銅の5倍以上の導電性、鋼鉄の20倍の強度など高い物質特性を持つカーボンナノチューブを金属、セラミックスなどに0.1%〜数拾%混合させることで、金属そのものが持つ特性を向上させることが出来る。これにより製品の小型化、高性能化、長寿命化をはかり、資源の少ない日本の産業界を恒久的な繁栄させることを目的とする。In view of the above problems, the present invention has focused on carbon nanotubes as a new material. Improve the properties of the metal itself by mixing carbon nanotubes with high material properties such as conductivity five times that of copper and strength 20 times that of steel into metals and ceramics in an amount of 0.1% to several percent. I can do it. This aims to make the Japanese industry with few resources permanent prosperity by reducing the size, performance and life of the product.

本発明で応用できるカーボンナノチューブを軸とした混合材の作成・使用法は以下のとおりである。A method for producing and using a mixed material centering on a carbon nanotube applicable in the present invention is as follows.

カーボンナノチューブは純銅の数倍〜数10倍、銀の数倍という優れた電気特性を有している。銅やニッケル、アルミニウムなどにカーボンナノチューブを数%〜数拾%混合すると、電位差により応答速度が速く、感度の高いセンサー素材などに応用が出来る。Carbon nanotubes have excellent electrical properties of several times to several tens of times that of pure copper and several times that of silver. When carbon nanotubes are mixed with copper, nickel, aluminum, etc. in the range of several to several percent, the response speed is fast due to the potential difference and it can be applied to highly sensitive sensor materials.

カーボンナノチューブは耐熱性が高く、金属喰われなどにも強い優れた物理特性を持っている。金属材と混合し、金属の持つ濡れ性などを付加することで、長寿命かつ前述のとおり高い導電性をもったはんだこてチップなどの素材とすることが出来る。Carbon nanotubes have high heat resistance and excellent physical properties that are strong against metal erosion. By mixing with a metal material and adding the wettability of the metal, a material such as a soldering iron chip having a long life and high conductivity as described above can be obtained.

また、カーボンナノチューブは原子レベルで細密な構造を持っており、この特性を生かして造粒、あるいはつなぎとして活性炭や樹脂造粒炭と混合することで、窒素や酸素の吸着剤モレキュラーシーブとして、窒素発生装置や酸素発生装置に応用可能である。In addition, carbon nanotubes have a fine structure at the atomic level, and by taking advantage of this property, they can be granulated or mixed with activated carbon or granulated coal as a binder to form nitrogen or oxygen as an adsorbent molecular sieve. It can be applied to generators and oxygen generators.

はんだ材に利用する場合、パウダー、ペースト、線はんだ、ヤニ入り線はんだ、棒はんだ、ワッシャースプリングなどに応用可能である。When used as a solder material, it can be applied to powder, paste, wire solder, spear wire solder, bar solder, washer spring and the like.

カーボンナノチューブはもちろんナノ粒子であるため、これと混合する金属・セラミックス材もナノ粒子かそれに近い分子の方が混ざりやすく、これにキュアー、プレスキュアー、焼結といった処理を行うことによって均一な分子配分の混合剤が出来る。Since carbon nanotubes are, of course, nanoparticles, the metal and ceramic materials mixed with them are easier to mix with nanoparticles or molecules close to them. Uniform molecular distribution is achieved by processing such as cure, press cure, and sintering. Can be mixed.

カーボンナノチューブは上記のように高い物理・化学特性を持つため、装置の超小型化、ひいては省エネルギーに有効である。Since carbon nanotubes have high physical and chemical properties as described above, they are effective for miniaturization of the apparatus and, consequently, energy saving.

以下、例として添付図面を参照し、実施の形態について説明する。Embodiments will be described below with reference to the accompanying drawings as examples.

図1ははんだこてのチップ材として本発明を利用した際の模式図である。カーボンナノチューブに金属を混合することにより、錫合金はんだなどが温度で溶融してチップ先端の金属と拡散反応が起こり、重力の方向に反して滑り落ちにくい、いわゆる濡れ性がよい状態となる。また、カーボンナノチューブの特性により、金属のみのチップにくらべて熱伝導率、導電率が高く、熱による磨耗も少なくなる。FIG. 1 is a schematic diagram when the present invention is used as a chip material for a soldering iron. By mixing the metal with the carbon nanotube, tin alloy solder or the like melts at a temperature to cause a diffusion reaction with the metal at the tip of the chip, so that a so-called wettability state is achieved in which it is difficult to slip off against the direction of gravity. In addition, due to the characteristics of carbon nanotubes, thermal conductivity and electrical conductivity are higher than that of metal-only chips, and wear due to heat is reduced.

図2は窒素発生装置に使用する酸素吸着剤として本発明を利用した際の模式図である。筒の中に詰めたカーボンナノチューブ材、又は複合体のモレキュラーシーブが酸素を吸着し、窒素ガスが取り出される。従来のモレキュラーシーブよりも吸着性が高いため、小型化することが出来る。FIG. 2 is a schematic view when the present invention is used as an oxygen adsorbent used in a nitrogen generator. The carbon nanotube material packed in the cylinder or the molecular sieve of the composite adsorbs oxygen, and nitrogen gas is taken out. Since the adsorptivity is higher than that of the conventional molecular sieve, the size can be reduced.

図3、4ははんだ材として本発明を利用した際の模式図である。図中の黒点部分がカーボンナノチューブを表しており、従来のはんだ材よりも導電性、熱伝導率に優れるため少量で済み、作業効率も向上する。3 and 4 are schematic views when the present invention is used as a solder material. The black dots in the figure represent carbon nanotubes, which are superior in electrical conductivity and thermal conductivity compared to conventional solder materials, so that a small amount is required, and work efficiency is improved.

ははんだこてのチップ材として本発明を利用した際の模式図である。These are the schematic diagrams at the time of utilizing this invention as a chip material of a soldering iron. は窒素発生装置に使用する酸素吸着剤として本発明を利用した際の模式図である。These are the schematic diagrams at the time of utilizing this invention as an oxygen adsorbent used for a nitrogen generator. はクリームはんだ材として本発明を利用した際の模式図である。These are the schematic diagrams at the time of utilizing this invention as a cream solder material. はヤニ入り線はんだとして本発明を利用した際の模式図である。These are the schematic diagrams at the time of utilizing this invention as a solder core wire solder.

Claims (11)

金属とその合金(金、白金、銀、銅、ニッケル、亜鉛、鉄、鉛、パラジューム、シリコン、マグネシウム、アルミニウム、インジューム、ニクロム、クローム、ビスマス、アンチモン、チタン、ステンレス、ベリリウム、酸化ベリリウム、真鍮、カンタル、インコネル等)をベースに、にカーボンナノチューブを混合(混合率は金属及び合金特性によって0.1%〜数拾%と異なる)した導電材料。Metals and their alloys (gold, platinum, silver, copper, nickel, zinc, iron, lead, palladium, silicon, magnesium, aluminum, indium, nichrome, chrome, bismuth, antimony, titanium, stainless steel, beryllium, beryllium oxide, brass , Kanthal, Inconel, etc.) based on conductive materials mixed with carbon nanotubes (mixing ratio varies from 0.1% to several pickups depending on metal and alloy properties). 請求項1の材料を数nm〜数μmのパウダーにしてフラックスを混ぜ、クリームペースト状にしたクリームはんだ材としたり、焼結又は溶融して棒材、板材、線材(中心にフラックス樹脂を入れた線はんだ等)にしたりした成型品及びコイル電線材。The material of claim 1 is made into a powder of several nanometers to several micrometers and mixed with a flux to obtain a cream solder material in the form of a cream paste, or it is sintered or melted to form a bar, a plate, a wire (with a flux resin in the center) Wire-soldered molded products and coil wire materials. 請求項1、請求項2の材料と、セラミックス(酸化アルミニウム、酸化チタン、酸化ベリリウム、窒化ケイ素、チタン酸アルミニウム、カーボン等)と混合したり焼結したりした半導体素材、及びカーボンナノチューブ−金属、合金、セラミックス、ガラス等の混合材料又は複合素材。A semiconductor material mixed or sintered with the material of claim 1 or 2 and ceramics (aluminum oxide, titanium oxide, beryllium oxide, silicon nitride, aluminum titanate, carbon, etc.), and carbon nanotube-metal, Mixed materials or composite materials such as alloys, ceramics and glass. 請求項1、請求項2、請求項3の新素材の電線材及びプレス成型材、射出成型材。The wire material, press molding material, and injection molding material of the new material according to claim 1, claim 2, and claim 3. 請求項1〜4を応用した、コイル材、熱伝対、補償導線、端子、フィラメント、LED発光材、電極、ブスバーリード線、ペルチェ材、ヒーター材、IC、ICチップ、抵抗、コンデンサー、モーター捲線コイル材、センサー材、センサーコイル材等あらゆる導電材及び半導電材。A coil material, thermocouple, compensating lead wire, terminal, filament, LED light emitting material, electrode, bus bar lead wire, Peltier material, heater material, IC, IC chip, resistor, capacitor, motor wire, applying claims 1 to 4 All conductive materials and semiconductive materials such as coil materials, sensor materials, sensor coil materials. 太陽光発電用光電気変換素子、蓄電池及び蓄電池用キャパシター材、電気自動車用モーター材、その他自動車、船舶、宇宙船、医療、バイオ、流通産業、環境、ロボット、スポーツ用の新素材。Photoelectric conversion elements for photovoltaic power generation, storage batteries and capacitor materials for storage batteries, motor materials for electric vehicles, and other new materials for automobiles, ships, spacecrafts, medical care, biotechnology, distribution industry, environment, robots and sports. 請求項1〜4を応用した、スプリング材、ビス、ナット、ワッシャー、歯車、冶具、軸受け衣類、住宅、シャフト、柱、屋根、瓦、桶等建築材、FA機器、テレビ、冷蔵庫等家電機器等に応用できる新素材。Spring materials, screws, nuts, washers, gears, jigs, bearing garments, houses, shafts, pillars, roofs, tiles, fences, and other building materials, FA devices, televisions, refrigerators, and other home appliances that apply claims 1 to 4 New material that can be applied to. カーボンナノチューブと導電性ペースト材を混合した導電性ペースト材Conductive paste material mixed with carbon nanotube and conductive paste material カーボンナノチューブと導電性ペースト材を混合した超導電性ペースト材Superconductive paste material mixed with carbon nanotube and conductive paste material 請求項8〜9に金属パウダーを混合した超導電性ペースト材Superconductive paste material in which metal powder is mixed in claims 8 to 9 請求項8〜10にセラミックス材を混合した耐熱性導電性ペースト材A heat-resistant conductive paste material obtained by mixing a ceramic material with claims 8 to 10
JP2007171189A 2007-06-01 2007-06-01 Metal solder material containing carbon nanotube, conductive material, and semiconducting material Pending JP2008300342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171189A JP2008300342A (en) 2007-06-01 2007-06-01 Metal solder material containing carbon nanotube, conductive material, and semiconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171189A JP2008300342A (en) 2007-06-01 2007-06-01 Metal solder material containing carbon nanotube, conductive material, and semiconducting material

Publications (1)

Publication Number Publication Date
JP2008300342A true JP2008300342A (en) 2008-12-11

Family

ID=40173644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171189A Pending JP2008300342A (en) 2007-06-01 2007-06-01 Metal solder material containing carbon nanotube, conductive material, and semiconducting material

Country Status (1)

Country Link
JP (1) JP2008300342A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043672A (en) * 2007-08-10 2009-02-26 Taisei Kaken:Kk Conductive carbon composite material mixed with carbon nanotube, metal solder material, conductive material, and semiconductive material
US8167190B1 (en) 2011-05-06 2012-05-01 Lockheed Martin Corporation Electrically conductive polymer compositions containing metal particles and a graphene and methods for production and use thereof
CN102602297A (en) * 2012-03-16 2012-07-25 方火炳 Multi-energy compensation type electromobile
JP2013054851A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
JP2013054852A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
CN103780135A (en) * 2013-10-15 2014-05-07 国家纳米科学中心 DC frictional electricity generator
CN104191098A (en) * 2014-08-26 2014-12-10 无锡柯马机械有限公司 Bidirectional welding electrode
KR20160027453A (en) * 2014-08-29 2016-03-10 한국기계연구원 Hybrid Composite Solder Alloys and Their Fabrication Methods
CN106205836A (en) * 2016-08-30 2016-12-07 西安飞机工业(集团)亨通航空电子有限公司 A kind of nickelchromium-nickelsiliconthermocouple micron order high temperature resisting thermocouple compensating wire
JP2019206032A (en) * 2011-08-02 2019-12-05 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. Solder composition
CN111661369A (en) * 2020-06-16 2020-09-15 北京卫星环境工程研究所 Layout method of thin film heater for spacecraft thermal test

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043672A (en) * 2007-08-10 2009-02-26 Taisei Kaken:Kk Conductive carbon composite material mixed with carbon nanotube, metal solder material, conductive material, and semiconductive material
US8167190B1 (en) 2011-05-06 2012-05-01 Lockheed Martin Corporation Electrically conductive polymer compositions containing metal particles and a graphene and methods for production and use thereof
JP2019206032A (en) * 2011-08-02 2019-12-05 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. Solder composition
JP2013054851A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
JP2013054852A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
CN102602297A (en) * 2012-03-16 2012-07-25 方火炳 Multi-energy compensation type electromobile
CN103780135A (en) * 2013-10-15 2014-05-07 国家纳米科学中心 DC frictional electricity generator
CN103780135B (en) * 2013-10-15 2015-12-02 北京纳米能源与系统研究所 A kind of direct current friction electric generator
CN104191098A (en) * 2014-08-26 2014-12-10 无锡柯马机械有限公司 Bidirectional welding electrode
KR101654523B1 (en) 2014-08-29 2016-09-07 한국기계연구원 Hybrid Composite Solder Alloys and Their Fabrication Methods
KR20160027453A (en) * 2014-08-29 2016-03-10 한국기계연구원 Hybrid Composite Solder Alloys and Their Fabrication Methods
CN106205836A (en) * 2016-08-30 2016-12-07 西安飞机工业(集团)亨通航空电子有限公司 A kind of nickelchromium-nickelsiliconthermocouple micron order high temperature resisting thermocouple compensating wire
CN111661369A (en) * 2020-06-16 2020-09-15 北京卫星环境工程研究所 Layout method of thin film heater for spacecraft thermal test
CN111661369B (en) * 2020-06-16 2021-10-01 北京卫星环境工程研究所 Layout method of thin film heater for spacecraft thermal test

Similar Documents

Publication Publication Date Title
JP2008300342A (en) Metal solder material containing carbon nanotube, conductive material, and semiconducting material
CN104889595B (en) A kind of graphene oxide/Nano Silver composite brazing material and preparation method thereof
Chen et al. Inkjet printing of single‐crystalline Bi2Te3 thermoelectric nanowire networks
CN107251246B (en) Thermoelectric module and method for manufacturing the same
CN105081600A (en) Tin base brazing solder for packaging inverted LED chip and preparation method thereof
JP2011054892A (en) Solder bonding using conductive paste
TWI417399B (en) Composite lead-free solder alloy composition having nano-particles
CN103928078A (en) Copper alloy electroconduction slurry and preparation method thereof
Sun et al. Effect of thermal cycles on interface and mechanical property of low-Ag Sn1. 0Ag0. 5Cu (nano-Al)/Cu solder joints
Jiang et al. Recent advances of nanolead-free solder material for low processing temperature interconnect applications
Yao et al. Microscopic investigation on sintering mechanism of electronic silver paste and its effect on electrical conductivity of sintered electrodes
CN1442868A (en) Alloy type hot melt fuse and fuse component
Jing et al. Interfacial reaction and shear strength of SnAgCu/Ni/Bi 2 Te 3-based TE materials during aging
JP2009043672A (en) Conductive carbon composite material mixed with carbon nanotube, metal solder material, conductive material, and semiconductive material
Gu et al. Thermomigration and electromigration in Sn8Zn3Bi solder joints
Eom et al. Conductive adhesive with transient liquid‐phase sintering technology for high‐power device applications
JP2009199746A (en) Heat-generating glass, and its manufacturing method of the same
JP6053386B2 (en) Bonding method of electronic parts
CN103247752B (en) Ge-Pb-Te-Se composite thermoelectric material and preparation method thereof
CN1477663A (en) Alloy type temp, fuse and wire for temp, fuse component
JP5292977B2 (en) Bonding material, semiconductor device and manufacturing method thereof
KR20110033336A (en) Electrically conductive carbon composite material containing composite material carbon nanotube
CN1472764A (en) Alloy temperature fuse and wire material therefor
Chen et al. Effect of fullerene-C60&C70 on the microstructure and properties of 96.5 Sn-3Ag-0.5 Cu solder
Ahmad et al. Extrinsic Activation Energy for Enhanced Solid-State Metallic Diffusion for Electrical Conductive Ink