KR20110028017A - Method for measuring the weight and component of coating layer - Google Patents

Method for measuring the weight and component of coating layer Download PDF

Info

Publication number
KR20110028017A
KR20110028017A KR1020090085911A KR20090085911A KR20110028017A KR 20110028017 A KR20110028017 A KR 20110028017A KR 1020090085911 A KR1020090085911 A KR 1020090085911A KR 20090085911 A KR20090085911 A KR 20090085911A KR 20110028017 A KR20110028017 A KR 20110028017A
Authority
KR
South Korea
Prior art keywords
component
plating layer
plating
fluorescence
rays
Prior art date
Application number
KR1020090085911A
Other languages
Korean (ko)
Other versions
KR101657709B1 (en
Inventor
홍재화
정용화
김태엽
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090085911A priority Critical patent/KR101657709B1/en
Publication of KR20110028017A publication Critical patent/KR20110028017A/en
Application granted granted Critical
Publication of KR101657709B1 publication Critical patent/KR101657709B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/208Coatings, e.g. platings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: A method for measuring the plating amount and component content of a plating layer is provided to calculate the plating amount and component content of a plating layer formed on a steel plate using a non-destructive method. CONSTITUTION: A method for measuring the plating amount and component content of a plating layer comprises following steps. One or more relational expressions are prepared between regression analysis relational expression 1 and regression analysis relational expression 2. The regression analysis relational expression 1 relates to fluorescence X-rays intensity emitted from a steel plate, fluorescence X-rays intensity emitted from each component of a planting layer, and the planting amount. The regression analysis relational expression 2 relates to fluorescence X-rays intensity emitted from the steel plate, fluorescence X-rays intensity emitted from each component of the planting layer, and the content of each component. X rays are irradiated on the steel plate formed with the planting layer. The intensity of the fluorescence X-ray emitted from the steel plate and the intensity of the fluorescence X-ray emitted from each component of the plating layer are measured using an X-ray detector(2).

Description

도금층의 도금량 및 성분함량의 측정방법{method for measuring the weight and component of coating layer}Method for measuring plating amount and component content of plating layer

본 발명은 도금량과 성분함량을 측정하는 방법에 관한 것으로서, 보다 상세하게는 X선과 회귀분석법에 의해 도출해 낸 관계식을 이용하여 도금층의 도금량과 성분함량을 신속하고 정확하게 측정할 수 있는 방법에 관한 것이다.The present invention relates to a method for measuring the plating amount and the component content, and more particularly, to a method capable of quickly and accurately measuring the plating amount and the component content of a plated layer by using a relational expression derived by X-ray and regression analysis.

일반적으로 도금 제품은 가전제품 및 자동차와 건자재용 등 넓은 분야에서 사용되고 있다. 상기 도금제품은 도금량 및 성분 함량에 따라 그 용도와 내식연한 등이 좌우된다. 따라서 이들의 도금량 및 성분 함량을 정확히 측정관리하는 것이 제품의 품질 관리에 있어서 중요한 요소가 된다.In general, plating products are used in a wide range of fields such as home appliances, automobiles and building materials. The plated product depends on its use and corrosion resistance depending on the amount of plating and the component content. Therefore, accurate measurement and control of their plating amount and ingredient content is an important factor in the quality control of products.

종래에, 도금층의 도금량을 측정하는 방법으로 습식 방법이 이용되었다. 상기 습식 방법은 도금된 강판의 선택된 위치를 시료로 채취하여 무게를 측정한 후 상기 도금된 강판의 시료에 도금층만을 녹일 수 있는 산 용액을 이용하여 도금층을 녹여내고 다시 무게를 측정하여 상기 도금된 후의 시료 무게로부터 도금층을 녹여 낸 후의 시료 무게를 빼낸 값으로 도금량을 측정하였다. 상기 방법은 비교적 정확한 값을 얻을 수 있으나, 측정에 따른 인력과 시간이 많이 소요되는 단점이 있다. Conventionally, the wet method was used as a method of measuring the plating amount of a plating layer. The wet method is to take the selected position of the plated steel sheet as a sample and measure the weight, and then melt the plated layer using an acid solution that can only dissolve the plated layer in the sample of the plated steel sheet and weighed again to measure the weight The plating amount was measured by the value which the sample weight after melt | dissolving a plating layer from the sample weight was taken out. The method can obtain a relatively accurate value, but it has a disadvantage in that it takes a lot of manpower and time according to the measurement.

그래서, 도금층의 두께 또는 도금량을 측정하는 방법으로는 형광 X선 방법을 많이 사용한다. 형광 X선 방법은 시료를 파괴하지 않고 신속하고 정확하게 도금층의 도금량과 성분의 함량을 측정할 수 있어 산업 현장에서, 오프라인과 온라인 측정에 많이 이용하고 있다.Therefore, the fluorescent X-ray method is used a lot as a method of measuring the thickness or plating amount of a plating layer. Fluorescence X-ray method can be used to measure the amount of plating and the content of the plating layer quickly and accurately without destroying the sample, which is widely used in the industrial field, offline and online measurement.

도금층을 구성하고 있는 물질로부터 방출되는 형광 X선의 강도는 도금층의 도금량이 증가함에 따라 증가한다. 이를 이용하여 도금층의 도금량을 측정할 수 있다. 또한 도금층이 2개 이상의 합금으로 구성된 경우에도 도금층을 구성하고 있는 성분의 형광 X선을 측정할 수 있으면 각 성분의 함량(성분비)를 알 수 있다.The intensity of the fluorescent X-rays emitted from the material constituting the plating layer increases as the plating amount of the plating layer increases. The plating amount of the plating layer can be measured using this. Also, even when the plating layer is composed of two or more alloys, the content (component ratio) of each component can be known as long as the fluorescent X-rays of the components constituting the plating layer can be measured.

그러나 원자번호가 낮은 성분이 합금성분 중 포함되어 있는 경우, 상기 성분으로부터 방출되는 형광 X선은 공기 중에 흡수되어 X선 검출기까지 도달하지 못한다. 따라서, 종래의 방법으로는 도금층의 도금량이나 성분 함량을 측정하기 어려웠다. However, when a component having a low atomic number is included in the alloy component, the fluorescent X-rays emitted from the component are absorbed in the air and do not reach the X-ray detector. Therefore, it is difficult to measure the plating amount and component content of a plating layer by the conventional method.

또한, 도금층으로부터 방출되는 형광 X선이 X선 검출기까지 용이하게 도달시키기 위하여 그 경로를 진공상태로 만들거나 He 등 가벼운 기체로 채우는 방법이 있으나, 이를 위하여서는 진공 장치와 헬륨 공급 장치 등 부가적인 장치가 필요하고, 온라인으로는 적용할 수 없었다. In addition, in order to easily reach the X-ray detector by the fluorescent X-ray emitted from the plating layer, there is a method of making the path into a vacuum state or filling with a light gas such as He, but for this purpose, additional devices such as a vacuum device and a helium supply device Was required and could not be applied online.

본 발명은 X선을 이용함으로써, 미리 회귀분석법에 의하여 도출해낸 관계식에 상기 X선에 의하여 방출된 형광 X선의 강도값을 대입하여 도금층의 도금량과 성분함량을 신속하고 정확하게 측정할 수 있는 방법을 제공하고자 한다.The present invention provides a method capable of quickly and accurately measuring the plating amount and the component content of a plating layer by substituting the intensity value of the fluorescent X-rays emitted by the X-rays into the relational expression derived by regression analysis in advance by using X-rays. I would like to.

본 발명은 일구현례로서, 도금층의 도금량 및 성분 함량을 측정하는 방법에 있어서, 도금층을 갖는 표준시료강판에 X선을 조사하여 상기 표준시료의 강판에서 방출된 형광 X선 강도, 도금층의 각 성분에서 방출된 형광 X선 강도와 도금량과의 회귀분석 관계식1과 상기 강판에서 방출된 형광 X선 강도, 도금층의 각 성분에서 방출된 형광 X선 강도와 각 성분 함량과의 회귀분석 관계식2 중 적어도 하나 이상의 관계식을 준비하는 단계; X선 공급원으로부터 측정하고자 하는 도금층이 형성된 강판에 X선을 조사하는 단계; 상기 강판에서 방출된 형광 X선의 강도와 도금층의 각 성분에서 방출된 형광 X선의 강도를 X선 검출기를 이용하여 측정하는 단계 및 상기 측정된 형광 X선의 강도를 상기 관계식1 및 관계식2 중 적어도 하나 이상의 관계식에 대입하여 도금층의 도금량과 성분함량 중 적어도 1종 이상을 산출하는 단계를 포함하는 측정방법을 제공한다.In one embodiment, the present invention relates to a method for measuring the plating amount and the component content of a plating layer, wherein X-rays are irradiated onto a standard sample steel sheet having a plating layer, and each component of the fluorescent X-ray intensity and the plating layer emitted from the steel sheet of the standard sample. At least one of a regression relation 1 between the fluorescence X-ray intensity emitted from and the amount of plating and a regression relation 2 between the fluorescence X-ray intensity emitted from the steel sheet and the fluorescence X-ray intensity emitted from each component of the plating layer and the content of each component Preparing the above relations; Irradiating X-rays on the steel plate on which the plating layer to be measured is formed from the X-ray source; Measuring the intensity of the fluorescent X-rays emitted from the steel sheet and the intensity of the fluorescent X-rays emitted from each component of the plating layer by using an X-ray detector, and measuring the intensity of the measured fluorescent X-rays by at least one of It provides a measuring method comprising the step of calculating at least one or more of the plating amount and the component content of the plating layer by substituting a relational expression.

상기 도금층은 2원 합금으로 이루어지는 것이 바람직하다.It is preferable that the said plating layer consists of a binary alloy.

상기 관계식1은 하기 관계식(1)인 것이 바람직하다.It is preferable that said relationship 1 is the following relationship (1).

관계식(1) : 도금량(g/㎡) = a + b(IFe)+ c(IA)+ d(IFe)2 + e(IA) 2 Relation (1): plating amount (g / m 2) = a + b (I Fe ) + c (I A ) + d (I Fe ) 2 + e (I A ) 2

(단, a, b, c, d, e: 상수, IFe: 강판의 형광 X선 강도(cps) 및 IA: 도금층에 포함된 성분의 형광 X선 강도(cps))(However, a, b, c, d, e: constant, I Fe : fluorescence X-ray intensity (cps) of the steel sheet and I A : fluorescence X-ray intensity (cps) of the components contained in the plating layer)

상기 IA는 도금층에 포함된 성분 중 원자번호가 가장 높은 성분의 형광 X선 강도인 것이 바람직하다.The I A is preferably the fluorescent X-ray intensity of the component having the highest atomic number among the components included in the plating layer.

상기 관계식2는 하기 관계식(2)인 것이 바람직하다.It is preferable that said relationship 2 is the following relationship (2).

관계식(2) : 측정하고자 하는 성분 함량(중량%) = f + g(IFe)+ h(IA)+i(IFe)2 + j(IA) 2 Relation (2): Component content (% by weight) to be measured = f + g (I Fe ) + h (I A ) + i (I Fe ) 2 + j (I A ) 2

(단, f, g, h, i, j: 상수, IFe: 강판의 형광 X선 강도(cps) 및 IA: 도금층에 포함된 성분 중 측정하고자 하는 성분의 형광 X선 강도(cps))(However, f, g, h, i, j: constant, I Fe : fluorescence X-ray intensity (cps) of the steel sheet and I A : fluorescence X-ray intensity (cps) of the component to be measured among the components included in the plating layer)

상기 측정하고자 하는 성분은 원자번호가 가장 높은 성분이며, 상기 IA는 도금층에 포함된 성분 중 원자번호가 가장 높은 성분의 형광 X선 강도인 것이 바람직하다.The component to be measured is a component having the highest atomic number, and I A is preferably the fluorescent X-ray intensity of the component having the highest atomic number among the components included in the plating layer.

본 발명의 측정방법을 사용하면, 비파괴적인 방법으로 신속하고 정밀하게 강판에 도금된 도금층의 도금량과 성분 함량을 산출해낼 수 있다. 또한, 온라인 측정 에 이용하면 제조 공정 중에 실시간으로 도금량과 성분 함량을 확인할 수 있으며, 자동으로 조절할 수도 있어서 합금 도금강판 생산 현장에서 유용하게 이용할 수 있다. Using the measuring method of the present invention, it is possible to calculate the plating amount and the component content of the plating layer plated on the steel sheet quickly and precisely by a non-destructive method. In addition, when used for on-line measurement, it is possible to check the plating amount and the component content in real time during the manufacturing process, it can also be adjusted automatically can be useful in the production site of alloy plated steel sheet.

본 발명은 도금층의 도금량 또는 성분함량을 산출해내기 위하여, 이미 다수의 시료를 제조하여 습식 방법을 이용하여 도금층의 도금량 또는 성분함량을 측정하고, 형광 X선의 강도값을 이용하여 관계식을 도출해 낸 후 상기와 동일한 조건에서 미지의 시료에서 방출되는 형광 X선의 강도값을 관계식에 대입하여 도금층의 도금량 또는 성분함량을 측정할 수 있다.In order to calculate the plating amount or component content of the plating layer, a plurality of samples have already been prepared and the plating amount or component content of the plating layer is measured by a wet method, and the relational expression is derived using the intensity value of the fluorescent X-ray. Under the same conditions as above, the plating amount or component content of the plating layer may be measured by substituting the intensity value of the fluorescent X-rays emitted from the unknown sample into the relational expression.

본 발명의 측정방법에 대하여 설명한다.The measuring method of this invention is demonstrated.

다양한 두께와 성분을 갖는 다수의 표준 시료(도금강판)를 준비한다. 여기서, 표준 시료의 두께와 성분 범위는 측정하고자 하는 두께와 성분 범위를 포함하는 것이 바람직하다. A number of standard samples (plated steel sheets) of various thicknesses and components are prepared. Here, the thickness and the component range of the standard sample preferably include the thickness and the component range to be measured.

준비한 표준 시료는 도금층을 용해할 수 있는 용액에서 도금층을 용해한 후 습식 분석방법을 이용하여 도금층의 도금량과 성분 함량을 먼저 측정한다. 이때, 습식 분석방법으로 주로 이용할 수 있는 방법은 유도결합플라즈마 분광법(ICP: Indutively Coupled Plasma)이다.In the prepared standard sample, the plating layer is dissolved in a solution that can dissolve the plating layer, and then the plating amount and the component content of the plating layer are first measured by using a wet analysis method. In this case, a method that can be mainly used as a wet analysis method is Indutively Coupled Plasma (ICP).

그리고, 도1에 나타낸 바와 같이, X선 공급원(1)을 이용하여 표준시료에 X선을 조사한다. 이때, X선 공급원(1)은 텅스텐 또는 로듐을 대음극으로하는 X선관에서 X선을 발생시킨다.As shown in FIG. 1, X-rays are irradiated onto the standard sample using the X-ray supply source 1. As shown in FIG. At this time, the X-ray source 1 generates X-rays in an X-ray tube having tungsten or rhodium as the cathode.

형광 X선이란 X선을 조사한 시료에서 방출하는 2차 X선이다. 상기와 같이 X선 공급원에서 X선을 조사하면, 강판 및 도금층에서 형광 X선이 방출된다. 방출된 형광 X선의 강도를 X선 검출기(2)를 이용하여 측정한다. 이 때, 강판의 Fe에 의하여 방출되는 형광 X선의 강도와 도금층에 포함된 성분 중 원자번호가 높은, 즉 무거운 성분에 의하여 방출되는 형광 X선의 강도를 측정한다.Fluorescent X-rays are secondary X-rays emitted from a sample irradiated with X-rays. When X-rays are irradiated from the X-ray source as described above, fluorescent X-rays are emitted from the steel sheet and the plating layer. The intensity of the emitted fluorescent X-rays is measured using the X-ray detector 2. At this time, the intensity of the fluorescent X-rays emitted by Fe of the steel sheet and the intensity of the fluorescent X-rays emitted by the heavy component having a high atomic number among the components included in the plating layer are measured.

원자번호가 낮은 성분의 경우, 상기 성분에 의하여 방출된 형광 X선은 공기 중에 흡수되어 검출되지 못하는 경우가 많다. 특히, 원자번호 14이하의 경우, 방출된 형광 X선은 공기 중에 흡수된다. In the case of a component having a low atomic number, the fluorescent X-rays emitted by the component are often absorbed in the air and cannot be detected. In particular, in the case of atomic number 14 or less, the emitted fluorescent X-rays are absorbed in the air.

성분 함량의 측정방법은 도금층이 2원합금(binary alloy system)인 경우에 적용하는 것이 바람직하다. 원자번호가 높은 성분의 함량을 먼저 도출해내고 그 외의 성분은 잔부에 해당한다. The method of measuring the component content is preferably applied when the plating layer is a binary alloy system. The content of the higher atomic number is derived first, and the other components correspond to the balance.

상기에서 측정한 도금량과 형광 X선을 이용하여 회귀분석법을 이용하여 관계식을 도출해 낼 수 있다. 하기 관계식(1)은 상기 회귀분석법에 의하여 도출해낸 관계식이다. 하기 상수 a, b, c, d 및 e 는 상용 프로그램을 이용하면 구할 수 있다.Using the amount of plating and the fluorescent X-rays measured in the above can be derived using a regression analysis method. The following relational expression (1) is a relational expression derived by the said regression analysis method. The following constants a, b, c, d and e can be obtained using commercial programs.

관계식(1) : 도금량(g/㎡) = a + b(IFe)+ c(IA)+ d(IFe)2 + e(IA) 2 Relation (1): plating amount (g / m 2) = a + b (I Fe ) + c (I A ) + d (I Fe ) 2 + e (I A ) 2

(단, a, b, c, d, e : 상수, IFe : 강판의 형광 X 선 강도 및 IA : 도금층에 포함된 성분의 형광 X 선 강도)(However, a, b, c, d, e: constant, I Fe : fluorescence X-ray intensity of steel sheet and I A : fluorescence X-ray intensity of component contained in plating layer)

(각 상수의 단위는 a: g/㎡, b,c: (cps)*g/㎡, d,e: (cps)2* g/㎡ 이다.)(The unit of each constant is a: g / m 2, b, c: (cps) * g / m 2, d, e: (cps) 2 * g / m 2. )

상기에서 측정한 성분 함량과 형광 X선을 이용하여 회귀분석법을 이용하여 관계식을 도출해 낼 수 있다. 하기 관계식(2)는 상기 회귀분석법에 의하여 도출해낸 관계식이다. 하기 상수 f, g, h, i 및 j 는 상용 프로그램을 이용하면 구할 수 있다.Using the component content and the fluorescence X-rays measured in the above can be derived using a regression analysis method. The following relation (2) is a relation derived by the regression analysis. The following constants f, g, h, i and j can be obtained using a commercial program.

관계식(2) : 측정하고자 하는 성분 함량(중량%) = f + g(IFe)+ h(IA)+i(IFe)2 + j(IA) 2 Relation (2): Component content (% by weight) to be measured = f + g (I Fe ) + h (I A ) + i (I Fe ) 2 + j (I A ) 2

(단, f, g, h, i, j : 상수, IFe : 강판의 형광 X 선 강도 및 IA : 도금층에 포함된 성분 중 측정하고자 하는 성분의 형광 X 선 강도)(However, f, g, h, i, j: constant, I Fe : fluorescence X-ray intensity of the steel sheet and I A : fluorescence X-ray intensity of the component to be measured among the components included in the plating layer)

(각 상수의 단위는 f: 중량%, g,h: (cps)*중량%, i,j: (cps)2*중량% 이다.)(The unit of each constant is f: weight%, g, h: (cps) * weight%, i, j: (cps) 2 * weight%.)

측정하고자 하는 미지의 시료에 대하여 표준 시료와 동일한 조건에서 X선을 조사한 후 방출되는 형광 X선의 강도를 측정하여 상기와 같이 구한 관계식(1)에 대입하여 도금량을 산출해낼 수 있다. 또한, 관계식(2)에 대입하여 성분 함량을 산출해낼 수 있다. 여기서 표준 시료와 동일한 조건이라 함은 미지의 시료를 측정할 때, X선의 강도, 검출기의 조건, 측정 시간등이 동일함을 뜻한다. The amount of plating can be calculated by measuring the intensity of fluorescent X-rays emitted after irradiating X-rays under the same conditions as the standard sample with respect to the unknown sample to be measured and substituting it into the above-mentioned equation (1). In addition, the component content can be calculated by substituting the relation (2). Here, the same condition as the standard sample means that the X-ray intensity, the detector condition, and the measurement time are the same when measuring an unknown sample.

이하, 실시예를 통해 본 발명을 설명한다. Hereinafter, the present invention will be described through examples.

(실시예)(Example)

Zn계 도금층을 포함한 시료1 내지 14에 대하여, 유도결합플라즈마 방법(습식)에 의하여 도금량과 Zn의 함량을 측정하여 하기 표1에 기재하였다. 본 발명에 의한 측정방법의 정확성을 판단해 보기 위하여, 상기 시료1 내지 14에 대하여 X선을 조사한 후 Zn과 강판의 Fe에 의하여 방출된 형광 X선의 강도를 측정하여 회귀분석에 의하여 도출한 관계식(1), (2)에 대입하여 도금량과 Zn의 함량을 산출해내어 하기 표2에 더불어 기재하였다. Samples 1 to 14 including the Zn-based plating layer were measured by the inductively coupled plasma method (wet) and the amounts of Zn and the contents of Zn were measured and described in Table 1 below. In order to determine the accuracy of the measuring method according to the present invention, after irradiating X-rays to the samples 1 to 14 and measuring the intensity of the fluorescent X-rays emitted by Zn and Fe of the steel sheet, a relational expression derived by regression analysis ( Substituting in 1) and (2), the plating amount and the content of Zn were calculated and described in addition to Table 2 below.

관계식(1): 도금량(g/㎡) = 72.3165 -0.4939(IFe)+ 0.1168(IA)+ 0.0008(IFe)2 -0.002(IA) 2 Relation (1): Plating amount (g / m 2) = 72.3165 -0.4939 (I Fe ) + 0.1168 (I A ) + 0.0008 (I Fe ) 2 -0.002 (I A ) 2

각 상수의 단위는 a: g/㎡, b,c: (cps)*g/㎡, d,e: (cps)2* g/㎡ 이다.)The unit of each constant is a: g / m 2, b, c: (cps) * g / m 2, d, e: (cps) 2 * g / m 2. )

관계식(2): 측정하고자 하는 성분 함량(중량%) = -187.45 + 1.3555(IFe)+ 0.4272(IA) + 0.0017(IFe)2 + 0.0004(IA) 2 Relation (2): Component content to be measured (% by weight) = -187.45 + 1.3555 (I Fe ) + 0.4272 (I A ) + 0.0017 (I Fe ) 2 + 0.0004 (I A ) 2

또한, 도3에 본 발명에서 산출한 도금량과 유도결합 플라즈마 방법에 의하여 측정한 도금량의 관계를 나타낸 그래프이며, 도4는 본 발명에서 산출한 Zn 함량과 유도결합 플라즈마 방법에 의하여 측정한 Zn 함량의 관계를 나타낸 그래프이다.3 is a graph showing the relationship between the plating amount calculated by the present invention and the plating amount measured by the inductively coupled plasma method, and FIG. 4 shows the Zn content calculated by the present invention and the Zn content measured by the inductively coupled plasma method. A graph showing the relationship.

시료sample Zn XRF
강도(cps)
Zn XRF
Strength (cps)
Fe XRF
강도(cps)
Fe XRF
Strength (cps)
도금량
(습식, g/㎡)
Plating amount
(Wet, g / ㎡)
도금량
(본발명, g/㎡)
Plating amount
(Invention, g / ㎡)
Zn 함량
(습식,중량%)
Zn content
(Wet, Weight%)
Zn 함량
(본발명, 중량%)
Zn content
(Invention, weight%)
1One 112.2112.2 246.0246.0 14.4714.47 15.0715.07 93.7993.79 93.7693.76 22 95.795.7 259.4259.4 12.1812.18 12.2912.29 91.5391.53 90.1490.14 33 84.784.7 267.4267.4 10.8510.85 11.0111.01 89.8989.89 86.1786.17 44 73.973.9 279.1279.1 9.739.73 9.669.66 88.4688.46 83.7283.72 55 77.677.6 273.7273.7 10.1910.19 10.1510.15 87.2887.28 83.4283.42 66 71.471.4 271.6271.6 9.739.73 9.529.52 84.9184.91 81.0581.05 77 65.965.9 273.0273.0 9.229.22 9.029.02 83.4683.46 79.8879.88 88 57.257.2 279.2279.2 8.318.31 8.268.26 80.6780.67 74.1774.17 99 52.252.2 282.6282.6 7.857.85 7.767.76 78.5178.51 69.6969.69 1010 253.9253.9 130.8130.8 38.5338.53 38.2538.25 94.3694.36 94.3194.31 1111 251.6251.6 130.2130.2 38.7838.78 38.5638.56 93.5793.57 93.7193.71 1212 220.2220.2 152.7152.7 32.9232.92 34.0034.00 91.5191.51 89.7289.72 1313 214.2214.2 156.1156.1 31.9531.95 32.4332.43 90.8190.81 90.0790.07 1414 227.2227.2 144.4144.4 35.2135.21 34.9134.91 90.9590.95 91.0391.03

상기 표1, 도3 및 도4에서 알 수 있는 바와 같이, 종래의 유도결합 플라즈마 방법에 의하여 도금량과 Zn의 함량을 측정한 값과 본 발명에 의한 측정방법에 의하여 산출해낸 도금량과 Zn의 함량은 거의 일치함을 확인할 수 있다. 도2에 시료1의 형광 X선 강도를 측정한 그래프를 나타내었다.As can be seen in Table 1, Figure 3 and Figure 4, the value of the plating amount and the content of Zn measured by the conventional inductively coupled plasma method and the amount of plating and Zn calculated by the measuring method according to the present invention is You can see a close match. Figure 2 shows a graph measuring the fluorescence X-ray intensity of Sample 1.

도1은 형광 X선의 발생원리의 개념도이다.1 is a conceptual diagram of a generation principle of fluorescent X-rays.

도2는 시료1의 측정된 형광 X선의 강도를 나타내는 그래프이다.2 is a graph showing the intensity of the measured fluorescent X-rays of Sample 1. FIG.

도3은 시료1 내지 14에 대한, 유도결합플라즈마방법과 본 발명에 의한 측정방법에 의하여 측정한 도금량과의 관계를 나타내는 그래프이다.3 is a graph showing the relationship between the inductively coupled plasma method and the amount of plating measured by the measuring method according to the present invention for Samples 1 to 14;

도4는 시료1 내지 14에 대한, 유도결합플라즈마방법과 본 발명에 의한 측정방법에 의하여 측정한 Zn 함량과의 관계를 나타내는 그래프이다.4 is a graph showing the relationship between the inductively coupled plasma method and the Zn content measured by the measuring method according to the present invention with respect to Samples 1 to 14.

<도면부호에 대한 설명><Description of Drawing>

1: X선 공급원1: X-ray source

2: X선 검출기2: X-ray detector

Claims (6)

도금층의 도금량 및 성분 함량을 측정하는 방법에 있어서, In the method of measuring the plating amount and the component content of the plating layer, 도금층을 갖는 표준시료강판에 X선을 조사하여 상기 표준시료의 강판에서 방출된 형광 X선 강도, 도금층의 각 성분에서 방출된 형광 X선 강도와 도금량과의 회귀분석 관계식1과 상기 강판에서 방출된 형광 X선 강도, 도금층의 각 성분에서 방출된 형광 X선 강도와 각 성분 함량과의 회귀분석 관계식2 중 적어도 하나 이상의 관계식을 준비하는 단계;Irradiating X-rays on the standard sample steel sheet having a plating layer, and the regression relationship between the fluorescent X-ray intensity emitted from the steel sheet of the standard sample, the fluorescence X-ray intensity emitted from each component of the plating layer and the plating amount Preparing at least one relationship of fluorescence X-ray intensity, regression relationship 2 between fluorescence X-ray intensity emitted from each component of the plating layer and content of each component; X선 공급원으로부터 측정하고자 하는 도금층이 형성된 강판에 X선을 조사하는 단계;Irradiating X-rays on the steel plate on which the plating layer to be measured is formed from the X-ray source; 상기 강판에서 방출된 형광 X선의 강도와 도금층의 각 성분에서 방출된 형광 X선의 강도를 X선 검출기를 이용하여 측정하는 단계 및Measuring the intensity of the fluorescent X-rays emitted from the steel sheet and the intensity of the fluorescent X-rays emitted from each component of the plating layer using an X-ray detector; and 상기 측정된 형광 X선의 강도를 상기 관계식1 및 관계식2 중 적어도 하나 이상의 관계식에 대입하여 도금층의 도금량과 성분함량 중 적어도 1종 이상을 산출하는 단계를 포함하는 측정방법.And calculating at least one or more of the plating amount and the component content of the plating layer by substituting the measured intensity of the fluorescent X-rays into at least one relational expression among the relational expressions 1 and 2. 제1항에 있어서, 상기 도금층은 2원 합금으로 이루어지는 것을 특징으로 하는 측정방법.The method of claim 1, wherein the plating layer is made of a binary alloy. 제1항에 있어서, 상기 관계식1은 하기 관계식(1)인 것을 특징으로 하는 측정방법.The method of claim 1, wherein the relational expression 1 is the relational expression (1) below. 관계식(1) : 도금량(g/㎡) = a + b(IFe)+ c(IA)+ d(IFe)2 + e(IA) 2 Relation (1): plating amount (g / m 2) = a + b (I Fe ) + c (I A ) + d (I Fe ) 2 + e (I A ) 2 (단, a, b, c, d, e: 상수, IFe: 강판의 형광 X선 강도(cps) 및 IA: 도금층에 포함된 성분의 형광 X선 강도(cps))(However, a, b, c, d, e: constant, I Fe : fluorescence X-ray intensity (cps) of the steel sheet and I A : fluorescence X-ray intensity (cps) of the components contained in the plating layer) 제3항에 있어서, 상기 IA는 도금층에 포함된 성분 중 원자번호가 가장 높은 성분의 형광 X선 강도인 것을 특징으로 하는 측정방법.The method of claim 3, wherein I A is a fluorescent X-ray intensity of a component having the highest atomic number among the components included in the plating layer. 제1항에 있어서, 상기 관계식2는 하기 관계식(2)인 것을 특징으로 하는 측정방법.The method of claim 1, wherein the relational expression 2 is the relational expression (2) below. 관계식(2) : 측정하고자 하는 성분 함량(중량%) = f + g(IFe) + h(IA) + i(IFe)2 + j(IA) 2 Relation (2): Component content (% by weight) to be measured = f + g (I Fe ) + h (I A ) + i (I Fe ) 2 + j (I A ) 2 (단, f, g, h, i, j: 상수, IFe: 강판의 형광 X선 강도(cps) 및 IA: 도금층 에 포함된 성분 중 측정하고자 하는 성분의 형광 X선 강도(cps))(However, f, g, h, i, j: constant, I Fe : fluorescence X-ray intensity (cps) of the steel sheet and I A : fluorescence X-ray intensity (cps) of the component to be measured among the components included in the plating layer) 제5항에 있어서, 상기 측정하고자 하는 성분은 원자번호가 가장 높은 성분이며, 상기 IA는 도금층에 포함된 성분 중 원자번호가 가장 높은 성분의 형광 X선 강도인 것을 특징으로 하는 측정방법.The method according to claim 5, wherein the component to be measured is a component having the highest atomic number, and the I A is a fluorescent X-ray intensity of the component having the highest atomic number among the components included in the plating layer.
KR1020090085911A 2009-09-11 2009-09-11 method for measuring the weight and component of coating layer KR101657709B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090085911A KR101657709B1 (en) 2009-09-11 2009-09-11 method for measuring the weight and component of coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090085911A KR101657709B1 (en) 2009-09-11 2009-09-11 method for measuring the weight and component of coating layer

Publications (2)

Publication Number Publication Date
KR20110028017A true KR20110028017A (en) 2011-03-17
KR101657709B1 KR101657709B1 (en) 2016-09-20

Family

ID=43934534

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090085911A KR101657709B1 (en) 2009-09-11 2009-09-11 method for measuring the weight and component of coating layer

Country Status (1)

Country Link
KR (1) KR101657709B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411595B1 (en) * 2012-12-26 2014-06-25 주식회사 포스코 Method of measuring coating weight of iridium
KR20160079250A (en) * 2014-12-26 2016-07-06 주식회사 포스코 Apparatus and method for measuring oxide information of electrical steel
KR20190041161A (en) 2017-10-12 2019-04-22 주식회사 포스코 Apparatus for measuring component of coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970048411A (en) * 1995-12-30 1997-07-29 김종진 Iron content analysis method of alloyed hot-dip galvanized steel sheet
JP2819716B2 (en) * 1990-01-10 1998-11-05 株式会社島津製作所 X-ray spectroscopy for thin film determination and film thickness measurement
KR20000025344A (en) * 1998-10-10 2000-05-06 이구택 Method for measuring coating amount and alloy degree using fluorescent x-rays
KR20040056207A (en) * 2002-12-23 2004-06-30 재단법인 포항산업과학연구원 Method of measuring alloying degree for galvannealed steels by XRD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2819716B2 (en) * 1990-01-10 1998-11-05 株式会社島津製作所 X-ray spectroscopy for thin film determination and film thickness measurement
KR970048411A (en) * 1995-12-30 1997-07-29 김종진 Iron content analysis method of alloyed hot-dip galvanized steel sheet
KR20000025344A (en) * 1998-10-10 2000-05-06 이구택 Method for measuring coating amount and alloy degree using fluorescent x-rays
KR20040056207A (en) * 2002-12-23 2004-06-30 재단법인 포항산업과학연구원 Method of measuring alloying degree for galvannealed steels by XRD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411595B1 (en) * 2012-12-26 2014-06-25 주식회사 포스코 Method of measuring coating weight of iridium
KR20160079250A (en) * 2014-12-26 2016-07-06 주식회사 포스코 Apparatus and method for measuring oxide information of electrical steel
KR20190041161A (en) 2017-10-12 2019-04-22 주식회사 포스코 Apparatus for measuring component of coating

Also Published As

Publication number Publication date
KR101657709B1 (en) 2016-09-20

Similar Documents

Publication Publication Date Title
CN108508052B (en) X-ray fluorescence thin layer quality thickness measurement system and method based on reference element
JP6167182B2 (en) Method and apparatus for measuring thickness of thin film layer using X-ray
EP2503282B1 (en) Method for on-line measuring non-chromic coating thickness on steel strip surface
AU2015200925B2 (en) In Situ Indicator Detection and Quantitation to Correlate with an Additive
CN108680127B (en) Method and apparatus for measuring plating
CN105021636B (en) A kind of lossless detection method for identifying composite product internal flaw type
Andrade et al. Proposition of electronic waste as a reference material–part 2: homogeneity, stability, characterization, and uncertainties
KR101657709B1 (en) method for measuring the weight and component of coating layer
CN110132188B (en) Coating permeation layer thickness calculation method based on multi-element X-ray characteristic spectrum comprehensive analysis
KR101411595B1 (en) Method of measuring coating weight of iridium
KR20160078814A (en) Measuring method for thickness of coating layer
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
KR101568489B1 (en) Apparatus for measuring thickness and component content of coating layer
JPH0619268B2 (en) Method for measuring thickness of coating film on metal
KR100348065B1 (en) Method of measuring plating amount and alloying degree using fluorescence X-ray
CN114324432B (en) Method for detecting copper content of transformer bushing wiring terminal with plating layer
KR101510592B1 (en) Method for measuring thickness of coating layer
KR20120074545A (en) Method for measuring spreaded quantity of coating layer
Kataoka et al. XRF analysis of Zn–Fe alloy coatings by using measurements at two take‐off angles
JP2010190584A (en) Method and device for measuring hazardous element concentration
JPH056139B2 (en)
KR102110677B1 (en) Method of estimating iron content of galvannealed steel
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
Virro et al. Estimation of uncertainty in electron probe microanalysis: iron determination in manuscripts, a case study
KR20040056207A (en) Method of measuring alloying degree for galvannealed steels by XRD

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190905

Year of fee payment: 4