KR20110024856A - Method for recovering lithium compounds from active cathode materials of lithium battery waste - Google Patents

Method for recovering lithium compounds from active cathode materials of lithium battery waste Download PDF

Info

Publication number
KR20110024856A
KR20110024856A KR20090083021A KR20090083021A KR20110024856A KR 20110024856 A KR20110024856 A KR 20110024856A KR 20090083021 A KR20090083021 A KR 20090083021A KR 20090083021 A KR20090083021 A KR 20090083021A KR 20110024856 A KR20110024856 A KR 20110024856A
Authority
KR
South Korea
Prior art keywords
lithium
lithium compound
carbon
recovering
positive electrode
Prior art date
Application number
KR20090083021A
Other languages
Korean (ko)
Other versions
KR101049937B1 (en
Inventor
변지영
신경호
배정석
장성태
Original Assignee
타운마이닝캄파니(주)
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타운마이닝캄파니(주), 한국과학기술연구원 filed Critical 타운마이닝캄파니(주)
Priority to KR20090083021A priority Critical patent/KR101049937B1/en
Publication of KR20110024856A publication Critical patent/KR20110024856A/en
Application granted granted Critical
Publication of KR101049937B1 publication Critical patent/KR101049937B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PURPOSE: A method for recovering lithium compounds is provided to obtain lithium compounds in high purity and high yield and to ensure an environment-friendly property since harmful compounds such as acids are not used. CONSTITUTION: A method for recovering lithium compounds comprises the steps of: adding carbon-based additives to a positive electrode active material separated from a wasted lithium secondary battery and thermally decomposing it in an oxidizing atmosphere of a temperature range of 400-800 °C; eluting the decomposed positive electrode active material to obtain a solution in which a lithium compound is included; and concentrating the solution.

Description

폐 리튬 이차전지의 양극물질로부터 리튬 화합물을 회수하는 방법 {Method for Recovering Lithium Compounds from Active Cathode Materials of Lithium Battery Waste}Method for Recovering Lithium Compounds from Active Cathode Materials of Lithium Battery Waste

본 발명은 폐 리튬 이차전지의 양극물질로부터 리튬 화합물을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering a lithium compound from the positive electrode material of the spent lithium secondary battery.

리튬 이차전지는 높은 에너지 밀도와 경량의 특성을 지니고 있기 때문에 소형 휴대장비의 동력원으로 사용되고 있는 등, 최근 들어 리튬 이차전지의 사용량이 급증하고 있다. 특히, 최근에는 소형가전기기, 모바일용 제품뿐만 아니라 하이브리드 전기자동차(HEV/EV) 등의 동력원으로도 널리 이용되고 있다.Since lithium secondary batteries have high energy density and light weight, they are used as a power source for small portable devices. In recent years, the use of lithium secondary batteries has increased rapidly. In particular, recently, it is widely used as a power source for hybrid electric vehicles (HEV / EV) as well as small appliances and mobile products.

이러한 리튬 이차전지는 양극과 음극, 유기전해질(organic electrolyte) 및 유기분리막(organic separator)으로 구성되어 있으며, 구체적으로 플라스틱 케이스(Plastic casing)와 여러 셀 단위(cell unit)안에 포함된 양극, 음극, 유기분리질, 유기전해질, 그리고 니켈-코팅 강철 케이스(Ni-coated steel casing)로 구성된다.The lithium secondary battery is composed of a positive electrode and a negative electrode, an organic electrolyte and an organic separator, and specifically, a positive electrode, a negative electrode, and a battery included in a plastic casing and several cell units. It consists of organic isolates, organic electrolytes, and nickel-coated steel casings.

한편, 양극물질(active cathode materials)로는 가역성(reversibility)이 우 수하고, 낮은 자가방전율, 고용량, 고에너지 밀도를 갖고, 합성이 용이한 리튬코발트산화물(LiCoO2)이 상용화되고 있다. 한편, 최근에는 고가인 코발트(Co)의 사용량을 줄이기 위해 Ni, Mn등이 함께 포함된 LiCoNiMnOx와 같은 리튬 복합금속 산화물 등도 양극물질로 이용되고 있다. 그러나 상기와 같은 양극물질 모두, 적어도 5중량% 이상의 리튬을 함유하고 있어, 폐 리튬 이차전지의 양극물질로부터 고가의 리튬 화합물을 회수하기 위한 방법에 관심이 주목되고 있다.Meanwhile, lithium cobalt oxide (LiCoO 2 ), which has excellent reversibility, low self discharge rate, high capacity, high energy density, and easy synthesis, is commercially available as an active cathode material. Recently, lithium composite metal oxides such as LiCoNiMnOx including Ni, Mn, etc. are also used as cathode materials in order to reduce the amount of expensive cobalt (Co). However, since all of the cathode materials as described above contain at least 5% by weight of lithium, attention has been paid to a method for recovering expensive lithium compounds from the cathode materials of the spent lithium secondary battery.

널리 알려진 리튬 화합물 회수 방법으로는 질산, 황산, 염산 등의 강산을 사용하여 폐 리튬 이차전지의 양극물질을 용해한 뒤 중화반응을 행하여 리튬과 기타 금속화합물을 분리 회수하는 방법이 있다. 하지만, 상기와 같은 회수 방법은 비싼 약품을 사용하여야 하고, 산을 사용함으로써 발생되는 환경적인 문제를 해결하기 위해 추가로 산 처리 공정을 추가해야 하므로, 비경제적이라는 문제점이 지적되고 있다.As a well-known method for recovering lithium compounds, a strong acid such as nitric acid, sulfuric acid, or hydrochloric acid is used to dissolve and recover the lithium and other metal compounds by neutralization after dissolving the positive electrode material of the spent lithium secondary battery. However, it is pointed out that such a recovery method is expensive because it requires the use of expensive chemicals and additional acid treatment process to solve the environmental problems caused by the use of acid.

따라서, 본 발명의 발명자들은 경제적이면서도 환경적으로 유해한 물질을 사용하지 않는 폐 리튬 이차전지의 양극물질로부터 리튬 화합물을 회수하기 위한 방법에 대해 연구를 거듭하던 중 본 발명을 완성하게 되었다.Accordingly, the inventors of the present invention have completed the present invention while studying a method for recovering a lithium compound from the positive electrode material of a waste lithium secondary battery that does not use economical and environmentally harmful substances.

본 발명은 경제적이면서도 환경적으로 유해한 물질을 사용하지 않는, 폐 리튬 이차전지의 양극물질로부터 리튬 화합물을 회수하는 방법을 제공한다.The present invention provides a method for recovering a lithium compound from the positive electrode material of the spent lithium secondary battery, which does not use economical and environmentally harmful substances.

상기와 같은 목적을 달성하기 위하여, 본 발명은 리튬 화합물의 회수 방법을 제공한다.In order to achieve the above object, the present invention provides a method for recovering the lithium compound.

이하, 발명의 구체적인 구현예에 따른 폐 리튬 이차전지의 양극물질로부터 리튬 화합물을 회수하는 방법에 대해 설명하기로 한다.Hereinafter, a method of recovering a lithium compound from a cathode material of a waste lithium secondary battery according to a specific embodiment of the present invention will be described.

본 명세서 전체에서 특별한 언급이 없는 한 '포함' 또는 '함유'라 함은 어떤 구성 요소(또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.Unless specifically stated throughout this specification, the term "comprise" or "contains" means including any component (or component) without particular limitation, and excluding the addition of other components (or components). Cannot be interpreted as.

또한, 본 명세서 전체에서 '탄소계 첨가제'는 탄소를 포함하는 화합물을 통칭하는 것으로서, 탄소를 포함한 유기물질, 탄소를 포함한 무기물질 등 탄소원소를 함유한 화합물이라면 그 구성의 한정이 없이 포함하는 것으로 정의된다.In addition, as used herein, the term 'carbon-based additive' refers to a compound containing carbon, and any compound containing a carbon element such as an organic material including carbon and an inorganic material including carbon is included without limitation in the constitution. Is defined.

본 발명의 일 구현예에 따른 리튬 화합물의 회수 방법은 폐 리튬 이차전지로부터 분리된 양극물질에 탄소계 첨가제를 첨가한 후, 400 내지 800℃의 온도범위의 산화 분위기 하에서 열분해하는 단계; 열분해한 양극물질을 용출하여 리튬화합물이 포함된 수용액을 얻는 단계; 및 상기 수용액을 농축하는 단계를 포함한다.Method of recovering a lithium compound according to an embodiment of the present invention comprises the steps of thermally decomposing under an oxidizing atmosphere in the temperature range of 400 to 800 ℃ after adding a carbon-based additive to the positive electrode material separated from the waste lithium secondary battery; Eluting the pyrolyzed positive electrode material to obtain an aqueous solution containing a lithium compound; And concentrating the aqueous solution.

본 발명자들은 상기와 같은 단계를 거쳐, 폐 리튬 이차전지로부터 분리된 양 극물질로부터 고순도의 리튬 화합물을 높은 수율로 회수할 수 있음을 알아내고 본 발명을 완성하였다. 특히, 폐 리튬 이차전지로부터 분리된 양극물질에 탄소계 첨가제를 첨가한 후 산화 분위기 하에서 열분해 하는 과정에서, 탄소계 첨가제에 포함된 탄소의 연소에 의해 생성된 일산화탄소 및 이산화탄소에 의해 양극물질의 열분해 반응속도가 빨라지며, 특히 열분해 온도 조건도 천도 미만으로 매우 낮아진다는 것을 알아내고 본 발명을 완성하였다.The present inventors have completed the present invention by finding out that the high purity lithium compound can be recovered in a high yield from the cathode material separated from the waste lithium secondary battery through the above steps. In particular, in the process of pyrolysis in an oxidizing atmosphere after adding a carbon-based additive to the cathode material separated from the spent lithium secondary battery, the pyrolysis reaction of the cathode material by carbon monoxide and carbon dioxide produced by the combustion of carbon contained in the carbon-based additive The present invention has been completed by finding that the speed is faster, in particular, that the pyrolysis temperature conditions are also very low, less than 1,000 degrees Celsius.

한편, 양극물질에 첨가되는 탄소계 첨가제는 상기에서 정의된 바와 같이 탄소를 함유한 화합물을 통칭하는 것으로서 산화 분위기하에서 연소에 의해 일산화탄소 및/또는 이산화탄소를 생성할 수 있는 것이면 그 구성의 한정은 없다. 바람직하게 열분해 단계의 효율을 높이기 위해 화합물 내에 탄소의 함량이 높은 탄소계 첨가제를 사용할 수 있다. 구체적으로, 바람직하게는 탄소 분말(carbon powder)을 사용할 수 있다. 탄소 분말은 표면적이 넓어, 탄소의 연소에 따른 일산화탄소 및 이산화탄소의 생성이 더욱 용이하게 일어날 수 있고, 따라서 생성된 일산화탄소 및 이산화탄소에 의한 폐 리튬 이차전지 내의 양극물질의 열분해 반응이 용이하게 일어나, 리튬 회수율이 높게 나타난다.On the other hand, the carbon-based additive to be added to the positive electrode material is a generic term for compounds containing carbon as defined above, as long as it can produce carbon monoxide and / or carbon dioxide by combustion in an oxidizing atmosphere, the configuration thereof is not limited. Preferably, a carbon-based additive having a high content of carbon in the compound may be used to increase the efficiency of the pyrolysis step. Specifically, carbon powder may be preferably used. Since the carbon powder has a large surface area, carbon monoxide and carbon dioxide may be more easily generated due to the combustion of carbon, and thus, the pyrolysis reaction of the cathode material in the waste lithium secondary battery by the generated carbon monoxide and carbon dioxide occurs easily, resulting in a lithium recovery rate. Appears high.

그리고, 상기와 같은 열분해 단계는 첨가되는 탄소계 첨가제의 산화를 위해 산화 분위기 하에서 일어나는데, 이를 위해 산소 또는 공기를 주입하여 열분해 할 수 있다.In addition, the pyrolysis step as described above occurs under an oxidizing atmosphere for oxidation of the carbon-based additive to be added. For this purpose, pyrolysis may be performed by injecting oxygen or air.

한편, 상기 열분해 단계 후, 양극물질에 포함된 리튬 복합금속 산화물의 성분에 따라 여러 가지 화합물들이 얻어지는데, 일반적으로 탄산리튬, 리튬 복합금속 산화물에 포함된 복합금속, 복합금속 산화물 등이 얻어지게 된다. 구체적으로, 양극물질이 리튬코발트 산화물(LiCoO2)로 구성된 경우, 열분해 결과 얻어지는 것은 탄산리튬, 코발트 금속, 산화코발트이다.On the other hand, after the pyrolysis step, various compounds are obtained according to the components of the lithium composite metal oxide included in the positive electrode material. In general, composite metals, composite metal oxides, and the like contained in lithium carbonate and lithium composite metal oxides are obtained. . Specifically, when the cathode material is composed of lithium cobalt oxide (LiCoO 2 ), it is lithium carbonate, cobalt metal, and cobalt oxide that are obtained as a result of thermal decomposition.

이때, 상기 양극물질은 일반적으로 폐 리튬 이차전지의 양극물질로 사용될 수 있는 것이면, 그 구성의 한정은 없다. 구체적으로, 리튬코발트 산화물(LiCoO2), 리튬코발트니켈망간 산화물(LiCoNiMnOx 단, x는2), 리튬코발트니켈 산화물(LiCo1 - yNiyO2, 0<y<1), 리튬망간산화물(LiMnO2) 리튬망간인산화물(LiMnPO4), 리튬철인산화물(LiFePO4) 및 리튬니켈알루미늄 산화물(LiNi1 - zAlzO2, 0.05≤z≤0.5)에서 선택되는 하나 이상의 리튬 복합금속 산화물일 수 있으나, 상술한 예에 한정되지 않는다. At this time, the positive electrode material is generally limited as long as it can be used as the positive electrode material of the waste lithium secondary battery. Specifically, lithium cobalt oxide (LiCoO 2 ), lithium cobalt nickel manganese oxide (LiCoNiMnO x , x is 2), lithium cobalt nickel oxide (LiCo 1 - y Ni y O 2 , 0 <y <1), lithium manganese oxide (LiMnO 2 ) One or more lithium composite metal oxides selected from lithium manganese phosphate (LiMnPO 4 ), lithium iron phosphate (LiFePO 4 ) and lithium nickel aluminum oxide (LiNi 1 - z Al z O 2 , 0.05 ≦ z ≦ 0.5) It may be, but is not limited to the above-described example.

그리고, 탄소계 첨가제의 첨가량은 구성의 한정은 없으나, 바람직하게는 양극물질에 포함된 리튬 복합금속 산화물 1M에 대해 0.5 내지 3.0 M 첨가할 수 있으며, 더욱 바람직하게는 양극물질에 포함된 리튬금속 산화물 1M에 대해 0.5 내지 1.0M 첨가할 수 있다. 탄소계 첨가제의 첨가량이 0.5M 미만이면, 탄소의 연소에 의해 생성된 일산화탄소 및 이산화탄소의 분압이 낮아지게 되어 열분해 반응이 부분적으로만 진행되어 최종 회수되는 리튬 화합물의 전환율이 낮게 나타나며, 또한, 탄소계 첨가제의 함량이 3.0 M을 초과하면, 탄소계 첨가제의 추가에 따른 회수율 증가 효가가 미미하여 비경제적이다. In addition, the addition amount of the carbon-based additive is not limited in configuration, but preferably 0.5 to 3.0 M with respect to the lithium composite metal oxide 1M contained in the positive electrode material, more preferably lithium metal oxide contained in the positive electrode material 0.5 to 1.0 M may be added per 1 M. When the addition amount of the carbon-based additive is less than 0.5M, the partial pressures of carbon monoxide and carbon dioxide produced by the combustion of carbon are lowered, the pyrolysis reaction is only partially performed, and the conversion rate of the finally recovered lithium compound is low, and also carbon-based If the content of the additive exceeds 3.0 M, the effect of increasing the recovery rate due to the addition of the carbon-based additive is insignificant, which is uneconomical.

이때, 열분해 조건은 그 구성의 한정은 없으나, 400 내지 800 ℃의 온도에 서 5분 내지 24시간 행해질 수 있다. 특히, 상기 열분해 온도 범위 내에서 열분해 온도가 높아질수록 열분해 시간이 줄어든다. At this time, the pyrolysis condition is not limited in its configuration, but may be performed for 5 minutes to 24 hours at a temperature of 400 to 800 ℃. In particular, as the pyrolysis temperature increases within the pyrolysis temperature range, the pyrolysis time decreases.

한편, 열분해 온도는 400 내지 800 ℃의 범위 내에서 조절 가능하지만, 바람직하게는 500 내지 700℃의 온도에서, 더욱 바람직하게는 600 내지 700℃의 온도에서 행해질 수 있다. 상기와 같은 바람직한 온도 범위 온도 범위에서 열분해하는 경우, 리튬 회수율이 높게 나타나는 것을 관찰할 수 있었다.On the other hand, the pyrolysis temperature is adjustable within the range of 400 to 800 ° C, but may be preferably performed at a temperature of 500 to 700 ° C, more preferably at a temperature of 600 to 700 ° C. When pyrolyzing in the preferred temperature range temperature range as described above, it was observed that the lithium recovery is high.

이때, 열분해 시간은 상술한 바와 같이 열분해 온도가 높아질수록 열분해 시간을 단축할 수 있는데, 600 내지 700 ℃의 온도에서 열분해하는 경우, 15분 내지 3시간 열분해 할 수 있다. At this time, the pyrolysis time can be shortened as the pyrolysis temperature increases as described above, but when pyrolyzing at a temperature of 600 to 700 ℃, it can be pyrolyzed for 15 minutes to 3 hours.

한편, 열분해 온도가 400℃ 미만인 경우, 탄소의 연소가 충분하게 일어나지 않아, 열분해 효율이 낮아져 리튬 화합물의 회수율이 낮게 나타나며, 800 ℃ 를 초과하는 온도에서 열분해하면 열분해된 탄산리튬과 복합금속 산화물의 재결합으로 최종 처리 후, 탄산리튬을 포함한 리튬 화합물의 회수율이 낮아지게 된다. On the other hand, when the pyrolysis temperature is less than 400 ℃, the combustion of carbon does not occur sufficiently, the pyrolysis efficiency is low, the recovery rate of the lithium compound is low, and when pyrolysis at a temperature above 800 ℃ recombination of pyrolyzed lithium carbonate and composite metal oxide After the final treatment, the recovery rate of the lithium compound containing lithium carbonate is lowered.

한편, 열분해 시간은 첨가된 탄소의 함량 및 열분해 온도 등의 조건을 고려하여 5분 내지 24시간의 범위에서 조절할 수 있다. 일반적으로 탄소계 첨가제의 첨가량은 양극물질에 포함된 리튬 복합금속 산화물 1M 당 0.5 내지 3.0M의 범위에서, 탄소의 함량이 높을수록 리튬 화합물의 회수율이 높게 나타났다. On the other hand, the pyrolysis time can be adjusted in the range of 5 minutes to 24 hours in consideration of conditions such as the content of the added carbon and pyrolysis temperature. In general, the amount of the carbon-based additive is in the range of 0.5 to 3.0 M per 1 M of the lithium composite metal oxide contained in the cathode material, the higher the carbon content, the higher the recovery of the lithium compound.

그리고, 열분해 시간은 5분 내지 24시간의 범위에서, 탄소의 함량 및 열분해 온도 조건을 고려하여 바람직하게 조절될 수 있다. 열분해 시간이 5분 미만인 경우, 탄소의 산화 반응이 불충분하게 일어나고, 24시간을 초과하면, 열분해 시간 증 가에 따른 리튬 화합물 회수율 상승효과가 미미하고, 지나치게 긴 열분해 시간으로 인해 비경제적이다. And, the pyrolysis time can be preferably adjusted in consideration of the carbon content and the pyrolysis temperature conditions in the range of 5 minutes to 24 hours. When the pyrolysis time is less than 5 minutes, the oxidation reaction of carbon occurs inadequately, and when it exceeds 24 hours, the effect of increasing the lithium compound recovery rate due to the increase of the pyrolysis time is insignificant, and it is uneconomical due to the excessively long pyrolysis time.

한편, 상기와 같은 열분해 단계 후, 열분해한 양극물질을 용출하여 리튬화합물이 포함된 수용액을 얻는 단계를 진행한다. 이때, 열분해한 양극물질을 용출하여 리튬화합물이 포함된 수용액을 얻는 단계는 열분해한 양극물질을 수세하는 방법으로 행해질 수 있다. 또한, 본 발명의 다른 구현예에 따라, 상기와 같은 열분해한 양극물질의 용출 공정의 효율을 높이기 위해, 용출 공정 이전에 상기 열분해된 양극물질을 분쇄하는 단계를 추가로 진행할 수 있다.On the other hand, after the thermal decomposition step as described above, the step of obtaining an aqueous solution containing a lithium compound by eluting the pyrolyzed cathode material. At this time, the step of eluting the pyrolyzed positive electrode material to obtain an aqueous solution containing a lithium compound may be performed by a method of washing the pyrolyzed positive electrode material. In addition, according to another embodiment of the present invention, in order to increase the efficiency of the elution process of the thermally decomposed anode material, the step of pulverizing the pyrolyzed cathode material before the elution process may be further proceeded.

한편, 양극물질에 탄소계 첨가제를 첨가한 후, 산화 분위기 하에서 열분해하는 단계 후에는 탄산리튬, 리튬 복합금속 산화물에 포함된 복합금속, 복합금속 산화물 등을 포함한 덩어리 형태의 입자가 얻어진다. 따라서, 열분해를 거진 후의 양극물질을 용출하여 보다 효율적으로 리튬 화합물이 포함된 수용액을 얻기 위해서는 될 수 있는 한 열분해를 거친 후의 덩어리 형태의 입자를 분쇄하여 표면적을 높이는 공정을 진행할 수 있다. 이때, 분쇄를 위해서는 일반적으로 사용되는 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등의 장치를 사용할 수 있으나, 상술한 예에 한정되지 않는다. 상기와 같은 분쇄 장치를 이용하여, 추후 행해지는 리튬화합물이 포함된 수용액을 얻기 위한 용출 공정의 효율을 높일 수 있으며, 바람직하게 중량평균입경이 30내지 500 ㎛가 되도록 분쇄할 수 있다. 분쇄 후 중량평균입경이 30 ㎛미만인 경우에는 분쇄 된 입자의 취급이 용이하지 않고, 지나친 분쇄로 인한 공정효율이 떨어지며, 분쇄 후 중량평균입경이 500 ㎛를 초과하는 경우에는 입자의 표면적 증가 효과가 미미하여 분쇄에 따른 용출 공정의 효율 증가가 미미하다.On the other hand, after adding the carbon-based additive to the positive electrode material, after the thermal decomposition step in an oxidizing atmosphere, agglomerate particles including lithium carbonate, a composite metal contained in a lithium composite metal oxide, a composite metal oxide, and the like are obtained. Therefore, in order to more efficiently obtain an aqueous solution containing a lithium compound by eluting the positive electrode material after the thermal decomposition, a process of increasing the surface area may be performed by pulverizing the particles in the form of the mass after thermal decomposition as much as possible. In this case, for grinding, pin mills, hammer mills, screw mills, roll mills, disc mills or jog mills are generally used. Although apparatuses, such as these, can be used, it is not limited to the above-mentioned example. By using the pulverizing apparatus as described above, the efficiency of the elution process for obtaining an aqueous solution containing a lithium compound to be carried out later can be improved, and preferably, the weight average particle diameter can be pulverized so as to be 30 to 500 µm. If the weight average particle size after grinding is less than 30 ㎛, handling of the crushed particles is not easy, and the process efficiency due to excessive grinding decreases. If the weight average particle size after grinding exceeds 500 ㎛, the effect of increasing the surface area of the particles is insignificant. The increase in efficiency of the elution process due to grinding is minimal.

한편, 상술한 구현예에 따라 열분해 단계를 거친 후, 또는 추가로 열분해 단계 후에 분쇄 과정을 거친 후, 열분해한 양극물질을 용출하여 리튬화합물이 포함된 수용액을 얻는 단계를 진행한다. 이는 열분해 후에 생성된 탄산리튬, 리튬 복합금속 산화물에 포함된 복합금속, 복합금속 산화물들 중에서 선택적으로 탄산리튬을 분리해 내기 위한 공정이다. 상기 용출을 위해 열분해한 양극물질 덩어리 및/또는 열분해 후의 덩어리를 분쇄한 덩어리들을 리튬화합물을 포함한 화합물 등의 용출을 위해 수세할 수 있다.On the other hand, after the pyrolysis step or after the pyrolysis step in accordance with the above-described embodiment further proceeds to the grinding step, the step of eluting the pyrolyzed anode material to obtain an aqueous solution containing a lithium compound. This is a process for selectively separating lithium carbonate from lithium carbonate produced after pyrolysis, a composite metal contained in a lithium composite metal oxide, and a composite metal oxide. The mass of the positive electrode material pyrolyzed and / or the mass of the pyrolyzed mass for the elution may be washed for elution of a compound including a lithium compound.

이때, 수세 시간은 구성의 한정은 없으나, 탄산리튬의 용해도 등을 고려하여 1 시간 이상 진행할 수 있다. 구체적으로 1 시간 내지 24시간 진행할 수 있는데, 1시간 미만으로 수세하는 경우, 용출되는 리튬 화합물의 양이 적으며, 24시간 초과로 수세하는 경우, 수세 시간 증가에 따른 리튬 화합물의 용출량 증가가 미미하며, 지나친 수세로 인해 추후 진행될 수용액 농축 단계에서 농축에 소요되는 시간 및 에너지가 과다해진다.At this time, the washing time is not limited in configuration, but may proceed for 1 hour or more in consideration of the solubility of lithium carbonate and the like. Specifically, it may proceed from 1 hour to 24 hours, when washing with less than 1 hour, the amount of lithium compound eluted is small, when washing with more than 24 hours, the increase in the amount of leaching of the lithium compound with the increase of washing time is insignificant In addition, excessive washing with water causes excessive time and energy for concentration in the subsequent aqueous solution concentration step.

한편, 수세와 같은 용출 방법을 통해 얻은 리튬 화합물이 포함된 수용액을 농축하는 단계를 거쳐 리튬 화합물을 얻을 수 있다. 이때 상기 리튬화합물은 탄산리튬, 바람직하게는 결정형의 탄산리튬일 수 있다. 한편, 농축의 방법은 감압농축, 동결농축, 증발농축, 가열농축, 침전농축, 역삼투 농축 등 수용액 상에서 결정형을 얻는 농축 방법으로 사용될 수 있는 것이라면, 그 구성의 한정이 없이 선택하여 사 용할 수 있다. Meanwhile, a lithium compound may be obtained by concentrating an aqueous solution containing a lithium compound obtained through an elution method such as washing with water. In this case, the lithium compound may be lithium carbonate, preferably crystalline lithium carbonate. On the other hand, if the concentration method can be used as a concentration method to obtain a crystalline form in an aqueous solution, such as concentrated under reduced pressure, freeze, concentrated, evaporated, heated, precipitate concentrated, reverse osmosis, can be selected and used without limitation. .

바람직하게는 공정의 효율 등을 고려하여, 감압 농축의 방법을 사용할 수 있으며, 이때, 40 내지 100℃ 의 온도에서, 바람직하게는 70 내지 80℃의 온도에서 감압 농축할 수 있다. 감압 농축 시 온도가 40℃ 미만이며, 결정속도가 느려 진공도를 높여야 하며, 100℃를 초과하면 감압 농축이 아닌 가열 농축 방법으로 감압의 의미가 없어진다. Preferably, in consideration of the efficiency of the process, a method of concentration under reduced pressure can be used, and at this time, it can be concentrated under reduced pressure at a temperature of 40 to 100 ℃, preferably at a temperature of 70 to 80 ℃. When the concentration under reduced pressure, the temperature is less than 40 ℃, the crystallization rate is slow to increase the degree of vacuum, and if it exceeds 100 ℃, the meaning of the reduced pressure by heat concentration method other than reduced pressure concentration.

상기와 같은 방법에 따라 감압 농축하여 최종적으로 탄산리튬, 바람직하게는 결정형의 탄산리튬을 포함하는 리튬 화합물을 얻을 수 있다. Concentration under reduced pressure in the same manner as described above can finally obtain a lithium compound containing lithium carbonate, preferably crystalline lithium carbonate.

본 발명의 리튬 화합물 회수 방법은 산과 같은 유해한 화합물을 사용하지 않아 환경 친화적이고, 또한 값 비싼 약품을 사용하지 않아 경제적이면서도, 고수율로 고순도의 리튬 화합물을 얻을 수 있다. 따라서, 본 발명의 리튬 화합물 회수 방법은 폐 리튬 이차전지의 재활용에 관한 산업 분야에 유용하게 응용될 수 있다.The lithium compound recovery method of the present invention does not use harmful compounds such as acids, which are environmentally friendly, and do not use expensive chemicals, thereby making it possible to obtain high purity lithium compounds economically and in high yield. Therefore, the lithium compound recovery method of the present invention can be usefully applied to the industrial field regarding the recycling of waste lithium secondary batteries.

이하, 본 발명의 구체적인 실시예를 통하여 발명의 구성 및 효과를 보다 상세히 설명하기로 한다. 그러나 하기의 실시예는 발명을 보다 명확하게 이해시키기 위한 것일 뿐이며, 발명의 권리범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the configuration and effect of the present invention through the specific embodiments of the present invention will be described in more detail. However, the following examples are only intended to more clearly understand the invention, the scope of the invention is not limited to the following examples.

[[ 실시예Example ] 폐 리튬 2차 전지의 양극물질로부터 리튬 화합물의 회수Recovery of Lithium Compounds from Cathode Materials of Used Lithium Secondary Batteries

폐 리튬 이차전지로부터 분리된 양극물질인 파우더 형태의 LiCoO2 1M와 탄소 분말(제조사: Yakuri사)의 몰비를1M: 0.5M, 1M: 1.0M, 1M: 1.5M로 변화시키며 첨가한 후, Air분위기에서 열처리를 통해 분해과정을 행하였다. 열처리 온도도 각각의 시료들에 대해 500℃, 600℃, 700℃, 800℃로 하여 각각 별도로 실험을 진행하였다. 모두 열처리 시간은 1시간으로 하였다.After changing the molar ratio of powder type LiCoO 2 1M and carbon powder (manufacturer: Yakuri), which are separated from the spent lithium secondary battery, to 1M: 0.5M, 1M: 1.0M, and 1M: 1.5M, Decomposition was performed through heat treatment in an atmosphere. The heat treatment temperature was 500 ° C, 600 ° C, 700 ° C, 800 ° C for each of the samples were conducted separately. All heat treatment time was made into 1 hour.

열처리된 시료를 유발에서 파우더로 만든 후 증류수에 1시간 정도 수세시켜 탄산리튬을 용출해 낸 후, 용출된 탄산리튬을 포함한 수용액을 80℃의 온도에서, 감압 농축기(제조사: 티에스엠텍)를 사용하여 농축시켜 고순도의 탄산리튬 결정을 얻을 수 있었다. 각 조건별로 얻어진 리튬 화합물의 회수율을 하기의 표 1에 나타내었다. The heat-treated sample was made into powder in the mortar and then washed with distilled water for about 1 hour to elute lithium carbonate. Then, the aqueous solution containing the eluted lithium carbonate was heated at a temperature of 80 ° C. using a vacuum concentrator (manufactured by TSM Tech). By concentrating, high purity lithium carbonate crystals could be obtained. The recovery rate of the lithium compound obtained for each condition is shown in Table 1 below.

열분해온도와 탄소 첨가량에 따른 리튬 화합물의 회수율 Recovery of Lithium Compounds by Pyrolysis Temperature and Carbon Addition 열분해 온도Pyrolysis temperature 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃
리튬코발트 산화물: 탄소 분말의 몰비

Lithium Cobalt Oxide: Molar Ratio of Carbon Powder
1M:0.5M1M: 0.5M 54%54% 88%88% 99%99% 77%77%
1M:1M1M: 1M 92%92% 97%97% 98%98% 74%74% 1M:1.5M1M: 1.5M 84%84% 82%82% 78%78% 64%64%

또한, 감압 농축하여 얻은 화합물의 결정형을 알아보기 위해, XRD(제조사: Rigaku사)를 이용하여, 결정형을 알아보았다. 도 1은 리튬코발트 산화물: 탄소 분말의 몰비가 LiCoO2 1M:1M인 시료를 600℃ 온도에서 1 시간 열분해 한 시료의 최종 감압 농축 후에 측정한 XRD 실험 데이터를 나타낸 것이다.In addition, in order to find out the crystal form of the compound obtained by concentrating under reduced pressure, the crystal form was investigated using XRD (manufacturer: Rigaku). 1 is a molar ratio of lithium cobalt oxide: carbon powder is LiCoO 2 The XRD experimental data measured after the final depressurization concentration of the sample which pyrolyzed the sample of 1M: 1M at 600 degreeC for 1 hour are shown.

한편, 열분해시간은 1시간 이상으로 행하여도 결과에 큰 변화는 없었으며, 상기 표1에서 확인할 수 있는 바와 같이, 리튬코발트 산화물과 탄소 분말의 몰비가 1M: 1M 이 되게 하고, 600℃의 온도에서 열분해한 경우, 리튬 회수율이 97%로 나타났다. 또한, 리튬코발트 산화물과 탄소 분말의 몰비에 상관없이 800℃의 열분해 조건에서는 700℃의 열분해시보다, 리튬 화합물 회수율이 조금 떨어지는 것을 알 수 있었다.On the other hand, the thermal decomposition time did not change significantly even if the result was more than 1 hour, and as can be seen in Table 1 above, the molar ratio of the lithium cobalt oxide and the carbon powder was 1M: 1M, at a temperature of 600 ° C. When pyrolyzed, the lithium recovery was 97%. In addition, regardless of the molar ratio of the lithium cobalt oxide and the carbon powder, it was found that the recovery rate of the lithium compound was slightly lower than that of the thermal decomposition at 700 ° C under thermal decomposition at 800 ° C.

한편, 상기와 같은 실시예를 통해, 폐 리튬 이차전지로부터 분리된 양극물질에 탄소 분말을 첨가한 후, 산화 분위기 하에서 열분해 하는 단계를 거쳐서, 고수율로 탄산리튬을 포함하는 리튬 화합물을 회수할 수 있었다.On the other hand, through the above embodiment, after adding the carbon powder to the positive electrode material separated from the waste lithium secondary battery, through the step of pyrolysis in an oxidizing atmosphere, it is possible to recover a lithium compound containing lithium carbonate in a high yield. there was.

도 1 은 본 발명의 일 실시예에 따른 회수 방법으로 얻은 결정형의 탄산리튬의 XRD결과를 나타낸 것이다.Figure 1 shows the XRD results of the crystalline lithium carbonate obtained by the recovery method according to an embodiment of the present invention.

Claims (9)

폐 리튬 이차전지로부터 분리된 양극물질에 탄소계 첨가제를 첨가한 후, 400 내지 800℃의 온도범위의 산화 분위기 하에서 열분해하는 단계;Adding a carbon-based additive to the cathode material separated from the spent lithium secondary battery, and then thermally decomposing under an oxidizing atmosphere in a temperature range of 400 to 800 ° C .; 열분해한 양극물질을 용출하여 리튬화합물이 포함된 수용액을 얻는 단계; 및Eluting the pyrolyzed positive electrode material to obtain an aqueous solution containing a lithium compound; And 상기 수용액을 농축하는 단계를 포함하는 리튬 화합물의 회수 방법.A method of recovering a lithium compound comprising the step of concentrating the aqueous solution. 제 1 항에 있어서,The method of claim 1, 상기 탄소계 첨가제는 탄소 분말인 리튬 화합물의 회수 방법.The carbon-based additive is a carbon powder recovery method of the lithium compound. 제 1 항에 있어서,The method of claim 1, 산소 또는 공기를 주입하여 열분해하는 리튬 화합물의 회수 방법.A method of recovering a lithium compound which is pyrolyzed by injecting oxygen or air. 제 1항에 있어서,The method of claim 1, 상기 양극물질은 리튬코발트 산화물(LiCoO2), 리튬코발트니켈망간 산화물(LiCoNiMnOx 단, x는 2), 리튬코발트니켈 산화물(LiCo1 - yNiyO2, 0<y<1), 리튬망간산화물(LiMnO2), 리튬망간인산화물(LiMnPO4), 리튬철인산화물(LiFePO4) 및 리튬니켈알루미늄 산화물(LiNi1 - zAlzO2, 0.05≤z≤0.5)에서 선택되는 하나 이상의 리튬 복합금속 산화물을 포함하는 리튬 화합물의 회수 방법. The positive electrode material is lithium cobalt oxide (LiCoO 2 ), lithium cobalt nickel manganese oxide (LiCoNiMnO x , where x is 2), lithium cobalt nickel oxide (LiCo 1 - y Ni y O 2 , 0 <y <1), lithium manganese One or more lithium composites selected from oxides (LiMnO 2 ), lithium manganese phosphate (LiMnPO 4 ), lithium iron phosphate (LiFePO 4 ) and lithium nickel aluminum oxide (LiNi 1 - z Al z O 2 , 0.05 ≦ z ≦ 0.5) A method for recovering a lithium compound containing a metal oxide. 제 1항에 있어서,The method of claim 1, 상기 양극물질에 포함된 리튬 복합금속 산화물 1 M에 대하여, 0.5 내지 3.0 M의 탄소계 첨가제를 첨가하는 것인 리튬 화합물의 회수 방법.A method for recovering a lithium compound, wherein a carbon-based additive of 0.5 to 3.0 M is added to 1 M of the lithium composite metal oxide contained in the cathode material. 제 1항에 있어서,The method of claim 1, 상기 열분해 단계는 5분 내지 24시간 진행되는 리튬 화합물의 회수 방법.The pyrolysis step is a recovery method of the lithium compound is 5 minutes to 24 hours. 제 1항에 있어서,The method of claim 1, 상기 열분해 단계는 600 내지 700 ℃의 온도에서 15분 내지 3시간 행해지는 리튬 화합물의 회수 방법.The pyrolysis step is a recovery method of the lithium compound is carried out for 15 minutes to 3 hours at a temperature of 600 to 700 ℃. 제 1항에 있어서,The method of claim 1, 상기 리튬화합물을 포함한 수용액을 얻는 단계에서 열분해한 양극물질의 용출은 1 내시 24시간 동안 수세하여 진행되는 리튬 화합물의 회수 방법.Elution of the positive electrode material pyrolyzed in the step of obtaining an aqueous solution containing the lithium compound is washed with water for 1 hour 24 hours 1 hour. 제 1항에 있어서,The method of claim 1, 상기 리튬 화합물은 탄산리튬을 포함하는 리튬 화합물의 회수 방법.The lithium compound is a method of recovering a lithium compound containing lithium carbonate.
KR20090083021A 2009-09-03 2009-09-03 Method of recovering lithium compound from positive electrode material of spent lithium secondary battery KR101049937B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090083021A KR101049937B1 (en) 2009-09-03 2009-09-03 Method of recovering lithium compound from positive electrode material of spent lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090083021A KR101049937B1 (en) 2009-09-03 2009-09-03 Method of recovering lithium compound from positive electrode material of spent lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20110024856A true KR20110024856A (en) 2011-03-09
KR101049937B1 KR101049937B1 (en) 2011-07-15

Family

ID=43932629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090083021A KR101049937B1 (en) 2009-09-03 2009-09-03 Method of recovering lithium compound from positive electrode material of spent lithium secondary battery

Country Status (1)

Country Link
KR (1) KR101049937B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190669A1 (en) * 2015-05-26 2016-12-01 부경대학교 산학협력단 Method for recovering cobalt powder from lithium-cobalt oxide
WO2018164340A1 (en) * 2017-03-10 2018-09-13 문준호 Method for recovering lithium compound from lithium-containing waste
KR20200141653A (en) 2019-06-11 2020-12-21 주식회사 셀젠 Enriching method of lithium using adsorbent
KR102252283B1 (en) 2019-11-28 2021-05-14 주식회사 셀젠 High concentration of lithium using adsorption means
WO2023063677A1 (en) * 2021-10-13 2023-04-20 에스케이이노베이션 주식회사 Method for recovering lithium precursor from lithium secondary battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634752B1 (en) * 2015-10-12 2016-06-29 주식회사 엘지화학 Method for Recovering of Lithium Hydroxide from Spent Liquor from Manufacturing of Lithium Iron Phosphate
KR101708149B1 (en) 2016-05-20 2017-02-20 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
KR102030446B1 (en) * 2019-04-04 2019-10-10 한국지질자원연구원 Method for concentrating and recovering of lithium by addition of aluminum compound and heat treatment from lithium solution and recycling method of aluminum by-product made thereby
KR20210076778A (en) * 2019-12-16 2021-06-24 주식회사 엘지화학 Method for seperating transition metal from waste positive electrode material
KR20220042663A (en) * 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20220050541A (en) * 2020-10-16 2022-04-25 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20230167161A (en) 2022-05-30 2023-12-08 주식회사 셀젠 Method of recovery of valuable metals and complex compounds from waste batteries using organic acids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252315A (en) 1986-04-23 1987-11-04 Nippon Chem Ind Co Ltd:The High-purity lithium carbonate and production thereof
US5284503A (en) * 1992-11-10 1994-02-08 Exide Corporation Process for remediation of lead-contaminated soil and waste battery
KR100473641B1 (en) * 2002-06-03 2005-03-10 한국지질자원연구원 Recovery Device and Method of Lithium Cobalt Oxide from Spent Lithium Battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190669A1 (en) * 2015-05-26 2016-12-01 부경대학교 산학협력단 Method for recovering cobalt powder from lithium-cobalt oxide
WO2018164340A1 (en) * 2017-03-10 2018-09-13 문준호 Method for recovering lithium compound from lithium-containing waste
KR20200141653A (en) 2019-06-11 2020-12-21 주식회사 셀젠 Enriching method of lithium using adsorbent
KR102252283B1 (en) 2019-11-28 2021-05-14 주식회사 셀젠 High concentration of lithium using adsorption means
WO2023063677A1 (en) * 2021-10-13 2023-04-20 에스케이이노베이션 주식회사 Method for recovering lithium precursor from lithium secondary battery

Also Published As

Publication number Publication date
KR101049937B1 (en) 2011-07-15

Similar Documents

Publication Publication Date Title
KR101049937B1 (en) Method of recovering lithium compound from positive electrode material of spent lithium secondary battery
KR101497041B1 (en) Method for recovering valuable metals from cathodic active material of used lithium battery
CN108054366B (en) Lithium ion battery cathode material and preparation method thereof
KR20210059763A (en) Method for recovering cathode material, anode material recovered thereby, and uses thereof
CN101555030A (en) Method for recovering and recycling waste lithium ion battery cathode material
CN101847763A (en) Comprehensive recovering method of waste lithium iron phosphate battery
KR20210075502A (en) Method for recovering valuable metals from cathodic active material of used lithium battery
CN112164834B (en) Regeneration method of waste lithium iron phosphate battery positive electrode material
CN113437378A (en) Method for recycling and reusing anode and cathode of waste battery
CN112047335B (en) Combined treatment method for black powder of waste lithium ion battery
CN114229816B (en) Method for recycling and preparing anode material from waste lithium iron phosphate battery
KR20210009133A (en) A method for recovering lithium or lithium compound and valuable metals from a waste cathode material for a lithium secondary battery
CN115818613B (en) Method for preparing carbon-coated sodium iron fluorophosphate from waste lithium iron phosphate and application of method
CN104577104A (en) Regeneration method of positive material lithium manganate waste of lithium ion battery
CN103474653A (en) Preparation method for lithium iron phosphate
KR100785491B1 (en) Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
US20150267278A1 (en) Method for the hydrometallurgical recovery of lithium from the lithium manganese oxide-containing fraction of used galvanic cells
CN114044503B (en) Method for separating and impurity-removing regeneration of lithium iron phosphate waste pole piece
EP4152476A1 (en) Method for recovering cathode material
KR20220120764A (en) A method for recovering lithium, lithium compound, valuable metals and valuable metal compounds
CN110323509B (en) Process for recovering valuable elements from lithium ion battery anode material
KR102356291B1 (en) A method for recovering lithium or lithium compound from a waste cathode material for a lithium secondary battery using Ar atmosphere heat treatment
CN115744857B (en) Method for preparing lithium iron phosphate positive electrode material by directional circulation of waste lithium iron phosphate battery
KR20200071987A (en) Method for separation and extraction of lithium hydroxide from waste cathode material of lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150703

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160705

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170705

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190709

Year of fee payment: 9