KR20200141653A - Enriching method of lithium using adsorbent - Google Patents

Enriching method of lithium using adsorbent Download PDF

Info

Publication number
KR20200141653A
KR20200141653A KR1020190068444A KR20190068444A KR20200141653A KR 20200141653 A KR20200141653 A KR 20200141653A KR 1020190068444 A KR1020190068444 A KR 1020190068444A KR 20190068444 A KR20190068444 A KR 20190068444A KR 20200141653 A KR20200141653 A KR 20200141653A
Authority
KR
South Korea
Prior art keywords
water
desorption
lithium
adsorbent
tank
Prior art date
Application number
KR1020190068444A
Other languages
Korean (ko)
Other versions
KR102208040B1 (en
Inventor
박준우
이준희
Original Assignee
주식회사 셀젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 셀젠 filed Critical 주식회사 셀젠
Priority to KR1020190068444A priority Critical patent/KR102208040B1/en
Publication of KR20200141653A publication Critical patent/KR20200141653A/en
Application granted granted Critical
Publication of KR102208040B1 publication Critical patent/KR102208040B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • C22B3/0005
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction

Abstract

The present invention relates to a method for increasing lithium concentration using an adsorbent material. According to the present invention, the method for increasing lithium concentration using an adsorbent material comprises: a first step of forming a first mixture; a second step of forming a second mixture; a third step of forming an adsorbent material; a fourth step of inserting the adsorbent material into an adsorbent material accommodation unit; and a fifth step of inserting the adsorbent material accommodation unit into an adsorption/desorption tank. According to the present invention, lithium can be more effectively adsorbed or desorbed.

Description

흡착재를 이용한 리튬의 고농도화 방법{Enriching method of lithium using adsorbent}Enriching method of lithium using adsorbent

본 발명은 흡착재를 이용한 리튬의 고농도화 방법에 관한 것으로, 더욱 상세하게는 해수, 담수, 폐수 등에 포함된 리튬을 선택적으로 흡착하는 다공성의 실 형태를 갖는 흡착재를 이용하여 보다 효과적으로 리튬을 흡착하거나 탈착함과 아울러 흡착재에서 탈착된 리튬을 순환 공급되는 농축수에 용이하게 농축하여 탈착된 리튬을 농축수에 고농도화하는 흡착재를 이용한 리튬의 고농도화 방법에 관한 것이다.The present invention relates to a method for high concentration of lithium using an adsorbent, and more particularly, more effectively adsorbing or desorbing lithium by using an adsorbent having a porous thread form that selectively adsorbs lithium contained in seawater, freshwater, and wastewater. In addition, it relates to a method for high concentration of lithium using an adsorbent in which lithium desorbed from an adsorbent is easily concentrated in concentrated water supplied circulating and the desorbed lithium is highly concentrated in concentrated water.

전기자동차 및 에너지 저장 장치 시장의 확대로, 리튬이온 전지의 수요가 증가하고 있는 상황이다. 리튬이온 전지의 전극 소재를 제조하기 위한 리튬 원료 물질의 수요는 2018년 1만4천 톤에서 2025년 18만 톤 규모로 증가할 것으로 예상된다.With the expansion of the electric vehicle and energy storage device markets, the demand for lithium-ion batteries is increasing. The demand for lithium raw materials for manufacturing electrode materials for lithium-ion batteries is expected to increase from 14,000 tons in 2018 to 180,000 tons in 2025.

다만, 해외 리튬 자원 확보가 어려운 상황이며, 미리 선점한 국가들의 독점적인 생산으로 인해 향후 리튬 자원의 수급에 문제가 될 수 있고, 관련 국내 업체의 경쟁력이 취약해질 수 있다.However, it is difficult to secure overseas lithium resources, and monopolistic production of preoccupied countries may cause problems in the supply and demand of lithium resources in the future, and the competitiveness of related domestic companies may become weak.

최근 리튬이온 전지 제조 분야에서 탄산리튬보다는 반응성이 우수한 수산화리튬의 수요가 급격하게 늘어나고 있는 상황이므로, 리튬 자원 확보 방안 마련 및 고순도 수산화리튬의 제조 기술 개발이 필요하다. 탄산리튬은 다양하게 산업적으로 활용될 수 있고, 우리나라는 2016년 기준 2만 톤 가량이 수입되고 있어, 산업용 탄산리튬을 리튬전지에 적용할 수 있도록 수산화리튬으로 용이하게 전환하는 기술을 확보한다면, 국내 리튬 자원 수급 및 리튬전지 관련 기업의 국제 경쟁력을 강화시킬 수 있다.In recent years, in the field of lithium-ion battery manufacturing, the demand for lithium hydroxide, which is more reactive than lithium carbonate, is rapidly increasing, so it is necessary to prepare a method for securing lithium resources and develop a manufacturing technology for high-purity lithium hydroxide. Lithium carbonate can be used industrially in various ways, and Korea is importing about 20,000 tons as of 2016, so if we secure the technology to easily convert industrial lithium carbonate to lithium hydroxide so that it can be applied to lithium batteries, domestic It can strengthen the international competitiveness of lithium resource supply and demand and lithium battery related companies.

한편, 양극활물질의 경우 리튬 이차전지의 재료 비중의 30 % 이상을 차지하는 핵심소재로, 세계적으로 이차전지 양극재의 경우 시장규모는 2014년 31 조에서 2020년 9 조원으로 세배 가까운 높은 성장세를 기록할 전망이다. LMO(LiMn2O4)는 리튬 이차전지의 양극 활물질의 한 종류로 가격 및 안정성 측면에서 개발된 소재인데 전체 양극재 수요의 27 %를 차지하고 있으며, 연간 50 %정도 증가율을 보이고 있다. LMO는 스피넬 구조로써 구조적인 안정성을 지니며 고효율의 충방전에 유리하며, 망간의 가격 경쟁력과 고온에서의 안정성 등의 장점 때문에 사용량이 증가하는 추세이다. Meanwhile, the positive electrode active material is a core material that accounts for more than 30% of the material share of lithium secondary batteries, and the market size of the global secondary battery positive electrode material is expected to record nearly three times higher growth from 31 trillion won in 2014 to 9 trillion won in 2020. to be. LMO (LiMn2O4) is a kind of cathode active material for lithium secondary batteries, developed in terms of price and stability, and accounts for 27% of the total demand for cathode materials, and is showing an annual increase of about 50%. LMO is a spinel structure, has structural stability, is advantageous for high-efficiency charging and discharging, and the usage of manganese is increasing due to advantages such as price competitiveness and stability at high temperatures.

이를 위해, 현재 해수, 간수, 리튬 배터리 폐액 등의 수용액에 미량으로 녹아있는 리튬을 효과적으로 채취하기 위한 연구들이 진행되고 있고, 이러한 연구들의 주된 관건은 리튬 이온에 대한 높은 선택성과 우수한 흡 탈착 성능을 가진 고성능 흡착제를 개발하는 것이었다.To this end, studies are being conducted to effectively collect lithium dissolved in trace amounts in aqueous solutions such as seawater, bittern water, and lithium battery waste. The main key of these studies is high selectivity for lithium ions and excellent adsorption and desorption performance. It was to develop a high-performance adsorbent.

종래, 그러한 연구들의 결실로서 망간 산화물을 재료로 하여 고상 반응법 또는 겔 공법으로 리튬의 흡 탈착이 용이한 분말을 제조하는 방법이 공지되어 있고, 그러한 방법으로 제조한 분말은 리튬 2차 전지용 양극 재료(등록특허공보 제10-0245808호, 등록특허공보 제10-0589031호 등), 리튬 흡착제의 재료 등으로 이용되어 왔다.Conventionally, as a fruit of such studies, a method of preparing a powder with easy adsorption and desorption of lithium using a solid-phase reaction method or a gel method using manganese oxide as a material is known, and the powder prepared by such a method is a cathode material for lithium secondary batteries. (Registered Patent Publication No. 10-0245808, Registered Patent Publication No. 10-0589031, etc.), it has been used as a material for a lithium adsorbent.

그러나, 분말 상태의 리튬 흡착제를 등록특허공보 제10-0895866호에 적용하여 사용하는 것은 취급상 불편이 따르기 때문에 이를 성형하여 이용할 필요성이 꾸준히 재기 되었으며, 성형방법으로서 등록특허공보 제10-0895866호에는 분말을 알루미나 파우더와 혼합한 후, PVC와 같은 공극 형성제를 사용하여 상기 분말 및 알루미나 파우더의 혼합물을 덩어리지게 함으로써 구슬 형태로 흡착제를 제조하는 방법이 개시되어 있다.However, since the use of a powdery lithium adsorbent applied to Registration Patent Publication No. 10-0895866 is inconvenient in handling, the necessity of molding and using it has been steadily revised, and as a molding method, Patent Publication No. 10-0895866 After mixing the powder with the alumina powder, there is disclosed a method of preparing an adsorbent in the form of beads by lumping the mixture of the powder and the alumina powder using a pore-forming agent such as PVC.

일반적으로 리튬 흡착제는 다양한 환경의 수용액 상에서 물리적, 화학적 안정성을 유지해야 하고, 아울러 높은 흡착효율을 보장할 수 있는 흡착 자리를 제공해 줄 수 있어야 한다. 또한, 분말 형태의 흡착제가 갖는 리튬이온에 대한 높은 선택성을 유지하여 리튬 이외의 원소를 흡착하지 않아야 하고, 흡착 후 리튬의 회수를 위한 탈착 과정도 용이해야 하는 등의 필수적인 특성을 갖추어야 한다.In general, lithium adsorbents must maintain physical and chemical stability in aqueous solutions in various environments, and must be able to provide an adsorption site capable of ensuring high adsorption efficiency. In addition, it must have essential characteristics such as not to adsorb elements other than lithium by maintaining high selectivity for lithium ions of the powdered adsorbent, and to facilitate the desorption process for recovering lithium after adsorption.

그러나, 상기와 같은 종래의 PVC 첨가법을 이용하여 구슬 형태로 흡착제를 제조할 경우에는, 취급은 용이하나, 초기 분말 흡착제에 비해 약 30% 이상 흡착 능력이 떨어진다는 문제점과 높은 제조단가와 환경오염 문제 등이 지적됨과 아울러 흡착된 리튬을 탈착하여 포집하는데도 용이하지 않은 문제점이 있는 것이었다.However, in the case of manufacturing the adsorbent in the form of beads using the conventional PVC addition method as described above, it is easy to handle, but the problem that the adsorption capacity is lowered by about 30% or more compared to the initial powder adsorbent, and high manufacturing cost and environmental pollution. In addition to being pointed out, there is a problem that it is not easy to desorb and collect the adsorbed lithium.

따라서, 상기와 같은 종래의 문제점을 해결한 흡착재를 이용한 리튬의 고농도화 방법이 요구되고 있는 실정이다.Accordingly, there is a demand for a method of increasing lithium concentration using an adsorbent that solves the conventional problems as described above.

1. 등록특허공보 제10-0245808호1. Registered Patent Publication No. 10-0245808 2. 등록특허공보 제10-0589031호2. Registered Patent Publication No. 10-0589031 3. 등록특허공보 제10-0895866호3. Registered Patent Publication No. 10-0895866 4. 등록특허공보 제10-0895866호4. Registered Patent Publication No. 10-0895866 5. 공개특허공보 제10-2011-0024856호5. Unexamined Patent Publication No. 10-2011-0024856 6. 등록특허공보 제10-1682217호6. Registered Patent Publication No. 10-1682217

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 발명된 것으로서, 해수, 담수, 폐수 등에 포함된 리튬을 선택적으로 흡착하는 다공성의 실 형태를 갖는 흡착재를 이용하여 보다 효과적으로 리튬을 흡착하거나 탈착함과 아울러 흡착재에서 탈착된 리튬을 순환 공급되는 농축수에 용이하게 농축하여 탈착된 리튬을 농축수에 포집하여 고농도화하는 흡착재를 이용한 리튬의 고농도화 방법을 제공하는데 그 목적이 있다.The present invention is invented to solve the problems of the prior art as described above, and more effectively adsorbs or desorbs lithium by using an adsorbent having a porous thread form that selectively adsorbs lithium contained in seawater, fresh water, and wastewater. In addition, it is an object of the present invention to provide a method for high concentration of lithium using an adsorbent in which lithium desorbed from an adsorbent is easily concentrated in concentrated water supplied circulating and the desorbed lithium is collected in concentrated water to increase concentration.

상기와 같은 목적을 실현하기 위하여, 본 발명은 폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP)을 30~40℃의 온도에서 중탕으로 교반하여 1차혼합물을 형성하는 제1단계와, 상기 1차혼합물에 LMO(Lithium Manganese Oxide) 분말을 투입함과 아울러 교반하여 2차혼합물을 형성하는 제2단계와, 상기 2차혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함으로써 다공성의 실 형태를 갖는 흡착재형성하는 제3단계와, 상기 흡착재를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착재수용부에 내입하는 제4단계와, 상기 흡착재수용부를 내측에 수용 가능한 공간이 형성됨과 아울러 내측 중앙부에 이온막이 구비되며, 이온막에 의해 양측으로 이격되어 흡탈착수조 및 농축수조로 구획되는 수조의 흡탈착수조에 내입하는 제5단계와, 상기 흡탈착수조 및 농축수조에 각각 외부로부터 전류를 공급받는 양극 및 음극을 구비하는 제6단계와, 상기 흡탈착수조 상에 공급수순환파이프로 연결 구비되며, 내측에는 리튬을 포함하는 해수, 간수, 폐수 등의 공급수가 수용되고, 흡탈착수조에 공급수를 순환 공급하는 공급수수용부를 구비하는 제7단계와, 상기 흡탈착수조 상에 탈착수순환파이프로 연결 구비되며, 내측에는 리튬을 흡착제로부터 탈착하기 위한 탈착수가 수용되고, 흡탈착수조에 탈착수를 순환 공급하는 탈착수수용부를 구비하는 제8단계와, 상기 농축수조 상에 농축수순환파이프로 연결 구비되며, 내측에는 이온막을 지나온 리튬을 수용하기 위한 농축수가 수용되고, 농축수조에 농축수를 순환 공급하는 농축수수용부를 구비하는 제9단계와, 상기 흡탈착수조에 공급수를 4~8시간 순환 공급하여 흡착재에 리튬을 흡착시키는 제10단계와, 상기 흡탈착수조에서 공급수를 제거함과 아울러 탈착수 및 농축수를 각각 순환 공급하며, 양극 및 음극에 전류를 공급하여 흡착재에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막을 통과한 리튬을 이동시키는 제11단계를 포함하여 이루어지는 흡착재를 이용한 리튬의 고농도화 방법을 제공한다.In order to achieve the above object, the present invention forms a primary mixture by stirring polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NMP) in a water bath at a temperature of 30 to 40°C. A second step of forming a second mixture by adding and stirring LMO (Lithium Manganese Oxide) powder to the first mixture, and 50 to 70°C of the second mixture through a cylindrical nozzle. A third step of forming an adsorbent having a porous thread form by spinning it into water of the adsorbent; a fourth step of inserting the adsorbent into an adsorbent receiving portion formed in a mesh network form while forming a space capable of accommodating the adsorbent inside, and the adsorbent A fifth step of introducing the receiving part into the adsorption and desorption tank of the water tank divided into the adsorption and desorption tank and the concentration tank separated by the ion membrane and spaced on both sides by the ion membrane in the inner center part, as well as the formation of an acceptable space inside the receiving part, The sixth step of providing a positive electrode and a negative electrode receiving current from the outside, respectively, in the adsorption and desorption tank and the condensation tank, and connected to the adsorption and desorption tank by a supply water circulation pipe, and seawater containing lithium, bittern, The seventh step is provided with a supply water receiving unit for receiving feed water such as wastewater and circulating supply water to the adsorption and desorption tank, and a desorption water circulation pipe connected to the adsorption and desorption tank, and lithium is supplied from the adsorbent inside. The eighth step is provided with a desorption water receiving unit for receiving desorption water for desorption and circulating the desorption water to the adsorption and desorption water tank, and connected to the concentrated water circulating pipe on the condensing water tank, inside of which lithium has passed through the ion membrane. A ninth step including a concentrated water receiving unit for receiving concentrated water to be accommodated and circulating the concentrated water to the concentrated water tank, and for adsorbing lithium to the adsorbent by circulating supply water to the adsorption and desorption tank for 4 to 8 hours. Step 10, while removing the supply water from the adsorption and desorption tank, circulating supply of desorption water and concentrated water, respectively, supplying electric current to the positive electrode and negative electrode to desorb lithium adsorbed on the adsorbent, and passing through the ion membrane with concentrated water. Using an adsorbent comprising the eleventh step of moving one lithium It provides a method of increasing lithium concentration.

이와 같이 이루어지는 본 발명에 의한 흡착재를 이용한 리튬의 고농도화 방법은 해수, 담수, 폐수 등에 포함된 리튬을 선택적으로 흡착하는 다공성의 실 형태를 갖는 흡착재를 사용함으로써 공급수 및 탈착수가 흡착재 사이를 용이하게 순환할 수 있으며, 이로 인해 흡착재에 리튬이 효과적으로 흡착 또는 탈착됨과 아울러 흡착재에서 탈착된 리튬은 이온막을 통과하여 순환 공급되는 농축수에 용이하게 농축되는 이점이 있는 것이다.The method for high concentration of lithium using the adsorbent according to the present invention made as described above uses an adsorbent having a porous thread form that selectively adsorbs lithium contained in seawater, fresh water, wastewater, etc., so that feed water and desorption water can be easily interposed between the adsorbent. It can be circulated, and thus lithium is effectively adsorbed or desorbed to the adsorbent, and lithium desorbed from the adsorbent is easily concentrated in concentrated water circulating through the ion membrane.

도 1은 본 발명의 흡착재를 이용한 리튬의 고농도화 방법을 설명하기 위한 순서도,
도 2는 본 발명의 흡착재를 이용한 리튬의 고농도화 방법에 따른 예시도이다.
1 is a flow chart for explaining a method for high concentration of lithium using the adsorbent of the present invention,
2 is an exemplary diagram according to a method for high concentration of lithium using the adsorbent of the present invention.

이하 본 발명의 실시를 위한 구체적인 내용을 첨부한 도면을 참조하여 더욱 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings, specific details for the implementation of the present invention will be described in more detail.

도 1 내지 도 2를 참조하여 보면 본 발명에 의한 흡착재를 이용한 리튬의 고농도화 방법은 폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP)을 30~40℃의 온도에서 중탕으로 교반하여 1차혼합물을 형성하는 제1단계와, 상기 1차혼합물에 LMO(Lithium Manganese Oxide) 분말을 투입함과 아울러 교반하여 2차혼합물을 형성하는 제2단계와, 상기 2차혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함으로써 다공성의 실 형태를 갖는 흡착재(10)를 형성하는 제3단계와, 상기 흡착재(10)를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착재수용부(12)에 내입하는 제4단계와, 상기 흡착재수용부(12)를 내측에 수용 가능한 공간이 형성됨과 아울러 내측 중앙부에 이온막(14)이 구비되며, 이온막(14)에 의해 양측으로 이격되어 흡탈착수조(16) 및 농축수조(18)로 구획되는 수조(20)의 흡탈착수조(16)에 내입하는 제5단계와, 상기 흡탈착수조(16) 및 농축수조(18)에 각각 외부로부터 전류를 공급받는 양극(22) 및 음극(24)을 구비하는 제6단계와, 상기 흡탈착수조(16) 상에 공급수순환파이프(26)로 연결 구비되며, 내측에는 리튬을 포함하는 해수, 간수, 폐수 등의 공급수가 수용되고, 흡탈착수조(16)에 공급수를 순환 공급하는 공급수수용부(28)를 구비하는 제7단계와, 상기 흡탈착수조(16) 상에 탈착수순환파이프(30)로 연결 구비되며, 내측에는 리튬을 흡착재(10)로부터 탈착하기 위한 탈착수가 수용되고, 흡탈착수조(16)에 탈착수를 순환 공급하는 탈착수수용부(32)를 구비하는 제8단계와, 상기 농축수조(18) 상에 농축수순환파이프(34)로 연결 구비되며, 내측에는 이온막(14)을 지나온 리튬을 수용하기 위한 농축수가 수용되고, 농축수조(18)에 농축수를 순환 공급하는 농축수수용부(36)를 구비하는 제9단계와, 상기 흡탈착수조(16)에 공급수를 4~8시간 순환 공급하여 흡착재(10)에 리튬을 흡착시키는 제10단계와, 상기 흡탈착수조(16)에서 공급수를 제거함과 아울러 탈착수 및 농축수를 각각 순환 공급하며, 양극(22) 및 음극(24)에 전류를 공급하여 흡착재(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(14)을 통과한 리튬을 이동시키는 제11단계로 이루어진다.Referring to Figures 1 to 2, the method for high concentration of lithium using an adsorbent according to the present invention includes polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NMP) at a temperature of 30 to 40°C. A first step of forming a first mixture by stirring in a water bath, a second step of adding and stirring LMO (Lithium Manganese Oxide) powder to the first mixture to form a second mixture, and the second mixture The third step of forming an adsorbent 10 having a porous thread shape by spinning the absorbent material 10 through a cylindrical nozzle into water at 50-70° C., and a space capable of accommodating the adsorbent 10 is formed inside and a mesh network The fourth step of incorporating the absorbent material receiving unit 12 formed into a shape, and a space capable of accommodating the adsorbent receiving unit 12 is formed inside, and an ion membrane 14 is provided in the inner central portion, and the ion membrane ( A fifth step of entering the adsorption and desorption tank 16 of the water tank 20 separated by the adsorption and desorption tank 16 and the concentration tank 18 separated by 14), and the adsorption and desorption tank 16 and The sixth step of providing a positive electrode 22 and a negative electrode 24 each receiving current from the outside in the concentrated water tank 18, and connected to the adsorption and desorption tank 16 by a supply water circulation pipe 26, , A seventh step of having a supply water receiving part 28 for circulating supply water to the absorption and desorption tank 16 and receiving supply water such as seawater, brine water, and wastewater containing lithium, and the absorption and desorption Desorption water is provided connected to the water tank 16 by a desorption water circulation pipe 30, inside which desorption water is accommodated for desorption of lithium from the adsorbent 10, and desorption water circulating and supplying the desorption water to the adsorption and desorption water tank 16 The eighth step of having a receiving part 32, and connected to the concentrated water circulation pipe 34 on the concentrated water tank 18, and receiving concentrated water to accommodate lithium that has passed through the ion membrane 14 The ninth step is provided with a concentrated water receiving unit 36 for circulating and supplying concentrated water to the concentrated water tank 18, and the adsorbent 10 by circulating supply water to the adsorption and desorption tank 16 for 4 to 8 hours. ) To adsorb lithium In step 10, the supply water is removed from the adsorption and desorption tank 16, and desorption water and concentrated water are circulated, respectively, and current is supplied to the anode 22 and the cathode 24 to be adsorbed to the adsorbent 10. It consists of an 11th step of desorption of the formed lithium and moving the lithium passing through the ion membrane 14 with concentrated water.

먼저, 폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP)을 30~40℃의 온도에서 중탕으로 교반하여 1차혼합물을 형성한다.(S10단계)First, polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NMP) are stirred in a water bath at a temperature of 30 to 40° C. to form a primary mixture (step S10).

또한, 상기 1차혼합물에 LMO(Lithium Manganese Oxide) 분말을 투입함과 아울러 교반하여 2차혼합물을 형성한다.(S20단계)In addition, LMO (Lithium Manganese Oxide) powder is added to the first mixture and stirred to form a second mixture (step S20).

이때, 상기 1차혼합물 및 2차혼합물은 중탕으로 각각 30~60분 동안 서서히 교반함이 바람직한 것이다.At this time, the first mixture and the second mixture are preferably stirred slowly for 30 to 60 minutes, respectively, in a water bath.

상기 2차혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함과 동시에 2차혼합물에 혼합된 N-메틸-2-피롤리돈(NMP)이 물에 용출됨으로써 다공성의 실 형태를 갖는 흡착재(10)를 형성한다.(S30단계)The secondary mixture is spun into water at 50 to 70°C through a cylindrical nozzle, and at the same time, N-methyl-2-pyrrolidone (NMP) mixed in the secondary mixture is eluted into water, thus having a porous thread shape. To form the adsorbent 10 (S30 step)

이때, 상기 흡착재(10)는 LMO(Lithium Manganese Oxide) 분말 100 중량부를 기준으로 폴리비닐리덴플루오라이드(PVDF) 60~100 중량부, N-메틸-2-피롤리돈(NMP) 10~30 중량부가 혼합 형성되는 것이다.At this time, the adsorbent 10 is 60 to 100 parts by weight of polyvinylidene fluoride (PVDF), 10 to 30 parts by weight of N-methyl-2-pyrrolidone (NMP) based on 100 parts by weight of LMO (Lithium Manganese Oxide) powder. The addition is mixed and formed.

한편, 상기 N-메틸-2-피롤리돈(NMP)은 디메틸술폭시드(DMSO), N,N'-디메틸포름아미드(DMF), 테트라히드로푸란(THF), 디메틸아세트아미드(DMAc), 2-부탄온, 4-메틸-2-펜탄온, 클로로포름, 디클로로메탄, 자일렌 및 벤젠으로 구성되는 극성 유기용매 및 비극성 유기용매 및 메틸알코올, 에틸알코올, 1-부틸 알코올, 이소프로필 알코올, 이소부틸 알코올, t -부틸알코올, 1-펜틸알콜, 1-헥실알코올, 벤질알코올, 2,2,2-트리플루오로에탄올, 라우릴 알코올, 올레일알코올, 및 에틸렌글리콜 중 선택된 어느 하나 또는 2종 이상으로 대체되어 사용될 수도 있는 것이다.Meanwhile, the N-methyl-2-pyrrolidone (NMP) is dimethyl sulfoxide (DMSO), N,N'-dimethylformamide (DMF), tetrahydrofuran (THF), dimethylacetamide (DMAc), 2 -Polar organic solvent and non-polar organic solvent consisting of butanone, 4-methyl-2-pentanone, chloroform, dichloromethane, xylene and benzene, and methyl alcohol, ethyl alcohol, 1-butyl alcohol, isopropyl alcohol, isobutyl Any one or two or more selected from alcohol, t-butyl alcohol, 1-pentyl alcohol, 1-hexyl alcohol, benzyl alcohol, 2,2,2-trifluoroethanol, lauryl alcohol, oleyl alcohol, and ethylene glycol It can also be used as a replacement.

상기 흡착재(10)를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착재수용부(12)에 내입한다.(S40단계)A space capable of accommodating the adsorbent 10 is formed inside, and the adsorbent is inserted into the adsorbent accommodating part 12 formed in the form of a mesh network (step S40).

이때, 상기 흡착재수용부(12)는 내측에 수용되는 흡착재(10) 상에 후술되는 공급수 및 탈착수가 용이하게 공급될 수 있도록 메쉬망 형태로 형성되는 것이다.At this time, the absorbent material receiving portion 12 is formed in a mesh network shape so that the supply water and desorption water described later can be easily supplied to the absorbent material 10 accommodated therein.

상기 흡착재수용부(12)를 내측에 수용 가능한 공간이 형성됨과 아울러 내측 중앙부에 이온막(14)이 구비되며, 이온막(14)에 의해 양측으로 이격되어 흡탈착수조(16) 및 농축수조(18)로 구획되는 수조(20)의 흡탈착수조(16)에 내입한다.(S50단계)A space capable of accommodating the adsorbent receiving portion 12 is formed inside, and an ion membrane 14 is provided at the inner center thereof, and the adsorption and desorption tank 16 and the concentration tank are spaced apart on both sides by the ion membrane 14 Into the adsorption and desorption water tank 16 of the water tank 20 divided into 18) (S50 step)

이때, 상기 수조(20)는 이온막(14)에 의해 구획이 흡탈착수조(16) 및 농축수조(18)로 나뉘게 되는 것이다.At this time, the water tank 20 is divided into an adsorption and desorption tank 16 and a concentration tank 18 by an ion membrane 14.

또한, 상기 수조(20)의 농축수조(18) 상에는 후술되는 농축수를 교반하는 교반기(38)가 구비됨이 더욱 바람직한 것이며, 교반기(38)는 리튬이 후술되는 음극(24) 또는 농축수조(18)의 하부에 과도하게 붙거나 쌓이는 것을 방지하기 위해 구비되는 것이다.In addition, it is more preferable that a stirrer 38 for stirring the concentrated water to be described later is provided on the concentrated water tank 18 of the water tank 20, and the agitator 38 is a negative electrode 24 or a concentrated water tank ( It is provided to prevent excessive sticking or accumulating on the lower part of 18).

상기 흡탈착수조(16) 및 농축수조(18)에 각각 외부로부터 전류를 공급받는 양극(22) 및 음극(24)을 구비한다.(S60단계)The adsorption and desorption water tank 16 and the concentration water tank 18 are provided with an anode 22 and a cathode 24 respectively receiving current from the outside (step S60).

이때, 상기 양극(22) 및 음극(24)은 외부로부터 전류를 공급받아 리튬이 이온막(14)을 통과하여 농축수조(18)로 이동되도록 구비되는 것이다.At this time, the positive electrode 22 and the negative electrode 24 are provided to receive current from the outside so that lithium passes through the ion film 14 and moves to the concentration water tank 18.

상기 흡탈착수조(16) 상에 공급수순환파이프(26)로 연결 구비되며, 내측에는 리튬을 포함하는 해수, 간수, 폐수 등의 공급수가 수용되고, 흡탈착수조(16)에 공급수를 순환 공급하는 공급수수용부(28)를 구비한다.(S70단계)It is provided connected to the adsorption and desorption tank 16 by a supply water circulation pipe 26, and the supply water such as seawater, bitter water, and wastewater containing lithium is accommodated inside, and the supply water is circulated in the adsorption and desorption tank 16 It includes a supply receiving unit 28 to supply. (S70 step)

상기 흡탈착수조(16) 상에 탈착수순환파이프(30)로 연결 구비되며, 내측에는 리튬을 흡착재(10)로부터 탈착하기 위한 탈착수가 수용되고, 흡탈착수조(16)에 탈착수를 순환 공급하는 탈착수수용부(32)를 구비한다.(S80단계)It is connected to the adsorption and desorption water tank 16 by a desorption water circulation pipe 30, and receives desorption water for desorption of lithium from the adsorption material 10 inside the adsorption and desorption tank 16, and circulates and supplies the desorption water to the adsorption and desorption tank 16 It is provided with a desorption water receiving unit 32. (S80 step)

이때, 상기 탈착수수용부(32)에 수용되는 탈착수는 염산, 황산 및 질산 중 선택된 어느 하나를 사용함이 바람직한 것이다.At this time, it is preferable to use any one selected from hydrochloric acid, sulfuric acid and nitric acid as the desorption water accommodated in the desorption water receiving part 32.

상기 농축수조(18) 상에 농축수순환파이프(34)로 연결 구비되며, 내측에는 이온막(14)을 지나온 리튬을 수용하기 위한 농축수가 수용되고, 농축수조(18)에 농축수를 순환 공급하는 농축수수용부(36)를 구비한다.(S90단계)The concentrated water circulation pipe 34 is connected to the concentrated water tank 18, and the concentrated water for accommodating the lithium passed through the ion membrane 14 is accommodated inside, and the concentrated water is circulated and supplied to the concentrated water tank 18. It is provided with a concentrated water receiving portion 36. (S90 step)

이때, 상기 농축수조(18)에 수용되는 농축수는 증류수를 사용함이 바람직한 것이다.At this time, it is preferable to use distilled water as the concentrated water accommodated in the concentrated water tank 18.

상기 흡탈착수조(16)에 공급수를 4~8시간 순환 공급하여 흡착재(10)에 리튬을 흡착시킨다.(S100단계)Lithium is adsorbed to the adsorption material 10 by circulating supply water to the adsorption and desorption tank 16 for 4 to 8 hours (step S100).

이때, 상기 흡탈착수조(16)에 공급수를 4~8시간 이내로 순환 공급함이 바람직한 것이나 공급수에 포함된 리튬의 양에 따라 공급수가 순환 공급되는 시간은 유기적으로 변동될 수 있는 것이다.At this time, it is preferable to circulate the supply water to the adsorption and desorption tank 16 within 4 to 8 hours, but the time during which the supply water is circulated and supplied may be changed organically depending on the amount of lithium contained in the supplied water.

상기 흡탈착수조(16)에서 공급수를 제거함과 아울러 탈착수 및 농축수를 각각 순환 공급하며, 양극(22) 및 음극(24)에 전류를 공급하여 흡착재(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(14)을 통과한 리튬을 이동시킨다.(S110단계)In addition to removing the supply water from the adsorption and desorption tank 16, desorption water and concentrated water are circulated, respectively, and current is supplied to the anode 22 and the cathode 24 to desorb lithium adsorbed on the adsorbent 10. In addition, the lithium that has passed through the ion membrane 14 is moved with concentrated water (S110 step).

이때, 상기 흡탈착수조(16)의 내측에는 공급수 또는 탈착수가 교차 순환 공급되며, 양극(22) 및 음극(24)에는 흡탈착수조(16)의 내측에 탈착수가 순환 공급될 시에만 전류가 공급되는 것이다.At this time, the supply water or desorption water is cross-circulated and supplied to the inside of the adsorption and desorption tank 16, and current is supplied to the anode 22 and the cathode 24 only when the desorption water is circulated and supplied to the inside of the adsorption and desorption tank 16. It is supplied.

한편, 상기 양극(22) 및 음극(24)에 전류를 공급하여 흡착재(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(14)을 통과한 리튬을 이동 완료시킨 후에는 탈착수를 흡탈착수조(16)에서 제거함과 아울러 공급수를 재차 흡탈착수조(16)로 순환 공급하게 되며, 이로 인해 다시 흡착재(10)에 리튬이 흡착되게 되고, 흡착된 리튬은 전술된 과정을 거치며 다시 농축수에 농축되어 고농도화 되는 것이다.On the other hand, after supplying current to the positive electrode 22 and the negative electrode 24 to desorb lithium adsorbed on the adsorbent 10, and after completing the movement of lithium that has passed through the ion membrane 14 with concentrated water, desorption water Is removed from the adsorption and desorption tank 16 and the supplied water is circulated and supplied to the adsorption and desorption tank 16 again, whereby lithium is again adsorbed to the adsorption material 10, and the adsorbed lithium goes through the above-described process. It is concentrated in concentrated water again to become high concentration.

이와 같이 이루어지는 본 발명에 의한 흡착재를 이용한 리튬의 고농도화 방법은 해수, 담수, 폐수 등에 포함된 리튬을 선택적으로 흡착하는 다공성의 실 형태를 갖는 흡착재(10)를 사용함으로써 공급수 및 탈착수가 흡착재(10) 사이를 용이하게 순환할 수 있으며, 이로 인해 흡착재(10)에 리튬이 효과적으로 흡착 또는 탈착됨과 아울러 흡착재(10)에서 탈착된 리튬은 이온막(14)을 통과하여 순환 공급되는 농축수에 용이하게 농축되어 고농도화 되는 이점이 있는 것이다.In the method for high concentration of lithium using an adsorbent according to the present invention made as described above, feed water and desorption water are adsorbed by using an adsorbent 10 having a porous thread form that selectively adsorbs lithium contained in seawater, fresh water, and wastewater. 10) It is possible to easily circulate between, and thus, lithium is effectively adsorbed or desorbed on the adsorbent 10, and lithium desorbed from the adsorbent 10 passes through the ion membrane 14 to facilitate circulation and supply of concentrated water. It has the advantage of being concentrated and high concentration.

10 : 흡착재 12 : 흡착재수용부
14 : 이온막 16 : 흡탈착수조
18 : 농축수조 20 : 수조
22 : 양측 24 : 음극
26 : 공급수순환파이프 28 : 공급수수용부
30 : 탈착수순환파이프 32 : 탈착수수용부
34 : 농축수순환파이프 36 : 농축수수용부
38 : 교반기
10: absorbent material 12: absorbent material receiving portion
14: ion membrane 16: adsorption and desorption tank
18: concentrated water tank 20: water tank
22: both sides 24: negative electrode
26: supply water circulation pipe 28: supply water receiving part
30: desorption water circulation pipe 32: desorption water receiving part
34: concentrated water circulation pipe 36: concentrated water receiving part
38: stirrer

Claims (5)

폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP)을 30~40℃의 온도에서 중탕으로 교반하여 1차혼합물을 형성하는 제1단계(S10);
상기 1차혼합물에 LMO(Lithium Manganese Oxide) 분말을 투입함과 아울러 교반하여 2차혼합물을 형성하는 제2단계(S20);
상기 2차혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함으로써 다공성의 실 형태를 갖는 흡착재(10)를 형성하는 제3단계(S30);
상기 흡착재(10)를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착재수용부(12)에 내입하는 제4단계(S40);
상기 흡착재수용부(12)를 내측에 수용 가능한 공간이 형성됨과 아울러 내측 중앙부에 이온막(14)이 구비되며, 이온막(14)에 의해 양측으로 이격되어 흡탈착수조(16) 및 농축수조(18)로 구획되는 수조(20)의 흡탈착수조(16)에 내입하는 제5단계(S50);
상기 흡탈착수조(16) 및 농축수조(18)에 각각 외부로부터 전류를 공급받는 양극(22) 및 음극(24)을 구비하는 제6단계(S60);
상기 흡탈착수조(16) 상에 공급수순환파이프(26)로 연결 구비되며, 내측에는 리튬을 포함하는 해수, 간수, 폐수 등의 공급수가 수용되고, 흡탈착수조(16)에 공급수를 순환 공급하는 공급수수용부(28)를 구비하는 제7단계(S70);
상기 흡탈착수조(16) 상에 탈착수순환파이프(30)로 연결 구비되며, 내측에는 리튬을 흡착재(10)로부터 탈착하기 위한 탈착수가 수용되고, 흡탈착수조(16)에 탈착수를 순환 공급하는 탈착수수용부(32)를 구비하는 제8단계(S80);
상기 농축수조(18) 상에 농축수순환파이프(34)로 연결 구비되며, 내측에는 이온막(14)을 지나온 리튬을 수용하기 위한 농축수가 수용되고, 농축수조(18)에 농축수를 순환 공급하는 농축수수용부(36)를 구비하는 제9단계(S90);
상기 흡탈착수조(16)에 공급수를 4~8시간 순환 공급하여 흡착재(10)에 리튬을 흡착시키는 제10단계(S100);
상기 흡탈착수조(16)에서 공급수를 제거함과 아울러 탈착수 및 농축수를 각각 순환 공급하며, 양극(22) 및 음극(24)에 전류를 공급하여 흡착재(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(14)을 통과한 리튬을 이동시키는 제11단계(S110);
를 포함하여 이루어지는 것을 특징으로 하는 흡착재를 이용한 리튬의 고농도화 방법.
A first step (S10) of forming a primary mixture by stirring polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NMP) in a water bath at a temperature of 30 to 40°C;
A second step of forming a secondary mixture by adding and stirring LMO (Lithium Manganese Oxide) powder to the primary mixture (S20);
A third step (S30) of forming the adsorbent 10 having a porous thread by spinning the secondary mixture into water at 50 to 70°C through a cylindrical nozzle;
A fourth step (S40) of incorporating the adsorbent 10 into the adsorbent receiving portion 12 formed in the form of a mesh network while forming a space capable of receiving the adsorbent 10 inside;
A space capable of accommodating the adsorbent receiving portion 12 is formed inside, and an ion membrane 14 is provided at the inner center thereof, and the adsorption and desorption tank 16 and the concentration tank are spaced apart on both sides by the ion membrane 14 A fifth step (S50) of entering the adsorption and desorption tank 16 of the water tank 20 divided into 18);
A sixth step (S60) including an anode 22 and a cathode 24 receiving current from the outside in the adsorption and desorption tank 16 and the concentration tank 18, respectively;
It is provided connected to the adsorption and desorption tank 16 by a supply water circulation pipe 26, and the supply water such as seawater, bitter water, and wastewater containing lithium is accommodated inside, and the supply water is circulated in the adsorption and desorption tank 16 A seventh step (S70) having a supply receiving part 28 to be supplied;
It is connected to the adsorption and desorption water tank 16 by a desorption water circulation pipe 30, and receives desorption water for desorption of lithium from the adsorption material 10 inside the adsorption and desorption tank 16, and circulates and supplies the desorption water to the adsorption and desorption tank 16 An eighth step (S80) having a desorption water receiving unit 32;
The concentrated water circulation pipe 34 is connected to the concentrated water tank 18, and the concentrated water for accommodating the lithium passed through the ion membrane 14 is accommodated inside, and the concentrated water is circulated and supplied to the concentrated water tank 18. The ninth step (S90) having a concentrated water receiving unit 36;
A tenth step (S100) of circulating supply water to the adsorption and desorption tank 16 for 4 to 8 hours to adsorb lithium to the adsorbent 10;
In addition to removing the supply water from the adsorption and desorption tank 16, desorption water and concentrated water are circulated, respectively, and current is supplied to the anode 22 and the cathode 24 to desorb lithium adsorbed on the adsorbent 10. In addition, an eleventh step (S110) of moving lithium that has passed through the ion membrane 14 with concentrated water;
Method for increasing the concentration of lithium using an adsorbent, characterized in that comprising a.
제1항에 있어서,
상기 흡착재(10)는 LMO(Lithium Manganese Oxide) 분말 100 중량부를 기준으로 폴리비닐리덴플루오라이드(PVDF) 60~100 중량부, N-메틸-2-피롤리돈(NMP) 10~30 중량부가 혼합 형성되어 이루어지는 것을 특징으로 하는 흡착재를 이용한 리튬의 고농도화 방법.
The method of claim 1,
The adsorbent 10 is mixed with 60 to 100 parts by weight of polyvinylidene fluoride (PVDF) and 10 to 30 parts by weight of N-methyl-2-pyrrolidone (NMP) based on 100 parts by weight of LMO (Lithium Manganese Oxide) powder. Method for high concentration of lithium using an adsorbent, characterized in that formed by.
제1항에 있어서,
상기 1차혼합물 및 2차혼합물은 각각 30~60분 동안 교반되어 이루어지는 것을 특징으로 하는 흡착재를 이용한 리튬의 고농도화 방법.
The method of claim 1,
The method for high concentration of lithium using an adsorbent, characterized in that the first mixture and the second mixture are stirred for 30 to 60 minutes, respectively.
제1항에 있어서,
상기 수조(20)의 농축수조(18) 상에는 농축수를 교반하는 교반기(38)가 구비되어 이루어지는 것을 특징으로 하는 흡착재를 이용한 리튬의 고농도화 방법.
The method of claim 1,
A method for high concentration of lithium using an adsorbent, characterized in that a stirrer 38 for stirring the concentrated water is provided on the concentrated water tank 18 of the water tank 20.
제1항에 있어서,
상기 흡탈착수조(16)의 내측에는 공급수 또는 탈착수가 교차 순환 공급되며, 양극(22) 및 음극(24)에는 흡탈착수조(16)의 내측에 탈착수가 순환 공급될 시에만 전류가 공급되어 이루어지는 것을 특징으로 하는 흡착재를 이용한 리튬의 고농도화 방법.
The method of claim 1,
The supply water or desorption water is cross-circulated to the inside of the adsorption and desorption water tank 16, and current is supplied to the anode 22 and the cathode 24 only when the desorption water is circulated and supplied to the inside of the adsorption and desorption tank 16. Lithium concentration method using an adsorbent, characterized in that consisting of.
KR1020190068444A 2019-06-11 2019-06-11 Enriching method of lithium using adsorbent KR102208040B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190068444A KR102208040B1 (en) 2019-06-11 2019-06-11 Enriching method of lithium using adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190068444A KR102208040B1 (en) 2019-06-11 2019-06-11 Enriching method of lithium using adsorbent

Publications (2)

Publication Number Publication Date
KR20200141653A true KR20200141653A (en) 2020-12-21
KR102208040B1 KR102208040B1 (en) 2021-01-27

Family

ID=74090698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190068444A KR102208040B1 (en) 2019-06-11 2019-06-11 Enriching method of lithium using adsorbent

Country Status (1)

Country Link
KR (1) KR102208040B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114100562A (en) * 2021-11-09 2022-03-01 中国科学院青海盐湖研究所 Doping modified lithium ion sieve and preparation method thereof
CN115558798A (en) * 2021-07-02 2023-01-03 浙江新化化工股份有限公司 Method for producing lithium compound

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100245808B1 (en) 1997-12-30 2000-03-02 박찬구 Process for manufacturing lithium ion secondary battery electrode compounds
KR100589031B1 (en) 1999-09-29 2006-06-13 트로녹스 엘엘씨 Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same
KR100895866B1 (en) 2001-04-04 2009-05-06 악상스 Method for eliminating oxygenated organic molecules that are present in an organic effluent using alumina agglomerates
KR20110024856A (en) 2009-09-03 2011-03-09 타운마이닝캄파니(주) Method for recovering lithium compounds from active cathode materials of lithium battery waste
KR20140118748A (en) * 2013-03-27 2014-10-08 명지대학교 산학협력단 Fabricating method of polymetric composite nanofiber membrane adsorbent incorporated with manganese oxide particles for lithium recovery and polymetric composite nanofiber membrane fabricated by the method
KR20150106329A (en) * 2014-03-11 2015-09-21 명지대학교 산학협력단 Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
KR101682217B1 (en) 2016-09-02 2016-12-05 주식회사 재영텍 A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery
KR20180098362A (en) * 2016-01-29 2018-09-03 국립연구개발법인 양자과학기술연구개발기구 Lithium selective permeable membrane, lithium recovery apparatus, lithium recovery method, hydrogen production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100245808B1 (en) 1997-12-30 2000-03-02 박찬구 Process for manufacturing lithium ion secondary battery electrode compounds
KR100589031B1 (en) 1999-09-29 2006-06-13 트로녹스 엘엘씨 Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same
KR100895866B1 (en) 2001-04-04 2009-05-06 악상스 Method for eliminating oxygenated organic molecules that are present in an organic effluent using alumina agglomerates
KR20110024856A (en) 2009-09-03 2011-03-09 타운마이닝캄파니(주) Method for recovering lithium compounds from active cathode materials of lithium battery waste
KR20140118748A (en) * 2013-03-27 2014-10-08 명지대학교 산학협력단 Fabricating method of polymetric composite nanofiber membrane adsorbent incorporated with manganese oxide particles for lithium recovery and polymetric composite nanofiber membrane fabricated by the method
KR20150106329A (en) * 2014-03-11 2015-09-21 명지대학교 산학협력단 Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
KR20180098362A (en) * 2016-01-29 2018-09-03 국립연구개발법인 양자과학기술연구개발기구 Lithium selective permeable membrane, lithium recovery apparatus, lithium recovery method, hydrogen production method
KR101682217B1 (en) 2016-09-02 2016-12-05 주식회사 재영텍 A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558798A (en) * 2021-07-02 2023-01-03 浙江新化化工股份有限公司 Method for producing lithium compound
CN115558798B (en) * 2021-07-02 2023-12-01 浙江新化化工股份有限公司 Method for producing lithium compound
CN114100562A (en) * 2021-11-09 2022-03-01 中国科学院青海盐湖研究所 Doping modified lithium ion sieve and preparation method thereof

Also Published As

Publication number Publication date
KR102208040B1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
CN104577086B (en) A kind of mesoporous SiO negative material of prelithiation and graphene coated and preparation method thereof
CN109755545B (en) Porous carbon material and preparation method thereof, porous carbon/sulfur composite material, battery positive electrode material, lithium-sulfur battery and application thereof
KR102208040B1 (en) Enriching method of lithium using adsorbent
CN103956502B (en) A kind of lithium based on metal-organic framework materials-oxygen cell electrode and preparation method thereof
KR101730674B1 (en) Zeolite for treatment of nonaqueous electrolytic solution and treatment method of nonaqueous electrolytic solution
CN106207255B (en) Organic electrolyte system lithium iodine secondary cell and preparation method thereof
US20130244100A1 (en) Iron phosphates: negative electrode materials for aqueous rechargeable sodium ion energy storage devices
CN103022446A (en) Silicon oxide/carbon cathode material of lithium ion battery and preparation method of material
CN104241734B (en) A lithium rechargeable battery
CN102185127A (en) Lithium sulphur battery anode piece added with absorbent and lithium sulphur battery
CN110112512B (en) Totally-enclosed metal-carbon dioxide battery and preparation method thereof
KR102252283B1 (en) High concentration of lithium using adsorption means
CN106129390A (en) A kind of lithium-sulphur cell positive electrode graded porous carbon/sulfur composite and preparation method thereof
CN109560270A (en) A kind of Se@CNT/CP self-supporting flexible electrode material, preparation method and application
CN107946564B (en) Rich in Na4Mn2O5/Na0.7MnO2Composite material and preparation method and application thereof
CN106025216A (en) Positive electrode material for lithium-sulfur battery, preparation method of positive electrode material and lithium-sulfur battery
CN106058193A (en) Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof
KR102208041B1 (en) Adhesion, separation and enriching apparatus of lithium using adsorbent
CN108899532A (en) A kind of mesoporous micro-pipe shape ZnMn2O4Lithium/anode material of lithium-ion battery and preparation method thereof
CN109860571B (en) Lithium-sulfur battery positive electrode material and preparation method and application thereof
CN116314757A (en) Positive electrode material of sodium ion battery, preparation method of positive electrode material, positive electrode plate and sodium ion battery
CN100495776C (en) Secondary battery and capacitor using indole compound
CN109888285A (en) A kind of power battery cathode material and preparation method thereof based on carbon nanotube
US20140087071A1 (en) Ion-exchange manganese oxide lithium adsorbent using porous structure and method for preparing the same
KR101815998B1 (en) Preparation method of functional cathode active material

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant