KR100785491B1 - Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby - Google Patents

Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby Download PDF

Info

Publication number
KR100785491B1
KR100785491B1 KR1020060020984A KR20060020984A KR100785491B1 KR 100785491 B1 KR100785491 B1 KR 100785491B1 KR 1020060020984 A KR1020060020984 A KR 1020060020984A KR 20060020984 A KR20060020984 A KR 20060020984A KR 100785491 B1 KR100785491 B1 KR 100785491B1
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
active material
carbon
lifepo
Prior art date
Application number
KR1020060020984A
Other languages
Korean (ko)
Other versions
KR20070091456A (en
Inventor
권혁상
송민상
이재영
김동영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020060020984A priority Critical patent/KR100785491B1/en
Publication of KR20070091456A publication Critical patent/KR20070091456A/en
Application granted granted Critical
Publication of KR100785491B1 publication Critical patent/KR100785491B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 LiFePO4 전구체와 탄소를 혼합하여 분쇄하는 단계; 및 상기 분쇄물을 마이크로파 가열하여 전극 활물질을 제조하는 단계를 포함하는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.The present invention comprises the steps of mixing and grinding the LiFePO 4 precursor and carbon; And it provides a method for producing an active material for lithium secondary battery cathode material comprising the step of microwave heating the pulverized product to prepare an electrode active material.

본 발명에 의하면, 활물질의 제조공정시간을 획기적으로 단축할 수 있고, 방전용량 및 수명, 고율방전 특성을 가지는 리튬이차전지 양극재료용 활물질 및 리튬이차전지를 제공하는 것이 가능하다.According to the present invention, it is possible to significantly shorten the manufacturing process time of the active material, and to provide an active material for a lithium secondary battery positive electrode material and a lithium secondary battery having a discharge capacity, a lifetime, and a high rate discharge characteristic.

Description

리튬이차전지 양극재료용 활물질의 제조방법 및 리튬이차전지{Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby}Preparation method of active material for lithium secondary battery positive electrode material and lithium secondary battery {Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery

도 1은 본 발명에 따라 제조된 양극재료용 활물질(LiFePO4/C 복합체)의 TEM 사진이다.1 is a TEM photograph of an active material for positive electrode material (LiFePO 4 / C composite) prepared according to the present invention.

도 2는 본 발명에 따라 제조된 양극재료용 활물질(LiFePO4/C 복합체)의 방전 전류밀도에 따른 방전용량을 나타낸 그래프이다.2 is a graph showing the discharge capacity according to the discharge current density of the positive electrode material active material (LiFePO 4 / C composite) prepared according to the present invention.

도 3은 본 발명에 따라 제조된 양극재료용 활물질(LiFePO4/C 복합체)의 전극수명을 나타낸 그래프이다.3 is a graph showing the electrode life of the active material for positive electrode material (LiFePO 4 / C composite) prepared according to the present invention.

본 발명은 리튬이차전지 양극재료용 활물질의 제조방법에 관한 것으로, 보다 상세하게는 제조공정시간을 획기적으로 단축할 수 있고, 방전용량 및 수명, 고율방 전 특성을 가지는 리튬이차전지 양극재료용 활물질의 제조방법 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a method for manufacturing an active material for a lithium secondary battery positive electrode material, and more particularly, to significantly shorten the manufacturing process time, active material for a lithium secondary battery positive electrode material having a discharge capacity and lifespan, high rate discharge characteristics It relates to a manufacturing method and a lithium secondary battery comprising the same.

노트북, 캠코더, 핸드폰, 소형 녹음기와 같은 휴대용 전기기기의 수요가 급격히 증가하고 소형화됨에 따라 이의 에너지원인 리튬이차전지는 에너지 밀도를 높이고 수명을 증가시키는 방향으로 발전하고 있다. 리튬이차전지에서 가장 중요한 부분은 음극 및 양극을 구성하고 있는 물질이며, 특히 리튬이차전지 양극에 사용되는 물질은 (1) 방전용량이 높고, (2) 가격이 저렴하여야 하며, (3) 사이클 특성이 우수하여 전극수명이 길어야 하고, (4) 열 및 구조적 안정성이 우수하여 폭발위험성이 없어야 한다.As the demand for portable electric devices such as laptops, camcorders, mobile phones, and small recorders is rapidly increasing and miniaturizing, lithium secondary batteries, which are energy sources thereof, are developing toward increasing energy density and increasing lifespan. The most important part of the lithium secondary battery is the material constituting the negative electrode and the positive electrode, and in particular, the material used for the positive electrode of the lithium secondary battery has (1) high discharge capacity, (2) low price, and (3) cycle characteristics. It should be excellent and have long electrode life. (4) It should be excellent in thermal and structural stability, so there is no risk of explosion.

LiFePO4는 이론용량이 170mAh/g으로서 현재 리튬이차전지의 양극물질인 LiCoO2(120~150mAh/g)보다 방전용량이 높고, Co를 사용하지 않고 값싼 Fe을 사용하기 때문에 가격이 매우 저렴하며, 중금속을 사용하지 않아 환경 친화적인 장점을 갖고 있다. LiFePO 4 has a theoretical capacity of 170mAh / g, which has a higher discharge capacity than LiCoO 2 (120-150mAh / g), a cathode material of a lithium secondary battery, and is inexpensive because it uses cheap Fe without Co. It does not use heavy metal and has environmentally friendly advantages.

또한 상기 물질은 화학적 및 구조적 안정성이 우수하여 전극수명이 매우 우수하고, 특히 열에 대한 안정성이 매우 뛰어나 자동차용 리튬이차전지의 양극재료로서도 매우 적합한 장점을 갖고 있다. 그러나 LiFePO4는 Fe의 산화수가 Fe2+가 이므로 제조 공정 중에 Fe2+가 Fe3+로 산화하는 것을 방지해야하는 어려움, 그리고 부산물이 없는 단상의 LiFePO4를 제조하여야하는 어려움 등의 단점과 LiFePO4의 Li-확 산계수(10-14㎠/s)와 전기전도도(10-8~10-9S/cm)가 매우 낮아 고율방전특성이 LiCoO2에 비해 현저히 떨어지는 단점을 갖고 있다.In addition, the material has excellent chemical and structural stability, and thus has a very good electrode life. In particular, the material has excellent thermal stability, which is very suitable as a cathode material of an automotive lithium secondary battery. However, since LiFePO 4 has Fe 2+ as the oxidation number of Fe, it is difficult to prevent the oxidation of Fe 2+ to Fe 3+ during the manufacturing process, and the difficulty of preparing single-phase LiFePO 4 without any by-products and LiFePO 4. is a Li- this diffusion coefficient (10 -14 ㎠ / s) and electrical conductivity (10 -8 ~ 10 -9 s / cm) is very low, high-rate discharge characteristic has a considerably less drawbacks compared to LiCoO 2.

현재까지 여러 연구자들이 여러 가지 공정을 이용하여 단상의 LiFePO4를 제조하는데 성공하고 그 고율방전특성을 개선하였으나 성능 면에서 상용화 수준까지 도달한 연구 그룹은 매우 드물고, 특히 고성능을 갖는 LiFePO4를 공정시간을 단축하여 경제적으로 제조한 그룹은 거의 없다. 대부분의 연구그룹 들이 LiFePO4를 제조하는데 혼합단계와 열처리단계를 포함하여 최소 7시간에서 48 시간 걸리는 것으로 보고되었다.Succeeded in producing the single-phase LiFePO 4 and that, but improved high-rate discharge characteristics are very rare and one research group reaching the level of commercialization in terms of performance, especially LiFePO 4 has a high-performance processing time by several processes are many researchers to date There are very few groups that have been economically produced by shortening the time. Most research groups have reported that it takes at least 7 to 48 hours to produce LiFePO 4 , including the mixing and heat treatment steps.

본 발명은 상기한 바와 같은 종래기술이 가지는 문제를 해결하기 위해 제안된 것으로서, 본 발명의 목적은 제조공정시간을 획기적으로 단축할 수 있고, 방전용량 및 수명, 고율방전 특성을 가지는 리튬이차전지 양극재료용 활물질의 제조방법을 제공함에 있다.The present invention has been proposed to solve the problems of the prior art as described above, an object of the present invention is to significantly shorten the manufacturing process time, the lithium secondary battery positive electrode having a discharge capacity and life, high rate discharge characteristics The present invention provides a method for producing an active material for a material.

본 발명의 다른 목적은 기존의 리튬이차전지보다 가격이 저렴하고, 용량도 높으며, 환경친화적이고, 특히 열적 안정성이 매우 우수하여 기존의 리튬이차전지를 대체할 수 있는 차세대 이차전지로서 상용화가 가능한 리튬이차전지를 제공함에 있다.Another object of the present invention is lower cost than the conventional lithium secondary battery, high capacity, environmentally friendly, and particularly excellent thermal stability lithium can be commercialized as a next-generation secondary battery that can replace the conventional lithium secondary battery In providing a secondary battery.

상기한 목적을 달성하기 위하여 본 발명은 LiFePO4 전구체와 탄소를 혼합하여 분쇄하는 단계; 및 상기 분쇄물을 마이크로파 가열하여 전극 활물질을 제조하는 단계를 포함하는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of mixing and grinding the LiFePO 4 precursor and carbon; And it provides a method for producing an active material for lithium secondary battery cathode material comprising the step of microwave heating the pulverized product to prepare an electrode active material.

본 발명은 바람직하게는 상기 분쇄과정이 볼밀링과정을 포함하는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.The present invention preferably provides a method for producing an active material for a lithium secondary battery positive electrode material, wherein the grinding process includes a ball milling process.

본 발명은 바람직하게는 상기 마이크로파 가열이 환원성 분위기하에서 수행되는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.The present invention preferably provides a method for producing an active material for a lithium secondary battery cathode material, wherein the microwave heating is performed in a reducing atmosphere.

본 발명은 바람직하게는 상기 환원성 분위기가 활성탄소로 상기 분쇄물을 덮어 주는 것에 의해 제공되어지는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.The present invention preferably provides a method for producing an active material for a lithium secondary battery cathode material, wherein the reducing atmosphere is provided by covering the pulverized product with activated carbon.

본 발명은 바람직하게는 상기 환원성 분위기가 수소가 아르곤에 혼합된 아르곤-수소 혼합기체를 공급하는 것에 의해 제공되어지는 것을 특징으로 하는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.The present invention preferably provides a method for producing an active material for a lithium secondary battery cathode material, wherein the reducing atmosphere is provided by supplying an argon-hydrogen mixed gas in which hydrogen is mixed with argon.

본 발명은 바람직하게는 상기 마이크로파 가열이 불활성 분위기하에서 수행되는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.The present invention preferably provides a method for producing an active material for a lithium secondary battery positive electrode material, wherein the microwave heating is performed under an inert atmosphere.

본 발명은 바람직하게는 상기 불활성분위기는 아르곤 기체 또는 질소기체를 공급하는 것에 의해 제공되어지는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다.The present invention preferably provides a method for producing an active material for a lithium secondary battery cathode material, wherein the inert atmosphere is provided by supplying argon gas or nitrogen gas.

또한 본 발명은 LiFePO4 전구체와 탄소의 분쇄혼합물을 환원성 분위기 또는 불활성 분위기하에서 마이크로파 가열하여 얻어지는 결과물을 함유하는 리튬이차전지 양극재료용 활물질을 제공한다.The present invention also provides an active material for a lithium secondary battery cathode material containing a result obtained by microwave heating of a pulverized mixture of LiFePO 4 precursor and carbon in a reducing atmosphere or an inert atmosphere.

또한 본 발명은 상기 활물질을 양극재료로 하는 리튬이차전지를 제공한다.The present invention also provides a lithium secondary battery using the active material as a cathode material.

이하 본 발명의 내용을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the content of the present invention will be described in detail.

본 발명은 리튬이차전지를 구성하는 양극에 사용되어지는 활물질의 제조방법, 활물질 및 이들 활물질로 구성되는 양극을 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a method for producing an active material used for a positive electrode constituting a lithium secondary battery, an active material and a lithium secondary battery including a positive electrode composed of these active materials.

본 발명에 따른 양극재료용 활물질은 제조시간이 짧고, 방전용량 및 수명, 고율방전 특성을 제공할 수 있다. 이와 같은 양극재료용 활물질은 다음과 같은 과정에 의해 제조되어진다.The active material for a positive electrode material according to the present invention has a short manufacturing time, can provide a discharge capacity and life, high rate discharge characteristics. Such an active material for a positive electrode material is manufactured by the following process.

양극 활물질의 제조를 위한 원료로는 LiFePO4 전구체와 탄소가 사용된다. LiFePO 4 precursor and carbon are used as raw materials for the preparation of the positive electrode active material.

LiFePO4 전구체는 반응에 의해 LiFePO4 을 생산할 수 있는 것인 한 특별한 한정을 요하지는 아니하며, 예를 들어 리튬인산염(Li3PO4), 철인산염수화물(Fe3(PO4)2ㆍ8H2O)을 들 수 있다. 이들 전구체 물질 상호간의 이론적인 몰비는 1:1이지만, 조건에 따라 어느 하나의 물질을 과량 투여하여도 무방하다.LiFePO 4 precursor does not require special limitation as long as it can produce LiFePO 4 by reaction, for example lithium phosphate (Li 3 PO 4 ), iron phosphate hydrate (Fe 3 (PO 4 ) 2 ㆍ 8H 2 O ). Although the theoretical molar ratio between these precursor materials is 1: 1, it is also possible to administer an excessive amount of either material depending on the conditions.

탄소는 전기전도성을 가지는 재료로서 아세틸렌블랙 또는 카본블랙 등이 사용되어질 수 있다.Carbon may be acetylene black, carbon black, or the like as a material having electrical conductivity.

상기 LiFePO4 의 전구체와 탄소의 혼합시 혼합비는 특별한 한정을 요하는 것은 아니며, 예를 들어 LiFePO4 의 중량에 대하여 1~10중량%의 탄소가 혼합되어질 수 있다.The mixing ratio of the precursor of LiFePO 4 and carbon is not particularly limited, and for example, 1 to 10% by weight of carbon may be mixed with respect to the weight of LiFePO 4 .

상기 LiFePO4 의 전구체와 탄소의 혼합물은 소정 입자크기(particle size)를 가지도록 분쇄되며, 바람직하게는 볼밀링 과정에 의해 수행되어질 수 있다. 분쇄 결과물의 입자크기는 바람직하게는 서브마이크론 단위의 크기이며, 마이크론 단위의 경우 바람직하게는 10마이크론을 초과하지 않는 것이 좋다. The mixture of the precursor of LiFePO 4 and carbon is ground to have a predetermined particle size, and may be preferably performed by a ball milling process. The particle size of the milled product is preferably in the size of submicron units, and preferably in the case of micron units does not exceed 10 microns.

상기 과정을 통해 분쇄된 혼합물은 마이크로파로 가열되어 열탄소반응이 수행되어진다. 열탄소반응은 혼합물에 함유된 탄소에 열을 가하여 산화시키는 과정을 포함하며, 이러한 과정은 환원성 분위기 또는 불활성 분위기 하에서 수행되어질 수 있다.The mixture pulverized through the above process is heated with microwaves to perform a thermal carbon reaction. The thermocarbon reaction includes a process of applying heat to the carbon contained in the mixture to oxidize it, and this process may be performed under a reducing atmosphere or an inert atmosphere.

환원성 분위기는 마이크로파가 잘 투과되어지는 용기, 예를 들어 석영용기내에 상기 과정을 통해 얻어진 혼합물을 넣고 혼합물의 주위를 활성탄소로 덮어주는 과정을 통해 제공되어질 수 있다. 이 경우 활성탄소와 본 발명에 따른 혼합물의 구분 및 분리를 용이하게 하기 위하여 바람직하게는 혼합물을 펠렛화하는 것이 좋다. 혼합물의 펠렛화 과정은 공지된 일축가압성형 공정을 통해 수행되어질 수 있다. The reducing atmosphere may be provided by placing a mixture obtained through the above process in a container through which microwave is well permeated, for example, a quartz container, and covering the surroundings of the mixture with activated carbon. In this case, in order to facilitate the separation and separation of the activated carbon and the mixture according to the present invention, it is preferable to pelletize the mixture. The pelletization process of the mixture can be carried out through known uniaxial press molding processes.

또한, 활성탄소 외에도 주위를 환원성 기체인 수소가 아르곤에 혼합된 아르곤-수소 혼합기체를 흘러주는 과정을 통해서도 환원성 분위기가 제공되어질 수 있다. 이 경우 혼합물은 펠렛으로 성형되어질 필요는 없다.In addition, in addition to the activated carbon, a reducing atmosphere may also be provided through a process in which hydrogen, which is a reducing gas, flows through an argon-hydrogen mixed gas mixed with argon. In this case the mixture need not be molded into pellets.

불활성 분위기는 상기 본 발명에 따른 혼합물에 불활성 기체를 공급하는 과정을 통해 제공되어질 수 있으며, 예를 들어 마이크로파 오븐내에 아르곤 기체, 질소기체 등을 공급하는 과정을 들 수 있다. 이러한 과정에 의해 조성된 불활성 분위기하에 마이크로파를 상기 혼합물에 조사하면 혼합물에 포함된 활성탄소에 의한 열탄소 반응에 의해 원하는 활물질을 제조할 수 있다. 상기한 바와 같이 활성탄소를 채우지 않고 펠렛을 아르곤 분위기에서 마이크로파로 가열해도 펠렛에 혼합되어 있는 탄소 역시 열탄소 반응을 일으키므로 전체적으로 보면 이 과정 역시 환원성 분위기로 보아도 무방하다. 이 경우 역시 상기 본 발명에 따른 혼합물은 펠렛으로 성형되어질 필요는 없다.An inert atmosphere may be provided through a process of supplying an inert gas to the mixture according to the present invention, for example, a process of supplying argon gas, nitrogen gas, and the like into a microwave oven. When the microwave is irradiated to the mixture under an inert atmosphere formed by this process, a desired active material may be prepared by thermal carbon reaction by activated carbon included in the mixture. As described above, even if the pellets are heated with microwaves in an argon atmosphere without filling the activated carbon, the carbon mixed in the pellets also causes a thermal carbon reaction, so that the process may be regarded as a reducing atmosphere as a whole. In this case also the mixture according to the invention need not be shaped into pellets.

마이크로파의 조사단계는 사용되는 탄소의 열탄소 반응을 일으키기에 충분한 조건에서 수행되어질 것이 요구되며, 예를 들어 출력 0.5~5KW 정도에서, 1~20분 동안 조사하는 것에 의해 수행되어질 수 있다. The irradiation step of the microwave is required to be carried out under conditions sufficient to cause a thermal carbon reaction of the carbon used, for example, by irradiation for 1 to 20 minutes at about 0.5 ~ 5KW output.

상기한 바와 같은 마이크로파 가열단계가 종료된 후 반응 결과물은 진공상태에서 상온까지 냉각시키고, 펠렛으로 제조된 경우에는 냉각 후 막자사발 등을 이용하여 분쇄하는 과정을 수행한다.After completion of the microwave heating step as described above, the reaction product is cooled to room temperature in a vacuum state, and if the pellet is made of pellets after cooling to perform a process of grinding using a mortar and the like.

이와 같이 제조된 활물질은 전기전도도를 향상시키기 위한 도전재, 및 결합재와 함께 적정 비율로 혼합하여 슬러리상의 물질로 제조되고, 얻어지는 슬러리상의 물질을 집전체위에 도포한 후, 진공 오븐에서 충분히 건조하여 압축시켜 전극으로 제조된다.The active material thus prepared is made of a slurry-like material by mixing with an electrically conductive material for improving electrical conductivity and a binder in an appropriate ratio, and applying the resulting slurry-like material onto the current collector, and then sufficiently dried and compressed in a vacuum oven. It is made into an electrode.

본 발명의 실시예에 사용되어지는 활물질, 도전재 및 결합재의 조성비는 무 게비로 70~80 : 10~20 : 5~10으로 예시되어지지만 이에 한정되는 것은 아니며, 도전재로는 아세틸렌블랙 또는 카본블랙 등의 도전성 카본이 사용되어질 수 있고, 결합재로는 통상적으로 폴리비닐리덴플루오라이드, SBR 수계바인더, PTFE(용매가 필요없음, 슬러리공정이 아닌 바로 활물질과 도전재를 PTFE와 섞어서 진흙같은 상태로 전극을 만들어 집전체에 바로 압착가능) 등이 사용될 수 있다.The composition ratio of the active material, the conductive material, and the binder used in the embodiment of the present invention is illustrated as 70 to 80: 10 to 20: 5 to 10 without weight, but is not limited thereto, and the conductive material is acetylene black or carbon. Conductive carbon, such as black, may be used, and as a binder, polyvinylidene fluoride, SBR aqueous binder, PTFE (no solvents are needed, and the active material and the conductive material are mixed with PTFE in a mud state without being a slurry process. Making an electrode and immediately compressing the current collector) may be used.

슬러리상의 물질은 결합제를 용매로서 N-메틸피롤리돈(폴리비닐리덴플루오라이드이 결합제일때), 물 (SBR이 결합재일때) 등의 용매에 활물질과 도전재를 섞어서 제조되어질 수 있으며, 슬러리가 도포되어질 집전체로는 알루미늄포일 등이 사용되며, 슬러리는 집전체 위에 20~60㎛ 정도의 두께로 도포되어질 수 있다.The slurry material may be prepared by mixing the active material and the conductive material in a solvent such as N-methylpyrrolidone (when polyvinylidene fluoride is a binder) and water (when SBR is a binder) as a binder. An aluminum foil or the like is used as the current collector to be applied, and the slurry may be applied to a thickness of about 20 to 60 μm on the current collector.

활물질을 함유한 슬러리가 도포된 후 건조공정은 특별히 한정되는 것은 아니며, 예를 들어 진공오븐에서 100~140℃ 범위에서 2~10시간 동안 건조될 수 있다. 상기 건조공정 이후 얻어진 전극은 100~140kg/㎠의 압력으로 압축되어 전극으로 제조되어진다.After the slurry containing the active material is applied, the drying process is not particularly limited, and for example, may be dried in a vacuum oven for 2 to 10 hours in the range of 100 to 140 ° C. The electrode obtained after the drying process is compressed to a pressure of 100 ~ 140kg / ㎠ to be manufactured as an electrode.

상기 제조된 전극을 이용하여 리튬이차전지를 제조하는 과정은 공지된 제조방법에 따라 수행되어질 수 있다. 본 발명의 실시예에서는 본 발명에 다라 제조되는 양극을 포함하고, 상대전극으로 리튬포일을 사용하며, 리튬염소산이 에틸렌카보네이트와 디메틸카보네이트의 혼합용매에 용해된 전해질과 Celgard 2400 프로필렌 세퍼레이터를 사용하여 2016 코인 타입의 전지를 제조하였다.The process of manufacturing the lithium secondary battery using the prepared electrode may be performed according to a known manufacturing method. According to an embodiment of the present invention, the positive electrode manufactured according to the present invention includes a lithium foil as a counter electrode, an electrolyte in which lithium chloric acid is dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate, and a Celgard 2400 propylene separator 2016. A coin type battery was produced.

상기 본 발명에 따른 활물질의 제조공정은 원료의 혼합공정(대략 30분)과 열처리(대략 수 분이내) 공정을 고려할 때 40분 이내로 소요되어 지금까지 알려진 어 떠한 공정보다도 현저히 짧다.The manufacturing process of the active material according to the present invention takes less than 40 minutes considering the mixing process (approximately 30 minutes) and heat treatment (approximately several minutes) process of the raw material is significantly shorter than any of the known processes.

또한, 상기 과정을 통해 제조된 전지를 이용하여 충/방전 실험을 수행한 결과에서 낮은 전류밀도에서 이론용량보다 거의 100% 높은 수준의 높은 방전용량을 나타냈으며, 매우 높은 전류밀도에서 역시 높은 방전용량을 나타내는 것으로 확인되었다.In addition, the result of the charge / discharge experiment using the battery manufactured through the above process showed a high discharge capacity of almost 100% higher than the theoretical capacity at a low current density, and also a high discharge capacity at a very high current density. It was confirmed to represent.

전극 수명과 관련하여 본 발명에 따라 제조된 전극수명은 다양한 전류밀도에서 충방전 사이클이 증가하여도 방전용량이 거의 감소하지 않는 것을 확인할 수 있다.Electrode life according to the present invention with respect to the electrode life can be seen that the discharge capacity hardly decreases even if the charge and discharge cycle increases at various current densities.

이하, 본 발명의 내용을 실시예를 참조하여 보다 상세하게 설명하고자 하나, 하기 실시예는 본 발명의 이해를 위해 제시되는 것일 뿐 본 발명의 권리범위가 이에 제한되는 것으로 해석되어서는 아니될 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are presented only for understanding of the present invention, and the scope of the present invention should not be construed as being limited thereto.

<실시예> 볼밀링과 마이크로파 가열을 이용한 LiFePO4-탄소 복합체의 제조EXAMPLES Preparation of LiFePO 4 -Carbon Composites Using Ball Milling and Microwave Heating

(1) 전구체와 카본과의 볼밀링(1) Ball Milling of Precursor with Carbon

본 실시예에서는 LiFePO4를 합성하기 위한 전구체로서 Li3PO4와 Fe3(PO4)2 ·8H2O를 사용하였다. Li3PO4와 Fe3(PO4)2·8H2O를 1:1의 몰비로 혼합한 다음 5중량부의 아세틸렌블랙 탄소를 첨가하였다. 이후 스테인리스 스틸 용기와 볼을 사용하여 Ar 분위기에서 바이브런트 타입 볼밀링(vibrant-type ball-milling)을 30분간 실시하였으며 볼밀링시 분말대 볼의 비율을 변화시켜 가며 확인한 최적의 분말에 대한 볼 의 비율은 8.10 : 1이었고, 동 비율에 따라 볼밀링을 수행하였다. In this example, Li 3 PO 4 and Fe 3 (PO 4 ) 2 .8H 2 O were used as precursors for synthesizing LiFePO 4 . Li 3 PO 4 and Fe 3 (PO 4 ) 2 .8H 2 O were mixed in a molar ratio of 1: 1, and then 5 parts by weight of acetylene black carbon was added. Afterwards, 30 minutes of vibrant-type ball milling was performed in an Ar atmosphere using stainless steel containers and balls. The ratio was 8.10: 1 and ball milling was performed according to the same ratio.

(2) 마이크로파 가열(2) microwave heating

볼밀링을 통해 제조된 혼합물을 일축가압성형을 통해 펠렛으로 만든 후 이를 환원성 분위기하에서 마이크로파로 2분 동안 가열하였다. 이때 환원성 분위기는 활성탄소가 적당량 담겨져 있는 석영도가니에 펠렛을 넣고 다시 활성탄소로 완전히 덮어 활성탄소의 열탄소 반응(cabothermal reaction)을 이용하여 제공하는 방법이 있고, 이와는 달리 마이크로파 오븐을 Ar으로 유지시켜 펠렛에 섞여 있는 아세틸렌 블랙의 열탄소 반응만을 이용하여 제공할 수 있다. 본 실시예에서는 상기 방법 중 활성탄소를 함께 넣는 방법을 이용하여 750W의 마이크로파 오븐(microwave oven)에서 2~4분 동안 마이크로파를 조사하는 조건하에 열탄소 반응을 수행하였다. 마이크로파 가열이 끝난 후 펠렛을 바로 진공상태에서 상온까지 냉각시킨 후 막자사발을 이용해 분쇄하였다.The mixture prepared through ball milling was pelleted through uniaxial press molding and then heated for 2 minutes with microwave under a reducing atmosphere. At this time, the reducing atmosphere is a method in which a pellet is placed in a quartz crucible containing an appropriate amount of activated carbon and completely covered with activated carbon, and then provided by using a carbon thermal reaction of the activated carbon. It can be provided using only the hot carbon reaction of mixed acetylene black. In this embodiment, the thermal carbon reaction was carried out under the condition of irradiating the microwave for 2 to 4 minutes in a microwave oven of 750W using the method of putting the activated carbon together in the above method. After the microwave heating was completed, the pellet was immediately cooled to room temperature in a vacuum state and then ground using a mortar and pestle.

상기 과정에 의해 최적 조건으로 선정된 30분 동안의 볼밀링과 2분 동안의 마이크로파 가열을 이용하여 제조된 LiFePO4/C 복합체의 TEM(tunneling electron microscopy) 사진은 도 1에 나타낸 바와 같다. 상기 결과에 의하면 탄소와 200~ 300nm의 매우 작고 균일한 입자크기를 갖는 LiFePO4가 나노미터 스케일로 균일하게 혼합되어 복합체를 이루고 있는 것을 볼 수 있다.Tunneling electron microscopy (TEM) photographs of LiFePO 4 / C composites prepared by using ball milling for 30 minutes and microwave heating for 2 minutes selected as the optimum conditions by the above process are shown in FIG. 1. According to the results, it can be seen that carbon and LiFePO 4 having a very small and uniform particle size of 200 to 300 nm are uniformly mixed on the nanometer scale to form a composite.

(3) 전극의 제조 (3) Preparation of the electrode

전극의 제조 활물질로 LiFePO4-탄소 복합체를, 전기 전도도를 향상시키기 위한 도전재로 아세틸렌블랙을, 그리고 결합재(binder)로 PVDF(폴리비닐리덴플루오라이드)를 사용하였으며 이때 활물질, 도전재 그리고 결합재의 무게비(중량%)는 75 : 17 : 8로 하였다. 결합재가 녹아있는 NMP(N-메틸피롤리돈) 용액에 활물질과 도전재를 섞어서 슬러리(slurry)를 만들고 이를 집전체인 Al 포일위에 도포한 뒤 진공 오븐에서 120℃에서 5시간 동안 건조하였다. 이후 건조된 전극을 120kg/㎠의 압력으로 압축하여 전극을 제조하였다.LiFePO 4 -carbon composite as an active material, acetylene black as a conductive material to improve electrical conductivity, and PVDF (polyvinylidene fluoride) as a binder were used. The weight ratio (weight%) was 75: 17: 8. A slurry was prepared by mixing an active material and a conductive material in an NMP (N-methylpyrrolidone) solution in which a binder was dissolved, and then applying a slurry on Al foil, which is a current collector, and drying at 120 ° C. for 5 hours in a vacuum oven. Thereafter, the dried electrode was compressed to a pressure of 120 kg / cm 2 to prepare an electrode.

(4) 전지의 조립(4) assembly of batteries

충방전 실험을 수행하기 위해 상기 (3)의 과정을 통해 제조한 전극을 양극전극(working electrode)으로, Li 포일을 상대전극으로, 그리고 EC(에틸렌카보네이트) : DMC(디메틸카보네이트)가 1 : 1로 혼합한 용액에 1 M LiClO4를 용해한 전해질과 Celgard 2400 폴리프로필렌 세퍼레이터를 사용하여 2016 코인 타입 전지(coin-type cell)을 제조하였다. 코인 타입 전지의 제조시 전지의 소형화를 위해 구리 스페이서를 사용하였으며 Ar이 충전된 글로브 박스 안에서 코인 타입 전지를 조립하였다.In order to perform the charging and discharging experiment, the electrode manufactured through the process of (3) was used as a working electrode, a Li foil as a counter electrode, and EC (ethylene carbonate): DMC (dimethyl carbonate) was 1: 1. A coin-type cell was manufactured in 2016 by using an electrolyte in which 1 M LiClO 4 was dissolved and a Celgard 2400 polypropylene separator. In manufacturing a coin type battery, a copper spacer was used for the miniaturization of the cell, and a coin type battery was assembled in a glove box filled with Ar.

(5) 전지의 충/방전 실험(5) Charge / discharge experiment of battery

Toyo system Co.(Japan)의 배터리 테스터 (Toscat-3100U)를 이용하여 코인 타입 전지의 충방전 실험을 실시하였다. 충방전시 차단 전압(Cut-off voltage)은 2.5V-4.3V vs. Li/Li+로 하였으며 충·방전 속도는 0.02C-20C 비율로 하였다. 그리고 충방전 사이의 휴지 시간은 10분을 유지하였다.Charge / discharge tests of coin type batteries were conducted using a battery tester (Toscat-3100U) manufactured by Toyo system Co. (Japan). Cut-off voltage during charge and discharge is 2.5V-4.3V vs. Li / Li + and a charge / discharge rate were 0.02C-20C. And the rest time between charge and discharge was maintained for 10 minutes.

상기 실험결과 도 2에서 확인할 수 있듯이, LiFePO4/C 복합체의 방전 전류밀도에 따른 방전용량 실험 결과에서 LiFePO4/C 복합체는 C/30에서 166 mAh/g(이론용량(170 mAh/g)의 약 98 %)의 높은 방전용량을 가지며, 20C의 매우 높은 전류밀도에서도 107 mAh/g(C/30에서의 용량 대비 약 65 %)의 방전용량을 유지하는 우수한 고율방전특성을 나타내었다.The experiment as a result also found in 2, LiFePO 4 / in the discharge capacity results in accordance with the discharge current density of LiFePO 4 / C composite of the C complex of C / in 30 166 mAh / g (theoretical capacity (170 mAh / g) It has a high discharge capacity of about 98%) and shows excellent high-rate discharge characteristics that maintain a discharge capacity of 107 mAh / g (about 65% of the capacity at C / 30) even at a very high current density of 20C.

또한 전극 수명을 측정한 결과 도 3에서 확인할 수 있듯이, 본 발명에 따라 제조된 LiFePO4/C 복합체의 전극수명 측정결과에서 여러 가지 전류밀도에서 LiFePO4/C 복합체 전극을 충방전했을 경우, 충방전 사이클(cycle)이 증가하여도 방전용량이 거의 감소하지 않는 것을 확인할 수 있다.In addition, as can be see in Figure 3 the results of measuring the electrode life, when charging and discharging the LiFePO 4 / C composite electrode in a number of the current density in the LiFePO measuring electrode life of 4 / C composite results produced in accordance with the present invention, the charge and discharge It can be seen that the discharge capacity hardly decreases even if the cycle increases.

본 발명에 의하면, 전극 활물질의 제조공정시간을 획기적으로 단축할 수 있고, 방전용량 및 수명, 고율방전 특성을 가지는 리튬이차전지 양극재료용 활물질을 제공할 수 있다. 이에 따라 본 발명에 의한 활물질로 제조되는 리튬이차전지는 기 존의 리튬이차전지보다 가격이 저렴하고, 용량도 높으며, 환경친화적이고, 특히 열적 안정성이 매우 우수하여 기존의 리튬이차전지를 대체할 수 있는 차세대 이차전지로서 상용화가 가능하다.According to the present invention, it is possible to significantly shorten the manufacturing process time of the electrode active material, and to provide an active material for a lithium secondary battery positive electrode material having discharge capacity, lifetime, and high rate discharge characteristics. Accordingly, the lithium secondary battery manufactured with the active material according to the present invention is cheaper than the existing lithium secondary battery, has a high capacity, is environmentally friendly, and has particularly excellent thermal stability, thereby replacing the existing lithium secondary battery. It can be commercialized as a next-generation secondary battery.

Claims (9)

LiFePO4 전구체와 탄소를 혼합하여 분쇄하는 단계;Mixing and grinding LiFePO 4 precursor and carbon; 상기 LiFePO4 전구체와 탄소의 혼합 분쇄물을 펠렛화하는 단계; Pelletizing the mixed pulverized product of the LiFePO 4 precursor and carbon; 상기 펠렛화 물질을 활성탄소로 덮은 환원성 분위기 또는 불활성 가스 존재하의 불활성 분위기 하에서 마이크로파로 가열하는 단계, 및Heating the pelletized material with microwaves in a reducing atmosphere covered with activated carbon or an inert atmosphere in the presence of an inert gas, and 상기 펠렛화물질을 마이크로파로 가열 후 펠렛화 물질을 분쇄하여 전극 활물질을 제조하는 단계를 포함하는 리튬이차전지 양극재료용 활물질의 제조방법.Method of manufacturing an active material for a lithium secondary battery positive electrode material comprising the step of heating the pelletized material with a microwave and then pulverizing the pelletized material to produce an electrode active material. 제1항에 있어서, 분쇄과정은 볼밀링과정을 포함하는 것을 특징으로 하는 리튬이차전지 양극재료용 활물질의 제조방법.The method of claim 1, wherein the grinding process comprises a ball milling process. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete LiFePO4 전구체와 탄소의 혼합 분쇄물을 펠렛화한 후 상기 펠렛화 물질을 활성탄소로 덮은 환원성 분위기 또는 불활성 가스 존재하의 불활성 분위기 하에서 마이크로파로 가열한 후 분쇄하여 얻어지는 결과물을 함유하는 리튬이차전지 양극재료용 활물질.For a lithium secondary battery cathode material containing a result obtained by pelletizing a mixed powder of a LiFePO 4 precursor and carbon and heating the pelletized material with microwaves in a reducing atmosphere covered with activated carbon or in an inert atmosphere in the presence of an inert gas. Active material. 청구항 제8항의 활물질을 양극재료로 하는 리튬이차전지.A lithium secondary battery using the active material of claim 8 as a positive electrode material.
KR1020060020984A 2006-03-06 2006-03-06 Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby KR100785491B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060020984A KR100785491B1 (en) 2006-03-06 2006-03-06 Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060020984A KR100785491B1 (en) 2006-03-06 2006-03-06 Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby

Publications (2)

Publication Number Publication Date
KR20070091456A KR20070091456A (en) 2007-09-11
KR100785491B1 true KR100785491B1 (en) 2007-12-13

Family

ID=38689246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060020984A KR100785491B1 (en) 2006-03-06 2006-03-06 Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby

Country Status (1)

Country Link
KR (1) KR100785491B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026567A (en) * 2018-09-03 2020-03-11 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2562859T3 (en) 2010-04-21 2019-04-30 Lg Chemical Ltd Lithium iron phosphate of olivine crystal structure and lithium secondary battery using same
EP2562855B1 (en) 2010-04-21 2020-12-16 LG Chem, Ltd. Lithium iron phosphate including sulfur compounds with sulfide bond and lithium secondary battery using the same
JP5699204B2 (en) 2010-04-21 2015-04-08 エルジー・ケム・リミテッド Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same
JP6042324B2 (en) 2010-04-21 2016-12-14 エルジー・ケム・リミテッド Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same
KR101720970B1 (en) 2015-05-21 2017-03-29 한국과학기술연구원 Olivine sodium iron phosphate with polymer coating, sodium iron battery comprising the same as cathode material, and process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292308A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
KR20040069156A (en) * 2003-01-28 2004-08-04 한국과학기술원 Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292308A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
KR20040069156A (en) * 2003-01-28 2004-08-04 한국과학기술원 Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026567A (en) * 2018-09-03 2020-03-11 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same
KR102282277B1 (en) 2018-09-03 2021-07-28 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same

Also Published As

Publication number Publication date
KR20070091456A (en) 2007-09-11

Similar Documents

Publication Publication Date Title
JP6970617B2 (en) Silicon: A silicon-silicon oxide-lithium composite material with nanosilicon particles embedded in a lithium silicate composite material, its use in the manufacturing process, and its use in the battery secondary cell negative electrode manufacturing process, and lithium. Ion battery cell
JP5291179B2 (en) Method for preparing lithium iron phosphate cathode material for lithium secondary battery
JP4742413B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
KR100237580B1 (en) Non-aqueous electrolyte battery and its production method
JP4734701B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
WO2015003568A1 (en) Method for preparing positive electrode active material of lithium ion battery
CN1349266A (en) Non-aqueous electrolyte secondary cell
JP2011181452A (en) Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
KR101063214B1 (en) Manufacturing Method of Spherical Cathode Active Material for Lithium Secondary Battery
CN102460784A (en) Silicon oxide and negative-electrode material for a lithium-ion secondary battery
KR100785491B1 (en) Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby
JP2014065641A (en) Method for manufacturing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
KR101440003B1 (en) The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
JP4491949B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
KR101993371B1 (en) Sulface modified Reduced Graphene Oxide-Sulfur Composite by Polydopamine for Lithium-Sulfur Battery and its Manufacturing Method
CN101944615B (en) Lithium-manganese phosphate anode material for lithium ion battery and preparation method thereof
KR101554944B1 (en) The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
KR101908101B1 (en) Graphene-vanadium oxide nanowire, method for preparation thereof, positive active material comprising the same and lithium battery comprising the positive active material
WO2013099409A1 (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
Liu et al. Glycerol-assisted solution combustion synthesis of improved LiMn 2 O 4
KR101437886B1 (en) Nanocomposite cathod active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20111129

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120824

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee