KR20110023620A - A board having nano wire and method of manufacturing the same - Google Patents

A board having nano wire and method of manufacturing the same Download PDF

Info

Publication number
KR20110023620A
KR20110023620A KR1020090081615A KR20090081615A KR20110023620A KR 20110023620 A KR20110023620 A KR 20110023620A KR 1020090081615 A KR1020090081615 A KR 1020090081615A KR 20090081615 A KR20090081615 A KR 20090081615A KR 20110023620 A KR20110023620 A KR 20110023620A
Authority
KR
South Korea
Prior art keywords
nanowire
substrate
base material
nano
plasma
Prior art date
Application number
KR1020090081615A
Other languages
Korean (ko)
Other versions
KR101109407B1 (en
Inventor
이건환
윤정흠
이성훈
김동호
정유정
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020090081615A priority Critical patent/KR101109407B1/en
Publication of KR20110023620A publication Critical patent/KR20110023620A/en
Application granted granted Critical
Publication of KR101109407B1 publication Critical patent/KR101109407B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE: A board equipped with nanowire and a method for manufacturing the same are provided to grow the nanowire composed of a silicon-based compound on a polymer board using a plasma surface treatment method or an ion beam surface treatment method, and a plasma polymerization method. CONSTITUTION: A board equipped with nanowire(100) contains a base material(120), a nano protrusion(130), and nanowire(140). The base material is based on either of PC, PET, PES, PEN, PAR, and polymer board. The nano protrusion is formed at one side of the base material by radio frequency plasma and ion beam radiation. The nanowire, which is based on either of SiO_x, SiO_xN_y, and SiC_xH_yO_z is formed at one side of the nano protrusion by a plasma polymerization method.

Description

나노와이어가 구비된 기판 및 이의 제조방법 {A board having nano wire and method of manufacturing the same}A substrate having a nanowire and a method of manufacturing the same {A board having nano wire and method of manufacturing the same}

도 1 는 본 발명에 의한 나노와이어가 구비된 기판에서 나노돌기를 확대하여 나타낸 사진.Figure 1 is an enlarged photo of the nano-protrusion in the substrate with a nanowire according to the present invention.

도 2 는 본 발명에 의한 나노와이어가 구비된 기판을 확대하여 나타낸 사진.Figure 2 is an enlarged photo showing a substrate with a nanowire according to the present invention.

도 3 은 본 발명에 의한 나노와이어가 구비된 기판의 성장 모델을 나타낸 개략도.Figure 3 is a schematic diagram showing a growth model of the substrate with a nanowire according to the present invention.

도 4 는 본 발명에 의한 나노와이어가 구비된 기판을 제조하는데 사용된 나노와이어 형성 장치의 개략도.4 is a schematic view of a nanowire forming apparatus used to manufacture a substrate with nanowires according to the present invention.

도 5 는 본 발명에 의한 나노와이어가 구비된 기판의 제조방법을 나타낸 순서도.Figure 5 is a flow chart showing a method of manufacturing a substrate provided with a nanowire according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100. 기판 120. 모재100. Substrate 120. Base material

130. 나노돌기 140. 나노와이어130. Nanoprojections 140. Nanowires

200. 나노와이어 제조 장치 210. 진공챔버200. Nanowire manufacturing apparatus 210. Vacuum chamber

220. 설치지그 230. 알에프전원수단220. Mounting jig 230. RF power supply means

240. 가스공급수단 250. 진공발생수단240. Gas supply means 250. Vacuum generating means

260. 이온빔장치 S100. 나노돌기형성단계260. Ion beam apparatus S100. Nano protrusion formation step

S200. 나노와이어형성단계S200. Nanowire Formation Step

본 발명은 폴리머 기판상에 실리콘계 화합물로 이루어진 나노와이어가 구비된 기판 및 이의 제조방법에 관한 것으로, 보다 상세하게는 플라즈마 또는 이온빔을 이용한 표면처리를 통해 폴리머 기판 표면에 폴리머나노돌기를 형성하고, 플라즈마 중합법(Plasma polymerization)법을 이용하여 폴리머나노돌기 상에 실리콘계 화합물로 이루어진 나노와이어가 형성되도록 한 기판 및 이의 제조방법에 관한 것이다.The present invention relates to a substrate having a nanowire made of a silicon-based compound on a polymer substrate and a method of manufacturing the same. More specifically, the present invention relates to forming a polymer nanoprotrusion on a surface of a polymer substrate through surface treatment using a plasma or an ion beam, and The present invention relates to a substrate and a method of manufacturing the same, wherein nanowires made of a silicon-based compound are formed on a polymer nanoprotrusion using a polymerization method.

일반적으로 나노와이어는 기상 증착법의 경우 고온에서 형성되는 특징을 가지고 있으므로 기판이 폴리머인 경우 나노와이어를 기판상에서 직접 형성시키기가 불가능하다고 인식되어 왔다. 특히 실리콘계 화합물을 기상 증착법을 이용하여 폴리머 기판상에 나노와이어로 직접 성장시킨 경우는 전무한 실정이다. In general, since nanowires have a characteristic of being formed at high temperatures in the case of vapor deposition, it has been recognized that it is impossible to directly form nanowires on a substrate when the substrate is a polymer. In particular, the silicon-based compound is never grown directly on the polymer substrate by nanowires by vapor deposition.

그러나, 폴리머로 상에 형성된 나노와이어는 차세대 디스플레이 기판 재료, 연성 태양전지 기판 재료, 다양한 필터 재료, 센서 재료로 활용될 수 있어 이의 형성 방법이 산업적으로 크게 요구되고 있다.However, nanowires formed on polymer furnaces can be utilized as next-generation display substrate materials, flexible solar cell substrate materials, various filter materials, and sensor materials, and a method of forming the nanowires is highly demanded industrially.

이러한 요구를 해결하기 위해 다양한 나노와이어 제조 기술이 연구되고 있으나, 100℃이하의 공정 온도에서 나노와이어를 기상 증착법으로 제조하는 기술은 아 직 개발되고 있지 못한 실정이다..Various nanowire fabrication techniques have been studied to address these demands, but a technique for producing nanowires by vapor deposition at a process temperature of less than 100 ° C has not been developed yet.

본 발명의 목적은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 플라즈마 또는 이온빔을 이용한 표면처리를 통해 폴리머 기판 표면에 폴리머나노돌기를 형성하고, 플라즈마 중합법(Plasma polymerization)을 이용하여 폴리머나노돌기 상에 실리콘계 화합물로 이루어진 나노와이어가 형성되도록 한 기판 및 이의 제조방법에 관한 것이다.An object of the present invention is to solve the problems described above, to form a polymer nano protrusions on the surface of the polymer substrate through the surface treatment using a plasma or ion beam, using a plasma polymerization method (Plasma polymerization) on the polymer nano protrusions It relates to a substrate and a method of manufacturing the same to form a nanowire made of a silicon-based compound.

본 발명에 의한 나노와이어가 구비된 기판은, 폴리머로 이루어진 모재와, 상기 모재 일측에 알에프 플라즈마 또는 이온빔을 조사하여 형성된 나노돌기와, 상기 나노돌기 일측에 플라즈마 중합법(Plasma polymerization)을 통해 형성된 실리콘계 화합물로 이루어진 나노와이어를 포함하여 구성됨을 특징으로 한다.Substrate equipped with a nanowire according to the present invention, the base material made of a polymer, nano-protrusion formed by irradiating the RF plasma or ion beam on one side of the base material, and the silicon-based compound formed by plasma polymerization method (Plasma polymerization) on one side of the nano-protrusion Characterized in that comprises a nanowire made of.

상기 모재는 PC, PET, PES, PEN, PAR, 폴리머 기판 중 어느 하나인 것을 특징으로 한다.The base material is characterized in that any one of PC, PET, PES, PEN, PAR, polymer substrate.

상기 나노돌기는 10㎚ 내지 2㎛의 지름을 가지며, 상기 모재로부터 30㎚ 내지 5㎛의 높이를 갖는 것을 특징으로 한다.The nano protrusions have a diameter of 10 nm to 2 μm, and have a height of 30 nm to 5 μm from the base material.

상기 나노와이어는, SiOX, SiOxNy, SiCxHyOz 중 어느 하나의 조성을 갖는 것을 특징으로 한다.The nanowires are characterized by having any one of SiO X , SiO x N y , and SiC x H y O z .

상기 나노와이어는 10㎚ 내지 100㎚의 지름을 가지며, 상기 나노돌기로부터 100㎚ 내지 20㎛의 높이를 갖는 것을 특징으로 한다.The nanowires have a diameter of 10 nm to 100 nm, and the nanowires have a height of 100 nm to 20 μm.

본 발명에 의한 나노와이어가 구비된 기판의 제조방법은, 폴리머로 이루어진 모재의 표면을 알에프 플라즈마 또는 이온빔을 이용하여 표면처리하여 나노돌기를 형성시키는 나노돌기형성단계와; 상기 나노돌기 일측에 플라즈마중합법(Plasma Polymerization)으로 나노와이어를 형성하는 나노와이어형성단계로 이루어지는 것을 특징으로 한다.According to an embodiment of the present invention, there is provided a method of manufacturing a substrate having nanowires, the method including: forming a nanoprotrusion by surface-treating a surface of a base material made of polymer using RF plasma or ion beam; Characterized in that the nanowire forming step of forming a nanowire by plasma polymerization (Plasma Polymerization) on one side of the nano-protrusion.

상기 나노돌기형성단계와 나노와이어형성단계는, 동일한 진공챔버 내부에서 연속적으로 실시됨을 특징으로 한다.The nanoprotrusion forming step and the nanowire forming step are characterized in that it is carried out continuously in the same vacuum chamber.

이와 같이 구성되는 본 발명에 따르면, 10㎚ 내지 100㎚의 지름을 가지며, 상기 나노돌기로부터 100㎚ 내지 20㎛의 높이를 가지는 나노와이어를 모재에 용이하게 형성할 수 있는 이점이 있다.According to the present invention configured as described above, there is an advantage in that a nanowire having a diameter of 10 nm to 100 nm and having a height of 100 nm to 20 μm from the nanoprojection can be easily formed on the base material.

이하 본 발명에 의한 나노와이어가 형성된 기판의 구성을 첨부된 도 1 내지 도 3을 참조하여 설명한다.Hereinafter, a configuration of a substrate on which nanowires are formed according to the present invention will be described with reference to FIGS. 1 to 3.

도 1에는 본 발명에 의한 나노와이어가 구비된 기판에서 나노돌기를 확대하여 나타낸 사진이 도시되어 있고, 도 2에는 본 발명에 의한 나노와이어가 구비된 기판을 확대하여 나타낸 사진이 도시되어 있으며, 도 3에는 본 발명에 의한 나노와이어가 구비된 기판의 성장 모델을 나타낸 개략도가 도시되어 있다.1 is a photograph showing an enlarged view of the nano-protrusion in the substrate with a nanowire according to the present invention, Figure 2 is an enlarged photo showing a substrate with a nanowire according to the present invention, Figure 3 is a schematic view showing a growth model of a substrate with nanowires according to the present invention.

이들 도면과 같이, 본 발명의 바람직한 실시예가 채용된 기판(100)은, 폴리머로 이루어진 모재(120)와, 상기 모재(120) 상면에 형성된 나노돌기(130)와, 상기 나노돌기(130) 상측에 형성된 나노와이어(140)를 포함하여 구성된다.As shown in these drawings, the substrate 100 employing a preferred embodiment of the present invention, the base material 120 made of a polymer, the nano-projection 130 formed on the upper surface of the base material 120, and the upper side of the nano-projection 130 It is configured to include a nanowire 140 formed on.

상기 모재(120)는 PC, PET, PES, PEN, PAR, 폴리머 중 어느 하나로 이루어져 플렉시블하게 구성되며, 상기 기판(100)의 맨 하측에 위치한다.The base material 120 is made of any one of PC, PET, PES, PEN, PAR, polymer, and is flexible, and is located at the bottom of the substrate 100.

그리고, 상기 모재(120) 상방향으로는 나노돌기(130)가 돌출 형성된다. 상기 나노돌기(130)는 알에프 플라즈마 또는 이온빔을 모재(120) 표면에 조사하여 표면처리에 의해 형성된 것으로, 10㎚ 내지 2㎛의 지름을 가지며, 상기 모재(120)로부터 30㎚ 내지 5㎛의 높이를 갖는다.In addition, the nano protrusions 130 protrude upward from the base material 120. The nano-projections 130 are formed by surface treatment by irradiating the RF plasma or ion beam on the surface of the base material 120, have a diameter of 10nm to 2㎛, the height of 30nm to 5㎛ from the base material 120 Has

상기 나노돌기(130) 상단에는 나노와이어(140)가 구비된다. 상기 나노와이어는 플라즈마중합법(Plasma polymerization)에 의해 형성된 실리콘계 화합물로서, SiOX, SiOxNy, SiCxHyOz 중 어느 하나가 적용되며, 10㎚ 내지 100㎚의 지름을 가지고, 상기 나노돌기(130)로부터 100㎚ 내지 20㎛의 높이를 갖는다.Nanowires 140 are provided on the nanoprotubes 130. The nanowires are silicon-based compounds formed by plasma polymerization, and any one of SiO X , SiO x N y , and SiC x H y O z is applied, and has a diameter of 10 nm to 100 nm. It has a height of 100nm to 20㎛ from the nanoprojection (130).

이하 상기와 같이 구성되는 기판(100)을 제조하기 위한 나노와이어 제조장치의 구성을 살펴본다.Hereinafter, the configuration of the nanowire manufacturing apparatus for manufacturing the substrate 100 configured as described above will be described.

도 4에는 본 발명에 의한 나노와이어가 구비된 기판의 제조방법에 사용되는 나노와이어 제조 장치의 구성을 나타낸 개략도가 도시되어 있다.Figure 4 is a schematic diagram showing the configuration of a nanowire manufacturing apparatus used in the method for producing a substrate with a nanowire according to the present invention.

도면과 같이, 나노와이어 제조 장치(200)는 모재(120)의 하면에 플라즈마 표면처리 또는 이온빔 표면처리를 통한 폴리머나노돌기를 제조할 수 있으며 실리콘계화합물로 구성된 나노와이어(140)를 동일 공간 내에서 순차적으로 형성할 수 있도록 구성된다.As shown in the figure, the nanowire manufacturing apparatus 200 may manufacture polymer nanoprotrusions through plasma surface treatment or ion beam surface treatment on the lower surface of the base material 120, and the nanowires 140 made of silicon-based compounds in the same space. It is configured to be formed sequentially.

즉, 상기 나노와이어 제조장치(200)는 스테인리스스틸로 제조된 진공챔 버(210)에 의해 작업 공간이 형성되며, 상기 진공챔버(210) 상부에는 설치지그(220)가 구비된다. 상기 설치지그(220)는 진공챔버(210) 내부에서 회전 가능하도록 설치되며, 상기 설치지그(220)의 하면에는 모재(120)가 설치된다.That is, the nanowire manufacturing apparatus 200 has a working space formed by a vacuum chamber 210 made of stainless steel, and the installation jig 220 is provided on the vacuum chamber 210. The installation jig 220 is installed to be rotatable inside the vacuum chamber 210, and the base material 120 is installed on the bottom surface of the installation jig 220.

그리고, 상기 설치지그(220)는 알에프전원수단(230)과 연결된다. 상기 알에프전원수단(230)은 상기 설치지그(220)에 알에프 전원을 공급하여 플라즈마가 발생되도록 하는 구성이다.The installation jig 220 is connected to the RF power supply unit 230. The RF power supply unit 230 is configured to supply the RF power to the installation jig 220 to generate a plasma.

상기 진공챔버(210) 좌측에는 가스공급수단(240)이 구비된다. 상기 가스공급수단(240)은 진공챔버(210) 외부에서 내부로 가스를 공급하여 플라즈마중합반응이 이루어지도록 하는 구성이다.Gas supply means 240 is provided on the left side of the vacuum chamber 210. The gas supply means 240 is configured to supply a gas from the outside of the vacuum chamber 210 to the inside to perform a plasma polymerization reaction.

즉, 상기 가스공급수단(240)은 플라즈마중합반응에 필요한 HMDSO (Hexamethyldisiloxane)등과 같은 원료가스와 혼합가스 및 반응가스를 진공챔버(210) 내부로 주입하게 된다.That is, the gas supply means 240 injects a source gas, a mixed gas, and a reaction gas such as HMDSO (Hexamethyldisiloxane) required for the plasma polymerization reaction into the vacuum chamber 210.

상기 진공챔버(210)의 우측에는 진공발생수단(250)이 구비된다. 상기 진공발생수단(250)은 다수 펌프와 밸브를 포함하여 구성되며, 상기 진공챔버(210) 내부를 진공 분위기로 만드는 역할을 수행한다.The right side of the vacuum chamber 210 is provided with a vacuum generating means 250. The vacuum generating means 250 includes a plurality of pumps and valves, and serves to make the inside of the vacuum chamber 210 into a vacuum atmosphere.

상기 진공챔버(210) 내부 우측에는 이온빔장치(260)가 구비된다. 상기 이온빔장치(260)는 모재(120)에 이온빔을 조사하여 모재(120) 하면을 표면 처리하기 위한 구성이다.An ion beam device 260 is provided at the right side inside the vacuum chamber 210. The ion beam device 260 is configured to surface-treat the lower surface of the base material 120 by irradiating an ion beam to the base material 120.

이하 본 발명의 실시예에 적용된 나노와이어 제조 장치(200)의 구성을 상세하게 설명한다.Hereinafter, the configuration of the nanowire manufacturing apparatus 200 applied to the embodiment of the present invention will be described in detail.

본 발명의 실시예에서 진공챔버(210)는 800㎜(F) × 900㎜(l)의 크기를 가지며, 상기 진공챔버(210) 내부를 진공 분위기로 만들기 위한 펌프는 고진공펌프 및 저진공펌프가 적용되었다.In the embodiment of the present invention, the vacuum chamber 210 has a size of 800 mm (F) × 900 mm (l), the pump for making the interior of the vacuum chamber 210 in a vacuum atmosphere is a high vacuum pump and a low vacuum pump Applied.

보다 상세하게는 상기 고진공펌프는 유확산펌프가 적용되어 10-6torr까지 진공도를 유지할 수 있으며, 저진공펌프로는 1500 l/min.의 용량을 갖는 로터리 베인 펌프를 사용하였다.More specifically, the high vacuum pump may be applied with a diffusion pump to maintain a vacuum degree up to 10 −6 torr, and the low vacuum pump may use a rotary vane pump having a capacity of 1500 l / min.

이러한 진공발생수단(250)에 의해 상기 진공챔버(210) 내부는 1시간 이내에 5x10-6torr의 진공도를 얻을 수 있으며 30분 이내에 나노와이어(140)를 형성할 수 있는 진공도에 도달할 수 있었다.By the vacuum generating means 250, the inside of the vacuum chamber 210 can obtain a degree of vacuum of 5x10 -6 torr within 1 hour and reach a degree of vacuum capable of forming the nanowire 140 within 30 minutes.

상기 가스공급수단(240)은 플라즈마를 발생시키기 위해 순수한 가스를 정확하게 진공챔버(210) 내에 공급할 수 있도록 하고, 펌프의 용량, 진공챔버(210) 용적에 맞추어 결정되어야 한다.The gas supply means 240 is able to accurately supply the pure gas into the vacuum chamber 210 to generate a plasma, and should be determined according to the capacity of the pump and the volume of the vacuum chamber 210.

이를 위해 본 발명의 실시예에서는 플라즈마를 발생시키는 기본가스로 아르곤(Ar)이 적용됨에 따라 100sccm의 용량을 갖는 Mass Flow Meter를 사용하였으며 산소, 질소 등의 반응가스 주입을 위해서는 50sccm의 용량을 갖는 Mass Flow Meter를 사용하였다.To this end, in the embodiment of the present invention, a mass flow meter having a capacity of 100 sccm is used as argon (Ar) is applied as a base gas generating plasma, and a mass having a capacity of 50 sccm for injection of reaction gas such as oxygen and nitrogen is used. Flow Meter was used.

그리고, 상기 설치지그(220)는 플라즈마 중합 공정을 위해 알에프전원수단(230)과 연결하였으며, 상기 나노와이어(140)의 균일성 확보를 위해 0 ~ 100rpm으로 회전할 수 있게 제작되었다. In addition, the installation jig 220 was connected to the RF power supply unit 230 for the plasma polymerization process, and was manufactured to rotate at 0 to 100 rpm to ensure uniformity of the nanowires 140.

따라서, 상기와 같이 구성되는 나노와이어 제조 장치(200)를 이용하면, 상기 진공챔버(210) 내에서 모재(120)의 표면처리 및 실리콘계 화합물 나노와이어(140)의 형성이 모두 실시 가능하게 된다.Therefore, using the nanowire manufacturing apparatus 200 configured as described above, both the surface treatment of the base material 120 and the formation of the silicon-based compound nanowires 140 can be performed in the vacuum chamber 210.

이하 상기와 같이 구성되는 나노와이어 제조 장치(200)를 이용하여 실리콘계 화합물로 이루어진 나노와이어(140)를 형성하는 과정을 첨부된 도 5를 참조하여 설명한다.Hereinafter, a process of forming the nanowire 140 made of a silicon-based compound using the nanowire manufacturing apparatus 200 configured as described above will be described with reference to FIG. 5.

도 5에는 본 발명에 의한 나노와이어가 구비된 기판의 제조방법을 나타낸 순서도가 도시되어 있다.5 is a flowchart illustrating a method of manufacturing a substrate with nanowires according to the present invention.

도면과 같이, 나노와이어(140)가 구비된 기판을 제조하는 방법은, 크게 폴리머로 이루어진 모재(120)의 표면을 플라즈마 또는 이온빔을 이용하여 표면처리함으로써 나노돌기(130)를 형성하는 나노돌기형성단계(S100)와, 나노돌기형성단계(S100)에서 형성된 나노돌기(130) 상측으로 나노와이어(140)를 형성하는 나노와이어형성단계(S200)로 이루어진다.As shown in the drawing, a method of manufacturing a substrate provided with nanowires 140 may form a nanoprotrusion 130 by forming a nanoprotrusion 130 by surface treating a surface of a matrix 120 made of a polymer using plasma or an ion beam. Step (S100), and the nano-wire forming step (S200) for forming the nanowires 140 to the upper side of the nano-projections 130 formed in the nano-protrusion forming step (S100).

상기 나노돌기형성단계(S100)는 설치지그(220)의 하면에 모재(120)를 설치한 후 상기 저진공펌프와 고진공펌프를 이용하여 진공챔버(210) 내부의 진공도를 1×10-5torr 로 맞춘 다음 유지하게 된다.In the nano-protrusion forming step (S100), after installing the base material 120 on the bottom surface of the installation jig 220, the vacuum degree inside the vacuum chamber 210 is reduced to 1 × 10 -5 torr using the low vacuum pump and the high vacuum pump. And keep it.

이런 상태에서 상기 이온빔장치(260)를 작동시켜 상기 모재(120) 상에 나노돌기(130)를 형성 시킨다.In this state, the ion beam device 260 is operated to form the nanoprojections 130 on the base material 120.

즉, 본 발명의 실시예에서 상기 이온빔장치(260)는 필라멘트로부터 열전자를 방출하여 플라즈마를 발생시키고 플라즈마에 존재하는 이온들을 가속시켜 방출하는 엔드홀(End-Hall) 방식이 적용되었다.That is, in the embodiment of the present invention, the ion beam device 260 generates a plasma by emitting hot electrons from the filament, and an end-hole method for accelerating and emitting ions present in the plasma is applied.

보다 상세하게는 상기 진공챔버(210) 내부에 혼합가스(Ar)을 주입하여 5×10-5torr 내지 5×10-4torr의 진공도를 유지하였고, 필라멘트의 파워는 약 400W(20A × 20V), 이온빔장치(260)의 파워는 180W (2A × 90V)로 설정하여 3분 내지 5분 실시하였다. More specifically, mixed gas (Ar) was injected into the vacuum chamber 210 to maintain a vacuum degree of 5 × 10 -5 torr to 5 × 10 -4 torr, and the power of the filament was about 400W (20A × 20V). The power of the ion beam apparatus 260 was set to 180 W (2A x 90V) and performed for 3 to 5 minutes.

이러한 상기 나노돌기(130)는 RF 플라즈마에 의해서도 형성되며 이때 진공도는 10-1torr범위이고 RF파워는 30w, 그리고 표면처리 시간은 1분에서 3분까지 조절하였다.The nano-projections 130 are also formed by RF plasma, wherein the degree of vacuum is in the range of 10 −1 torr, the RF power is 30w, and the surface treatment time is controlled from 1 minute to 3 minutes.

상기와 같은 과정에 따라 나노돌기형성단계(S100)가 완료되면, 상기 나노와이어형성단계(S200)가 실시된다.When the nanoprotrusion forming step S100 is completed according to the above process, the nanowire forming step S200 is performed.

상기 나노와이어형성단계(S200)는 나노돌기(130) 상면에 실리콘계화합물인 나노와이어(140)를 형성하는 과정이다.The nanowire forming step (S200) is a process of forming a nanowire 140, which is a silicon-based compound, on the upper surface of the nanoprotrusion 130.

즉 상기 나노와이어형성단계(S200)는 상기 나노돌기(130) 상면에 플라즈마 중합 공정(Plasma Polymerization)을 이용하여 실리콘계화합물로 구성되는 나노와이어(140)을 성장시키는 과정이다.That is, the nanowire forming step (S200) is a process of growing a nanowire 140 made of a silicon-based compound by using a plasma polymerization process on the upper surface of the nano protrusions 130.

이를 위해 상기 나노와이어형성단계(S200)에서는 진공챔버(210) 내부에 HMDSO 기체를 주입하였으며, 상기 진공챔버(210) 내부의 바람직한 진공도를 맞추기 위해 아르곤(Ar), 캐리어 가스 및 반응가스(산소(O2), 질소(N2), 또는 산소 질소 혼 합 가스)를 주입하였다.To this end, in the nanowire forming step (S200), HMDSO gas is injected into the vacuum chamber 210, and argon (Ar), a carrier gas, and a reaction gas (oxygen (O) 0 2 ), nitrogen (N 2 ), or oxygen nitrogen mixture gas).

상기한 조건에서 상기 알에프전원수단(230)에 전원을 인가하여 상기 나노돌기(130) 상면에 나노와이어(140)가 증착되도록 하였다.Under the above conditions, power was applied to the RF power supply unit 230 so that the nanowires 140 were deposited on the upper surface of the nanoprotrusions 130.

상기 나노와이어(140)는 Tri-methyl과 결합하고 있는 실리콘(Si) 원자가 플라즈마 에너지에 의해 파괴되어 SixOy 와 같은 단량체(Monomer)들이 형성되고, 이렇게 분해된 단량체들이 플라즈마 에너지에 의해 다시 반응기체 (산소 또는 질소)들과 중합되는 중합 반응이 나노돌기(130) 표면에서 집중되어 SiOX, SiOxNy, SiCxHyOz 중 어느 하나의 실리콘계화합물인 나노와이어(140)가 성장되는 것이다.In the nanowire 140, silicon atoms bonded to trimethyl are destroyed by plasma energy to form monomers such as Si x O y, and the decomposed monomers are reacted again by plasma energy. Polymerization reaction that polymerizes with gases (oxygen or nitrogen) is concentrated on the surface of the nanoprojection 130 to form SiO X , SiO x N y , SiC x H y O z Any one of the silicon-based compound nanowire 140 is grown.

그리고, 상기 나노와이어(140)는 RF 전력이 클수록, 진공챔버(210) 내에 HMDSO 기체량이 많을수록 증착속도가 증가된다.In addition, the nanowire 140 has a higher RF power, and the deposition rate increases as the amount of HMDSO gas in the vacuum chamber 210 increases.

이하 상기와 같은 제조방법에 따라 실시된 본 발명의 실시예를 첨부된 도 1 및 도 2을 참조하여 설명한다.Hereinafter, an embodiment of the present invention carried out according to the above-described manufacturing method will be described with reference to FIGS. 1 and 2.

[실시 예1]Example 1

- 모재 : 재질 PET, 두께 188㎛, 투과도 92% -Base material: PET, thickness 188㎛, transmittance 92%

- 초기 진공도 : 3 × 10-5torr Initial vacuum degree: 3 × 10 -5 torr

- 나노돌기형성단계 (이온빔 표면 처리)-Nano projection forming step (ion beam surface treatment)

* 작업 진공도 : 2 x 10-4torr* Working vacuum degree: 2 x 10 -4 torr

* 전처리용 이온빔 플라즈마 Power : 100V ×1.5A  * Pretreatment ion beam plasma power: 100V × 1.5A

* 표면 처리 시간 : 3min  * Surface treatment time: 3min

- 나노와이어형성단계 (실리콘계화합물 코팅)-Nanowire Formation Step (Silicone Compound Coating)

* 작업 가스 : HMDSO(8%), 알곤 (75%), 산소(17%)* Working gas: HMDSO (8%), argon (75%), oxygen (17%)

* 작업 진공도 : 1.5 × 10-1torr* Working vacuum degree: 1.5 × 10 -1 torr

* RF 전력 : 200w (시편 지그 넓이- 100㎠)* RF power: 200w (sample jig width-100㎠)

* 실리콘계화합물 나노와이어 성장 시간: 20min* Silicon compound nanowire growth time: 20min

* 실리콘계화합물 나노와이어 길이 : 10㎛* Silicon compound nanowire length: 10㎛

[실시예 1] 같은 조건에서 모재(120) 상면에 형성된 나노돌기(130)와 나노와이어(140)를 포함하는 기판(100)을 전자 현미경으로 관찰한 결과, 산화실리콘 나노와이어(140)가 10㎛ 이상까지 잘 성장하고 있음을 알 수 있었다.Example 1 As a result of observing the substrate 100 including the nano protrusions 130 and the nanowires 140 formed on the upper surface of the base material 120 under the same conditions, the silicon oxide nanowires 140 had a diameter of 10. It can be seen that it grows well to more than 탆.

이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정되지 않고, 상기와 같은 기술범위 안에서 당업계의 통상의 기술자에게 있어서는 본 발명을 기초로 하는 다른 많은 변형이 가능할 것이다.The scope of the present invention is not limited to the above-described embodiments, and many other modifications based on the present invention will be possible to those skilled in the art within the scope of the present invention.

본 발명에서는, 플라즈마 표면처리법 또는 이온빔 표면처리법과 플라즈마 중합법(Plasma polymerization)을 이용하여 폴리머 기판 상에 나노와이어가 성장되도록 구성하였다.In the present invention, the nanowires are grown on the polymer substrate by using plasma surface treatment or ion beam surface treatment and plasma polymerization.

이러한 나노와이어가 형성된 기판은 차세대 디스플레이용 기판재료, 차세대 태양전지용 기판 재료, 마이크로 필터 재료로 사용될 수 있으며 그 성장 조건 및 밀도를 조절할 경우 다양한 촉매 담채 재료로도 활용될 수 있을 것으로 기대된다. Such nanowire-formed substrates can be used as substrate materials for next-generation displays, substrate materials for next-generation solar cells, and micro-filter materials, and are expected to be used as various catalyst immersion materials when controlling their growth conditions and densities.

또한, 본 발명에 따르면, 나노돌기와 실리콘계화합물 나노와이어가 동일한 진공챔버 내에서 형성된다.In addition, according to the present invention, the nanoprojections and the silicon compound nanowires are formed in the same vacuum chamber.

따라서, 생산성이 향상되어 제조 원가가 절감되므로 가격 경쟁력이 향상되는 이점이 있다. As a result, productivity is improved and manufacturing cost is reduced, thereby improving price competitiveness.

뿐만 아니라, 반제품 상태의 기판을 다음 공정으로 이송하는 과정이 생략되므로 불량률이 현저히 낮아지는 이점이 있다.In addition, since the process of transferring the substrate in the semi-finished state to the next step is omitted, the defect rate is significantly lowered.

Claims (7)

폴리머로 이루어진 모재와,A base material made of polymer, 상기 모재 일측에 알에프 플라즈마 또는 이온빔을 조사하여 형성된 나노돌기와,Nano-protrusion formed by irradiating RF plasma or ion beam to one side of the base material, 상기 나노돌기 일측에 플라즈마 중합법(Plasma polymerization)을 통해 형성된 실리콘계 화합물로 이루어진 나노와이어를 포함하여 구성됨을 특징으로 하는 나노와이어가 구비된 기판.A substrate having a nanowire, characterized in that it comprises a nanowire made of a silicon-based compound formed on one side of the nano-protrusion (Plasma polymerization). 제 1 항에 있어서, 상기 모재는 PC, PET, PES, PEN, PAR, 폴리머 기판 중 어느 하나인 것을 특징으로 하는 나노와이어를 포함하는 기판.The substrate of claim 1, wherein the base material is any one of a PC, PET, PES, PEN, PAR, and a polymer substrate. 제 1 항에 있어서, 상기 나노돌기는 10㎚ 내지 2㎛의 지름을 가지며, 상기 모재로부터 30㎚ 내지 5㎛의 높이를 갖는 것을 특징으로 하는 나노와이어가 구비된 기판.The substrate with nanowires according to claim 1, wherein the nano-projections have a diameter of 10 nm to 2 μm and a height of 30 nm to 5 μm from the base material. 제 1 항에 있어서, 상기 나노와이어는, SiOX, SiOxNy, SiCxHyOz 중 어느 하나의 조성을 갖는 것을 특징으로 하는 나노와이어가 구비된 기판.The method of claim 1, wherein the nanowires, SiO X, SiO x N y, SiC x H y O z composition of any one of the nanowire a substrate is provided, characterized in that it has one. 제 4 항에 있어서, 상기 나노와이어는 10㎚ 내지 100㎚의 지름을 가지며, 상기 나노돌기로부터 100㎚ 내지 20㎛의 높이를 갖는 것을 특징으로 하는 나노와이어를 구비한 기판.The substrate with nanowires according to claim 4, wherein the nanowires have a diameter of 10 nm to 100 nm and a height of 100 nm to 20 μm from the nanoprojections. 폴리머로 이루어진 모재의 표면을 알에프 플라즈마 또는 이온빔을 이용하여 표면처리하여 나노돌기를 형성시키는 나노돌기형성단계와;A nanoprotrusion forming step of forming a nanoprotrusion by surface-treating a surface of a base material made of a polymer using RF plasma or an ion beam; 상기 나노돌기 일측에 플라즈마중합법(Plasma Polymerization)으로 나노와이어를 형성하는 나노와이어형성단계로 이루어지는 것을 특징으로 하는 나노와이어가 구비된 기판의 제조방법.Method of manufacturing a substrate with a nanowire, characterized in that consisting of a nanowire forming step of forming a nanowire by plasma polymerization (Plasma Polymerization) on one side of the nanoprotrusion. 제 6 항에 있어서, 상기 나노돌기형성단계와 나노와이어형성단계는,The method of claim 6, wherein the nano-protrusion forming step and nano-wire forming step, 동일한 진공챔버 내부에서 연속적으로 실시됨을 특징으로 하는 나노와이어가 구비된 기판의 제조방법.Method of manufacturing a substrate with a nanowire, characterized in that carried out continuously in the same vacuum chamber.
KR1020090081615A 2009-08-31 2009-08-31 A board having nano wire and method of manufacturing the same KR101109407B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090081615A KR101109407B1 (en) 2009-08-31 2009-08-31 A board having nano wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090081615A KR101109407B1 (en) 2009-08-31 2009-08-31 A board having nano wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20110023620A true KR20110023620A (en) 2011-03-08
KR101109407B1 KR101109407B1 (en) 2012-01-31

Family

ID=43931714

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090081615A KR101109407B1 (en) 2009-08-31 2009-08-31 A board having nano wire and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR101109407B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114556A (en) * 2017-04-10 2018-10-19 포항공과대학교 산학협력단 Manufacturing method of nanorods by plasma
CN111132926A (en) * 2017-05-01 2020-05-08 莫纳什大学 Elastic conductor based on vertical nano-wire
CN115224147A (en) * 2021-04-20 2022-10-21 中国科学院半导体研究所 Light trapping structure suitable for InAs/GaAsSb quantum dot solar cell and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854441B1 (en) 2008-04-15 2008-08-28 한국기계연구원 A board having layer for preventing humidity from percolation inclusive of metal thin film and silicone compounds and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114556A (en) * 2017-04-10 2018-10-19 포항공과대학교 산학협력단 Manufacturing method of nanorods by plasma
CN111132926A (en) * 2017-05-01 2020-05-08 莫纳什大学 Elastic conductor based on vertical nano-wire
CN115224147A (en) * 2021-04-20 2022-10-21 中国科学院半导体研究所 Light trapping structure suitable for InAs/GaAsSb quantum dot solar cell and preparation method thereof

Also Published As

Publication number Publication date
KR101109407B1 (en) 2012-01-31

Similar Documents

Publication Publication Date Title
KR101190136B1 (en) A method for forming a carbon nanotube and a plasma cvd apparatus for carrying out the method
EP1134304B1 (en) Method of vertically aligning carbon nanotubes on substrates using thermal chemical vapor deposition with dc bias
JP4963539B2 (en) Method for producing carbon nanotube and plasma CVD apparatus for carrying out the method
KR100852329B1 (en) Method for Manufacturing Diamond-Like Carbon Film
CN110416065B (en) Preparation method of molybdenum disulfide/tungsten diselenide vertical heterojunction
US20100009242A1 (en) Carbon nanowall with controlled structure and method for controlling carbon nanowall structure
US20030138561A1 (en) Thermal cracking chemical vapor deposition method for synthesizing nano-carbon material
CN104498894B (en) Preparation method of porous diamond film
CN104412362A (en) Silicon carbide epitaxial wafer, and preparation method thereof
JP4474596B2 (en) Method and apparatus for forming silicon nanocrystal structure
KR20150129485A (en) Method for manufacturing doped metal chalcogenide film and the film manufactured by the same
JP3837451B2 (en) Method for producing carbon nanotube
KR101313746B1 (en) Manufacturing method for carbon nanotube
KR101109407B1 (en) A board having nano wire and method of manufacturing the same
KR101018668B1 (en) Method for forming silicon nano-crystalline structures terminated with oxygen or nitrogen, and silicon nano-crystalline structures terminated with oxygen or nitrogen formed thereby
CN113583218B (en) Two-dimensional conjugated polymer heterojunction and preparation method and application thereof
CN105779971A (en) Method for depositing p-type semi-conductor zinc oxide film on atomic layer
EP0959148B1 (en) Method for producing diamond films using a vapour-phase synthesis system
KR20130133996A (en) Silicon carbide epi wafer and method of fabricating the same
CN109534328B (en) Two-dimensional nitrogen-doped graphene and preparation method thereof
CN114516636A (en) Method for preparing transition metal carbide nano array by using instantaneous high-temperature thermal shock carbon template
KR100850499B1 (en) Fabrication apparatus and method for very dense carbon nanotube
CN109638106A (en) A kind of method and device in solar cell substrate surface growth microcrystal silicon
CN112553600B (en) Growth V by atomic layer deposition technologyxMethod for preparing C nano material
KR100965847B1 (en) A board having layer for preventing humidity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 8