KR20100085388A - Polyphenylehter based copolymer, method for preparing the copolymer, polymer electrolyte membrane comprising the copolymer, and fuel cell comprising the membrane - Google Patents

Polyphenylehter based copolymer, method for preparing the copolymer, polymer electrolyte membrane comprising the copolymer, and fuel cell comprising the membrane Download PDF

Info

Publication number
KR20100085388A
KR20100085388A KR1020090004643A KR20090004643A KR20100085388A KR 20100085388 A KR20100085388 A KR 20100085388A KR 1020090004643 A KR1020090004643 A KR 1020090004643A KR 20090004643 A KR20090004643 A KR 20090004643A KR 20100085388 A KR20100085388 A KR 20100085388A
Authority
KR
South Korea
Prior art keywords
formula
copolymer
electrolyte membrane
carbon atoms
polymer electrolyte
Prior art date
Application number
KR1020090004643A
Other languages
Korean (ko)
Other versions
KR101573191B1 (en
Inventor
이주호
김동일
김환기
서동완
정영기
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to KR1020090004643A priority Critical patent/KR101573191B1/en
Priority to PCT/KR2009/003846 priority patent/WO2010085028A1/en
Publication of KR20100085388A publication Critical patent/KR20100085388A/en
Application granted granted Critical
Publication of KR101573191B1 publication Critical patent/KR101573191B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/44Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols by oxidation of phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for manufacturing a polyphenylether-based copolymer is provided to obtain a polymer electrolyte membrane having improved properties including hydrogen ion conductivity, methanol transmittance, and the percentage of water content. CONSTITUTION: A polyphenylether-based copolymer includes a repeating unit which is marked as a chemical formula 1a and a repeating unit which is marked as a chemical formula 1b. In the chemical formulas, M1, M2, and M3 are hydrogen, lithium, sodium, or potassium. In the chemical formulas, Ar1 and Ar2 are an arylene group with a carbon number of 1-20, an alkyl group with a carbon number of 1-20, an aryl group with a carbon number of 6-20, or a hetereoaryl group with a carbon number of 2-20.

Description

폴리페닐에테르계 공중합체, 이의 제조방법, 이를 포함하는 고분자 전해질막 및 이를 채용한 연료전지{Polyphenylehter based copolymer, method for preparing the copolymer, polymer electrolyte membrane comprising the copolymer, and fuel cell comprising the membrane}Polyphenylether copolymer, method for preparing the same, polymer electrolyte membrane comprising same, and fuel cell employing same {Polyphenylehter based copolymer, method for preparing the copolymer, polymer electrolyte membrane comprising the copolymer, and fuel cell comprising the membrane}

본 발명은 폴리페닐에테르계 공중합체, 이의 제조방법, 이를 포함하는 고분자 전해질막, 및 이를 채용한 연료전지에 관한 것으로, 보다 상세하게는 새로운 구조의 폴리페닐에테르계 공중합체, 이의 제조방법, 이를 포함하는 고분자 전해질막, 및 이를 포함하는 연료전지에 관한 것이다.The present invention relates to a polyphenyl ether copolymer, a method for preparing the same, a polymer electrolyte membrane including the same, and a fuel cell employing the same. More specifically, a polyphenyl ether copolymer having a new structure, a method for preparing the same, It relates to a polymer electrolyte membrane comprising, and a fuel cell comprising the same.

연료전지는 전해질의 종류에 따라 고분자전해질형 연료전지(PEMFC: polymer electrolyte membrane fuel cell), 인산 연료전지(PAFC, phosphoric acid fuel cell), 용융탄산염 연료전지(MCFC: molten carbonate fuel cell), 고체산화물 연료전지(SOFC: solid oxide fuel cell) 등으로 구분되며, 사용되는 전해질의 종류에 따라 연료전지의 작동온도 및 구성 부품의 재질 등이 달라진다. 고분자전해질형 연료전지(PEMFC, Polymer Electrolyte Membrane Fuel Cell)는 다른 연료전지에 비하여 출력이 우수하고, 작동 온도가 낮으며, 빠른 응답 특성을 가진다.The fuel cells are polymer electrolyte membrane fuel cells (PEMFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxides depending on the type of electrolyte. It is classified into a solid oxide fuel cell (SOFC), and the operating temperature of the fuel cell and the material of components vary according to the type of electrolyte used. Polymer Electrolyte Membrane Fuel Cell (PEMFC) has better output, lower operating temperature and faster response than other fuel cells.

연료전지는 애노드에 연료가 공급되는 방식에 따라 연료직접공급형 또는 내부개질형으로 구분되며, 연료직접공급형으로서는 직접메탄올 연료전지(DMFC: direc methnol fuel cell)가 대표적이다. 직접 메탄올 연료전지는 전해질로서 고분자 전해질막을 사용하므로 고분자전해질형 연료전지에 속한다. 직접메탄올 연료전지는 연료로서 메탄올을 사용하기 때문에 수소 개질기 등을 사용하지 않으며, 저온에서 작동하기 때문에 시스템을 간단하고 컴팩트하게 구성할 수 있어 소형 기기 및 휴대용 기기의 전원으로 적합하다.Fuel cells are classified into a direct fuel supply type or internal reforming type according to a method of supplying fuel to the anode, and a direct methanol fuel cell (DMFC) is a typical direct fuel supply type. Direct methanol fuel cell belongs to polymer electrolyte fuel cell because it uses polymer electrolyte membrane as electrolyte. Direct methanol fuel cells do not use hydrogen reformers because they use methanol as fuel, and operate at low temperatures, making the system simple and compact, making them suitable for powering small and portable devices.

연료전지는 전기가 발생하는 발전부, 개질기, 연료탱크 및 연료펌프 등으로 구성된다. 발전부는 연료전지의 본체를 형성하며, 연료펌프는 연료탱크 내의 연료를 개질기로 공급한다. 개질기를 통하여 수소 가스가 발생하고 펌프에 의해 발전부로 연료가 공급되어 전기 화학 반응에 의해 전기 에너지를 발생시킨다. 상기 발전부는 애노드, 캐소드 및 고분자 전해질 막으로 이루어진 막/전극 접합체(membrane electrode assembly, MEA)로 구성될 수 있다.The fuel cell is composed of a power generation unit for generating electricity, a reformer, a fuel tank and a fuel pump. The power generation unit forms a main body of the fuel cell, and the fuel pump supplies the fuel in the fuel tank to the reformer. Hydrogen gas is generated through the reformer and fuel is supplied to the power generation unit by a pump to generate electrical energy by an electrochemical reaction. The power generation unit may be composed of a membrane electrode assembly (MEA) consisting of an anode, a cathode, and a polymer electrolyte membrane.

고분자 전해질형 연료전지의 전해질막으로는 양이온 교환능력이 있는 기능성 수소이온교환막이 사용된다. 상업적으로는 술폰산기를 포함하는 소수이온 교환막이 주로 사용된다. 술폰산기는 산도(acidity)가 매우 크고 C-S 결합이 산화 조건에서도 안정하기 때문이다. 술폰산기가 존재하는 수소이온 교환막에서 수소이온 전도도를 높게 유지하기 위하여 물분자가 함께 존재하여야 한다. 물분자 존재시에 전해질막에 존재하는 술폰산기가 술포네이트 음이온과 수소 이온으로 해리되며, 황산 용액 전해질에서와 같이 수소이온 농도 기울기 또는 전기장에 의하여 수소이온 이 이동한다. 수소이온 전도도는 고분자 전해질막에 포함된 술폰산기의 수, 고분자 전해질막의 구조, 및 고분자 전해질막 내부에 포함된 물의 양 등에 의해 영향을 받는다.As the electrolyte membrane of the polymer electrolyte fuel cell, a functional hydrogen ion exchange membrane having a cation exchange capacity is used. Commercially, hydrophobic exchange membranes containing sulfonic acid groups are mainly used. This is because sulfonic acid groups have very high acidity and C-S bonds are stable even under oxidizing conditions. In the hydrogen ion exchange membrane where sulfonic acid group is present, water molecules must be present together to maintain high hydrogen ion conductivity. In the presence of water molecules, sulfonic acid groups present in the electrolyte membrane are dissociated into sulfonate anions and hydrogen ions. As in the sulfuric acid solution electrolyte, the hydrogen ions move by the hydrogen ion concentration gradient or the electric field. Hydrogen ion conductivity is affected by the number of sulfonic acid groups included in the polymer electrolyte membrane, the structure of the polymer electrolyte membrane, the amount of water contained in the polymer electrolyte membrane, and the like.

종래의 대표적인 고분자 전해질형 연료전지의 전해질막은 Nafion막, Aciplex막, Flemion막 또는 Dow막과 같은 불소계 고분자 전해질막이다. 상기 불소계 고분자 전해질막들은 100℃ 이상의 고온에서 수소이온 전도도가 저하되고, 연료 가스의 투과도가 높고, 가격이 비싸다. 또한, 상기 불소계 고분자 전해질막은 수소이온 전도도가 높으나 고분자 전해질막에서 연료(예를 들어, 메탄올)의 투과도도 높다. 그러므로, 연료전지에서 요구되는 높은 이온 전도도와 낮은 연료 투과도를 동시에 확보하기 어렵다.An electrolyte membrane of a typical polymer electrolyte fuel cell is a fluorine-based polymer electrolyte membrane such as a Nafion membrane, an Aciplex membrane, a Flemion membrane, or a Dow membrane. The fluorine-based polymer electrolyte membranes have a low hydrogen ion conductivity at a high temperature of 100 ° C. or higher, high permeability of fuel gas, and high price. In addition, the fluorine-based polymer electrolyte membrane has a high hydrogen ion conductivity, but also has a high permeability of fuel (eg, methanol) in the polymer electrolyte membrane. Therefore, it is difficult to secure high ion conductivity and low fuel permeability simultaneously required in the fuel cell.

따라서, 제조 비용이 저렴하면서도 수소이온 전도도가 높고 연료에 대한 투과도가 낮은 고분자 전해질막이 여전히 요구된다.Therefore, there is still a need for a polymer electrolyte membrane having low production cost and high hydrogen ion conductivity and low permeability to fuel.

본 발명의 한 측면은 새로운 구조를 가지는 폴리페닐에테르계 공중합체를 제공하는 것이다.One aspect of the present invention is to provide a polyphenylether copolymer having a novel structure.

본 발명의 다른 한 측면은 상기 폴리페닐에테르계 공중합체의 제조방법을 제공하는 것이다.Another aspect of the present invention is to provide a method for preparing the polyphenylether copolymer.

본 발명의 또 다른 한 측면은 상기 공중합체를 포함하는 고분자 전해질막을 제공하는 것이다.Another aspect of the present invention to provide a polymer electrolyte membrane comprising the copolymer.

본 발명의 또 다른 한 측면은 상기 고분자 전해질막을 포함하는 연료전지를제공하는 것이다.Yet another aspect of the present invention is to provide a fuel cell including the polymer electrolyte membrane.

본 발명의 한 측면에 따라 하기 화학식 1a로 표시되는 반복단위 및 하기 화학식 1b로 표시되는 반복단위를 포함하는 폴리페닐에테르계 공중합체가 제공된다:According to an aspect of the present invention, there is provided a polyphenylether copolymer comprising a repeating unit represented by the following Formula 1a and a repeating unit represented by the following Formula 1b:

<화학식 1a> <화학식 1b><Formula 1a> <Formula 1b>

Figure 112009003645179-PAT00003
Figure 112009003645179-PAT00004
Figure 112009003645179-PAT00003
Figure 112009003645179-PAT00004

상기 식들에서,In the above equations,

M1, M2 및 M3는 서로 독립적으로 수소, 리튬, 나트륨, 또는 칼륨이며;M 1 , M 2 and M 3 are independently of each other hydrogen, lithium, sodium, or potassium;

Ar1 및 Ar2는 서로 독립적으로 탄소수 6 내지20의 아릴렌기 또는 탄소수 2 내지 20의 헤테로아릴렌기이며;Ar 1 and Ar 2 are each independently an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms;

R1, R2, R3 및 R4는 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 2 내지20의 헤테로아릴기이며;R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms;

X는 할로겐원자이며;X is a halogen atom;

m 및 n은 몰분율이며, m+ n=1이며, 0<m<1, 0<n<1이다.m and n are mole fractions, m + n = 1, and 0 <m <1, 0 <n <1.

본 발명의 다른 한 측면에 따라 하기 화학식 1로 표시되는 폴리페닐에테르계 공중합체의 제조방법으로서,According to another aspect of the present invention, a method for producing a polyphenyl ether copolymer represented by the following formula (1),

하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 화합물을 제조하는 단계;Preparing a compound represented by Chemical Formula 6 by reacting the compound represented by Chemical Formula 4 with the compound represented by Chemical Formula 5;

하기 화학식 6로 표시되는 화합물을 할로겐과 반응시켜 하기 화학식 7로 표시되는 화합물을 제조하는 단계; 및Preparing a compound represented by Chemical Formula 7 by reacting a compound represented by Chemical Formula 6 with halogen; And

하기 화학식 7로 표시되는 화합물을 술폰화시켜 하기 화학식 1로 표시되는 화합물을 제조하는 단계;를 포함하는 제조방법:Preparing a compound represented by Chemical Formula 1 by sulfonating a compound represented by Chemical Formula 7;

<화학식 1><Formula 1>

Figure 112009003645179-PAT00005
Figure 112009003645179-PAT00005

<화학식 4> <화학식 5><Formula 4> <Formula 5>

Figure 112009003645179-PAT00006
Figure 112009003645179-PAT00007
Figure 112009003645179-PAT00006
Figure 112009003645179-PAT00007

<화학식 6><Formula 6>

Figure 112009003645179-PAT00008
Figure 112009003645179-PAT00008

<화학식 7><Formula 7>

Figure 112009003645179-PAT00009
Figure 112009003645179-PAT00009

상기 식들에서,In the above equations,

M1, M2 및 M3는 서로 독립적으로 수소, 리튬, 나트륨, 또는 칼륨이며;M 1 , M 2 and M 3 are independently of each other hydrogen, lithium, sodium, or potassium;

Ar1 및 Ar2는 서로 독립적으로 탄소수 6 내지20의 아릴렌기 또는 탄소수 2 내지 20의 헤테로아릴렌기이며;Ar 1 and Ar 2 are each independently an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms;

R1, R2, R3 및 R4는 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 2 내지20의 헤테로아릴기이며;R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms;

X는 할로겐원자이며;X is a halogen atom;

m 및 n은 몰분율이며, m+ n=1이며, 0<m<1, 0<n<1이다.m and n are mole fractions, m + n = 1, and 0 <m <1, 0 <n <1.

본 발명의 또 다른 한 측면에 따라 상기 공중합체를 포함하는 고분자 전해질막이 제공된다.According to another aspect of the invention there is provided a polymer electrolyte membrane comprising the copolymer.

본 발명의 또 다른 한 측면에 따라 상기 고분자 전해질막을 포함하는 연료전지가 제공된다.According to another aspect of the invention there is provided a fuel cell comprising the polymer electrolyte membrane.

본 발명의 한 측면에 따르면 상기 폴리페닐에테르계 공중합체를 포함하는 고분자 전해질막이 채용된 연료전지는 수소이온 전도도, 메탄올 투과도, 함수율 등의 특성이 개선된다.According to an aspect of the present invention, the fuel cell employing the polymer electrolyte membrane including the polyphenyl ether copolymer has improved properties such as hydrogen ion conductivity, methanol permeability, and water content.

이하에서는 본 발명의 일 실시예에 따른 폴리페닐에테르계 공중합체, 이를 포함하는 고분자 전해질, 및 이를 채용한 연료전지에 관하여 더욱 상세히 설명한다.Hereinafter, a polyphenyl ether copolymer according to an embodiment of the present invention, a polymer electrolyte including the same, and a fuel cell employing the same will be described in more detail.

본 발명의 일 실시예에 따른 폴리페닐에테르계 공중합체는 하기 화학식 1a로 표시되는 반복단위 및 하기 화학식 1b로 표시되는 반복단위를 포함한다:The polyphenylether copolymer according to one embodiment of the present invention includes a repeating unit represented by the following Formula 1a and a repeating unit represented by the following Formula 1b:

<화학식 1a> <화학식 1b><Formula 1a> <Formula 1b>

Figure 112009003645179-PAT00010
Figure 112009003645179-PAT00011
Figure 112009003645179-PAT00010
Figure 112009003645179-PAT00011

상기 식들에서, M1, M2 및 M3는 서로 독립적으로 수소, 리튬, 나트륨, 또는 칼륨이며; Ar1 및 Ar2는 서로 독립적으로 탄소수 6 내지20의 아릴렌기 또는 탄소수 2 내지 20의 헤테로아릴렌기이며; R1, R2, R3 및 R4는 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 2 내지20의 헤테로아릴기이며; X는 할로겐원자이며; m 및 n은 몰분율이며, m+ n=1이며, 0<m<1, 0<n<1이다.In the above formulas, M 1 , M 2 and M 3 are independently of each other hydrogen, lithium, sodium, or potassium; Ar 1 and Ar 2 are each independently an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms; R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms; X is a halogen atom; m and n are mole fractions, m + n = 1, and 0 <m <1, 0 <n <1.

상기 아릴렌기는 방향족 고리 시스템을 갖는 2가 그룹으로서, 2 이상의 고리 시스템을 포함할 수 있으며, 상기 2 이상의 고리 시스템은 서로 결합 또는 융합된 형태로 존재할 수 있다. 상기 헤테로아릴렌기는 상기 아릴기 중 하나 이상의 탄소가 N, O, S 및 P로 이루어진 군으로부터 선택된 하나 이상으로 치환된 그룹을 가리킨다. 상기 아릴기는 상기 아릴렌기에 대응하는 1가 그룹이며, 상기 헤테로아릴기는 상기 헤테로아릴기에 대응하는 1가 그룹이다.The arylene group is a divalent group having an aromatic ring system, and may include two or more ring systems, and the two or more ring systems may exist in a bonded or fused form with each other. The heteroarylene group refers to a group in which at least one carbon of the aryl group is substituted with at least one selected from the group consisting of N, O, S, and P. The aryl group is a monovalent group corresponding to the arylene group, and the heteroaryl group is a monovalent group corresponding to the heteroaryl group.

상기 공중합체에 포함된 술폰산기 중에서 측쇄를 매개로 주쇄로부터 이격되어 존재하는 화학식 1a의 술폰산기는 비교적 자유롭게 움직일 수 있으므로, 공중합체 내에서 계면활성제와 같이 마이셀(micelle)을 형성하여 이온 채널로서 작용하기가 용이하고, 상기 측쇄의 길이를 조절함에 의하여 이온 채널의 크기도 조절할 수 있 다. 그러므로, 상기 폴리페닐에테르계 공중합체는 상기 이온 채널에 포함된 물의 양을 용이하게 조절할 수 있으며 높은 수소이온 전도도를 가질 수 있다.Since the sulfonic acid group of Formula 1a, which is spaced apart from the main chain in the sulfonic acid group included in the copolymer, may move relatively freely, it forms a micelle like a surfactant in the copolymer to act as an ion channel. It is easy to adjust the size of the ion channel by adjusting the length of the side chain. Therefore, the polyphenylether copolymer may easily control the amount of water contained in the ion channel and may have high hydrogen ion conductivity.

또한, 상기 공중합체에서 주쇄에 벤젠고리 외에 소수성인 할로겐 원자를 추가로 포함함에 의하여 소수부인 주쇄에 의한 메탄올의 투과가 억제될 수 있으며 함수율도 낮다. 그리고, 상기 폴리페닐렌에테르 공중합체의 열안정성, 산화/환원반응에 대한 안정성도 우수하다.In addition, by including a hydrophobic halogen atom in addition to the benzene ring in the main chain in the copolymer, the permeation of methanol by the hydrophobic main chain can be suppressed and the water content is low. In addition, the polyphenylene ether copolymer has excellent thermal stability and stability against oxidation / reduction reaction.

한편, 종래의 일반적인 폴리술폰계 공중합체는 술폰산기가 주쇄에만 직접 연결됨에 의하여 중합체 내에서 술폰산기의 함량이 높아지면 중합체 자체가 물에 녹게 되어 전해질막의 기능이 상실될 수 있으므로 술폰산기의 함량이 한정된다. 따라서, 높은 수소이온 전도도를 가지기 어려우며 주쇄에 술폰산기가 직접 연결되므로 메탄올의 주쇄를 통한 투과가 용이할 수 있다.On the other hand, the conventional polysulfone-based copolymer is a sulfonic acid group is directly connected to the main chain only when the content of the sulfonic acid group in the polymer is increased, the polymer itself is dissolved in water and the function of the electrolyte membrane can be lost, so the content of sulfonic acid group is limited do. Therefore, since it is difficult to have high hydrogen ion conductivity and a sulfonic acid group is directly connected to the main chain, permeation through the main chain of methanol may be easy.

본 발명의 다른 일실시예에 따르면 상기 공중합체가 하기 화학식 2a로 표시되는 반복단위 및하기 화학식 2b로 표시되는 반복단위를 포함하는 것이 바람직하다:According to another embodiment of the present invention, the copolymer preferably includes a repeating unit represented by the following Formula 2a and a repeating unit represented by the following Formula 2b:

<화학식 2a> <화학식 2b><Formula 2a> <Formula 2b>

Figure 112009003645179-PAT00012
Figure 112009003645179-PAT00013
Figure 112009003645179-PAT00012
Figure 112009003645179-PAT00013

본 발명의 또 다른 일실시예에 따르면 상기 공중합체가 하기 화학식 3a로 표시되는 반복단위 및하기 화학식 3b로 표시되는 반복단위를 포함하는 것이 바람직하 다:According to another embodiment of the present invention, the copolymer preferably includes a repeating unit represented by the following Formula 3a and a repeating unit represented by the following Formula 3b:

<화학식 3a> <화학식 3b><Formula 3a> <Formula 3b>

Figure 112009003645179-PAT00014
Figure 112009003645179-PAT00015
Figure 112009003645179-PAT00014
Figure 112009003645179-PAT00015

본 발명의 또 다른 일실시에에 따르면, 상기 공중합체에서 상기 m 및 n의 비가 1:9 내지 9:1인 것이 바람직하다. 상기 m 및 n의 비율이 본 발명의 목적 달성에 적합하다.According to another embodiment of the present invention, the ratio of m and n in the copolymer is preferably 1: 9 to 9: 1. The ratio of m and n is suitable for achieving the object of the present invention.

본 발명의 또 다른 일실시예에 따르면, 상기 공중합체의 중량평균분자량이 10,000 내지 200,000인 것이 바람직하며, 더욱 바람직하게는 30,000 내지 150,000다. 상기 중량평균분자량 범위가 본 발명의 목적 달성에 적합하다.According to another embodiment of the present invention, the weight average molecular weight of the copolymer is preferably 10,000 to 200,000, more preferably 30,000 to 150,000. The weight average molecular weight range is suitable for achieving the object of the present invention.

본 발명의 또 다른 일실시예에 따르면, 하기 화학식 1로 표시되는 폴리페닐에테르계 공중합체의 제조방법으로서, 하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 화합물을 제조하는 단계; 하기 화학식 6로 표시되는 화합물을 할로겐과 반응시켜 하기 화학식 7로 표시되는 화합물을 제조하는 단계; 및 하기 화학식 7로 표시되는 화합물을 술폰화시켜 하기 화학식 1로 표시되는 화합물을 제조하는 단계;를 포함하는 제조방법이 제공된다:According to another embodiment of the present invention, as a method for producing a polyphenyl ether copolymer represented by the formula (1), by reacting the compound represented by the formula (4) and the compound represented by the formula (5) to Preparing a compound to be displayed; Preparing a compound represented by Chemical Formula 7 by reacting a compound represented by Chemical Formula 6 with halogen; And sulfonating a compound represented by Chemical Formula 7 to prepare a compound represented by Chemical Formula 1;

<화학식 1><Formula 1>

Figure 112009003645179-PAT00016
Figure 112009003645179-PAT00016

<화학식 4> <화학식 5><Formula 4> <Formula 5>

Figure 112009003645179-PAT00017
Figure 112009003645179-PAT00018
Figure 112009003645179-PAT00017
Figure 112009003645179-PAT00018

<화학식 6><Formula 6>

Figure 112009003645179-PAT00019
Figure 112009003645179-PAT00019

<화학식 7><Formula 7>

Figure 112009003645179-PAT00020
Figure 112009003645179-PAT00020

상기 식에서, M1, M2 및 M3는 서로 독립적으로 수소, 리튬, 나트륨, 또는 칼륨이며; Ar1 및 Ar2는 서로 독립적으로 탄소수 6 내지20의 아릴렌기 또는 탄소수 2 내지 20의 헤테로아릴렌기이며; R1, R2, R3 및 R4는 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 2 내지20의 헤테로아릴기이며; X는 할로겐원자이며; m 및 n은 몰분율이며, m+ n=1이며, 0<m<1, 0<n<1이다.Wherein M 1 , M 2 and M 3 are independently of each other hydrogen, lithium, sodium, or potassium; Ar 1 and Ar 2 are each independently an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms; R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms; X is a halogen atom; m and n are mole fractions, m + n = 1, and 0 <m <1, 0 <n <1.

본 발명의 또 다른 일실시예에 다르면, 상기 폴리페닐렌에테르계 공중합체를 포함하는 고분자 전해질막이 제공된다. 상기 고분자 전해질막은 상기 화학식 1 내지 3 중 어느 하나의 술폰계 공중합체를 포함함에 의하여 메탄올 투과도가 낮으면서도 수소이온 전도도가 높다. 그리고, 함수율 특성도 우수하다.According to another embodiment of the present invention, a polymer electrolyte membrane including the polyphenylene ether-based copolymer is provided. The polymer electrolyte membrane has a low methanol permeability and high hydrogen ion conductivity by including the sulfone copolymer of any one of Chemical Formulas 1 to 3. And moisture content characteristics are also excellent.

본 발명의 또 다른 일실시예에 따르면, 상기 상기 고분자 전해질막의 수소이온 전도도는 상대습도 100% 및 25℃에서 1×10-3 S/cm 이상인 것이 바람직하며, 더욱 바람직하게는 8×10-3 S/cm 이상이며, 가장 바람직하게는 10×10-3 S/cm 내지 200×10-3 S/cm 이다.According to another embodiment of the present invention, the hydrogen ion conductivity of the polymer electrolyte membrane is preferably 1 × 10 -3 S / cm or more at 100% relative humidity and 25 ℃, more preferably 8 × 10 -3 S / cm or more, most preferably 10 × 10 −3 S / cm to 200 × 10 −3 S / cm.

본 발명의 또 다른 일실시예에 따르면, 상기 고분자 전해질막의 메탄올 투과율은 상대습도 100% 및 25℃에서 20×10-7 cm2/s 이하인 것이 바람직하며, 더욱 바람직하게는 5.9×10-7 cm2/s 이하이며, 가장 바람직하게는 4×10-7 cm2/s 내지 0.01ㅧ10-7 cm2/s 이다.According to another embodiment of the present invention, the methanol permeability of the polymer electrolyte membrane is preferably 20 × 10 -7 cm 2 / s or less at 100% relative humidity and 25 ℃, more preferably 5.9 × 10 -7 cm 2 / s or less, most preferably 4 x 10 -7 cm 2 / s to 0.01 ㅧ 10 -7 cm 2 / s.

본 발명의 또 다른 일실시예에 따르면, 상기 고분자 전해질막은 전해질막의 수 소이온 전도도가 1×10-3S/cm 이상이고, 메탄올 투과율이 5×10-7 cm2/S 이하인 것이 바람직하며, 더욱 바람직하게는 수소이온 전도도가 10×10-3 S/cm 내지 200×10-3 S/cm 이고, 메탄올 투과율이 4×10-7 cm2/s 내지 0.01×10-7 cm2/s 이다.According to another embodiment of the present invention, the polymer electrolyte membrane has a hydrogen ion conductivity of the electrolyte membrane of 1 × 10 -3 S / cm or more, methanol transmittance is preferably 5 × 10 -7 cm 2 / S or less, More preferably, the hydrogen ion conductivity is 10 × 10 −3 S / cm to 200 × 10 −3 S / cm, and the methanol transmittance is 4 × 10 −7 cm 2 / s to 0.01 × 10 -7 cm 2 / s .

본 발명의 또 다른 일실시예에 따르면 상기 고분자 전해질막을 포함하는 연료전지가 제공된다. 상기 연료전지는 캐소드, 애노드 및 이들 사이에 개재된 상기 고분자 전해질막을 구비한다.According to another embodiment of the present invention, a fuel cell including the polymer electrolyte membrane is provided. The fuel cell includes a cathode, an anode, and the polymer electrolyte membrane interposed therebetween.

상기 캐소드 및 애노드는 가스확산층과 촉매층으로 구성된다. 상기 촉매층은 수소의 산화 및 산소의 환원 반응을 촉진시키는 금속 촉매를 포함한다. 상기 촉매층은 백금, 루테늄, 오스뮴, 백금-오스뮴 합금, 백금-팔라듐 합금, 및 백금-M 합금(M은 Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 또는 Zn)로 이루어진 군에서 선택된 하나 이상을 포함하는 것이 바람직하다. 특히, 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금, 백금-코발트 합금, 백금-니켈 합금 또는 이들의 혼합물을 포함하는 것이 바람직하다.The cathode and anode consist of a gas diffusion layer and a catalyst layer. The catalyst layer includes a metal catalyst for promoting oxidation of hydrogen and reduction of oxygen. The catalyst layer is made of platinum, ruthenium, osmium, platinum-osmium alloy, platinum-palladium alloy, and platinum-M alloy (M is Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, or Zn). It is preferable to include at least one selected from the group. In particular, it is preferable to include platinum, ruthenium, osmium, platinum-ruthenium alloys, platinum-osmium alloys, platinum-palladium alloys, platinum-cobalt alloys, platinum-nickel alloys or mixtures thereof.

상기 금속 촉매는 일반적으로 담체에 지지된 상태로 사용된다. 상기 담체는 아세틸렌 블랙, 흑염과 같은 탄소계 재료; 또는 알루미나, 실리카와 같은 무기 미립자;를 사용할 수 있다.The metal catalyst is generally used while supported on a carrier. The carrier may be a carbon-based material such as acetylene black or black salt; Or inorganic fine particles such as alumina and silica;

상기 가스확산층은 탄소 페이퍼 또는 탄소천(cloth)가 사용될 수 있으나, 이에 한정되는 것은 아니다. 상기 가스확산층은 연료전지용 전극을 지지하는 역할을 하며 촉매층으로 반응가스를 확산시켜 촉매층으로 반응기체가 쉽게 접근할 수 있게 하는 역할을 한다. 상기 가스확산층은 탄소 페이퍼나 탄소 천을 폴리테트라플루오로에틸렌과 같은 불소계 수지로 발수 처리한 것을 사용하는 것이 바람직하다. 상기 발수처리된 탄소페이퍼 또는 탄소천은 연료 전지의 구동시 발생하는 물에 의하여 가스 확산 효율이 저하되는 것을 방지할 수 있다.The gas diffusion layer may be carbon paper or carbon cloth, but is not limited thereto. The gas diffusion layer serves to support the fuel cell electrode and serves to make the reaction gas easily accessible to the catalyst layer by diffusing the reaction gas into the catalyst layer. As the gas diffusion layer, it is preferable to use a water repellent treatment of carbon paper or carbon cloth with a fluorine resin such as polytetrafluoroethylene. The water repellent treated carbon paper or carbon cloth may prevent the gas diffusion efficiency from being lowered by water generated when the fuel cell is driven.

상기 전극은 상기 가스확산층과 상기 촉매층 사이에 가스 확산 효과를 더욱 증진시키기 위하여 미세다공층(microporous layer)를 추가적으로 포함할 수 있다. 상기 미세다공층은 탄소 분말, 카본 블랙, 활성 탄소, 아세틸렌 블랙 등의 전도성 물질, 폴리테트라플루로로에틸렌과 같은 바인더 및 필용에 따라 이오노머를 포함하는 조성물을 도포하여 제조될 수 있다.The electrode may further include a microporous layer to further enhance the gas diffusion effect between the gas diffusion layer and the catalyst layer. The microporous layer may be prepared by applying a composition including an ionomer according to a filler and a filler such as carbon powder, carbon black, activated carbon, acetylene black, a conductive material such as polytetrafluoroethylene, and the like.

본 발명의 또 다른 일실시예에 따르면 사익 연료전지는 직접 메탄올 연료전지인 것이 바람직하다. 상기 직접 메탄올 연료전지의 개략도가 도 1에 보여진다.According to another embodiment of the present invention, it is preferable that the Sykes fuel cell is a direct methanol fuel cell. A schematic of the direct methanol fuel cell is shown in FIG. 1.

상기 도 1에 보여지는 바와 같이 직접 메탄올 연료전지는 연료가 공급되는 애노드(32), 산화제가 공급되는 캐소드(30), 및 애노드(32)와 캐소드(30) 사이에 위치하는 전해질막(41)을 포함한다. 상기 애노드(32)는 애노드 확산층(22)과 애노드 촉매층(33)으로 이루어지며, 캐소드(30)는 캐소드 확산층(32)과 캐소드 촉매층(31)으로 이루어진다.As shown in FIG. 1, the direct methanol fuel cell includes an anode 32 supplied with fuel, a cathode 30 supplied with an oxidant, and an electrolyte membrane 41 positioned between the anode 32 and the cathode 30. It includes. The anode 32 is composed of an anode diffusion layer 22 and an anode catalyst layer 33, and the cathode 30 is composed of a cathode diffusion layer 32 and a cathode catalyst layer 31.

애노드 확산층(22)을 통하여 애노드 촉매층(33)에 전달된 메탄올 수용액은 촉매에 의하여 전자, 수소이온, 이산화탄소 등으로 분해된다. 수소이온은 전해질막(41)을 통하여 캐소드 촉매층(31)으로 전달되고, 전자는 외부회로로 전달되며, 이상화탄소는 외부로 배출된다. 캐소드 촉매층(31)에서는 전해질막을 통하여 전달 된 수소이온, 외부회로에서 공급되는 전자 및 캐소드 확산층(32)을 통하여 공급되는 공기 중의 산소가 반응하여 물이 생성된다.The aqueous methanol solution transferred to the anode catalyst layer 33 through the anode diffusion layer 22 is decomposed into electrons, hydrogen ions, carbon dioxide, and the like by the catalyst. Hydrogen ions are transferred to the cathode catalyst layer 31 through the electrolyte membrane 41, electrons are transferred to an external circuit, and idealized carbon is discharged to the outside. In the cathode catalyst layer 31, water is generated by reaction of hydrogen ions transferred through the electrolyte membrane, electrons supplied from an external circuit, and oxygen in the air supplied through the cathode diffusion layer 32.

이하 바람직한 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred examples, but the present invention is not limited thereto.

(폴리페닐에테르계 공중합체 제조)(Production of Polyphenyl Ether Copolymer)

실시예 1Example 1

제 1 단계 : 폴리페닐에테르의 제조First step: preparation of polyphenyl ether

500mL 3구 플라스크에 콘덴서를 장치하고, 2,6-디메틸페놀(2,6-dimethylphenol) 12.25g, 2,6-디페닐페놀(2,6-diphenylphenol) 2.745g, CuCl(I) 0.15g 및 피리딘 50 mL를 4-클로로톨루엔 400mL에 녹였다. 상기 용액을 산소 버블링 조건에서 실온에서 18시간동안 반응시켜 고분자를 얻었다. 반응도중 반응용액이 밝은 오렌지 색에서 짙은 갈색으로 변화하였다. 반응이 완결된 고분자 용액을 메탄올 2L에 침전시켜 고체를 얻었다.A condenser was placed in a 500 mL three-neck flask, 12.25 g of 2,6-dimethylphenol, 2.745 g of 2,6-diphenylphenol, 0.15 g of CuCl (I), and 50 mL of pyridine was dissolved in 400 mL of 4-chlorotoluene. The solution was reacted for 18 hours at room temperature under oxygen bubbling conditions to obtain a polymer. During the reaction, the reaction solution was changed from light orange color to dark brown color. The completed polymer solution was precipitated in 2 L of methanol to obtain a solid.

1H NMR (400MHz, CDCl3, ) : δ2.35 (s, C(CH3)2),δ6.51 (aromatic methylgroup), δ7.36 [aromatic phenylgroup]. FT-IR(Film) 1500-1600cm-1 (aromatic), 2800-3100cm-1(-CH3). 1 H NMR (400 MHz, CDCl 3 ,): δ2.35 (s, C (CH 3 ) 2 ), δ6.51 (aromatic methylgroup), δ7.36 [aromatic phenylgroup]. FT-IR (Film) 1500-1600cm -1 (aromatic), 2800-3100cm -1 (-CH 3).

제2단계: 브롬화 단계Step 2: Bromination Step

100mL 3구 플라스크에 콘덴서를 장치하고, 질소 조건하에서 제1단계에서 제조된 폴리페닐에테르 5g을 클로로포롬 50ml에 녹였다. 상기 용액에 클로로포롬과 브롬(bromine)을 각각 1mL씩 혼합한 용액을 적하 펀넬(dropping funnel)에 넣어 천천히 적가하였다. 이어서, 상기 혼합 용액을 실온에서 1시간 동안 반응시켰다. 반응이 끝난 후 반응 용액을 메탄올 800ml에 침전시켜 고체를 얻었다. A condenser was installed in a 100 mL three-necked flask, and 5 g of polyphenylether prepared in the first step was dissolved in 50 ml of chloroform under nitrogen conditions. A solution of 1 mL each of chloroform and bromine was added dropwise to the dropping funnel. Subsequently, the mixed solution was reacted at room temperature for 1 hour. After the reaction was completed, the reaction solution was precipitated in 800 ml of methanol to obtain a solid.

1H NMR (400MHz, CDCl3, ) : δ2.35 (s, C(CH3)2),δ6.51 (aromatic methylgroup), δ7.36 [aromatic phenylgroup], δ6.11 (shifted bromoaromatic methyl). FT-IR(Film) : 750cm-1(C-Br), 1500-1600cm-1 (aromatic), 2800-3100cm-1(-CH3). 1 H NMR (400 MHz, CDCl 3 ,): δ2.35 (s, C (CH 3 ) 2 ), δ6.51 (aromatic methylgroup), δ7.36 [aromatic phenylgroup], δ6.11 (shifted bromoaromatic methyl) . FT-IR (Film): 750cm -1 (C-Br), 1500-1600cm -1 (aromatic), 2800-3100cm -1 (-CH 3).

제3단계: 설폰화 단계Step 3: sulfonation step

500mL 3구플라스크에 콘덴서를 장치하고, 질소분위기에서 상기 제2단계에서 제조된 브롬화된 폴리페닐에테르 5g을 클로로벤젠(chlorobenzene) 250mL에 녹였다. 상기 용액에 클로로벤젠 60mL와 클로로술폰산 9mL의 혼합 용액을 적하 펀넬(dropping funnel)에 넣어 천천히 적가하였다. 이어서, 상기 혼합 용액을 실온에서 1시간 동안 교반시키면서 반응시켰다. 반응이 끝난 후, 반응 용액을 메탄올과 물을 5:5로 희석시킨 용액 2L에 침전시켜 고체를 얻었다. 이어서, 상기 고체를 메탄올과 증류수를 이용 pH가 7이 얻어지도록 수차례 세척하여 하기 화학식 8로 표시되는 결과물을 얻었다.A condenser was installed in a 500 mL three-necked flask, and 5 g of the brominated polyphenyl ether prepared in the second step was dissolved in 250 mL of chlorobenzene in a nitrogen atmosphere. 60 mL of chlorobenzene and chlorosulfonic acid in the solution 9 mL of the mixed solution was slowly added dropwise into a dropping funnel. The mixed solution was then reacted with stirring for 1 hour at room temperature. After the reaction was completed, the reaction solution was precipitated in 2 L of a solution diluted 5: 5 of methanol and water to obtain a solid. Subsequently, the solid was washed several times with methanol and distilled water to obtain a pH of 7 to obtain a resultant represented by the following formula (8).

1H NMR (400MHz, DMSOd6, ) : δ2.35 (s, C(CH3)2),δ6.95(shifted aromatic methylgroup δ6.51 ), δ6.51 (disappeared aromatic methylgroup), δ7.78, δ7.58 [shifted aromatic phenylgroup]. FT-IR(Film) : 750cm-1(C-Br), 1500-1600cm-1 (aromatic) ,2800-3100cm-1(-CH3), 3300-3500cm-1(-OH). 1 H NMR (400 MHz, DMSO d6 ,): δ2.35 (s, C (CH 3 ) 2 ), δ6.95 (shifted aromatic methylgroup δ6.51), δ6.51 (disappeared aromatic methylgroup), δ7.78, δ 7.58 [shifted aromatic phenylgroup]. FT-IR (Film): 750cm -1 (C-Br), 1500-1600cm -1 (aromatic), 2800-3100cm -1 (-CH 3), 3300-3500cm -1 (-OH).

<화학식 8><Formula 8>

Figure 112009003645179-PAT00021
Figure 112009003645179-PAT00021

상기 식에서, M1, M2, 및 M3는 나트륨 이며, m=0.9 및 n=0.1의 비율을 가지며, 중량평균분자량은 약 50,000이다.Wherein M 1 , M 2 , and M 3 are sodium, having a ratio of m = 0.9 and n = 0.1, and a weight average molecular weight of about 50,000.

실시예 2Example 2

실시예 1의 제 2 단계에서 첨가되는 브롬의 양을 폴리페닐에테르 1mol에 대하여 0.4 mol 배가 되도록 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리페닐에테르 공중합체를 제조하였다.A polyphenylether copolymer was prepared in the same manner as in Example 1 except that the amount of bromine added in the second step of Example 1 was changed to 0.4 mol times with respect to 1 mol of polyphenylether.

실시예 3Example 3

실시예 1의 제 2 단계에서 첨가되는 브롬의 양을 폴리페닐에테르 1mol에 대 하여 0.6mol배가 되도록 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리페닐에테르 공중합체를 제조하였다.A polyphenylether copolymer was prepared in the same manner as in Example 1 except that the amount of bromine added in the second step of Example 1 was changed to 0.6 mol times based on 1 mol of polyphenylether.

실시예 4Example 4

실시예 1의 제 2 단계에서 첨가되는 브롬의 양을 폴리페닐에테르 1mol에 대하여 0.8 mol 배가 되도록 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리페닐에테르 공중합체를 제조하였다.A polyphenylether copolymer was prepared in the same manner as in Example 1, except that the amount of bromine added in the second step of Example 1 was changed to 0.8 mol-fold with respect to 1 mol of polyphenylether.

실시예 5Example 5

실시예 1의 제 2 단계에서 첨가되는 브롬의 양을 폴리페닐에테르 1mol에 대하여 1.0mol배가 되도록 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리페닐에테르 공중합체를 제조하였다.A polyphenylether copolymer was prepared in the same manner as in Example 1 except that the amount of bromine added in the second step of Example 1 was changed to 1.0 mol times based on 1 mol of polyphenylether.

실시예 6Example 6

실시예 1의 제 2 단계에서 첨가되는 브롬의 양을 폴리페닐에테르 1mol에 대하여 1.2 mol 배가 되도록 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리페닐에테르 공중합체를 제조하였다.A polyphenylether copolymer was prepared in the same manner as in Example 1 except that the amount of bromine added in the second step of Example 1 was changed to 1.2 mol times with respect to 1 mol of polyphenylether.

실시예 7Example 7

실시예 1의 제 2 단계에서 첨가되는 브롬의 양을 폴리페닐에테르 1mol에 대하여 1.4mol배가 되도록 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리페닐에테르 공중합체를 제조하였다.A polyphenylether copolymer was prepared in the same manner as in Example 1, except that the amount of bromine added in the second step of Example 1 was changed to 1.4 mol times based on 1 mol of polyphenylether.

실시예 8Example 8

실시예 1의 제 2 단계에서 첨가되는 브롬의 양을 폴리페닐에테르 1mol에 대 하여 1.6mol배가 되도록 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리페닐에테르 공중합체를 제조하였다.A polyphenylether copolymer was prepared in the same manner as in Example 1 except that the amount of bromine added in the second step of Example 1 was changed to 1.6 mol times based on 1 mol of polyphenylether.

(고분자 전해질막의 제조)(Production of Polymer Electrolyte Membrane)

실시예 9Example 9

실시예 1에서 제조된 폴리페닐에테르 공중합체를 100℃의 1M 농도 황산 용액에 24시간 동안 침전시켜 술포네이트기의 양이온을 소듐에서 수소이온으로 교환시켰다. 이어서, 상기 수소화된 공중합체를 탈이온수로 세척하였다. 이어서, 상기 수소화된 공중합체를 DMSO(dimethyl sulfoxide)에 녹여 평편한 유리판과 둥근 유리막대를 이용하여 유리판 위에 각각 캐스팅한 후 진공오븐에서 150℃로 건조하여 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.The polyphenylether copolymer prepared in Example 1 was precipitated in a 1 M concentration sulfuric acid solution at 100 ° C. for 24 hours to exchange cations of sulfonate groups from sodium to hydrogen ions. The hydrogenated copolymer was then washed with deionized water. Subsequently, the hydrogenated copolymer was dissolved in DMSO (dimethyl sulfoxide) and cast on a glass plate using a flat glass plate and a round glass rod, respectively, and dried at 150 ° C. in a vacuum oven to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1 μm. Prepared.

실시예 10Example 10

실시예 2에서 제조된 폴리페닐에테르계 공중합체를 사용하여 실시예 9와 동일한 방법으로 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.Using a polyphenyl ether copolymer prepared in Example 2 to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1 ㎛ in the same manner as in Example 9.

실시예 11Example 11

실시예 3에서 제조된 폴리페닐에테르계 공중합체를 사용하여 실시예 9와 동일한 방법으로 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.Using a polyphenyl ether copolymer prepared in Example 3 to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1 ㎛ in the same manner as in Example 9.

실시예 12Example 12

실시예 4에서 제조된 폴리페닐에테르계 공중합체를 사용하여 실시예 9와 동일한 방법으로 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.Using a polyphenyl ether copolymer prepared in Example 4 to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1 ㎛ in the same manner as in Example 9.

실시예 13Example 13

실시예 5에서 제조된 폴리페닐에테르계 공중합체를 사용하여 실시예 9와 동일한 방법으로 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.Using a polyphenyl ether copolymer prepared in Example 5 to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1 ㎛ in the same manner as in Example 9.

실시예 14Example 14

실시예 6에서 제조된 폴리페닐에테르계 공중합체를 사용하여 실시예 9와 동일한 방법으로 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.Using a polyphenyl ether copolymer prepared in Example 6 to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1 ㎛ in the same manner as in Example 9.

실시예 15Example 15

실시예 7에서 제조된 폴리페닐에테르계 공중합체를 사용하여 실시예 9와 동일한 방법으로 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.Using a polyphenyl ether copolymer prepared in Example 7 to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1㎛ in the same manner as in Example 9.

실시예 16Example 16

실시예 8에서 제조된 폴리페닐에테르계 공중합체를 사용하여 실시예 9와 동일한 방법으로 0.01-0.1㎛의 두께를 가진 고분자 전해질 막을 제조하였다.Using a polyphenyl ether copolymer prepared in Example 8 to prepare a polymer electrolyte membrane having a thickness of 0.01-0.1 ㎛ in the same manner as in Example 9.

비교예 1Comparative Example 1

하기 화학식 8로 표시되는 폴리술폰계 중합체(BASF사, ULTRASON S3010)를 실시예 9와 같은 방법으로 황산화시켜 고분자 전해질막으로 사용하였다Polysulfone polymer (BASF, ULTRASON S3010) represented by the following formula (8) was sulfated in the same manner as in Example 9 was used as a polymer electrolyte membrane

<화학식 8><Formula 8>

Figure 112009003645179-PAT00022
Figure 112009003645179-PAT00022

비교예 2Comparative Example 2

나피온 112(Nafion 112, DuPont)를 고분자 전해질막으로 사용하였다.Nafion 112 (DuPont) was used as the polymer electrolyte membrane.

나피온112를 100℃의 1M 농도 황산 용액에 24시간 동안 침전시켜 술포네이트기의 양이온을 소듐에서 수소이온으로 교환시켰다. 이어서, 상기 수소화된 공중합체를 탈이온수로 세척하였다.Nafion 112 was precipitated in a 1 M concentration sulfuric acid solution at 100 ° C. for 24 hours to exchange the cation of the sulfonate group from sodium to hydrogen ions. The hydrogenated copolymer was then washed with deionized water.

평가예 1 : 수소이온 전도도 측정Evaluation Example 1 Hydrogen Ion Conductivity Measurement

상기 실시예 9 내지 16 및 비교예 1 내지 2의 고분자 전해질막 각각에 대하여 수소이온 전도도(proton conductivity)를 측정하였다. 수소이온 전도도의 측정은 넓이 2.54cm2의 두개의 백금 전극 사이에 상기 고분자 전해질막을 각각 개재한 후, 전위차 측정기(electrochemical impedance spectroscopy (EIS) with IM6ex (Zahner))를 이용하여 30℃에서 초기저항값을 측정하고, 이어서 하기 수학식 1을 사용하여 수소이온 전도도를 계산하였다. 그 결과를 하기 표 1에 나타내었다.Proton conductivity was measured for each of the polymer electrolyte membranes of Examples 9 to 16 and Comparative Examples 1 and 2, respectively. Hydrogen ion conductivity was measured by interposing the polymer electrolyte membrane between two platinum electrodes having a width of 2.54 cm 2 , and then initial resistance value at 30 ° C. using an electrochemical impedance spectroscopy (EIS) with IM6ex (Zahner). Was measured, and then hydrogen ion conductivity was calculated using Equation 1 below. The results are shown in Table 1 below.

<수학식 1>&Quot; (1) &quot;

수소이온 전도도[S/cm]=(막 두께[cm]/막 면적[cm2])×초기전도도[S]Hydrogen ion conductivity [S / cm] = (film thickness [cm] / film area [cm 2 ]) x initial conductivity [S]

평가예 2 : 메탄올 투과도 측정Evaluation Example 2: Methanol Permeability Measurement

두 개의 셀 사이에 상기 실시예 9-16 및 비교예 1 내지 2의 고분자 전해질막을 각각 개재한 후, 하나의 셀에 1M의 메탄올 수용액 15mL를 주입하고, 다른 셀에 증류수 15mL를 주입한 후, 증류수가 들어간 셀에서 10분 당 10㎕씩 분취한 후, 다시 10㎕의 증류수로 채웠다. 분취한 시료를 가스크로마토그래피에서 메탄올 농도를 측정하였다. 또한, 시간에 따른 메탄올 농도의 변화를 그래프로 작성하고 그 기울기로부터 하기 수학식 2를 사용하여 메탄올 투과도를 계산하였다. 그 결과를 하기 표 1에 나타내었다.After interposing the polymer electrolyte membranes of Examples 9-16 and Comparative Examples 1 and 2 between the two cells, 15 mL of 1 M aqueous methanol solution was injected into one cell, and 15 mL of distilled water was injected into the other cell, followed by distilled water. 10 μl was aliquoted per 10 minutes in a cell containing 10 μl, and then filled with 10 μl of distilled water. The aliquot was sampled and the methanol concentration was measured by gas chromatography. In addition, the change in methanol concentration over time was plotted and the methanol permeability was calculated from the slope using Equation 2 below. The results are shown in Table 1 below.

<수학식 2><Equation 2>

메탄올 투과도[cm2/S]=(기울기[ppm/s]×용액부피×전해질막두께)/(전해질막 면적×메탄올 농도)Methanol permeability [cm 2 / S] = (Slope [ppm / s] × solution volume × electrolyte membrane thickness) / (electrolyte membrane area × methanol concentration)

상기 식에서, 전해질막 두께 0.05㎛, 막의 지름 3cm; 메탄올 농도 1mol(32000ppm); 용액 부피 15ml; 막 면적 7.06cm2 In the above formula, the electrolyte membrane thickness 0.05㎛, the diameter of the membrane 3cm; Methanol concentration of 1 mol (32000 ppm); Solution volume 15 ml; Membrane area 7.06cm 2

평가예 3 : 함수율Evaluation Example 3: Water Content

실시예 9 내지 16 및 비교예 1 내지 2의 고분자 전해질막 각각을 30℃ 증류수에 24시간 동안 침지시켰다. 침지 후 고분자 전해질막을 꺼내 무게(Mwet)를 잰 다음, 100℃의 진공 오븐에 넣어 24시간 동안 건조시켰다. 건조 후 다시 무게(Mdry)를 재고, 하기 수학식 3으로터 함수율을 계산하였다. 그 결과를 하기 표 1에 나타내었다.Each of the polymer electrolyte membranes of Examples 9 to 16 and Comparative Examples 1 and 2 was immersed in 30 ° C. distilled water for 24 hours. After immersion, the polymer electrolyte membrane was taken out, weighed (M wet ), and placed in a vacuum oven at 100 ° C. for 24 hours. After drying again weighing (M dry ), the moisture content was calculated by the following equation (3). The results are shown in Table 1 below.

<수학식 3><Equation 3>

함수율(water uptake)[%]=(Mwet-Mdry)/Mdry Water uptake [%] = (M wet -M dry ) / M dry

<표 1>TABLE 1

수소이온 전도도[S/cm]Hydrogen ion conductivity [S / cm] 메탄올 투과율[cm2/S]Methanol transmittance [cm 2 / S] 함수율[%]Water content [%] 실시예 9Example 9 2.30×10-3 2.30 × 10 -3 1.90×10-7 1.90 × 10 -7 77 실시예 10Example 10 3.57×10-3 3.57 × 10 -3 2.02×10-7 2.02 × 10 -7 1616 실시예 11Example 11 4.45×10-3 4.45 × 10 -3 2.21×10-7 2.21 × 10 -7 2222 실시예 12Example 12 6.53×10-3 6.53 × 10 -3 2.64×10-7 2.64 × 10 -7 2828 실시예 13Example 13 8.61×10-3 8.61 × 10 -3 2.78×10-7 2.78 × 10 -7 3434 실시예 14Example 14 9.89×10-3 9.89 × 10 -3 2.98×10-7 2.98 × 10 -7 4141 실시예 15Example 15 12.7×10-3 12.7 × 10 -3 3.21×10-7 3.21 × 10 -7 4545 실시예 16Example 16 14.0×10-3 14.0 × 10 -3 3.50×10-7 3.50 × 10 -7 49.4349.43 비교예 1Comparative Example 1 7.0×10-3 7.0 × 10 -3 6.0×10-7 6.0 × 10 -7 5454 비교예 2Comparative Example 2 80×10-3 80 × 10 -3 21.7×10-7 21.7 × 10 -7 29.529.5

상기 표 1에서 보여지는 바와 같이, 본 발명의 일실시예에 따른 폴리페닐에테르계 공중합체를 포함하는 실시예 9 내지 16의 고분자 전해질막은 비교예 1에 비해 낮은 메탄올 투과율 및 함수율을 보여준다. 특히, 실시예 13 내지 16은 비교예 1에 비해 높은 수소이온 전도도를 보여주면서도 낮은 메탄올 투과율 및 함수율을 보여준다. 또한, 비교예 2에 비해 현저히 낮은 메탄올 투과율을 보여준다.As shown in Table 1, the polymer electrolyte membranes of Examples 9 to 16 including the polyphenyl ether copolymer according to one embodiment of the present invention show lower methanol permeability and water content than Comparative Example 1. In particular, Examples 13-16 show higher methanol ion conductivity and lower methanol permeability and water content than Comparative Example 1. In addition, it shows a significantly lower methanol permeability compared to Comparative Example 2.

도 1은 본 발명의 일 구현예에 따른 직접 메탄올 연료전지의 개략도이다.1 is a schematic diagram of a direct methanol fuel cell according to one embodiment of the invention.

Claims (10)

하기 화학식 1a로 표시되는 반복단위 및 하기 화학식 1b로 표시되는 반복단위를 포함하는 폴리페닐에테르계 공중합체:A polyphenyl ether copolymer comprising a repeating unit represented by the following Formula 1a and a repeating unit represented by the following Formula 1b: <화학식 1a> <화학식 1b><Formula 1a> <Formula 1b>
Figure 112009003645179-PAT00023
Figure 112009003645179-PAT00024
Figure 112009003645179-PAT00023
Figure 112009003645179-PAT00024
상기 식들에서,In the above equations, M1, M2 및 M3는 서로 독립적으로 수소, 리튬, 나트륨, 또는 칼륨이며;M 1 , M 2 and M 3 are independently of each other hydrogen, lithium, sodium, or potassium; Ar1 및 Ar2는 서로 독립적으로 탄소수 6 내지20의 아릴렌기 또는 탄소수 2 내지 20의 헤테로아릴렌기이며;Ar 1 and Ar 2 are each independently an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms; R1, R2, R3 및 R4는 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 2 내지20의 헤테로아릴기이며;R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms; X는 할로겐원자이며;X is a halogen atom; m 및 n은 몰분율이며, m+ n=1이며, 0<m<1, 0<n<1이다.m and n are mole fractions, m + n = 1, and 0 <m <1, 0 <n <1.
제 1 항에 있어서, 상기 공중합체가 하기 화학식 2a로 표시되는 반복단위 및하기 화학식 2b로 표시되는 반복단위를 포함하는 것을 특징으로 하는 공중합체:The copolymer according to claim 1, wherein the copolymer comprises a repeating unit represented by the following Formula 2a and a repeating unit represented by the following Formula 2b: <화학식 2a> <화학식 2b><Formula 2a> <Formula 2b>
Figure 112009003645179-PAT00025
Figure 112009003645179-PAT00026
Figure 112009003645179-PAT00025
Figure 112009003645179-PAT00026
제 1 항에 있어서, 상기 공중합체가 하기 화학식 3a로 표시되는 반복단위 및하기 화학식 3b로 표시되는 반복단위를 포함하는 것을 특징으로 하는 공중합체:The copolymer according to claim 1, wherein the copolymer comprises a repeating unit represented by the following Chemical Formula 3a and a repeating unit represented by the following Chemical Formula 3b: <화학식 3a> <화학식 3b><Formula 3a> <Formula 3b>
Figure 112009003645179-PAT00027
Figure 112009003645179-PAT00028
Figure 112009003645179-PAT00027
Figure 112009003645179-PAT00028
제 1 항에 있어서, 상기 m 및 n의 비가 1:9 내지 9:1인 것을 특징으로 하는 공중합체.The copolymer of claim 1, wherein the ratio of m and n is 1: 9 to 9: 1. 제 1 항에 있어서, 상기 공중합체의 중량평균분자량이 10,000 내지 200,000인 것을 특징으로 하는 공중합체.The copolymer according to claim 1, wherein the copolymer has a weight average molecular weight of 10,000 to 200,000. 하기 화학식 1로 표시되는 폴리페닐에테르계 공중합체의 제조방법으로서,As a method for producing a polyphenyl ether copolymer represented by the formula (1), 하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 화합물을 제조하는 단계;Preparing a compound represented by Chemical Formula 6 by reacting the compound represented by Chemical Formula 4 with the compound represented by Chemical Formula 5; 하기 화학식 6로 표시되는 화합물을 할로겐과 반응시켜 하기 화학식 7로 표시되는 화합물을 제조하는 단계; 및Preparing a compound represented by Chemical Formula 7 by reacting a compound represented by Chemical Formula 6 with halogen; And 하기 화학식 7로 표시되는 화합물을 술폰화시켜 하기 화학식 1로 표시되는 화합물을 제조하는 단계;를 포함하는 제조방법:Preparing a compound represented by Chemical Formula 1 by sulfonating a compound represented by Chemical Formula 7; <화학식 1><Formula 1>
Figure 112009003645179-PAT00029
Figure 112009003645179-PAT00029
<화학식 4> <화학식 5><Formula 4> <Formula 5>
Figure 112009003645179-PAT00030
Figure 112009003645179-PAT00031
Figure 112009003645179-PAT00030
Figure 112009003645179-PAT00031
<화학식 6><Formula 6>
Figure 112009003645179-PAT00032
Figure 112009003645179-PAT00032
<화학식 7><Formula 7>
Figure 112009003645179-PAT00033
Figure 112009003645179-PAT00033
상기 식에서,Where M1, M2 및 M3는 서로 독립적으로 수소, 리튬, 나트륨, 또는 칼륨이며;M 1 , M 2 and M 3 are independently of each other hydrogen, lithium, sodium, or potassium; Ar1 및 Ar2는 서로 독립적으로 탄소수 6 내지20의 아릴렌기 또는 탄소수 2 내지 20의 헤테로아릴렌기이며;Ar 1 and Ar 2 are each independently an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms; R1, R2, R3 및 R4는 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 2 내지20의 헤테로아릴기이며;R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms; X는 할로겐원자이며;X is a halogen atom; m 및 n은 몰분율이며, m+ n=1이며, 0<m<1, 0<n<1이다.m and n are mole fractions, m + n = 1, and 0 <m <1, 0 <n <1.
제 1 항 내지 제 5 항 중 어느 한 항에 따른 공중합체를 포함하는 것을 고분 자 전해질막.A polymer electrolyte membrane comprising the copolymer according to any one of claims 1 to 5. 제 7 항에 있어서, 상기 전해질막의 수소이온 전도도가 1ㅧ10-3S/cm 이상이고, 메탄올 투과율이 5ㅧ10-7 cm2/S 이하인 것을 특징으로 하는 고분자 전해질막.8. The polymer electrolyte membrane according to claim 7, wherein the electrolyte membrane has a hydrogen ion conductivity of 1 × 10 −3 S / cm or more and a methanol transmittance of 5 × 10 −7 cm 2 / S or less. 제 8 항의 고분자 전해질막을 채용한 연료전지.A fuel cell employing the polymer electrolyte membrane of claim 8. 제 9 항에 있어서, 상기 연료전지가 직접 메탄올 연료전지인 것을 특징으로하는 연료전지.10. The fuel cell of claim 9, wherein the fuel cell is a direct methanol fuel cell.
KR1020090004643A 2009-01-20 2009-01-20 Polyphenylehter based copolymer method for preparing the copolymer polymer electrolyte membrane comprising the copolymer and fuel cell comprising the membrane KR101573191B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090004643A KR101573191B1 (en) 2009-01-20 2009-01-20 Polyphenylehter based copolymer method for preparing the copolymer polymer electrolyte membrane comprising the copolymer and fuel cell comprising the membrane
PCT/KR2009/003846 WO2010085028A1 (en) 2009-01-20 2009-07-14 Polyphenylether-based copolymer, method of preparing the copolymer, polymer electrolyte membrane including the copolymer, and fuel cell including the polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090004643A KR101573191B1 (en) 2009-01-20 2009-01-20 Polyphenylehter based copolymer method for preparing the copolymer polymer electrolyte membrane comprising the copolymer and fuel cell comprising the membrane

Publications (2)

Publication Number Publication Date
KR20100085388A true KR20100085388A (en) 2010-07-29
KR101573191B1 KR101573191B1 (en) 2015-12-01

Family

ID=42356065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090004643A KR101573191B1 (en) 2009-01-20 2009-01-20 Polyphenylehter based copolymer method for preparing the copolymer polymer electrolyte membrane comprising the copolymer and fuel cell comprising the membrane

Country Status (2)

Country Link
KR (1) KR101573191B1 (en)
WO (1) WO2010085028A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230122837A (en) 2022-02-15 2023-08-22 인비즈넷 주식회사 Method and system for providing a secure number that can be called back

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140769A (en) * 2021-02-24 2021-07-20 吴丹 Inorganic composite polyphenyl ether proton exchange membrane and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2542686B2 (en) 1988-10-12 1996-10-09 三菱化学株式会社 Resin composition
CN1063466C (en) 1995-06-29 2001-03-21 旭化成工业株式会社 Resin composition and resin composition for secondary battery jar
KR101202331B1 (en) 2006-02-20 2012-11-16 삼성에스디아이 주식회사 A multiblock copolymer, a method for preparing the multiblock copolymer, a polymer electrolyte membrane prepared from the multiblock copolymer, a method for preparing the polymer electrolyte membrane and a fuel cell employing the polymer electrolyte membrane
KR100790854B1 (en) 2006-12-29 2008-01-03 삼성에스디아이 주식회사 Polymer electrolytic membrane, and fuel cell employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230122837A (en) 2022-02-15 2023-08-22 인비즈넷 주식회사 Method and system for providing a secure number that can be called back

Also Published As

Publication number Publication date
KR101573191B1 (en) 2015-12-01
WO2010085028A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
EP1828278B1 (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
JP5713335B2 (en) POLYSULFONE POLYMER, POLYMER ELECTROLYTE MEMBRANE CONTAINING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME, FUEL CELL USING THE SAME, AND METHOD FOR PRODUCING THE POLYMER
WO2006051749A1 (en) Aromatic hydrocarbon-base proton exchange membrane and direct methanol fuel cell using same
JP2006506472A (en) Sulfonated copolymer
US20150364771A1 (en) Composite membrane for polymer electrolyte membrane fuel cell
JP2007513472A (en) Ion conductive random copolymer
JP3748875B2 (en) PROTON CONDUCTIVE POLYMER, PROTON CONDUCTIVE POLYMER MEMBRANE CONTAINING THE POLYMER, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE POLYMER FILM
KR20120108611A (en) Proton conducting copolymer containing diphenyl fuorene-sulfonic acid group, manufacturing method thereof, proton conducting polymer membrane, membrane-electrolyte assembly, and polymer electrolyte membrane fuel cell using the same
KR100907476B1 (en) Polymer membranes containing partially fluorinated copolymer, manufacturing method thereof and polymer electrolyte fuel cell using them
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
KR100506096B1 (en) Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
KR100953616B1 (en) Polymer, membrane-electrode assembly for fuel cell, and fuel cell system comprising the same
KR101573191B1 (en) Polyphenylehter based copolymer method for preparing the copolymer polymer electrolyte membrane comprising the copolymer and fuel cell comprising the membrane
JP2009191123A (en) Block copolymer, electrolyte membrane for fuel cell, membrane-electrode assembly, and solid polymer type fuel cell
KR100817554B1 (en) Method of manufacturing acid/base blend membranes using acidic or basic copolymers, its product and direct methanol fuel cell using them
JP5129778B2 (en) Solid polymer electrolyte, membrane thereof, membrane / electrode assembly using the same, and fuel cell
JP4245991B2 (en) Solid polymer electrolyte, membrane using the same, catalyst electrode layer, membrane / electrode assembly, and fuel cell
KR20110032257A (en) Polysufone based polymer, polymer electrolyte membrane comprising polymer, membranes-electrode assembly comprising membrane and fuel cell comprising membrane, and preparing method thereof
KR20100084837A (en) Polysufone based copolymer, method for preparing the copolymer, polymer electrolyte membrane comprising the copolymer, and fuel cell comprising the membrane
JP3651684B1 (en) Ion exchange membrane
KR102463011B1 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell including same, and fuel cell including same
JP2005174587A (en) Gel electrolyte and fuel cell
KR100728162B1 (en) A membrane for fuel cell, and preparation method thereof, and a membrane electrode assembly for fuel cell using the same
JP4992184B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
KR100657939B1 (en) Proton conductor, polymer electrolyte comprising the proton conductor and fuel cell employing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190918

Year of fee payment: 5