JP2005174587A - Gel electrolyte and fuel cell - Google Patents

Gel electrolyte and fuel cell Download PDF

Info

Publication number
JP2005174587A
JP2005174587A JP2003408903A JP2003408903A JP2005174587A JP 2005174587 A JP2005174587 A JP 2005174587A JP 2003408903 A JP2003408903 A JP 2003408903A JP 2003408903 A JP2003408903 A JP 2003408903A JP 2005174587 A JP2005174587 A JP 2005174587A
Authority
JP
Japan
Prior art keywords
mol
gel electrolyte
polybenzimidazole
less
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003408903A
Other languages
Japanese (ja)
Other versions
JP5005160B2 (en
Inventor
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003408903A priority Critical patent/JP5005160B2/en
Priority to KR1020040102207A priority patent/KR100668316B1/en
Priority to US11/006,651 priority patent/US7115334B2/en
Publication of JP2005174587A publication Critical patent/JP2005174587A/en
Application granted granted Critical
Publication of JP5005160B2 publication Critical patent/JP5005160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gel electrolyte capable of stably exerting excellent proton conductivity over a long time in a work condition without humidification or at relative humidity below 50% at working temperature around 100-300°C. <P>SOLUTION: This gel electrolyte is prepared by mixing an acid with a polymer compound swollen by the acid. The gel electrolyte wherein the polymer compound is partially-methylated polybenzimidazole prepared by using a methyl group in at least a part of a substituted group R of a polybenzimidazole structure is employed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、100℃以上300℃以下の作動温度下において、無加湿あるいは相対湿度50%以下であっても良好なプロトン伝導性を示すゲル電解質およびこのゲル電解質を用いた燃料電池に関する。   The present invention relates to a gel electrolyte exhibiting good proton conductivity even at an operating temperature of 100 ° C. or higher and 300 ° C. or lower and no humidification or a relative humidity of 50% or less, and a fuel cell using this gel electrolyte.

燃料電池においては、発電効率、システム効率、構成部材の長期耐久性の観点から、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の低湿度の作動条件で良好なプロトン伝導性を長期安定的にしめす電解質膜が望まれている。従来の固体高分子電解質型燃料電池の開発において、上記要求に鑑みて検討されてきたが、パーフルオロカーボンスルホン酸膜では100℃以上300℃以下の作動温度下、相対湿度50%以下では十分なプロトン伝導性および出力を得る事が出来ない欠点があった。   In fuel cells, from the viewpoint of power generation efficiency, system efficiency, and long-term durability of components, good protons can be obtained at operating temperatures of about 100 ° C to 300 ° C under non-humidified or low humidity operating conditions of 50% or less. There is a demand for an electrolyte membrane that exhibits stable long-term conductivity. In the development of a conventional solid polymer electrolyte fuel cell, it has been studied in view of the above requirements, but perfluorocarbon sulfonic acid membranes have sufficient protons at an operating temperature of 100 ° C. to 300 ° C. and a relative humidity of 50% or less. There was a drawback that conductivity and output could not be obtained.

下記特許文献には、リン酸などの強酸をドープさせたポリベンズイミダゾールからなる固体電解質膜が開示されている。この種の固体電解質膜によれば、優れた耐酸化性及び耐熱性を有し、しかも200℃までの高温でも作動可能とされている。
特表平11−503262号公報
The following patent document discloses a solid electrolyte membrane made of polybenzimidazole doped with a strong acid such as phosphoric acid. According to this type of solid electrolyte membrane, it has excellent oxidation resistance and heat resistance, and can be operated even at a high temperature up to 200 ° C.
Japanese National Patent Publication No. 11-503262

しかし、特許文献1に記載された固体電解質膜であっても、相対湿度が低い環境下では十分なプロトン伝導性を得ることができないという問題があった。   However, even the solid electrolyte membrane described in Patent Document 1 has a problem that sufficient proton conductivity cannot be obtained in an environment where the relative humidity is low.

本発明は上記事情に鑑みてなされたものであり、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好なプロトン伝導性を長期安定的に発揮することができるゲル電解質およびこれを用いた燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and, at an operating temperature of about 100 ° C. to 300 ° C., stably exhibits long-term proton conductivity under an operating condition of no humidification or a relative humidity of 50% or less. It is an object of the present invention to provide a gel electrolyte that can be used and a fuel cell using the gel electrolyte.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のゲル電解質は、酸と、該酸に対して膨潤する高分子化合物とが混合されてなるゲル電解質であり、前記高分子化合物が、下記[化1]に示すポリベンズイミダゾール構造の置換基Rの少なくとも一部をメチル基とした部分メチル化ポリベンズイミダゾールであることを特徴する。ただし、下記[化1]中、RはCHまたはHであり、nは10〜100000である。
前記の酸としてはリン酸を例示できる。またこのリン酸には、オルトリン酸及び縮合リン酸の両方が含まれる。
In order to achieve the above object, the present invention employs the following configuration.
The gel electrolyte of the present invention is a gel electrolyte formed by mixing an acid and a polymer compound that swells with respect to the acid, and the polymer compound has a polybenzimidazole structure substitution represented by the following [Chemical Formula 1]. It is a partially methylated polybenzimidazole in which at least a part of the group R is a methyl group. However, in the following [Chemical Formula 1], R is CH 3 or H, and n is 10 to 100,000.
Examples of the acid include phosphoric acid. The phosphoric acid includes both orthophosphoric acid and condensed phosphoric acid.

Figure 2005174587
Figure 2005174587

上記の構成によれば、高分子化合物として、部分メチル化ポリベンズイミダゾールが用いられており、メチル化の程度が高いほど酸を多く取り込んで膨潤(ゲル化)するので、メチル化されていない場合と比べて、ゲル電解質のプロトン伝導性を向上させることができる。   According to the above configuration, partially methylated polybenzimidazole is used as the polymer compound, and the higher the degree of methylation, the more acid is taken in and swelling (gelation). Compared with, proton conductivity of the gel electrolyte can be improved.

また本発明のゲル電解質は、先に記載のゲル電解質であり、前記部分メチル化ポリベンズイミダゾールが、メチル化率80モル%未満のポリメチル化ベンズイミダゾールであることを特徴とする。   The gel electrolyte of the present invention is the gel electrolyte described above, wherein the partially methylated polybenzimidazole is polymethylated benzimidazole having a methylation rate of less than 80 mol%.

上記の構成によれば、メチル化率が80モル%未満のため、部分メチル化ポリベンズイミダゾールが酸によって溶解されることがない。   According to said structure, since a methylation rate is less than 80 mol%, a partially methylated polybenzimidazole is not dissolved with an acid.

また本発明のゲル電解質は、先に記載のゲル電解質であり、前記部分メチル化ポリベンズイミダゾールが、メチル化率100モル%のポリNメチルベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、前記ポリNメチルベンズイミダゾールの含有率が80モル%未満であることを特徴とする。   The gel electrolyte of the present invention is the gel electrolyte described above, wherein the partially methylated polybenzimidazole is a poly-N methylbenzimidazole having a methylation rate of 100 mol% and a polybenzimidazole having a methylation rate of 0 mol%. And the poly N methylbenzimidazole content is less than 80 mol%.

上記の構成によれば、部分メチル化ポリベンズイミダゾールとして、ポリメチルベンズイミダゾールとメチル化率0モル%のポリベンズイミダゾールとからなる混合物を用いており、混合物の配合を変更することで部分メチル化ポリベンズイミダゾールのメチル化率を容易に変えることができ、ゲル電解質の特性の最適化を容易に行うことができる。   According to the above configuration, as the partially methylated polybenzimidazole, a mixture of polymethylbenzimidazole and polybenzimidazole having a methylation rate of 0 mol% is used, and the partial methylation can be achieved by changing the blending of the mixture. The methylation rate of polybenzimidazole can be easily changed, and the properties of the gel electrolyte can be easily optimized.

また本発明のゲル電解質は、先に記載のゲル電解質であり、前記部分メチル化ポリベンズイミダゾールが、メチル化率Xモル%のポリメチル化ベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、前記ポリメチル化ベンズイミダゾールの重量をAとし、前記ポリベンズイミダゾールの重量をBとしたとき、f(モル%)=AX/(A+B)で得られるfが80モル%未満であることを特徴とする。
ただし、上記Xは80モル%以上100モル%未満である。
The gel electrolyte of the present invention is the gel electrolyte described above, wherein the partially methylated polybenzimidazole is a polymethylated benzimidazole having a methylation rate of X mol%, and a polybenzimidazole having a methylation rate of 0 mol%. When the weight of the polymethylated benzimidazole is A and the weight of the polybenzimidazole is B, f obtained by f (mol%) = AX / (A + B) is less than 80 mol%. It is characterized by that.
However, said X is 80 mol% or more and less than 100 mol%.

上記の構成によれば、部分メチル化ポリベンズイミダゾールとして、メチル化率X%のポリメチル化ベンズイミダゾールとメチル化率0モル%のポリベンズイミダゾールとからなる混合物を用いており、混合物の配合を変更することで部分メチル化ポリベンズイミダゾールのメチル化率を容易に変えることができ、ゲル電解質の特性の最適化を容易に行うことができる。   According to the above configuration, as the partially methylated polybenzimidazole, a mixture of polymethylated benzimidazole with a methylation rate of X% and polybenzimidazole with a methylation rate of 0 mol% is used, and the blending of the mixture is changed. By doing so, the methylation rate of the partially methylated polybenzimidazole can be easily changed, and the characteristics of the gel electrolyte can be easily optimized.

次に本発明の燃料電池は、一対の電極と、各電極の間に配置された電解質膜とから構成され、前記電解質膜の一部または全部が、先のいずれかに記載のゲル電解質とされ、且つ、前記電極の一部に前記ゲル電解質が含有されていることを特徴とする。   Next, a fuel cell according to the present invention includes a pair of electrodes and an electrolyte membrane disposed between the electrodes, and a part or all of the electrolyte membrane is the gel electrolyte described above. In addition, the gel electrolyte is contained in a part of the electrode.

上記の構成によれば、プロトン伝導度に優れたゲル電解質を電解質膜として備え、更に電極の一部にもこのゲル電解質が備えられているので、燃料電池の内部インピーダンスを低減させることができ、電流密度を高めることができる。特に、電極の一部にゲル電解質が含有されることにより、電極内部までプロトンが伝導されやすくなり、電極自体の内部抵抗を低減できる。   According to the above configuration, the gel electrolyte excellent in proton conductivity is provided as an electrolyte membrane, and further this gel electrolyte is provided in a part of the electrode, so that the internal impedance of the fuel cell can be reduced, The current density can be increased. In particular, when the gel electrolyte is contained in a part of the electrode, protons are easily conducted to the inside of the electrode, and the internal resistance of the electrode itself can be reduced.

また本発明の燃料電池は、作動温度が100℃以上300℃以下の範囲のものであることが好ましい。   The fuel cell of the present invention preferably has an operating temperature in the range of 100 ° C. or higher and 300 ° C. or lower.

以上説明したように、本発明のゲル電解質によれば、プロトン伝導性を高めることができ、また、このゲル電解質を燃料電池に使用することによって燃料電池の電流密度を高めることができ、高出力な燃料電池を構成することができる。   As described above, according to the gel electrolyte of the present invention, the proton conductivity can be increased, and the current density of the fuel cell can be increased by using this gel electrolyte in the fuel cell, and the high output A simple fuel cell can be configured.

以下、本発明の実施の形態を詳細に説明する。
本発明に係る燃料電池は、水素極(電極)と、酸素極(電極)と、水素極及び酸素極との間に配置されたゲル電解質とから構成され、100℃〜300℃の温度で作動するものである。本発明に係るゲル電解質はプロトン伝導性を有しており、水素極側で生じたプロトン(水素イオン)を酸素極側に伝導させるものである。ゲル電解質により伝導されたプロトンは、酸素極において酸素イオンと電気化学反応して水を生成するとともに、電気エネルギーを生じさせる。
Hereinafter, embodiments of the present invention will be described in detail.
The fuel cell according to the present invention includes a hydrogen electrode (electrode), an oxygen electrode (electrode), and a gel electrolyte disposed between the hydrogen electrode and the oxygen electrode, and operates at a temperature of 100 ° C to 300 ° C. To do. The gel electrolyte according to the present invention has proton conductivity, and conducts protons (hydrogen ions) generated on the hydrogen electrode side to the oxygen electrode side. Protons conducted by the gel electrolyte electrochemically react with oxygen ions at the oxygen electrode to generate water and generate electrical energy.

本発明に係る燃料電池においては、水素極及び酸素極にもゲル電解質が含有されている。即ち、水素極及び酸素極には、活性炭等の電極物質と、電極物質を固化成形するためのバインダとが含有されており、このバインダの一部または全部が本発明に係るゲル電解質とされている。この構成によって、プロトンが電極内部と電極外部との間で伝導されやすくなり、電極の内部抵抗が低減される。   In the fuel cell according to the present invention, the hydrogen electrolyte and the oxygen electrode also contain a gel electrolyte. That is, the hydrogen electrode and the oxygen electrode contain an electrode material such as activated carbon and a binder for solidifying and forming the electrode material, and a part or all of this binder is the gel electrolyte according to the present invention. Yes. With this configuration, protons are easily conducted between the inside and outside of the electrode, and the internal resistance of the electrode is reduced.

次に、本発明に係るゲル電解質は、リン酸と、リン酸に対して膨潤する高分子化合物とが混合されて構成されている。リン酸として、オルトリン酸及び縮合リン酸を例示することができる。また、高分子化合物としては、上記[化1]に示すポリベンズイミダゾール構造の置換基Rの少なくとも一部をメチル基とした部分メチル化ポリベンズイミダゾールを例示できる。尚、下記[化1]中、RはCHまたはHであり、nは10〜100000である。nが10未満では通常機械的強度が劣り好ましくなく、nが100000を超えると溶媒などへの溶解性が著しく低下する。 Next, the gel electrolyte according to the present invention is configured by mixing phosphoric acid and a polymer compound that swells with respect to phosphoric acid. Examples of phosphoric acid include orthophosphoric acid and condensed phosphoric acid. Moreover, as a high molecular compound, the partially methylated polybenzimidazole which made the methyl group the at least one part of the substituent R of the polybenzimidazole structure shown in said [Chemical Formula 1] can be illustrated. In the following [Chemical Formula 1], R is CH 3 or H, and n is 10 to 100,000. When n is less than 10, the mechanical strength is usually inferior, which is not preferable. When n exceeds 100,000, the solubility in a solvent or the like is significantly reduced.

部分メチル化ポリベンズイミダゾールは、リン酸を取り込んでゲル化するものであり、特にメチル化の程度が高いほどリン酸を多く取り込んで膨潤(ゲル化)する。このように本発明に係るゲル電解質は、リン酸を多く含有することができるので、プロトン伝導性を高めることができる。   Partially methylated polybenzimidazole incorporates phosphoric acid and gels, and in particular, the higher the degree of methylation, the more phosphoric acid is incorporated and swells (gels). Thus, since the gel electrolyte which concerns on this invention can contain many phosphoric acids, it can improve proton conductivity.

本発明に係る部分メチル化ポリベンズイミダゾールとしては、下記(1)〜(3)のうちのいずれかを用いることができる。
(1)メチル化率を5モル%以上80モル%未満、好ましくは20モル%以上80モル%未満に調整したポリメチル化ベンズイミダゾール。
(2)メチル化率100モル%のポリNメチルベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、ポリNメチルベンズイミダゾールの含有率が5モル%以上80モル%未満、好ましくは20モル%以上80モル%未満としたもの。
(3)メチル化率Xモル%のポリメチル化ベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、ポリメチル化ベンズイミダゾールの重量をAとし、前記ポリベンズイミダゾールの重量をBとしたとき、f(モル%)=AX/(A+B)で得られるfが5モル%以上80モル%未満、好ましくは20モル%以上80モル%未満であるもの。ただし、上記Xは80モル%以上100モル%未満である。
As the partially methylated polybenzimidazole according to the present invention, any of the following (1) to (3) can be used.
(1) A polymethylated benzimidazole having a methylation rate adjusted to 5 mol% or more and less than 80 mol%, preferably 20 mol% or more and less than 80 mol%.
(2) A mixture of poly N methylbenzimidazole with a methylation rate of 100 mol% and polybenzimidazole with a methylation rate of 0 mol%, and the content of poly N methylbenzimidazole is 5 mol% or more and less than 80 mol% , Preferably 20 mol% or more and less than 80 mol%.
(3) A mixture of a polymethylated benzimidazole with a methylation rate of X mol% and a polybenzimidazole with a methylation rate of 0 mol%, where the weight of the polymethylated benzimidazole is A and the weight of the polybenzimidazole is B , F obtained by f (mol%) = AX / (A + B) is 5 mol% or more and less than 80 mol%, preferably 20 mol% or more and less than 80 mol%. However, said X is 80 mol% or more and less than 100 mol%.

上記(1)〜(3)の構成によれば、部分メチル化ポリベンズイミダゾールのメチル化率をいずれも5モル%以上80モル%未満、好ましくは20モル%以上が80モル%未満にすることができる。すなわち、(1)ではメチル化するための反応の程度を調整することでメチル化率を調整することができる。また、(2)ではポリNメチルベンズイミダゾールの含有率を調整することでメチル化率を実質的に調整できる。更に(3)ではfの値を調整することでメチル化率を実質的に調整できる。
部分メチル化ポリベンズイミダゾールのメチル化率が5モル%未満であると、リン酸を十分に取り込むことができなってプロトン伝導度が不十分になるので(低下してしまうので)好ましくなく、メチル化率が80モル%以上になるとリン酸を取り込みすぎて部分メチル化ポリベンズイミダゾールが溶解してしまうので好ましくない。
According to the constitutions (1) to (3), the methylation rate of the partially methylated polybenzimidazole is 5 mol% or more and less than 80 mol%, preferably 20 mol% or more is less than 80 mol%. Can do. That is, in (1), the methylation rate can be adjusted by adjusting the degree of reaction for methylation. In (2), the methylation rate can be substantially adjusted by adjusting the content of poly-N methylbenzimidazole. Furthermore, in (3), the methylation rate can be substantially adjusted by adjusting the value of f.
When the methylation rate of the partially methylated polybenzimidazole is less than 5 mol%, phosphoric acid can be sufficiently taken in and proton conductivity becomes insufficient (because it decreases). When the conversion ratio is 80 mol% or more, phosphoric acid is excessively incorporated and the partially methylated polybenzimidazole is dissolved, which is not preferable.

尚、本明細書では、上記[化1]に示すポリベンズイミダゾール構造の置換基Rの一部をメチル基とし、残部を水素としたものをポリメチル化ベンズイミダゾールと呼ぶ。また、上記[化1]に示すポリベンズイミダゾール構造の置換基Rの全部をメチル基としたものをポリNメチルベンズイミダゾールと呼ぶ。更に、上記[化1]に示すポリベンズイミダゾール構造の置換基Rの全部を水素としたものをポリベンズイミダゾールと呼ぶ。   In the present specification, a part of the substituent R of the polybenzimidazole structure shown in the above [Chemical Formula 1] is a methyl group and the remainder is hydrogen is called polymethylated benzimidazole. Moreover, what made all the substituents R of the polybenzimidazole structure shown in the above [Chemical Formula 1] a methyl group is called poly N methylbenzimidazole. Furthermore, what made all the substituent R of the polybenzimidazole structure shown in the above [Chemical Formula 1] hydrogen is called polybenzimidazole.

以上説明したように、本発明に係るゲル電解質によれば、プロトン伝導性を高めることができ、また、このゲル電解質を燃料電池に使用することによって燃料電池の電流密度を高めることができ、高出力な燃料電池を構成することができる。   As described above, according to the gel electrolyte according to the present invention, the proton conductivity can be increased, and the current density of the fuel cell can be increased by using this gel electrolyte in the fuel cell. An output fuel cell can be configured.

次に、実施例1〜4及び比較例1〜2のゲル電解質と、各ゲル電解質を用いた燃料電池とを製造して、諸特性について評価した。   Next, the gel electrolytes of Examples 1 to 4 and Comparative Examples 1 to 2 and fuel cells using the gel electrolytes were manufactured, and various characteristics were evaluated.

[実施例1]
(ポリベンズイミダゾールの部分メチル化)
ポリベンズイミダゾールが濃度10質量%となるように調整したジメチルアセトアミド溶液を用意し、これをシュレンク管に30.08g計り取った。アルゴンガスフロー下、室温にて水素化リチウムの過剰量(0.24g)を少しずつ加えてから、80℃にて還流を行った。一度温度を室温まで下げた後、アイスバスを用いて反応溶液を0℃に冷却し、これにヨウ化メチルを1.56g計り取り、反応溶液にゆっくりと滴下した。滴下後、撹幹しながら徐々に室温まで戻して、60℃にて再び還流を行った。得られた反応溶液を室温まで下げた後、テトラヒドロフランヘ展開し粉末状の固形物を得た。さらにpHが7になるまで固形物を水洗してから真空乾燥して、目的とする部分メチル化ポリベンズイミダゾールを得た。メチル化率はNMRの積分比で確認したところ、約20モル%であった。
[Example 1]
(Partial methylation of polybenzimidazole)
A dimethylacetamide solution prepared so that the concentration of polybenzimidazole was 10% by mass was prepared, and 30.08 g thereof was weighed into a Schlenk tube. Under an argon gas flow, an excess amount of lithium hydride (0.24 g) was added little by little at room temperature, and then refluxed at 80 ° C. Once the temperature was lowered to room temperature, the reaction solution was cooled to 0 ° C. using an ice bath, 1.56 g of methyl iodide was weighed and slowly added dropwise to the reaction solution. After dropping, the mixture was gradually returned to room temperature while stirring and refluxed again at 60 ° C. The resulting reaction solution was cooled to room temperature and then developed into tetrahydrofuran to obtain a powdery solid. Further, the solid was washed with water until the pH became 7, and then vacuum-dried to obtain the desired partially methylated polybenzimidazole. The methylation rate was about 20 mol% when confirmed by the NMR integration ratio.

(ゲル電解質の作製)
合成した部分メチル化ポリベンズイミダゾールを再度ジメチルアセトアミドに10質量%濃度の溶液となるように溶解し、この溶液をガラス板上にドクターブレードを用いて塗膜し、表面が不透明になった時点で一度50℃にて乾燥を行い、さらに150℃にて乾燥を行った。その後、水槽にガラス板ごと浸漬し、膨潤した膜を剥ぎ取った。その後真空乾燥を60℃、0.1torrの条件で行い高分子膜を得た。膜厚は約30μmであった。
次に、得られた高分子膜を室温にて85%のりん酸に直接浸漬した。2時間経過の後、膜を引き上げ、表面のりん酸をキムワイプで拭き取った。このようにして実施例1のゲル電解質を製造した。
(Production of gel electrolyte)
The synthesized partially methylated polybenzimidazole is again dissolved in dimethylacetamide so as to be a 10% by mass solution, and this solution is coated on a glass plate using a doctor blade, and when the surface becomes opaque. It dried once at 50 degreeC and also dried at 150 degreeC. Then, the whole glass plate was immersed in the water tank, and the swollen film was peeled off. Thereafter, vacuum drying was performed at 60 ° C. and 0.1 torr to obtain a polymer film. The film thickness was about 30 μm.
Next, the obtained polymer film was directly immersed in 85% phosphoric acid at room temperature. After 2 hours, the membrane was pulled up and the surface phosphoric acid was wiped off with a Kimwipe. Thus, the gel electrolyte of Example 1 was manufactured.

[実施例2〜3]
ヨウ化メチルの仕込み比を変えてメチル化率を40モル%としたこと以外は上記実施例1と同様にして実施例2のゲル電解質を製造した。同様にして、メチル化率が60モル%の実施例3のゲル電解質を製造した。
[Examples 2-3]
The gel electrolyte of Example 2 was produced in the same manner as in Example 1 except that the methyl iodide charge ratio was changed to 40 mol%. Similarly, the gel electrolyte of Example 3 having a methylation rate of 60 mol% was produced.

[実施例4]
全メチル化したポリNメチルベンズイミダゾールを10質量%の濃度で含むジメチルアセトアミド溶液と、全くメチル化していないポリベンズイミダゾールを10質量%の濃度で含むジメチルアセトアミド溶液を、質量比1:1で混合した。この混合溶液を用いて実施例1と同様にしてガラス板上に塗布してから乾燥、水槽に浸積することにより高分子膜を得た。この高分子膜を実施例1と同様にしてリン酸に浸積することにより、実質的なメチル化率が50モル%である実施例4のゲル電解質を製造した。
[Example 4]
A dimethylacetamide solution containing 10% by mass of all-methylated poly-N methylbenzimidazole and a dimethylacetamide solution containing 10% by mass of polybenzimidazole not methylated at all are mixed at a mass ratio of 1: 1. did. Using this mixed solution, a polymer film was obtained by coating on a glass plate in the same manner as in Example 1, drying and immersing in a water bath. This polymer membrane was immersed in phosphoric acid in the same manner as in Example 1 to produce a gel electrolyte of Example 4 having a substantial methylation rate of 50 mol%.

また、EIectrochem社製の白金担持炭素を塗布したカーボンペーパーに、前述の高分子膜の10倍希釈溶液を薄く塗布した後、真空乾燥し電極とした。同電極を2枚用意し、電極間に実施例4のゲル電解質を挟むことにより、実施例4の燃料電池を製造した。   Further, a 10-fold diluted solution of the above-described polymer film was thinly applied to carbon paper coated with platinum-supported carbon manufactured by EI Electrochem, and then vacuum-dried to obtain an electrode. A fuel cell of Example 4 was manufactured by preparing two of the electrodes and sandwiching the gel electrolyte of Example 4 between the electrodes.

[比較例1]
ヨウ化メチルの仕込み比を変えてメチル化率を80モル%としたこと以外は上記実施例1と同様にして部分メチル化ポリベンズイミダゾールの高分子膜を得た。これを比較例1の試料とした。
[Comparative Example 1]
A polymer film of partially methylated polybenzimidazole was obtained in the same manner as in Example 1 except that the methyl iodide charge ratio was changed to 80 mol%. This was used as a sample of Comparative Example 1.

[比較例2]
メチル化率0%のポリベンズイミダゾールからなる比較例4のゲル電解質及び燃料電池を調製した。
[Comparative Example 2]
A gel electrolyte and a fuel cell of Comparative Example 4 made of polybenzimidazole having a methylation rate of 0% were prepared.

[評価]
(ゲル電解質の膨潤率及びプロトン伝導度)
実施例1〜3及び比較例1のゲル電解質について、リン酸に浸積する前の高分子膜の質量(M1)と、リン酸浸積後のゲル電解質の質量(M2)から、膨潤率を算出した。膨潤率(質量%)は、膨潤率(質量%)=M2/M1×100で求めた。リン酸への浸積時間と、膨潤率との関係を図1に示す。
[Evaluation]
(Swelling rate and proton conductivity of gel electrolyte)
For the gel electrolytes of Examples 1 to 3 and Comparative Example 1, the swelling rate was calculated from the mass (M1) of the polymer membrane before soaking in phosphoric acid and the mass (M2) of the gel electrolyte after soaking in phosphoric acid. Calculated. The swelling rate (mass%) was obtained by the swelling ratio (mass%) = M2 / M1 × 100. The relationship between the immersion time in phosphoric acid and the swelling rate is shown in FIG.

また、実施例1〜3及び比較例1のゲル電解質のプロトン伝導度を表1に示す。プロトン伝導度は、無加湿に近い条件でプロトン伝導度を測定するため、ゲル電解質を直径13mmの大きさの円形状に打ち抜き、これを白金ブロッキング電極で挟み込み、70℃にて1時間放置したのち、電極間の抵抗をACインピーダンス法にて測定した。   In addition, Table 1 shows the proton conductivity of the gel electrolytes of Examples 1 to 3 and Comparative Example 1. In order to measure proton conductivity under conditions close to non-humidification, the proton conductivity is punched into a circular shape having a diameter of 13 mm, sandwiched between platinum blocking electrodes, and left at 70 ° C. for 1 hour. The resistance between the electrodes was measured by the AC impedance method.

図1に示すように、それぞれ約30分を経過した時点で膨潤率は平衡状態に達した。70分経過時点で測定した平衡膨潤率は、実施例1が450%、実施例2が530%、実施例3が660%であった。メチル化率が高くなるほど、ゲル電解質の膨潤率が増大していることが分かる。一方、メチル化率が80モル%の比較例1では、リン酸に浸積してから70分経過後にはゲル電解質自体が溶解してしまった。   As shown in FIG. 1, the swelling rate reached an equilibrium state after about 30 minutes. The equilibrium swelling ratio measured at the time when 70 minutes had elapsed was 450% in Example 1, 530% in Example 2, and 660% in Example 3. It can be seen that the higher the methylation rate, the higher the swelling rate of the gel electrolyte. On the other hand, in Comparative Example 1 in which the methylation rate was 80 mol%, the gel electrolyte itself was dissolved after 70 minutes from the immersion in phosphoric acid.

次に、表1に示すように、実施例1〜3については、メチル化率が高くなるほどプロトン伝導度が向上することが分かる。一方、比較例1については、上述のように自己支持性の膜として得られなかったため、イオン伝導度は測定できなかった。   Next, as shown in Table 1, it can be seen that in Examples 1 to 3, the proton conductivity improves as the methylation rate increases. On the other hand, since the comparative example 1 was not obtained as a self-supporting film as described above, the ionic conductivity could not be measured.

同様に、実施例4のゲル電解質についても膨潤率とプロトン伝導度を測定したところ、70分経過後の平衡膨潤率が約600%であり、70℃におけるプロトン伝導度が4.00mS・cm−1であった。
更に、比較例2についても膨潤率とプロトン伝導度を測定したところ、平衡膨潤率が約400%であり、70℃におけるプロトン伝導度が1.90mS・cm−1であった。
Similarly, when the swelling rate and proton conductivity of the gel electrolyte of Example 4 were measured, the equilibrium swelling rate after 70 minutes was about 600%, and the proton conductivity at 70 ° C. was 4.00 mS · cm −. 1
Furthermore, when the swelling rate and proton conductivity of Comparative Example 2 were measured, the equilibrium swelling rate was about 400%, and the proton conductivity at 70 ° C. was 1.90 mS · cm −1 .

Figure 2005174587
Figure 2005174587

(燃料電池の性能)
実施例4及び比較例2の燃料電池について、電極とゲル電解質の積層体をカーボンセパレータで挟み込み、アノードガスに水素、カソードガスに酸素を用いて発電試験を行った。電池温度を130℃とし、水素及び酸素の供給量は100ml/分とし、供給ガスの加湿は特に行わなかった。また、実施例4の電極面積は7.84cmであり、比較例2の電極面積は10.24cmであった。図2に、燃料電池の電圧と電流密度との関係を示す。
(Fuel cell performance)
For the fuel cells of Example 4 and Comparative Example 2, a power generation test was conducted using a laminate of an electrode and a gel electrolyte sandwiched between carbon separators, using hydrogen as the anode gas and oxygen as the cathode gas. The battery temperature was 130 ° C., the supply amounts of hydrogen and oxygen were 100 ml / min, and the supply gas was not particularly humidified. Moreover, the electrode area of Example 4 was 7.84 cm < 2 >, and the electrode area of Comparative Example 2 was 10.24 cm < 2 >. FIG. 2 shows the relationship between the voltage and current density of the fuel cell.

図2に示すように、実施例4では電流密度が1.6A/cmになるまで発電可能であったのに対し、比較例2では電流密度が0.8A/cmまでしか発電できなかった。実施例4の燃料電池は、ゲル電解質のプロトン伝導度が高いために、燃料電池の内部抵抗が低く抑えられ、これにより高出力が得られたものと考えられる。 As shown in FIG. 2, in Example 4, power generation was possible until the current density reached 1.6 A / cm 2 , whereas in Comparative Example 2, power generation was possible only up to 0.8 A / cm 2. It was. In the fuel cell of Example 4, since the proton conductivity of the gel electrolyte is high, it is considered that the internal resistance of the fuel cell is kept low, thereby obtaining a high output.

図1は、実施例1〜3及び比較例1のゲル電解質の膨潤率とリン酸の浸積時間との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the swelling ratios of gel electrolytes of Examples 1 to 3 and Comparative Example 1 and the immersion time of phosphoric acid. 図2は、実施例4及び比較例2の燃料電池の電圧と電流密度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the voltage and current density of the fuel cells of Example 4 and Comparative Example 2.

Claims (6)

酸と、該酸に対して膨潤する高分子化合物とが混合されてなるゲル電解質であり、前記高分子化合物が、下記[化1]に示すポリベンズイミダゾール構造の置換基Rの少なくとも一部をメチル基とした部分メチル化ポリベンズイミダゾールであることを特徴するゲル電解質。
Figure 2005174587
ただし、上記[化1]中、RはCHまたはHであり、nは10〜100000である。
A gel electrolyte obtained by mixing an acid and a polymer compound that swells with respect to the acid, wherein the polymer compound has at least a part of the substituent R of the polybenzimidazole structure represented by the following [Chemical Formula 1]. A gel electrolyte characterized by being a partially methylated polybenzimidazole having a methyl group.
Figure 2005174587
In the above [Chemical Formula 1], R is CH 3 or H, and n is 10 to 100,000.
前記部分メチル化ポリベンズイミダゾールが、メチル化率80モル%未満のポリメチル化ベンズイミダゾールであることを特徴とする請求項1記載のゲル電解質。   The gel electrolyte according to claim 1, wherein the partially methylated polybenzimidazole is a polymethylated benzimidazole having a methylation rate of less than 80 mol%. 前記部分メチル化ポリベンズイミダゾールが、メチル化率100モル%のポリNメチルベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、前記ポリNメチルベンズイミダゾールの含有率が80モル%未満であることを特徴とする請求項1記載のゲル電解質。   The partially methylated polybenzimidazole is a mixture of polyN methylbenzimidazole having a methylation rate of 100 mol% and polybenzimidazole having a methylation rate of 0 mol%, and the content of the poly N methylbenzimidazole is 80%. The gel electrolyte according to claim 1, wherein the gel electrolyte is less than mol%. 前記部分メチル化ポリベンズイミダゾールが、メチル化率Xモル%のポリメチル化ベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、前記ポリメチル化ベンズイミダゾールの重量をAとし、前記ポリベンズイミダゾールの重量をBとしたとき、f(モル%)=AX/(A+B)で得られるfが80モル%未満であることを特徴とする請求項1に記載のゲル電解質。
ただし、上記Xは80モル%以上100モル%未満である。
The partially methylated polybenzimidazole comprises a mixture of a polymethylated benzimidazole having a methylation rate of X mol% and a polybenzimidazole having a methylation rate of 0 mol%, and the weight of the polymethylated benzimidazole is A, The gel electrolyte according to claim 1, wherein f obtained by f (mol%) = AX / (A + B) is less than 80 mol%, when the weight of polybenzimidazole is B.
However, said X is 80 mol% or more and less than 100 mol%.
一対の電極と、各電極の間に配置された電解質膜とから構成され、前記電解質膜の一部または全部が、請求項1ないし請求項4のいずれかに記載のゲル電解質とされ、且つ、前記電極の一部に前記ゲル電解質が含有されていることを特徴とする燃料電池。   It is comprised from a pair of electrode and the electrolyte membrane arrange | positioned between each electrode, A part or all of the said electrolyte membrane is made into the gel electrolyte in any one of Claims 1 thru | or 4, and A fuel cell, wherein the gel electrolyte is contained in a part of the electrode. 作動温度が100℃以上300℃以下の範囲であることを特徴とする請求項5に記載の燃料電池。

The fuel cell according to claim 5, wherein the operating temperature is in a range of 100 ° C. or more and 300 ° C. or less.

JP2003408903A 2003-12-08 2003-12-08 Gel electrolyte and fuel cell Expired - Fee Related JP5005160B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003408903A JP5005160B2 (en) 2003-12-08 2003-12-08 Gel electrolyte and fuel cell
KR1020040102207A KR100668316B1 (en) 2003-12-08 2004-12-07 Gel electrolyte and fuel cell employing the same
US11/006,651 US7115334B2 (en) 2003-12-08 2004-12-08 Gel electrolyte and fuel cell employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408903A JP5005160B2 (en) 2003-12-08 2003-12-08 Gel electrolyte and fuel cell

Publications (2)

Publication Number Publication Date
JP2005174587A true JP2005174587A (en) 2005-06-30
JP5005160B2 JP5005160B2 (en) 2012-08-22

Family

ID=34730453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408903A Expired - Fee Related JP5005160B2 (en) 2003-12-08 2003-12-08 Gel electrolyte and fuel cell

Country Status (2)

Country Link
JP (1) JP5005160B2 (en)
KR (1) KR100668316B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388035B2 (en) 2003-10-30 2008-06-17 Samsung Sdi Co., Ltd. Method for preparing poly(2,5-benzimidazole)
JP2009004367A (en) * 2007-06-21 2009-01-08 Clearedge Power Inc Fuel cell membrane, gel, and their manufacturing methods
JP2011524617A (en) * 2008-06-16 2011-09-01 エルコマックス メンブランズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas diffusion electrodes containing functionalized nanoparticles
EP3018746A1 (en) 2014-11-10 2016-05-11 Toyota Jidosha Kabushiki Kaisha Method of producing dispersion liquid of gelatinous electrolyte
CN116355255A (en) * 2023-06-01 2023-06-30 中石油深圳新能源研究院有限公司 Method and device for preparing anion exchange membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727212B1 (en) * 2005-03-16 2007-06-13 주식회사 엘지화학 Proton conducting membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927950A (en) * 1982-07-13 1984-02-14 シエブロン・リサ−チ・コンパニ− Electrically active heterocyclic polymer
JPH0973908A (en) * 1995-08-31 1997-03-18 Hoechst Celanese Corp Acid denatured polybenzimidazole fuel cell element
JP2001510931A (en) * 1997-07-16 2001-08-07 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー Process for producing polybenzimidazole pastes and gels for use in fuel cells
JP2003055457A (en) * 2001-08-22 2003-02-26 Toyobo Co Ltd Sulfonic acid-containing ion conductive polybenzimidazole
JP2005044550A (en) * 2003-07-23 2005-02-17 Toyota Motor Corp Proton exchange body, proton exchange film, and fuel cell using it
JP2007527443A (en) * 2003-07-11 2007-09-27 ペミアス ゲーエムベーハー Asymmetric polymer film, process for its production and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042968A (en) 1997-07-16 2000-03-28 Aventis Research & Technologies Gmbh & Co. Kg Process for producing polybenzimidazole fabrics for use in fuel
JP2003178772A (en) 2001-12-07 2003-06-27 Toyota Motor Corp Solid electrolyte material
JP3878521B2 (en) 2002-07-18 2007-02-07 本田技研工業株式会社 Proton conducting polymer solid electrolyte and method for producing the same
JP4790225B2 (en) * 2004-01-23 2011-10-12 三星エスディアイ株式会社 Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927950A (en) * 1982-07-13 1984-02-14 シエブロン・リサ−チ・コンパニ− Electrically active heterocyclic polymer
JPH0973908A (en) * 1995-08-31 1997-03-18 Hoechst Celanese Corp Acid denatured polybenzimidazole fuel cell element
JP2001510931A (en) * 1997-07-16 2001-08-07 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー Process for producing polybenzimidazole pastes and gels for use in fuel cells
JP2003055457A (en) * 2001-08-22 2003-02-26 Toyobo Co Ltd Sulfonic acid-containing ion conductive polybenzimidazole
JP2007527443A (en) * 2003-07-11 2007-09-27 ペミアス ゲーエムベーハー Asymmetric polymer film, process for its production and use thereof
JP2005044550A (en) * 2003-07-23 2005-02-17 Toyota Motor Corp Proton exchange body, proton exchange film, and fuel cell using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388035B2 (en) 2003-10-30 2008-06-17 Samsung Sdi Co., Ltd. Method for preparing poly(2,5-benzimidazole)
JP2009004367A (en) * 2007-06-21 2009-01-08 Clearedge Power Inc Fuel cell membrane, gel, and their manufacturing methods
JP2011524617A (en) * 2008-06-16 2011-09-01 エルコマックス メンブランズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas diffusion electrodes containing functionalized nanoparticles
EP3018746A1 (en) 2014-11-10 2016-05-11 Toyota Jidosha Kabushiki Kaisha Method of producing dispersion liquid of gelatinous electrolyte
CN105591140A (en) * 2014-11-10 2016-05-18 丰田自动车株式会社 Method of producing dispersion liquid of gelatinous electrolyte
US10122039B2 (en) 2014-11-10 2018-11-06 Toyota Jidosha Kabushiki Kaisha Method of producing dispersion liquid of gelatinous electrolyte
CN116355255A (en) * 2023-06-01 2023-06-30 中石油深圳新能源研究院有限公司 Method and device for preparing anion exchange membrane

Also Published As

Publication number Publication date
JP5005160B2 (en) 2012-08-22
KR100668316B1 (en) 2007-01-12
KR20050055598A (en) 2005-06-13

Similar Documents

Publication Publication Date Title
JPH11503262A (en) Proton conductive polymer
JP5151074B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly, and fuel cell using the same
US20080026276A1 (en) Proton-Conducting Material, Solid Polymer Electrolyte Membrane, and Fuel Cell
Lufrano et al. Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack
JP2006147165A (en) Solid polymer electrolyte membrane, its manufacturing method, and fuel cell using it
JP2011507979A (en) Sulfonyl grafted heterocyclic materials for proton conducting electrolytes
JP3748875B2 (en) PROTON CONDUCTIVE POLYMER, PROTON CONDUCTIVE POLYMER MEMBRANE CONTAINING THE POLYMER, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE POLYMER FILM
JP5005160B2 (en) Gel electrolyte and fuel cell
KR100506096B1 (en) Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
KR20130069760A (en) Electrolyte membrane for fuel cell, the method for preparing the same, and the fuel cell comprising the membrane
US7115334B2 (en) Gel electrolyte and fuel cell employing the same
JP4790225B2 (en) Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte
JP2007115426A (en) Fuel cell, proton-conductive electrolyte membrane therefor, and manufacturing method thereof
JP4821946B2 (en) Electrolyte membrane and method for producing the same
JP4583874B2 (en) Proton conducting solid polymer electrolyte membrane and fuel cell
JP4637488B2 (en) Gel electrolyte and fuel cell electrode and fuel cell
KR20100085388A (en) Polyphenylehter based copolymer, method for preparing the copolymer, polymer electrolyte membrane comprising the copolymer, and fuel cell comprising the membrane
KR100599719B1 (en) Polymer electrolyte for fuel cell and fuel cell system comprising same
KR101797160B1 (en) Polymer electrolyte membrane precursor composition for fuel cell, polymer electrolyte membrane for fuel cell, method for manufacturing the same, membrane electrode assembly and fuel cell system including the same
JP4992184B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
JP2009054559A (en) Polymer electrolyte membrane for fuel cell and fuel cell containing the same
JP2006147164A (en) Polymer electrolyte membrane, its manufacturing method, and fuel cell using it
KR100903613B1 (en) Polymer membrane for fuel cell and fuel cell system comprising same
JP2005251409A (en) Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees