JP4790225B2 - Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte - Google Patents

Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte Download PDF

Info

Publication number
JP4790225B2
JP4790225B2 JP2004015768A JP2004015768A JP4790225B2 JP 4790225 B2 JP4790225 B2 JP 4790225B2 JP 2004015768 A JP2004015768 A JP 2004015768A JP 2004015768 A JP2004015768 A JP 2004015768A JP 4790225 B2 JP4790225 B2 JP 4790225B2
Authority
JP
Japan
Prior art keywords
gel electrolyte
polymer
polybenzimidazole
crosslinkable polymer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004015768A
Other languages
Japanese (ja)
Other versions
JP2005209520A (en
Inventor
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2004015768A priority Critical patent/JP4790225B2/en
Priority to KR1020040073361A priority patent/KR100707158B1/en
Priority to US11/038,033 priority patent/US20050186480A1/en
Publication of JP2005209520A publication Critical patent/JP2005209520A/en
Application granted granted Critical
Publication of JP4790225B2 publication Critical patent/JP4790225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、ゲル電解質および燃料電池用電極および燃料電池並びにゲル電解質の製造方法に関するものであり、特に、機械的強度を向上させたゲル電解質に関するものである。   The present invention relates to a gel electrolyte, a fuel cell electrode, a fuel cell, and a method for producing a gel electrolyte, and more particularly to a gel electrolyte with improved mechanical strength.

燃料電池においては、発電効率、システム効率、構成部材の長期耐久性の観点から、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の低湿度の作動条件で良好なプロトン伝導性を長期安定的にしめす電解質膜が望まれている。従来の固体高分子電解質型燃料電池の開発において、上記要求に鑑みて検討されてきたが、パーフルオロカーボンスルホン酸膜では100℃以上300℃以下の作動温度下、相対湿度50%以下では十分なプロトン伝導性および出力を得る事が出来ない欠点があった。   In fuel cells, from the viewpoint of power generation efficiency, system efficiency, and long-term durability of components, good protons can be obtained at operating temperatures of about 100 ° C to 300 ° C under non-humidified or low humidity operating conditions of 50% or less. There is a demand for an electrolyte membrane that exhibits stable long-term conductivity. In the development of a conventional solid polymer electrolyte fuel cell, it has been studied in view of the above requirements, but perfluorocarbon sulfonic acid membranes have sufficient protons at an operating temperature of 100 ° C. to 300 ° C. and a relative humidity of 50% or less. There was a drawback that conductivity and output could not be obtained.

下記特許文献には、リン酸などの強酸をドープさせたポリベンズイミダゾールからなる固体電解質膜が開示されている。この種の固体電解質膜によれば、優れた耐酸化性及び耐熱性を有し、しかも200℃までの高温でも作動可能とされている。
特表平11−503262号公報
The following patent document discloses a solid electrolyte membrane made of polybenzimidazole doped with a strong acid such as phosphoric acid. According to this type of solid electrolyte membrane, it has excellent oxidation resistance and heat resistance, and can be operated even at a high temperature up to 200 ° C.
Japanese National Patent Publication No. 11-503262

しかし、前記リン酸をドープさせたポリベンズイミダゾールからなる固体電解質膜においても、燃料電池動作のために十分なプロトン伝導度を得るためには、ポリベンズイミダゾール重量に対して4〜5倍のリン酸を含有させる必要があるが、このようなリン酸含有量の大きな膜は、機械的強度が低く、また燃料電池に組み込んだ場合にガスのクロスオーバーを発生させるという問題があった。   However, even in the solid electrolyte membrane made of polybenzimidazole doped with phosphoric acid, in order to obtain sufficient proton conductivity for fuel cell operation, 4-5 times as much phosphorus as polybenzimidazole weight can be obtained. Although it is necessary to contain an acid, such a membrane having a large phosphoric acid content has a problem of low mechanical strength and gas crossover when incorporated in a fuel cell.

本発明は、上記事情に鑑みてなされたものであって、無加湿・高温の条件においても高いプロトン伝導性を示し、かつ機械的強度に優れたゲル電解質およびこのゲル電解質を用いた燃料電池用電極および燃料電池並びにゲル電解質の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and shows a gel electrolyte exhibiting high proton conductivity even under non-humidified and high temperature conditions and excellent in mechanical strength, and a fuel cell using this gel electrolyte. An object is to provide an electrode, a fuel cell, and a method for producing a gel electrolyte.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のゲル電解質は、酸と、該酸に対して膨潤する鎖状高分子と、該鎖状高分子に複合化された架橋性高分子とが少なくとも含有されてなることを特徴する。
前記の酸としてはリン酸を例示できる。またこのリン酸には、オルトリン酸及び縮合リン酸の両方が含まれる。
In order to achieve the above object, the present invention employs the following configuration.
The gel electrolyte of the present invention is characterized in that it contains at least an acid, a chain polymer that swells with respect to the acid, and a crosslinkable polymer complexed with the chain polymer.
Examples of the acid include phosphoric acid. The phosphoric acid includes both orthophosphoric acid and condensed phosphoric acid.

上記の構成によれば、鎖状高分子と架橋性高分子とが複合化されているので、鎖状高分子が酸によって膨潤した場合でも架橋性高分子が膨潤することがなく、ゲル電解質の機械的強度の低下を防止することができる。   According to the above configuration, since the chain polymer and the crosslinkable polymer are complexed, even when the chain polymer is swollen by an acid, the crosslinkable polymer is not swollen. A decrease in mechanical strength can be prevented.

また本発明のゲル電解質は、先に記載のゲル電解質であり、前記架橋性高分子が、電子線照射により架橋されてなることを特徴とする。   The gel electrolyte of the present invention is the gel electrolyte described above, wherein the crosslinkable polymer is crosslinked by electron beam irradiation.

上記の構成によれば、架橋性高分子が電子線照射により架橋されてなるので、不純物となる重合開始剤や架橋剤などの添加が不要となり、これら不純物によるプロトン伝導度の低下を防止することができる。   According to the above configuration, since the crosslinkable polymer is cross-linked by electron beam irradiation, it is unnecessary to add a polymerization initiator or a cross-linking agent that becomes impurities, and a decrease in proton conductivity due to these impurities is prevented. Can do.

また本発明のゲル電解質は、先に記載のゲル電解質であり、前記鎖状高分子がポリベンズイミダゾールまたはポリベンズイミダゾール誘導体であることを特徴とする。   The gel electrolyte of the present invention is the gel electrolyte described above, wherein the chain polymer is polybenzimidazole or a polybenzimidazole derivative.

上記の構成によれば、鎖状高分子によってリン酸等の酸を多く含浸させることができ、プロトン伝導度を高めることができる。   According to said structure, many acids, such as phosphoric acid, can be impregnated with a chain polymer, and proton conductivity can be improved.

また本発明のゲル電解質は、先に記載のゲル電解質であり、前記架橋性高分子がフッ素系高分子であることを特徴とする。   The gel electrolyte of the present invention is the gel electrolyte described above, wherein the crosslinkable polymer is a fluorine-based polymer.

上記の構成によれば、フッ素系高分子は熱的、化学的に安定であるので、ゲル電解質の耐久性を高めることができる。またゲル電解質の機械的強度を向上できる。   According to the above configuration, since the fluoropolymer is thermally and chemically stable, the durability of the gel electrolyte can be enhanced. Further, the mechanical strength of the gel electrolyte can be improved.

また本発明のゲル電解質は、先に記載のゲル電解質であり、前記鎖状高分子と前記フッ素系高分子の合計に対する前記フッ素系高分子の含有率が10質量%以上40質量%以下であることを特徴とする。   The gel electrolyte of the present invention is the gel electrolyte described above, and the content of the fluoropolymer relative to the total of the chain polymer and the fluoropolymer is 10% by mass or more and 40% by mass or less. It is characterized by that.

上記の構成によれば、フッ素系高分子の含有率が上記の範囲に設定されているので、機械的強度およびプロトン伝導度の向上を両立させることができる。   According to said structure, since the content rate of a fluorine-type polymer is set to said range, improvement of mechanical strength and proton conductivity can be made compatible.

次に本発明の燃料電池用電極は、電極物質と、先のいずれかに記載のゲル電解質とが少なくとも含有されてなることを特徴とする。   Next, the electrode for a fuel cell of the present invention is characterized in that it contains at least an electrode material and the gel electrolyte described in any of the above.

上記の構成によれば、プロトン伝導度に優れたゲル電解質が電極の一部として備えられているので、電極内部までプロトンが伝導されやすくなり、電極自体の内部抵抗を低減できる。また、ゲル電解質は機械的強度にも優れているので、電極の耐久性を高めることができる。   According to said structure, since the gel electrolyte excellent in proton conductivity is provided as a part of electrode, a proton becomes easy to be conducted to the inside of an electrode, and internal resistance of electrode itself can be reduced. Moreover, since gel electrolyte is excellent also in mechanical strength, durability of an electrode can be improved.

また本発明の燃料電池は、一対の電極と、各電極の間に配置された電解質膜とから構成され、前記電解質膜の一部または全部が、先のいずれかに記載のゲル電解質とされ、且つ、前記電極の一部に前記ゲル電解質が含有されていることを特徴とする。   The fuel cell of the present invention is composed of a pair of electrodes and an electrolyte membrane disposed between the electrodes, and a part or all of the electrolyte membrane is the gel electrolyte described in any of the above, In addition, the gel electrolyte is contained in a part of the electrode.

上記の構成によれば、プロトン伝導度に優れたゲル電解質をとして備え、更に電極の一部にもこのゲル電解質が備えられているので、燃料電池の内部インピーダンスを低減させることができ、電流密度を高めることができる。
また、ゲル電解質は機械的強度にも優れているので、燃料電池の耐久性を高めることができる。
According to the above configuration, the gel electrolyte having excellent proton conductivity is provided as the gel electrolyte, and the gel electrolyte is also provided in a part of the electrode, so that the internal impedance of the fuel cell can be reduced, and the current density Can be increased.
Moreover, since gel electrolyte is excellent also in mechanical strength, durability of a fuel cell can be improved.

次に、本発明のゲル電解質の製造方法は、鎖状高分子と未架橋状態の架橋性高分子とを混合してシートを成形し、該シートに電子線を照射して該電子線を前記シートの一面側から他面側に透過させることにより前記架橋性高分子を架橋させてから、酸を含浸させることを特徴とする。   Next, in the method for producing a gel electrolyte of the present invention, a chain polymer and an uncrosslinked crosslinkable polymer are mixed to form a sheet, and the electron beam is irradiated to the sheet to form the electron beam. The crosslinkable polymer is cross-linked by permeating from one side of the sheet to the other side, and then impregnated with an acid.

上記の構成によれば、鎖状高分子と架橋性高分子とを含むシートに対して電子線を透過させるので、シートの表面のみならず内部において架橋反応を起こすことができ、シート全体において鎖状高分子と架橋性高分子とが複合化されてなるゲル電解質を得ることができる。   According to the above configuration, since the electron beam is transmitted through the sheet containing the chain polymer and the crosslinkable polymer, a crosslinking reaction can be caused not only on the surface of the sheet but also inside thereof, and the chain is formed in the entire sheet. A gel electrolyte obtained by combining a glassy polymer and a crosslinkable polymer can be obtained.

また本発明のゲル電解質の製造方法は、先に記載のゲル電解質の製造方法であり、前記電子線の加速電圧を1MeV以上とすることを特徴とする。この構成により、シートの表面のみならず内部において架橋反応を起こすことができる。   Moreover, the manufacturing method of the gel electrolyte of this invention is a manufacturing method of the gel electrolyte as described above, The acceleration voltage of the said electron beam shall be 1 MeV or more, It is characterized by the above-mentioned. With this configuration, a crosslinking reaction can be caused not only on the surface of the sheet but also inside.

また本発明のゲル電解質の製造方法においては、前記鎖状高分子がポリベンズイミダゾールまたはポリベンズイミダゾール誘導体であることが好ましい。
また本発明のゲル電解質の製造方法においては、前記架橋性高分子がフッ素系高分子であることが好ましい。
In the method for producing a gel electrolyte of the present invention, the chain polymer is preferably polybenzimidazole or a polybenzimidazole derivative.
In the method for producing a gel electrolyte of the present invention, the crosslinkable polymer is preferably a fluoropolymer.

また本発明のゲル電解質の製造方法においては、前記鎖状高分子と前記フッ素系高分子の合計に対する前記フッ素系高分子の含有率が10質量%以上40質量%以下であることが好ましい。   Moreover, in the manufacturing method of the gel electrolyte of this invention, it is preferable that the content rate of the said fluoropolymer with respect to the sum total of the said chain polymer and the said fluoropolymer is 10 to 40 mass%.

本発明のゲル電解質によれば、無加湿・高温の条件においても高いプロトン伝導性を示し、かつ優れた機械的強度を示すことができる。   According to the gel electrolyte of the present invention, it is possible to exhibit high proton conductivity and excellent mechanical strength even under non-humidified and high temperature conditions.

本発明に係る燃料電池は、水素極(電極)と、酸素極(電極)と、水素極及び酸素極との間に配置されたゲル電解質とから構成され、100℃〜300℃の温度で作動するものである。本発明に係るゲル電解質はプロトン伝導性を有しており、水素極側で生じたプロトン(水素イオン)を酸素極側に伝導させるものである。ゲル電解質により伝導されたプロトンは、酸素極において酸素イオンと電気化学反応して水を生成するとともに、電気エネルギーを生じさせる。   The fuel cell according to the present invention includes a hydrogen electrode (electrode), an oxygen electrode (electrode), and a gel electrolyte disposed between the hydrogen electrode and the oxygen electrode, and operates at a temperature of 100 ° C to 300 ° C. To do. The gel electrolyte according to the present invention has proton conductivity, and conducts protons (hydrogen ions) generated on the hydrogen electrode side to the oxygen electrode side. Protons conducted by the gel electrolyte electrochemically react with oxygen ions at the oxygen electrode to generate water and generate electrical energy.

本発明に係る燃料電池においては、水素極及び酸素極にもゲル電解質が含有されている。即ち、水素極及び酸素極には、活性炭等の電極物質と、電極物質を固化成形するためのバインダとが含有されており、このバインダの一部または全部が本発明に係るゲル電解質とされている。この構成によって、プロトンが電極内部と電極外部との間で伝導されやすくなり、電極の内部抵抗が低減される。   In the fuel cell according to the present invention, the hydrogen electrolyte and the oxygen electrode also contain a gel electrolyte. That is, the hydrogen electrode and the oxygen electrode contain an electrode material such as activated carbon and a binder for solidifying and forming the electrode material, and a part or all of this binder is the gel electrolyte according to the present invention. Yes. With this configuration, protons are easily conducted between the inside and outside of the electrode, and the internal resistance of the electrode is reduced.

次に、本発明に係るゲル電解質は、酸と、この酸に対して膨潤する鎖状高分子と、鎖状高分子に複合化された架橋性高分子とが少なくとも含有されてなるものである。前記の酸としてはリン酸を例示できる。またこのリン酸には、オルトリン酸及び縮合リン酸の両方が含まれる。また、鎖状高分子は、ポリベンズイミダゾールまたはポリベンズイミダゾール誘導体のいずれかであり、更に架橋性高分子は、フッ素系高分子である。また、「複合化」とは、鎖状高分子が架橋性高分子と混合して、鎖状高分子が架橋性高分子の架橋構造中に取り込まれた状態を指す。   Next, the gel electrolyte according to the present invention contains at least an acid, a chain polymer that swells with respect to the acid, and a crosslinkable polymer complexed with the chain polymer. . Examples of the acid include phosphoric acid. The phosphoric acid includes both orthophosphoric acid and condensed phosphoric acid. The chain polymer is either polybenzimidazole or a polybenzimidazole derivative, and the crosslinkable polymer is a fluorine-based polymer. “Composite” refers to a state in which a chain polymer is mixed with a crosslinkable polymer and the chain polymer is incorporated into the crosslinkable structure of the crosslinkable polymer.

鎖状高分子を構成するポリベンズイミダゾールまたはポリベンズイミダゾール誘導体は、耐熱性に優れ、多量のリン酸を包含できる点で燃料電池の電解質として好適に用いられるものであるが、リン酸の含有率が高まるにつれて相対的に機械的強度が低下する。本発明では、ポリベンズイミダゾールまたはポリベンズイミダゾール誘導体が、2次元または3次元架橋された架橋性高分子(フッ素系高分子)と複合化されているので、ゲル電解質自体の機械的強度の低下を防止することができる。また、ポリベンズイミダゾールまたはポリベンズイミダゾール誘導体は、フッ素系高分子と複合化された場合でもその分子構造が大きく変化することがないので、リン酸の含有率が低下することがない。   The polybenzimidazole or polybenzimidazole derivative constituting the chain polymer is excellent in heat resistance and can be used as a fuel cell electrolyte because it can contain a large amount of phosphoric acid. As the value increases, the mechanical strength relatively decreases. In the present invention, polybenzimidazole or a polybenzimidazole derivative is combined with a two-dimensional or three-dimensionally crosslinked polymer (fluorine polymer), so that the mechanical strength of the gel electrolyte itself is reduced. Can be prevented. In addition, even when polybenzimidazole or polybenzimidazole derivatives are combined with a fluorine-based polymer, the molecular structure thereof does not change greatly, so that the phosphoric acid content does not decrease.

ゲル電解質を構成するポリベンズイミダゾールは、下記[化1]に示す構造を有する鎖状高分子である。尚、下記[化1]中、nは10〜100000である。nが10未満では機械的強度が低下するので好ましくなく、nが100000を超えると溶媒などへの溶解性が著しく低下し、ゲル電解質を所望の形状に成形するのが困難になる。 Polybenzimidazole constituting the gel electrolyte is a chain polymer having a structure shown in the following [Chemical Formula 1]. In the following [Chemical Formula 1], n 1 is 10 to 100,000. If n 1 is less than 10, the mechanical strength is lowered, which is not preferable. If n 1 exceeds 100,000, the solubility in a solvent or the like is remarkably lowered, and it becomes difficult to form the gel electrolyte into a desired shape.

Figure 0004790225
Figure 0004790225

また、ポリベンズイミダゾール誘導体は、例えば、下記[化2]に示すポリベンズイミダゾール構造の置換基Rの少なくとも一部をメチル基とした部分メチル化ポリベンズイミダゾールを例示できる。下記[化2]中、RはCHまたはHであり、nは10〜100000である。nが10未満では機械的強度が低下するので好ましくなく、nが100000を超えると溶媒などへの溶解性が著しく低下し、ゲル電解質を所望の形状に成形するのが困難になる。部分メチル化ポリベンズイミダゾールは、メチル化の程度が高いほどリン酸を多く取り込んで膨潤(ゲル化)する。これによりプロトン伝導性をより高めることができる。 Examples of the polybenzimidazole derivative include partially methylated polybenzimidazole in which at least a part of the substituent R of the polybenzimidazole structure shown in the following [Chemical Formula 2] is a methyl group. In the following [Chemical Formula 2], R is CH 3 or H, and n 2 is 10 to 100,000. If n 2 is less than 10, the mechanical strength is lowered, which is not preferable. If n 2 exceeds 100,000, the solubility in a solvent or the like is remarkably lowered, and it becomes difficult to form the gel electrolyte into a desired shape. Partially methylated polybenzimidazole takes in more phosphoric acid and swells (gelates) as the degree of methylation increases. Thereby, proton conductivity can be further increased.

Figure 0004790225
Figure 0004790225

なお、上記の部分メチル化ポリベンズイミダゾールとしては、下記(1)〜(3)のうちのいずれかを用いることができる。
(1)メチル化率を5モル%以上80モル%未満、好ましくは20モル%以上80モル%未満に調整したポリメチル化ベンズイミダゾール。
(2)メチル化率100モル%のポリNメチルベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、ポリNメチルベンズイミダゾールの含有率が5モル%以上80モル%未満、好ましくは20モル%以上80モル%未満としたもの。
(3)メチル化率Xモル%のポリメチル化ベンズイミダゾールと、メチル化率0モル%のポリベンズイミダゾールとの混合物からなり、ポリメチル化ベンズイミダゾールの重量をAとし、前記ポリベンズイミダゾールの重量をBとしたとき、f(モル%)=AX/(A+B)で得られるfが5モル%以上80モル%未満、好ましくは20モル%以上80モル%未満であるもの。ただし、上記Xは80モル%以上100モル%未満である。
In addition, as said partially methylated polybenzimidazole, any of following (1)-(3) can be used.
(1) A polymethylated benzimidazole having a methylation rate adjusted to 5 mol% or more and less than 80 mol%, preferably 20 mol% or more and less than 80 mol%.
(2) A mixture of poly N methylbenzimidazole with a methylation rate of 100 mol% and polybenzimidazole with a methylation rate of 0 mol%, and the content of poly N methylbenzimidazole is 5 mol% or more and less than 80 mol% , Preferably 20 mol% or more and less than 80 mol%.
(3) A mixture of a polymethylated benzimidazole with a methylation rate of X mol% and a polybenzimidazole with a methylation rate of 0 mol%, where the weight of the polymethylated benzimidazole is A and the weight of the polybenzimidazole is B , F obtained by f (mol%) = AX / (A + B) is 5 mol% or more and less than 80 mol%, preferably 20 mol% or more and less than 80 mol%. However, said X is 80 mol% or more and less than 100 mol%.

上記(1)〜(3)によれば、部分メチル化ポリベンズイミダゾールのメチル化率をいずれも5モル%以上80モル%未満、好ましくは20モル%以上が80モル%未満にすることができる。すなわち、(1)ではメチル化するための反応の程度を調整することでメチル化率を調整することができる。また、(2)ではポリNメチルベンズイミダゾールの含有率を調整することでメチル化率を実質的に調整できる。更に(3)ではfの値を調整することでメチル化率を実質的に調整できる。
部分メチル化ポリベンズイミダゾールのメチル化率が5モル%未満であると、リン酸を十分に取り込むことができなってプロトン伝導度が不十分になるので(低下してしまうので)好ましくなく、メチル化率が80モル%以上になるとリン酸を取り込みすぎて部分メチル化ポリベンズイミダゾールが溶解してしまうので好ましくない。
According to the above (1) to (3), the methylation rate of the partially methylated polybenzimidazole can be 5 mol% or more and less than 80 mol%, preferably 20 mol% or more can be less than 80 mol%. . That is, in (1), the methylation rate can be adjusted by adjusting the degree of reaction for methylation. In (2), the methylation rate can be substantially adjusted by adjusting the content of poly-N methylbenzimidazole. Furthermore, in (3), the methylation rate can be substantially adjusted by adjusting the value of f.
When the methylation rate of the partially methylated polybenzimidazole is less than 5 mol%, phosphoric acid can be sufficiently taken in and proton conductivity becomes insufficient (because it decreases). When the conversion ratio is 80 mol% or more, phosphoric acid is excessively incorporated and the partially methylated polybenzimidazole is dissolved, which is not preferable.

尚、本明細書では、上記[化2]に示すポリベンズイミダゾール構造の置換基Rの一部をメチル基とし、残部を水素としたものをポリメチル化ベンズイミダゾールと呼ぶ。また、上記[化2]に示すポリベンズイミダゾール構造の置換基Rの全部をメチル基としたものをポリNメチルベンズイミダゾールと呼ぶ。更に、上記[化2]に示すポリベンズイミダゾール構造の置換基Rの全部を水素としたものをポリベンズイミダゾールと呼ぶ。   In the present specification, a part of the substituent R of the polybenzimidazole structure shown in the above [Chemical Formula 2] as a methyl group and the rest as hydrogen is called polymethylated benzimidazole. Moreover, what made all the substituent R of the polybenzimidazole structure shown in the above [Chemical Formula 2] a methyl group is called poly N methylbenzimidazole. Furthermore, what made all the substituents R of the polybenzimidazole structure shown in the above [Chemical Formula 2] hydrogen is called polybenzimidazole.

次に、架橋性高分子は、一般的に熱硬化性樹脂などで示されるような二次元・三次元構造を有する高分子を指す。本発明では、架橋性高分子としてフッ素系高分子を用いることができる。フッ素系高分子は、熱的、化学的に安定な点で燃料電池の電解質として好適である。またフッ素系高分子はリン酸に対して膨潤しないので、ゲル電解質の機械的強度を向上させることができる。   Next, the crosslinkable polymer refers to a polymer having a two-dimensional or three-dimensional structure as generally indicated by a thermosetting resin or the like. In the present invention, a fluorine-based polymer can be used as the crosslinkable polymer. The fluorine-based polymer is suitable as an electrolyte for a fuel cell because it is thermally and chemically stable. Further, since the fluoropolymer does not swell with respect to phosphoric acid, the mechanical strength of the gel electrolyte can be improved.

フッ素系高分子の具体例としては、有機溶媒に溶解可能なパーフルオロポリマーが好ましく、例えば、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリフッ化ビニリデンとポリヘキサフルオロプロピレンの共重合体、ナフィオン(登録商標)などのパーフルオロスルフォン酸系高分子などを例示することができる。これらのフッ素系高分子は、電子線照射により容易に架橋される。   As a specific example of the fluorine-based polymer, a perfluoropolymer that is soluble in an organic solvent is preferable. For example, polyvinylidene fluoride, polyhexafluoropropylene, a copolymer of polyvinylidene fluoride and polyhexafluoropropylene, Nafion (registered trademark) ) And the like. These fluoropolymers are easily cross-linked by electron beam irradiation.

鎖状高分子と架橋性高分子の合計に対する前記架橋性高分子の含有率は、10質量%以上40質量%以下の範囲が好ましく、15質量%以上25質量%以下の範囲がより好ましい。架橋性高分子の含有率が10質量%未満であると、鎖状高分子の含有率が相対的に高くなり、ゲル電解質の機械的強度が低下してしまうので好ましくなく、含有率が40質量%を超えると、鎖状高分子の含有率が相対的に低下し、リン酸の包含量が低下してプロトン伝導度が低下してしまうので好ましくない。   The content of the crosslinkable polymer with respect to the total of the chain polymer and the crosslinkable polymer is preferably in the range of 10% by mass to 40% by mass, and more preferably in the range of 15% by mass to 25% by mass. If the content of the crosslinkable polymer is less than 10% by mass, the content of the chain polymer is relatively high, and the mechanical strength of the gel electrolyte is lowered. If it exceeds%, the content of the chain polymer is relatively lowered, the inclusion amount of phosphoric acid is lowered, and the proton conductivity is lowered.

上記のゲル電解質によれば、鎖状高分子と架橋性高分子とが複合化されているので、鎖状高分子が酸によって膨潤した場合でも、架橋性高分子が膨潤することがなく、ゲル電解質の機械的強度の低下を防止することができる。   According to the gel electrolyte, since the chain polymer and the crosslinkable polymer are complexed, the crosslinkable polymer does not swell even when the chain polymer is swollen by an acid. A decrease in the mechanical strength of the electrolyte can be prevented.

次に、本実施形態のゲル電解質の製造方法について説明する。この製造方法は、鎖状高分子と未架橋状態の架橋性高分子を混合し、次に電子線を照射して架橋性高分子を架橋させ、更にリン酸を含浸させる、というものである。   Next, the manufacturing method of the gel electrolyte of this embodiment is demonstrated. In this production method, a chain polymer and an uncrosslinked crosslinkable polymer are mixed, then irradiated with an electron beam to crosslink the crosslinkable polymer, and further impregnated with phosphoric acid.

鎖状高分子と架橋性高分子を混合するには、鎖状高分子および架橋性高分子の双方を溶解可能な溶媒を用意し、この溶媒中に鎖状高分子および架橋性高分子を溶解させて混合液とし、この混合液をドクターブレード法等によりガラス板等に塗布してから溶媒を除去する。次に、塗布膜を水に浸漬させて膨潤させてから乾燥させる。このようにして、シート状の混合樹脂シートが得られる。ここで用いられる溶媒としては、例えば、ジメチルアセトアミド、Nメチル2ピロリジノンなどを用いることができる。また、鎖状高分子としては上述のポリベンズイミダゾールまたはポリベンズイミダゾール誘導体を使用できる。更に架橋性高分子としては上述のフッ素系高分子を使用できる。鎖状高分子と架橋性高分子の配合率は、鎖状高分子と架橋性高分子の合計に対する架橋性高分子の含有率が10質量%以上40質量%以下となるようにすることが好ましく、15質量%以上25質量%以下となるようにすることがより好ましい。   To mix a chain polymer and a crosslinkable polymer, prepare a solvent that can dissolve both the chain polymer and the crosslinkable polymer, and dissolve the chain polymer and the crosslinkable polymer in this solvent. The mixture is applied to a glass plate or the like by the doctor blade method or the like, and then the solvent is removed. Next, the coated film is immersed in water to swell and then dried. In this way, a sheet-like mixed resin sheet is obtained. As the solvent used here, for example, dimethylacetamide, N-methyl-2-pyrrolidinone and the like can be used. As the chain polymer, the above-described polybenzimidazole or polybenzimidazole derivative can be used. Further, as the crosslinkable polymer, the above-mentioned fluorine-based polymer can be used. The blending ratio of the chain polymer and the crosslinkable polymer is preferably such that the content of the crosslinkable polymer with respect to the total of the chain polymer and the crosslinkable polymer is 10% by mass or more and 40% by mass or less. More preferably, the content is 15% by mass or more and 25% by mass or less.

次に、混合樹脂シートに電子線を照射する。電子線の照射は、混合樹脂シートの一面側に電子銃を配置し、この電子銃から電子線を照射して電子線をシートの一面側から他面側に透過させることにより行う。電子線がシートを透過したか否かは、シート近傍に線量計を配置することで確認できる。このように電子線を透過させることで、電子線をシート内部に十分に照射させることができる。この電子線の照射により、シートに含まれる未架橋状態の架橋性高分子が架橋して3次元構造の架橋構造体が形成される。   Next, the mixed resin sheet is irradiated with an electron beam. The electron beam is irradiated by placing an electron gun on one side of the mixed resin sheet and irradiating the electron beam from the electron gun to transmit the electron beam from one side of the sheet to the other side. Whether or not the electron beam has passed through the sheet can be confirmed by placing a dosimeter in the vicinity of the sheet. By transmitting the electron beam in this way, the electron beam can be sufficiently irradiated inside the sheet. By irradiation with this electron beam, the uncrosslinked crosslinkable polymer contained in the sheet is crosslinked to form a crosslinked structure having a three-dimensional structure.

なお、鎖状高分子を構成するポリベンズイミダゾールまたはポリベンズイミダゾール誘導体は、上記[化1]または上記[化2]に示すように剛直な分子構造を有しているため、電子線が照射された場合でもほとんど架橋することがない。これにより、電子線が照射されてもポリベンズイミダゾール等はほとんど変化することがなく、リン酸に対する膨潤性が変化することがない。   The polybenzimidazole or polybenzimidazole derivative constituting the chain polymer has a rigid molecular structure as shown in the above [Chemical Formula 1] or the above [Chemical Formula 2], and therefore is irradiated with an electron beam. Even if it is, it hardly crosslinks. Thereby, even if an electron beam is irradiated, polybenzimidazole etc. hardly change, and the swelling property with respect to phosphoric acid does not change.

照射する電子線は、加速電圧が1MeV以上5MeV以下の範囲が好ましく、2MeV以上3MeV以下の範囲がより好ましい。また、照射線量は、20kGy以上120kGy以下の範囲が好ましく、40kGy以上80kGy以下の範囲がより好ましい。加速電圧が1MeV未満だと、電子線をシートに透過させることができなくなるので好ましくなく、加速電圧が5MeVを超えると、照射装置が大型化するために製造上好ましいとは言えない。また、照射線量が20kGy未満では十分に架橋反応が進行しないなので好ましくなく、照射線量が120kGyを超えると高分子が崩壊する恐れが高くなるので好ましくない。   The electron beam to be irradiated preferably has an acceleration voltage in the range of 1 MeV to 5 MeV, and more preferably in the range of 2 MeV to 3 MeV. The irradiation dose is preferably in the range of 20 kGy to 120 kGy, and more preferably in the range of 40 kGy to 80 kGy. If the acceleration voltage is less than 1 MeV, the electron beam cannot be transmitted through the sheet, which is not preferable. If the acceleration voltage exceeds 5 MeV, the irradiation apparatus is enlarged, which is not preferable for manufacturing. Further, if the irradiation dose is less than 20 kGy, the crosslinking reaction does not proceed sufficiently, which is not preferable. If the irradiation dose exceeds 120 kGy, the polymer is likely to collapse, which is not preferable.

次に、架橋反応させたシートをリン酸に直接浸漬して鎖状高分子を膨潤させる。このようにして本発明に係るゲル電解質が得られる。   Next, the crosslinked polymer is directly immersed in phosphoric acid to swell the chain polymer. Thus, the gel electrolyte according to the present invention is obtained.

上記の製造方法によれば、鎖状高分子と架橋性高分子とを含むシートに対して電子線を透過させるので、シートの表面のみならず内部において架橋反応を起こすことができ、シート全体において鎖状高分子と架橋性高分子とが複合化されてなるゲル電解質を得ることができる。   According to the above production method, since the electron beam is transmitted through the sheet containing the chain polymer and the crosslinkable polymer, a crosslinking reaction can be caused not only on the surface of the sheet but also in the inside thereof. A gel electrolyte in which a chain polymer and a crosslinkable polymer are combined can be obtained.

以下、実施例により本発明を更に詳細に説明するが、本発明はこの実施例の内容に限定されるものではない。
(混合樹脂シートの調製)
ポリベンズイミダゾールを10質量%となるようにジメチルアセトアミドに溶解させて溶液を調製した。別途、フッ素系高分子としてナフィオン(登録商標)をイオン交換によってナトリウム化して乾燥させたものを同様にジメチルアセトアミドに溶解させて10質量%の溶液を調製した。次に、ポリベンズイミダゾール溶液およびナフィオン(登録商標)溶液を混合して混合液とした。このとき、ポリベンズイミダゾールとナフィオン(登録商標)との合計に対するナフィオン(登録商標)の含有率が0、10、20、30、40、50質量%となるように両方の溶液の配合比を調整した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the content of this Example.
(Preparation of mixed resin sheet)
A solution was prepared by dissolving polybenzimidazole in dimethylacetamide to a concentration of 10% by mass. Separately, Nafion (registered trademark) as a fluoropolymer was sodium-treated by ion exchange and dried, and was similarly dissolved in dimethylacetamide to prepare a 10% by mass solution. Next, a polybenzimidazole solution and a Nafion (registered trademark) solution were mixed to obtain a mixed solution. At this time, the blending ratio of both solutions was adjusted so that the content of Nafion (registered trademark) with respect to the total of polybenzimidazole and Nafion (registered trademark) would be 0, 10, 20, 30, 40, 50% by mass. did.

次に、上記混合液をガラス板上にドクターブレードを用いて塗膜し、塗膜表面が不透明になった時点で一度50℃にて乾燥を行い、さらに150℃にて乾燥を行った。次に水中にガラス板ごと塗膜を浸漬し、膨潤した膜を剥ぎ取った。更にナフィオン(登録商標)が混合されている膜については、60℃の湯煎にて大量の1規定硫酸に24時間浸漬し、イオン交換を行なった。イオン交換後、純水で膜の洗浄を繰り返した後、真空乾燥を6℃・0.1torrにて行った。このようにして混合樹脂シートを製造した。なお、シートの膜厚は約35μmであった。   Next, the mixed solution was coated on a glass plate using a doctor blade, and once the coating surface became opaque, drying was performed once at 50 ° C. and further drying at 150 ° C. Next, the coating film was immersed in water together with the glass plate, and the swollen film was peeled off. Further, the membrane mixed with Nafion (registered trademark) was immersed in a large amount of 1 N sulfuric acid in a hot water bath at 60 ° C. for 24 hours for ion exchange. After ion exchange, the membrane was repeatedly washed with pure water, and then vacuum-dried at 6 ° C. and 0.1 torr. In this way, a mixed resin sheet was produced. The film thickness of the sheet was about 35 μm.

(電子線照射)
混合樹脂シートをそれぞれアルミラミネートフィルム中に密閉した。次に電子線照射装置を用いて、加速電圧2MeVにて、照射線量80kGyとなるように電子線の照射を行なった。
(Electron beam irradiation)
Each of the mixed resin sheets was sealed in an aluminum laminate film. Next, using an electron beam irradiation apparatus, an electron beam was irradiated at an acceleration voltage of 2 MeV so that an irradiation dose was 80 kGy.

(リン酸の浸漬)
電子線照射後の混合樹脂シートを40℃に予め加熱した85%リン酸に直接浸漬した。2時問経過の後、シートを引き上げ、シート表面のリン酸をワイピングクロスで拭き取った。このようにして、実施例1〜実施例4および比較例1〜比較例4のゲル電解質を製造した。各ゲル電解質の組成等を表1に示す。
(Immersion of phosphoric acid)
The mixed resin sheet after electron beam irradiation was directly immersed in 85% phosphoric acid preheated to 40 ° C. After 2 hours, the sheet was pulled up and the phosphoric acid on the sheet surface was wiped off with a wiping cloth. Thus, the gel electrolytes of Examples 1 to 4 and Comparative Examples 1 to 4 were produced. Table 1 shows the composition and the like of each gel electrolyte.

実施例1〜実施例4および比較例1〜比較例4のゲル電解質について、リン酸に対する膨潤率、強リン酸に対する溶解性、引張試験並びに燃料電池に組み込んだ際の電圧降下を調べた。結果を表1および図1に示す。   For the gel electrolytes of Examples 1 to 4 and Comparative Examples 1 to 4, the swelling rate with respect to phosphoric acid, the solubility with respect to strong phosphoric acid, the tensile test, and the voltage drop when incorporated in a fuel cell were examined. The results are shown in Table 1 and FIG.

リン酸に対する膨潤率は、ゲル電解質をリン酸中に6時間浸漬させた後のゲル電解質の重量と、リン酸を含まない状態での膜の重量から、次式により求めた。
膨潤率(%)=((膨潤後のゲル電解質の重量)/(リン酸膨潤前の膜の乾燥重量))×100
The swelling ratio with respect to phosphoric acid was determined from the weight of the gel electrolyte after immersing the gel electrolyte in phosphoric acid for 6 hours and the weight of the membrane without containing phosphoric acid by the following formula.
Swelling rate (%) = ((weight of gel electrolyte after swelling) / (dry weight of membrane before phosphoric acid swelling)) × 100

強リン酸に対する溶解性は、48時間室温にて、強リン酸中にゲル電解質を浸漬して溶解性を調査した。   The solubility in strong phosphoric acid was investigated by immersing the gel electrolyte in strong phosphoric acid at room temperature for 48 hours.

また、引張試験は、セイコー電子社製EXSTAR6100TMA/SSを用いて、30℃等温乾燥窒素雰囲気中で走査速度100mN/分として40〜1000mNまで引張荷重を印加することにより、TMA曲線を測定することにより行った。試験片は幅3.5mm×長さ20mmとし、試験片が5mm伸びた点を終点とし、荷重に対する試験片の伸びを観察した。   In addition, the tensile test is performed by measuring a TMA curve by applying a tensile load from 40 to 1000 mN as a scanning speed of 100 mN / min in an isothermal dry nitrogen atmosphere at 30 ° C. using an EXSTAR6100TMA / SS manufactured by Seiko Denshi. went. The test piece was 3.5 mm wide × 20 mm long, the end point of the test piece was extended by 5 mm, and the elongation of the test piece relative to the load was observed.

また、電圧降下は、Electorochem社製の自金担持炭素を塗布したカーボンペーパーに10倍に希釈した前述の混合溶液を薄く塗布した後、真空乾燥し電極とした。同電極2枚でゲル電解質を挟むことにより試験用セルを製造した。次に、試験用セルをカーボンセパレータで挟み込み、アノードガスに水素、カソードガスに酸素を用いて開回路電圧の測定を行った。組み立て直後の開回路電圧を確認した後、供給ガスを流したまま24時間保持し、膜の破損などで発生するクロスオーバーにより低下した電位差を評価した。なお、電池温度は150℃とし、供給ガスの加湿は特に行わなかった。   The voltage drop was applied to a carbon paper coated with self-supported carbon made by Electorochem by thinly applying the above mixed solution diluted 10 times, and then vacuum-dried to obtain an electrode. A test cell was produced by sandwiching the gel electrolyte between the two electrodes. Next, the test cell was sandwiched between carbon separators, and the open circuit voltage was measured using hydrogen as the anode gas and oxygen as the cathode gas. After confirming the open circuit voltage immediately after the assembly, the supply gas was kept flowing for 24 hours, and the potential difference decreased due to the crossover generated due to the breakage of the membrane was evaluated. The battery temperature was 150 ° C., and the supply gas was not particularly humidified.

Figure 0004790225
Figure 0004790225

実施例1〜4のリン酸に対する膨潤率については、約3時間を経過した時点で重量変化はそれぞれ平衡状態に達し、6時間経過時点で測定した平衡膨潤率がそれぞれ400,380,370,350%であった(表1)。一方、比較例1〜3については、400%以上の膨潤率を示していた。ナフィオン(登録商標)の含有率が10%である実施例1と比較例3を対比すると膨潤率に大きな差はない。これにより、電子線照射の有無による膨潤率の影響は小さいと思われる。また実施例1〜4ではナフィオン(登録商標)の含有率が増えるに従って膨潤率が低下していることがわかる。   About the swelling rate with respect to the phosphoric acid of Examples 1-4, a weight change will each reach an equilibrium state when about 3 hours passed, and the equilibrium swelling rate measured when 6 hours passed is 400, 380, 370, 350, respectively. % (Table 1). On the other hand, about Comparative Examples 1-3, the swelling rate of 400% or more was shown. When Example 1 having a Nafion (registered trademark) content of 10% is compared with Comparative Example 3, there is no significant difference in the swelling rate. Thereby, the influence of the swelling rate by the presence or absence of electron beam irradiation seems to be small. Moreover, in Examples 1-4, it turns out that the swelling rate falls as the content rate of Nafion (trademark) increases.

また、実施例1〜4の強リン酸に対する溶解性については、表1に示すように、それぞれ部分的に可溶性を示したが、ナフィオン(登録商標)の含有率が増えるに従って不溶性が強くなることがわかる。一方、電子線を照射していない比較例3では強リン酸に対してポリベンズイミダゾールが完全に溶解することがわかる。   Moreover, about the solubility with respect to strong phosphoric acid of Examples 1-4, as shown in Table 1, each showed partial solubility, but insolubility becomes strong as the content rate of Nafion (registered trademark) increases. I understand. On the other hand, in Comparative Example 3 where no electron beam was irradiated, it can be seen that polybenzimidazole is completely dissolved in strong phosphoric acid.

更に図1に示す引張強度について、ナフィオン(登録商標)をそれぞれ10質量%含む実施例1および比較例3を比較すると、電子線照射の有無によって引張荷重に対する伸びに若干差が出ていることがわかる。
また、図1の実施例1〜4に示すように、ナフィオン(登録商標)の含有率が増えるに従って、引張荷重に対する伸びが小さくなることがわかる。
Further, with respect to the tensile strength shown in FIG. 1, when Example 1 and Comparative Example 3 each containing 10% by mass of Nafion (registered trademark) are compared, there is a slight difference in elongation with respect to tensile load depending on the presence or absence of electron beam irradiation. Recognize.
Moreover, as shown in Examples 1 to 4 in FIG. 1, it can be seen that the elongation with respect to the tensile load decreases as the content of Nafion (registered trademark) increases.

このように、電子線を照射した実施例1〜4は、電子線を照射していない比較例3と比べて、強リン酸に対して部分的に溶解し、引張荷重に対する伸びも小さくなっていることから、架橋反応により架橋構造が形成され、機械的強度が向上したと推測できる。   Thus, Examples 1-4 which irradiated the electron beam melt | dissolved partially with respect to strong phosphoric acid compared with the comparative example 3 which has not irradiated the electron beam, and the elongation with respect to a tensile load also becomes small. Therefore, it can be presumed that a cross-linked structure was formed by the cross-linking reaction and the mechanical strength was improved.

次に、実施例1〜4のゲル電解質について、燃料電池に組み込んで電圧降下を調べたところ、表1に示すように、比較例と比べて、24時間経過後の開回路電圧に著しい低下は認められなかった。これにより実施例1〜4のゲル電解質は、耐久性にも優れていることがわかる。   Next, when the voltage drop of the gel electrolytes of Examples 1 to 4 was incorporated into a fuel cell and examined, as shown in Table 1, the open circuit voltage after 24 hours was significantly reduced as compared with the comparative example. I was not able to admit. Thereby, it turns out that the gel electrolyte of Examples 1-4 is excellent also in durability.

次に、比較例1については、リン酸に対する膨潤度が約450%と高い。しかしながら図1から明らかなように機械的強度が不十分であるために、燃料電池に組み込んで試験した結果(表1)においても、24時問経過後の開回路電圧の低下が実施例1〜4と比較して大きく、耐久性が劣ることがわかる。   Next, in Comparative Example 1, the degree of swelling with respect to phosphoric acid is as high as about 450%. However, as is apparent from FIG. 1, the mechanical strength is insufficient, so that in the test results incorporated in the fuel cell (Table 1), the decrease in the open circuit voltage after 24 hours has passed. It is large compared with 4, and it turns out that durability is inferior.

また比較例2については、強リン酸に対して完全に溶解していることがわかる。これにより、ポリベンズイミダゾールに電子線照射を行ってもポリベンズイミダゾール自体は架橋しないことがわかる。その他の特性は殆ど比較例1と変わらなかった。   Moreover, about the comparative example 2, it turns out that it melt | dissolves completely with respect to strong phosphoric acid. Thereby, even if it irradiates an electron beam to polybenzimidazole, it turns out that polybenzimidazole itself is not bridge | crosslinked. Other characteristics were almost the same as those of Comparative Example 1.

また、比較例3については、図1に示すように、比較例1と比較すると引張強度が向上していることが確認できるものの、実施例1と比較すると前述したように引張強度が低いことが確認された。   Further, as shown in FIG. 1, it can be confirmed that the tensile strength of Comparative Example 3 is improved as compared with Comparative Example 1, but the tensile strength is low as described above compared with Example 1. confirmed.

更に比較例4については、フッ素系高分子の含有率が50質量%と大きいため、成膜性が非常に悪く、目視観察によっても表面に凹凸が観察されるため平滑性を必要とする燃料電池の電解質には使用不可能であった。   Further, in Comparative Example 4, since the content of the fluorine-based polymer is as large as 50% by mass, the film formability is very poor, and unevenness is observed on the surface even by visual observation, and thus a fuel cell that requires smoothness. It was impossible to use for the electrolyte.

実施例1〜4および比較例1、3のTMA曲線を示すグラフ。The graph which shows the TMA curve of Examples 1-4 and Comparative Examples 1 and 3. FIG.

Claims (10)

リン酸と、該リン酸に対して膨潤する鎖状高分子と、該鎖状高分子と複合化された架橋性高分子とが少なくとも含有されてなり、
前記架橋性高分子がパーフルオロスルフォン酸系高分子であり、
前記鎖状高分子がポリベンズイミダゾールまたはポリベンズイミダゾール誘導体であることを特徴するゲル電解質。
And phosphoric acid, and the chain polymer to swell against the phosphoric acid, the chain-like polymer and Ri and decryption crosslinked polymer is Na is contained at least,
The crosslinkable polymer is a perfluorosulfonic acid polymer,
A gel electrolyte, wherein the chain polymer is polybenzimidazole or a polybenzimidazole derivative .
前記架橋性高分子が、電子線照射により架橋されてなることを特徴とする請求項1に記載のゲル電解質。   The gel electrolyte according to claim 1, wherein the crosslinkable polymer is crosslinked by electron beam irradiation. 前記架橋性高分子は、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリフッ化ビニリデンとポリヘキサフルオロプロピレンの共重合体、及びナフィオン(登録商標)からなる群から選択される一つ以上であることを特徴とする請求項1または2に記載のゲル電解質。 The crosslinkable polymer is one or more selected from the group consisting of polyvinylidene fluoride, polyhexafluoropropylene, a copolymer of polyvinylidene fluoride and polyhexafluoropropylene, and Nafion (registered trademark). The gel electrolyte according to claim 1 or 2 . 前記鎖状高分子と前記架橋性高分子の合計に対する前記架橋性高分子の含有率が10質量%以上40質量%以下であることを特徴とする請求項1から3の何れか一項に記載のゲル電解質。 According to any one of claims 1 to 3, wherein the content of the crosslinkable polymer to the total of the crosslinkable polymer and the chain polymer is not less than 10 wt% 40 wt% or less Gel electrolyte. 電極物質と、請求項1ないし請求項のいずれかに記載のゲル電解質とが少なくとも含有されてなることを特徴とする燃料電池用電極。 An electrode for a fuel cell, comprising at least an electrode material and the gel electrolyte according to any one of claims 1 to 4 . 一対の電極と、各電極の間に配置された電解質膜とから構成され、前記電解質膜の一部または全部が、請求項1ないし請求項のいずれかに記載のゲル電解質とされ、且つ、前記電極の一部に前記ゲル電解質が含有されていることを特徴とする燃料電池。 It is comprised from a pair of electrode and the electrolyte membrane arrange | positioned between each electrode, A part or all of the said electrolyte membrane is made into the gel electrolyte in any one of Claims 1 thru | or 4 , and A fuel cell, wherein the gel electrolyte is contained in a part of the electrode. 鎖状高分子と未架橋状態の架橋性高分子とを混合してシートを成形し、該シートに電子線を照射して該電子線を前記シートの一面側から他面側に透過させることにより前記架橋性高分子を架橋させてから、リン酸を含浸させることを特徴とするゲル電解質の製造方法であって、
前記鎖状高分子がポリベンズイミダゾールまたはポリベンズイミダゾール誘導体であり、
前記架橋性高分子がパーフルオロスルフォン酸系高分子である製造方法。
By mixing a chain polymer and an uncrosslinked crosslinkable polymer to form a sheet, irradiating the sheet with an electron beam and transmitting the electron beam from one side of the sheet to the other side A method for producing a gel electrolyte, wherein the crosslinkable polymer is crosslinked and then impregnated with phosphoric acid ,
The chain polymer is polybenzimidazole or a polybenzimidazole derivative;
A production method wherein the crosslinkable polymer is a perfluorosulfonic acid polymer.
前記電子線の加速電圧を1MeV以上とすることを特徴とする請求項に記載のゲル電解質の製造方法。 The method for producing a gel electrolyte according to claim 7 , wherein an acceleration voltage of the electron beam is 1 MeV or more. 前記架橋性高分子は、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリフッ化ビニリデンとポリヘキサフルオロプロピレンの共重合体、及びナフィオン(登録商標)からなる群から選択される一つ以上であることを特徴とする請求項7または8に記載のゲル電解質の製造方法。 The crosslinkable polymer is one or more selected from the group consisting of polyvinylidene fluoride, polyhexafluoropropylene, a copolymer of polyvinylidene fluoride and polyhexafluoropropylene, and Nafion (registered trademark). A method for producing a gel electrolyte according to claim 7 or 8 . 前記鎖状高分子と前記架橋性高分子の合計に対する前記架橋性高分子の含有率が10質量%以上40質量%以下であることを特徴とする請求項7から9の何れか一項に記載のゲル電解質の製造方法。 10. The content of the crosslinkable polymer with respect to the total of the chain polymer and the crosslinkable polymer is 10% by mass or more and 40% by mass or less, according to claim 7. A method for producing a gel electrolyte.
JP2004015768A 2004-01-23 2004-01-23 Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte Expired - Fee Related JP4790225B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004015768A JP4790225B2 (en) 2004-01-23 2004-01-23 Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte
KR1020040073361A KR100707158B1 (en) 2004-01-23 2004-09-14 Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing the gel electrolyte
US11/038,033 US20050186480A1 (en) 2004-01-23 2005-01-21 Gel electrolyte, electrode for fuel cell, fuel cell, and method of producing the gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015768A JP4790225B2 (en) 2004-01-23 2004-01-23 Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte

Publications (2)

Publication Number Publication Date
JP2005209520A JP2005209520A (en) 2005-08-04
JP4790225B2 true JP4790225B2 (en) 2011-10-12

Family

ID=34901139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015768A Expired - Fee Related JP4790225B2 (en) 2004-01-23 2004-01-23 Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte

Country Status (2)

Country Link
JP (1) JP4790225B2 (en)
KR (1) KR100707158B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570745B1 (en) 2003-10-30 2006-04-12 삼성에스디아이 주식회사 A method for preparing poly2,5-benzimidazole
JP5005160B2 (en) * 2003-12-08 2012-08-22 三星エスディアイ株式会社 Gel electrolyte and fuel cell
JP4290616B2 (en) 2004-07-21 2009-07-08 三洋電機株式会社 Fuel cell electrolyte, membrane electrode assembly, fuel cell stack, fuel cell system, and fuel cell electrolyte manufacturing method
JP5264070B2 (en) * 2006-12-19 2013-08-14 三星エスディアイ株式会社 Solid polymer electrolyte for fuel cell, method for producing solid polymer electrolyte for fuel cell, and fuel cell
JP5122837B2 (en) * 2007-03-01 2013-01-16 シャープ株式会社 Fuel cells and electronics
JP5280047B2 (en) * 2007-12-27 2013-09-04 三星エスディアイ株式会社 POLYMER ELECTROLYTE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY, AND FUEL CELL
KR100964238B1 (en) * 2008-01-03 2010-06-16 (주)엘켐텍 Polymer electrolyte membrane, water electrolysis apparatus, fuel cell and fuel cell system containing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999223B8 (en) 1997-07-24 2006-01-18 Kureha Corporation Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery
KR100278539B1 (en) 1998-06-03 2001-01-15 김순택 UV Curable Polymer Gel Electrolyte
JP3847003B2 (en) 1998-07-07 2006-11-15 日東電工株式会社 Gel composition and use thereof
JP2000319531A (en) 1999-05-14 2000-11-21 Matsushita Electric Ind Co Ltd High molecular electrolyte and its production
US20020127474A1 (en) * 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
JP3974371B2 (en) 2001-10-19 2007-09-12 シロウマサイエンス株式会社 Polymer gel electrolyte composition and method for producing the same
JP4096227B2 (en) * 2002-05-08 2008-06-04 東洋紡績株式会社 Composition comprising an acid group-containing polybenzimidazole compound and an acid group-containing polymer, an ion conductive membrane, an adhesive, a composite, and a fuel cell
JP4549007B2 (en) * 2002-05-08 2010-09-22 東洋紡績株式会社 Composition containing an acid group-containing polybenzimidazole compound and an acid compound, an ion conductive membrane, an adhesive, a composite, and a fuel cell

Also Published As

Publication number Publication date
KR20050076802A (en) 2005-07-28
JP2005209520A (en) 2005-08-04
KR100707158B1 (en) 2007-04-13

Similar Documents

Publication Publication Date Title
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
Lu et al. Polytetrafluoroethylene (PTFE) reinforced poly (ethersulphone)–poly (vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
WO2011046233A1 (en) Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP7359139B2 (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for manufacturing the laminated electrolyte membrane
JP2010538416A (en) Proton conducting polymer electrolyte membranes used in polymer fuel cells
KR20130060358A (en) Fluorine-based polymer electrolyte membrane
KR101569719B1 (en) Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof
KR101764068B1 (en) Method of preparing polymer electrolyte membrane using perfluorinated ionomer nanodispersion and polymer electrolyte membrane prepared by the same method
WO2009125636A1 (en) Proton conductive polymer electrolyte membrane, process for producing the proton conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton conductive polymer electrolyte membrane
Moorthy et al. Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells-A versatile review
JP5189394B2 (en) Polymer electrolyte membrane
US20050186480A1 (en) Gel electrolyte, electrode for fuel cell, fuel cell, and method of producing the gel electrolyte
JP4790225B2 (en) Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte
JP2006190627A (en) Solid polyelectrolyte membrane having reinforcement material
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JP2015153573A (en) Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP5005160B2 (en) Gel electrolyte and fuel cell
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
JP2009217950A (en) Ion conductive polymer electrolyte membrane, and manufacturing method thereof
KR102463011B1 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell including same, and fuel cell including same
JP2014234445A (en) Polymer electrolyte composition, as well as polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same
JP6415807B2 (en) Perfluorosulfonic acid polymer-azole blend membrane, production method thereof, and solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees