KR20100079139A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR20100079139A
KR20100079139A KR1020080137554A KR20080137554A KR20100079139A KR 20100079139 A KR20100079139 A KR 20100079139A KR 1020080137554 A KR1020080137554 A KR 1020080137554A KR 20080137554 A KR20080137554 A KR 20080137554A KR 20100079139 A KR20100079139 A KR 20100079139A
Authority
KR
South Korea
Prior art keywords
semiconductor substrate
boron
semiconductor device
hydrogen
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020080137554A
Other languages
Korean (ko)
Inventor
김학동
Original Assignee
주식회사 동부하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동부하이텍 filed Critical 주식회사 동부하이텍
Priority to KR1020080137554A priority Critical patent/KR20100079139A/en
Publication of KR20100079139A publication Critical patent/KR20100079139A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • H10D30/0227Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 반도체 소자의 제조 방법에 관한 것으로서, 반도체 기판에 소자분리막을 형성하는 단계와, 소자분리막이 형성된 반도체 기판에 게이트 전극을 형성하는 단계와, 게이트 전극이 형성된 반도체 기판을 수소 플라즈마로 트리트먼트시키는 단계와, 수소 플라즈마로 트리트먼트를 마친 반도체 기판 상에 LDD(lightly doped drain) 영역을 형성하기 위한 보론(boron) 이온을 주입하는 단계를 포함한다. 따라서, 본 발명은 PMOS 영역에서 보론(boron)의 활성화 비율(activation rate)을 증가시키기 위하여 보론을 이온 주입하기 전에 플라즈마 하이드로겐 트리트먼트(plasma hydrogen treatment)를 실시하여 이후 어닐링(annealing) 등으로 수소에 의해 낮은 온도에서도 활성화(activation)를 증가시키며, 낮은 온도로 인해 보론의 확산(diffusion)을 억제하도록 하는 효과를 가진다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, the method comprising: forming an isolation layer on a semiconductor substrate, forming a gate electrode on the semiconductor substrate on which the isolation layer is formed, and treating the semiconductor substrate on which the gate electrode is formed with hydrogen plasma. And implanting boron ions to form a lightly doped drain (LDD) region on the semiconductor substrate after treatment with hydrogen plasma. Accordingly, the present invention performs plasma hydrogen treatment before ion implantation of boron in order to increase the activation rate of boron in the PMOS region, and then hydrogen by annealing or the like. By increasing the activation (activation) even at low temperatures, due to the low temperature has the effect of suppressing the diffusion (diffusion) of boron.

Description

반도체 소자의 제조 방법{METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE} Method for manufacturing a semiconductor device {METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE}

본 발명은 PMOS 영역에서 보론(boron)의 활성화 비율(activation rate)을 증가시키기 위한 반도체 소자의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a semiconductor device for increasing the activation rate of boron in the PMOS region.

일반적으로, 반도체 소자를 제조 시 집적도가 증가함에 따라 소오스/드레인의 접합 깊이(junction depth)가 적어지도록 요구되고 있다.In general, as the degree of integration increases in manufacturing semiconductor devices, it is required to reduce the junction depth of the source / drain.

종래의 반도체 소자를 제조하는 방법을 첨부된 도면을 참조하여 설명하면 다음과 같다.Referring to the accompanying drawings, a method for manufacturing a conventional semiconductor device is as follows.

도 1a 내지 도 1c에 도시된 종래의 기술에 따른 반도체 소자의 제조 방법은 PMOS 트랜지스터에서 보론(boron) 이온 주입 공정을 설명하기 위한 도면으로서, 도 1a에 도시된 바와 같이, 반도체 기판(11)에 STI(shallow trench isolation)의 소자분리막(12)을 형성한다.A method of manufacturing a semiconductor device according to the related art shown in FIGS. 1A to 1C is a view for explaining a boron ion implantation process in a PMOS transistor, and as shown in FIG. A device isolation film 12 having shallow trench isolation (STI) is formed.

소자분리막(12)이 형성된 반도체 기판(11) 전면에 게이트 산화막과 폴리실리콘층을 순차적으로 증착한 다음, 이를 사진 공정 및 식각 공정에 의해 패터닝하여 도 1b에 도시된 바와 같이, 반도체 기판(11) 상에 게이트 산화막(13)과 게이트 전 극(14)을 형성한다. The gate oxide film and the polysilicon layer are sequentially deposited on the entire surface of the semiconductor substrate 11 on which the device isolation film 12 is formed, and then patterned by a photo process and an etching process, as shown in FIG. 1B, to provide the semiconductor substrate 11. The gate oxide film 13 and the gate electrode 14 are formed on it.

도 1c에 도시된 바와 같이, 게이트 전극(14)을 형성하면, 반도체 기판(11)의 결과물 상에 포토레지스트를 도포한 다음 사진 공정에 의해 LDD(lightly doped drain) 영역을 정의하는 포토레지스트 패턴(15)을 형성하고, 포토레지스트 패턴(15)을 마스크로 하여 보론(boron)을 이온 주입함으로써 LDD(lightly doped drain) 영역(미도시)을 형성한다.As illustrated in FIG. 1C, when the gate electrode 14 is formed, a photoresist pattern is formed on the resultant of the semiconductor substrate 11 and then defines a lightly doped drain (LDD) region by a photolithography process. 15), and a lightly doped drain (LDD) region (not shown) is formed by ion implanting boron with the photoresist pattern 15 as a mask.

상기한 바와 같이, 종래의 기술에 따른 반도체 소자의 제조 방법은, 반도체 소자를 형성 시 직접도가 증가함에 따라 접합(junction)이 얕은 접합(shallow junction)을 요구하게 되었으며, 특히, PMOS에서 소오스(source) 영역과 드레인(drain) 영역의 깊이와 폭이 감소되어 액티브(active) 영역의 저항이 증가하는 문제점을 가지고 있었다.As described above, the method of manufacturing a semiconductor device according to the related art requires that the junction requires a shallow junction as the degree of directivity increases when forming the semiconductor device. The depth and width of the source region and the drain region have been reduced, thereby increasing the resistance of the active region.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, PMOS 영역에서 보론(boron)의 활성화 비율(activation rate)을 증가시키기 위하여 보론을 이온 주입하기 전에 플라즈마 하이드로겐 트리트먼트(plasma hydrogen treatment)를 실시하여 이후 어닐링(annealing) 등으로 수소에 의해 낮은 온도에서도 활성화(activation)를 증가시키며, 낮은 온도로 인해 보론의 확산(diffusion)을 억제하도록 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and after performing plasma hydrogen treatment (plasma hydrogen treatment) before ion implantation of boron in order to increase the activation rate of boron in the PMOS region Annealing or the like increases activation at low temperatures by hydrogen, and the low temperature prevents the diffusion of boron.

본 발명에 따른 반도체 소자의 제조 방법는, 반도체 소자의 제조 방법에 있어서, 반도체 기판에 소자분리막을 형성하는 단계와, 소자분리막이 형성된 반도체 기판에 게이트 전극을 형성하는 단계와, 게이트 전극이 형성된 반도체 기판을 수소 플라즈마로 트리트먼트시키는 단계와, 수소 플라즈마로 트리트먼트를 마친 반도체 기판 상에 LDD(lightly doped drain) 영역을 형성하기 위한 보론(boron) 이온을 주입하는 단계를 포함한다.In the method for manufacturing a semiconductor device according to the present invention, in the method for manufacturing a semiconductor device, forming a device isolation film on the semiconductor substrate, forming a gate electrode on the semiconductor substrate on which the device isolation film is formed, and a semiconductor substrate on which the gate electrode is formed Treatment with hydrogen plasma, and implanting boron ions for forming a lightly doped drain (LDD) region on the semiconductor substrate after treatment with hydrogen plasma.

본 발명은, PMOS 영역에서 보론(boron)의 활성화 비율(activation rate)을 증가시키기 위하여 보론을 이온 주입하기 전에 플라즈마 하이드로겐 트리트먼트(plasma hydrogen treatment)를 실시하여 이후 어닐링(annealing) 등으로 수소에 의해 낮은 온도에서도 활성화(activation)를 증가시키며, 낮은 온도로 인해 보론의 확산(diffusion)을 억제하도록 하는 효과를 가진다.The present invention provides plasma hydrogen treatment prior to ion implantation of boron in order to increase the activation rate of boron in the PMOS region, and then to hydrogen by annealing or the like. By increasing the activation (activation) even at low temperatures, due to the low temperature has the effect of suppressing the diffusion (diffusion) of boron.

이하, 본 발명의 일 실시예를 첨부된 도면을 참조하여 상세히 설명하기로 한다. 아울러 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.

도 2a에 도시된 바와 같이, 반도체 기판(101)에 STI(shallow trench isolation)의 소자분리막(102)을 형성한 후, 웰(well) 공정을 진행한다. 이후, 반도체 기판(101)의 결과물 전면에 게이트 산화막과 폴리실리콘총을 순차적으로 증착 에 의해 적층한 다음, 이를 사진 공정 및 식각 공정에 의해 패터닝하여 도 2b에 도시된 바와 같이, 게이트 산화막(103)과 게이트 전극(104)을 형성한다. As shown in FIG. 2A, after forming the isolation layer 102 of shallow trench isolation (STI) on the semiconductor substrate 101, a well process is performed. Thereafter, the gate oxide film and the polysilicon gun are sequentially deposited on the entire surface of the resultant of the semiconductor substrate 101 by vapor deposition, and then patterned by a photo process and an etching process, as shown in FIG. 2B, to form the gate oxide film 103. And the gate electrode 104 is formed.

반도체 기판(101)에 게이트 전극(104)이 형성되면, 도 2c에 도시된 바와 같이, 게이트 전극(104)이 형성된 반도체 기판(101)을 수소 플라즈마(hydrogen plasma)로 트리트먼트(treatment)한다. 즉, 반도체 기판(101)이 위치하는 프로세스 챔버(process chamber) 내부에 수소(H2)를 공급함으로써 수소 분위기에서 플라즈마를 발생시킴으로서 반도체 기판(101)에 대한 트리트먼트를 실시한다.When the gate electrode 104 is formed on the semiconductor substrate 101, as illustrated in FIG. 2C, the semiconductor substrate 101 on which the gate electrode 104 is formed is treated with hydrogen plasma. That is, the plasma substrate is generated in a hydrogen atmosphere by supplying hydrogen (H 2 ) into a process chamber in which the semiconductor substrate 101 is located, thereby performing treatment on the semiconductor substrate 101.

한편, 수소 플라즈마로 트리트먼트시키는 단계 이후 수소 플라즈마 트리트먼트를 마친 반도체 기판(101)을 어닐링(annealing)하는 단계를 실시할 수 있다.After the treatment with hydrogen plasma, annealing of the semiconductor substrate 101 after the hydrogen plasma treatment may be performed.

반도체 기판을 어닐링하는 단계는 일례로 500∼700℃로 10∼30초 동안 실시할 수 있다. 이러한 반도체 기판(101)의 어닐링에 의해 수소는 아웃 디퓨젼(out-diffusion)됨으로써 반도체 기판(101)의 표면 아래(subsurface) 영역에 미세한 공간들(vacancies)을 형성시킨다.The annealing of the semiconductor substrate may be performed at 500 to 700 ° C. for 10 to 30 seconds, for example. By annealing of the semiconductor substrate 101, hydrogen is out-diffused to form fine vacancies in the subsurface region of the semiconductor substrate 101.

수소 플라즈마 트리트먼트와 어닐링을 마친 반도체 기판(101)에 LDD(lightly doped drain) 영역을 형성하기 위하여 도 2d에 도시된 바와 같이, 보론(boron) 이온을 주입한다. 이러한 보론 이온 주입을 위하여 반도체 기판(101) 전면에 포토레지스트를 도포한 다음, 사진 공정에 의하여 LDD(lightly doped drain) 영역을 정의하는 포토레지스트 패턴(105)을 형성하고, 포토레지스트 패턴(105)을 마스크로 하여 보론 이온을 주입함으로써 LDD 영역(미도시)을 형성한다. 이러한 보론 이온 주 입 공정은 일례로 1∼10keV의 이온 주입 에너지와 4∼8×1014ions/cm2의 도즈량으로 실시될 수 있다.Boron ions are implanted to form a lightly doped drain (LDD) region in the semiconductor substrate 101 after the hydrogen plasma treatment and annealing. After the photoresist is applied to the entire surface of the semiconductor substrate 101 for the boron ion implantation, a photoresist pattern 105 defining a lightly doped drain (LDD) region is formed by a photolithography process, and the photoresist pattern 105 is formed. As a mask, boron ions are implanted to form an LDD region (not shown). The boron ion INJECT step can for example be carried out with an ion dose of the implantation energy and 4~8 × 10 14 ions / cm 2 of 1~10keV.

한편, 보론 이온의 주입을 마치면, 이온 주입된 불순물을 활성화하기 위하여 임플란트 어닐링(implant annealing) 공정을 실시할 수 있고, 이러한 임플란트 어닐링 공정은 일례로 500∼700℃로 10∼30초 동안 실시할 수 있으며, 이를 마치면, 이후 로직 프로세스를 진행하여 반도체 소자를 완성하게 된다.On the other hand, after the implantation of the boron ions, an implant annealing process may be performed to activate the implanted impurities, such an implant annealing process may be carried out for 10 to 30 seconds at, for example, 500 ~ 700 ℃. After this, the logic process is completed to complete the semiconductor device.

이상과 같은 본 발명의 일 실시예에 따르면, PMOS 영역에서 보론(boron)의 활성화 비율(activation rate)을 증가시키기 위하여 보론을 이온 주입하기 전에 플라즈마 하이드로겐 트리트먼트(plasma hydrogen treatment)를 실시하여 이후 어닐링(annealing) 등으로 수소에 의해 낮은 온도에서도 활성화(activation)를 증가시키며, 낮은 온도로 인해 보론의 확산(diffusion)을 억제하도록 한다.According to one embodiment of the present invention as described above, in order to increase the activation rate of boron in the PMOS region, plasma hydrogen treatment is performed before ion implantation of boron. Annealing or the like increases activation at low temperatures by hydrogen, and the low temperature prevents the diffusion of boron.

이상에서와 같이, 본 발명의 상세한 설명에서 구체적인 실시예에 관해 설명하였으나, 본 발명의 기술이 당업자에 의하여 용이하게 변형 실시될 가능성이 자명하며, 이러한 변형된 실시예들은 본 발명의 특허청구범위에 기재된 기술사상에 포함된다할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. And will be included in the described technical idea.

도 1a 내지 도 1c는 종래의 기술에 따른 반도체 소자의 제조 방법을 순차적으로 도시한 도면이고,1A to 1C are diagrams sequentially illustrating a method of manufacturing a semiconductor device according to the related art.

도 2a 내지 도 2d는 본 발명의 일 실시예에 따른 반도체 소자의 제조 방법을 순차적으로 도시한 도면이다.2A through 2D are diagrams sequentially illustrating a method of manufacturing a semiconductor device according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

101 : 반도체 기판 102 : 소자분리막101 semiconductor substrate 102 device isolation film

103 : 게이트 산화막 104 : 게이트 전극103 gate oxide film 104 gate electrode

105 : 포토레지스트 패턴105: photoresist pattern

Claims (4)

반도체 소자의 제조 방법에 있어서,In the manufacturing method of a semiconductor element, 반도체 기판에 소자분리막을 형성하는 단계와,Forming an isolation layer on the semiconductor substrate; 상기 소자분리막이 형성된 반도체 기판에 게이트 전극을 형성하는 단계와,Forming a gate electrode on the semiconductor substrate on which the device isolation film is formed; 상기 게이트 전극이 형성된 반도체 기판을 수소 플라즈마로 트리트먼트시키는 단계와,Treating the semiconductor substrate on which the gate electrode is formed with hydrogen plasma; 상기 수소 플라즈마로 트리트먼트를 마친 반도체 기판 상에 LDD(lightly doped drain) 영역을 형성하기 위한 보론(boron) 이온을 주입하는 단계Implanting boron ions to form a lightly doped drain (LDD) region on the semiconductor substrate treated with the hydrogen plasma; 를 포함하는 반도체 소자의 제조 방법.Method for manufacturing a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 수소 플라즈마로 트리트먼트시키는 단계 이후 상기 반도체 기판을 어닐링하는 단계Annealing the semiconductor substrate after treatment with the hydrogen plasma 를 더 포함하는 반도체 소자의 제조 방법.Method of manufacturing a semiconductor device further comprising. 제 2 항에 있어서,The method of claim 2, 상기 반도체 기판을 어닐링하는 단계는,Annealing the semiconductor substrate, 500∼700℃로 10∼30초 동안 실시하는 반도체 소자의 제조 방법.A method for manufacturing a semiconductor device, which is performed at 500 to 700 ° C. for 10 to 30 seconds. 제 1 항에 있어서,The method of claim 1, 상기 보론 이온을 주입하는 단계는,Injecting the boron ions, 1∼10keV의 이온 주입 에너지와 4∼8×1014ions/cm2의 도즈량으로 보론 이온을 주입하는 반도체 소자의 제조 방법.The method of producing a semiconductor device for implanting boron ions into the ion implantation energy and a dose amount of 4~8 × 10 14 ions / cm 2 of 1~10keV.
KR1020080137554A 2008-12-30 2008-12-30 Method for manufacturing semiconductor device Withdrawn KR20100079139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080137554A KR20100079139A (en) 2008-12-30 2008-12-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080137554A KR20100079139A (en) 2008-12-30 2008-12-30 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
KR20100079139A true KR20100079139A (en) 2010-07-08

Family

ID=42640278

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080137554A Withdrawn KR20100079139A (en) 2008-12-30 2008-12-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR20100079139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577076B2 (en) 2014-05-07 2017-02-21 Samsung Electronics Co., Ltd Methods of manufacturing semiconductor devices
WO2024097593A1 (en) * 2022-11-04 2024-05-10 Applied Materials, Inc. Plasma assisted damage engineering during ion implantation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577076B2 (en) 2014-05-07 2017-02-21 Samsung Electronics Co., Ltd Methods of manufacturing semiconductor devices
WO2024097593A1 (en) * 2022-11-04 2024-05-10 Applied Materials, Inc. Plasma assisted damage engineering during ion implantation

Similar Documents

Publication Publication Date Title
CN100547793C (en) Double-gate CMOS semiconductor device and manufacturing method thereof
KR100837555B1 (en) Semiconductor device and manufacturing method thereof
CN102468163B (en) Method for manufacturing NMOS (N-channel metal oxide semiconductor) transistor
KR20100079139A (en) Method for manufacturing semiconductor device
KR100897821B1 (en) Semiconductor device manufacturing method
KR100881017B1 (en) Manufacturing Method of Semiconductor Device
KR100418721B1 (en) Method for manufacturing a transistor of a semiconductor device
KR100624697B1 (en) Method of manufacturing dual poly gate of recess transistor
CN101740391B (en) Fabricating method of NMOS (N-channel Metal Oxide Semiconductor)
KR100521439B1 (en) Method for fabricating the p-channel MOS transistor
KR20090071768A (en) MOS transistor manufacturing method
KR100728958B1 (en) Manufacturing method of semiconductor device
KR100835519B1 (en) Manufacturing Method of Semiconductor Device
KR20100134439A (en) 불순물 type impurity doping method of dual poly gate and dual poly gate formation method using same
KR100665904B1 (en) Method of manufacturing a semiconductor device having a dual gate structure
KR101128699B1 (en) Method for manufacturing a semiconductor device
KR101079873B1 (en) Forming Method of Semiconductor Device
KR100679812B1 (en) MOS transistor and its manufacturing method
KR100672757B1 (en) Method of manufacturing semiconductor device for forming shallow junction
KR20080000787A (en) Dual Poly Gate of Memory Device and Manufacturing Method Thereof
KR20080002009A (en) Manufacturing Method of Semiconductor Memory Device
CN101740390A (en) Fabricating method of NMOS (N-channel Metal Oxide Semiconductor) transistor
KR20050104962A (en) Method for manufacturing semiconductor device
KR20070027123A (en) Method for forming semiconductor device
KR20060136239A (en) Method for manufacturing a semiconductor device having dual gate

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20081230

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid