KR20100076728A - High strength steel sheet with excellent low-temperature toughness for pressure vessel and manufacturing method thereof - Google Patents

High strength steel sheet with excellent low-temperature toughness for pressure vessel and manufacturing method thereof Download PDF

Info

Publication number
KR20100076728A
KR20100076728A KR1020080134865A KR20080134865A KR20100076728A KR 20100076728 A KR20100076728 A KR 20100076728A KR 1020080134865 A KR1020080134865 A KR 1020080134865A KR 20080134865 A KR20080134865 A KR 20080134865A KR 20100076728 A KR20100076728 A KR 20100076728A
Authority
KR
South Korea
Prior art keywords
less
weight
steel sheet
rolling
pressure vessel
Prior art date
Application number
KR1020080134865A
Other languages
Korean (ko)
Other versions
KR101091398B1 (en
Inventor
홍순택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080134865A priority Critical patent/KR101091398B1/en
Publication of KR20100076728A publication Critical patent/KR20100076728A/en
Application granted granted Critical
Publication of KR101091398B1 publication Critical patent/KR101091398B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A high strength steel plate for a pressure vessel with superior low temperature toughness and a manufacturing method thereof are provided to improve shock toughness and tensile strength by controlling cooling speed and performing a tampering process under proper conditions. CONSTITUTION: A high strength steel plate for a pressure vessel comprises C 0.03~0.20 weight%, Si 0.15~0.55 weight%, Mn 0.9~1.5 weight%, Al 0.001~0.05 weight%, P 0.030 weight% or less, S 0.030 weight% or less, Cr 0.30 weight% or less, Mo 0.2 weight% or less, Ni 0.6 weight% or less, V 0.07 weight% or less, Nb 0.04 weight% or less, Ca 5~50ppm, Ti 0.005~0.025 weight%, N 0.0020~0.0060 weight%, and the rest including Fe and inevitable impurities. Cu+Ni+Cr+Mo are included less than 1.5 weight%. Cr+Mo are included less than 0.4 weight%. V + Nb are included less than 0.1 weight%.

Description

저온 인성이 우수한 압력용기용 고강도 강판 및 그 제조방법{High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof}High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof}

본 발명은 1000MW급 이상의 원자력 발전소용 원자로 격납 용기(Containment Vessel)에 사용될 수 있는 인장 강도 700MPa급 압력용기용 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 기존에 사용되던 저강도 강의 취약 부분인 인장 강도를 개선하기 위하여 제조공정을 최적화함으로써 원자력 발전소용 원자로 격납 용기(containment vessel)을 제조하는데 사용될 수 있는 압력용기용 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel plate for tensile strength 700MPa pressure vessel that can be used in a nuclear reactor containment vessel for a nuclear power plant of 1000MW or more, and a method of manufacturing the same. The present invention relates to a steel plate for a pressure vessel that can be used to manufacture a reactor containment vessel for a nuclear power plant by optimizing a manufacturing process to improve tensile strength, and a method of manufacturing the same.

화석연료가 점차 고갈되어 가고 있는 현실에서 이제 원자력 에너지의 사용은 필수불가결한 에너지 보급방안으로 자리매김하고 있다. 원자력 에너지의 사용은 언제나 원자력 발전소의 안전성 문제를 수반하게 되고, 이를 안전하게 가동할 수 있는 발전소 소재에 관한 연구도 끊임없이 이루어지고 있다.As fossil fuels are becoming increasingly depleted, the use of nuclear energy is now becoming an indispensable energy supply plan. The use of nuclear energy is always accompanied by the safety issues of nuclear power plants, and there is a constant research on plant materials that can safely operate them.

특히 원자력 발전소에서 사용되는 원자로 격납 용기(containment vessel)용 소재에는 철강 제품, 특히 강판이 사용된다. 종래의 원자로 격납 용기용 소재로는 노멀라이징 열처리법을 이용하여 제조된 A516-70강이 주로 사용되었다. 하지만, 상기 A516-70강은 그 인장 강도가 일반적으로 500Mpa 수준에 불과하여 사용 범위가 제한되고 안전성에 문제가 발생할 우려가 항상 존재하였다.In particular, steel products, in particular steel plates, are used for the material for the containment vessels used in nuclear power plants. As a conventional reactor containment material, A516-70 steel manufactured by the normalizing heat treatment method was mainly used. However, since the A516-70 steel has a tensile strength of generally only 500 Mpa, the use range is limited and there is always a concern that safety problems may occur.

하지만, 고가의 합금 원소를 첨가하거나 공정 설비를 추가하여 새로운 강재를 개발한다면 비용이 많이 추가될 수 있고, 인장 강도를 향상시키는 대신 다른 부수적인 문제를 수반할 우려가 언제나 존재하는바, 이러한 기존의 특성은 유지하면서도 인장강도를 700MPa 수준으로 향상시킬 수 있는 우수한 원자로 격납 용기용 소재의 개발이 요구되는 실정이다.However, the development of new steel by the addition of expensive alloying elements or the addition of processing equipment can be costly, and there is always a concern that other problems will arise instead of improving the tensile strength. There is a need for the development of excellent reactor containment materials that can improve the tensile strength to 700MPa level while maintaining the characteristics.

본 발명은 상술한 종래 기술에 비해 인장 강도는 우수하면서도 다른 물성에는 문제가 없어 1000MW급 이상의 대형 원자력 발전소용 원자로 격납 용기를 제조하는데 사용 가능한 우수한 강판 및 그 제조방법을 제공하고자 한다.The present invention provides an excellent steel sheet and a method of manufacturing the same which can be used to manufacture a reactor containment container for a large nuclear power plant of 1000MW or more because of excellent tensile strength but no problems with other physical properties.

본 발명은 이러한 목적을 위하여, C: 0.03~0.20%, Si: 0.15~0.55%, Mn: 0.9~1.5%, Al: 0.001~0.05%, P: 0.030% 이하, S: 0.030% 이하, Cr: 0.30% 이하, Mo: 0.2% 이하, Ni: 0.6% 이하, V: 0.07% 이하, Nb: 0.04% 이하, Ca: 5~50ppm, Ti: 0.005~0.025%, N: 0.0020~0.0060%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, Cu + Ni + Cr + Mo: 1.5% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하 및 Ca/S: 1.0 이하의 관계를 만족하는 원자력 발전소에 사용 가능한 압력용기용 고강도 강판을 제공한다. 본 발명의 강판은 템퍼드 마르텐사이트 조직으로 이루어질 수 있으며, 인장 강도가 700MPa 이상이고 -50℃에서의 충격 인성이 300J 이상이다.The present invention, for this purpose, C: 0.03-0.20%, Si: 0.15-0.55%, Mn: 0.9-1.5%, Al: 0.001-0.05%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30% or less, Mo: 0.2% or less, Ni: 0.6% or less, V: 0.07% or less, Nb: 0.04% or less, Ca: 5-50 ppm, Ti: 0.005-0.025%, N: 0.0020-0.0060%, balance Fe And other unavoidable impurities, and satisfying the relationship of Cu + Ni + Cr + Mo: 1.5% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less and Ca / S: 1.0 or less Provides a high strength steel sheet for use in pressure vessels. The steel sheet of the present invention may be made of a tempered martensite structure, the tensile strength is 700MPa or more and the impact toughness at -50 ℃ is 300J or more.

나아가, 본 발명은 상기 성분계 조건을 만족하는 강 슬라브에 대하여, 1050~1250℃로 가열, Tnr ~Tnr+100℃의 온도에서 압연하여 870~950℃에서 압연 종료, 5~50℃/sec의 냉각속도로 직접 소입 및 650~700℃에서 템퍼링하는 원자력 발전소에 사용될 수 있는 압력용기용 고강도 강판의 제조방법을 제공한다. 이 경우, 상 기 압연은 각 압연 패스당 10% 이상의 압하율로 누적압하량 50% 이상으로 실시될 수 있으며, 상기 템퍼링은 1.9*t + (10~30분)간 실시될 수 있다.Further, the present invention is heated to 1050 ~ 1250 ℃, rolled at a temperature of Tnr ~ Tnr + 100 ℃ for steel slab that satisfies the above component system conditions, finish rolling at 870 ~ 950 ℃, cooling of 5 ~ 50 ℃ / sec It provides a method for producing a high strength steel sheet for pressure vessels that can be used in a nuclear power plant directly quenched and tempered at 650 ~ 700 ℃ at a rate. In this case, the rolling may be carried out with a cumulative reduction of 50% or more at a rolling reduction rate of 10% or more per each rolling pass, and the tempering may be performed for 1.9 * t + (10 to 30 minutes).

본 발명에 의하면, 700MPa 이상의 높은 인장 강도를 구비하면서도 -50℃에서의 저온 충격 인성이 300J 이상이어서 안전성이 상당히 요구되는 원자력 발전소에 사용할 수 있는 우수한 압력용기용 강판을 제공할 수 있다.According to the present invention, it is possible to provide an excellent pressure vessel steel sheet that can be used in a nuclear power plant having a high tensile strength of 700 MPa or more and a low temperature impact toughness at -50 ° C of 300 J or more, thus requiring considerable safety.

본 발명은 성분계를 최적화함과 동시에 인장강도 확보가 가능한 템퍼드 마르텐사이트 조직을 충분히 얻기 위하여, 냉각 속도를 제어하고 직접 소입(Direct Quenching) 및 적절한 조건 하에서의 템퍼링 과정을 이용하여 700MPa 이상의 인장 강도 및 300J 이상의 -50℃에서의 충격 인성을 구비하는 압력 용기용 강판을 제공한다.In order to optimize the component system and obtain sufficient tempered martensite structure that can secure tensile strength, the present invention can control the cooling rate, use direct quenching and tempering under appropriate conditions, and tensile strength of over 700 MPa and 300J. The steel plate for pressure vessels provided with impact toughness at -50 degreeC mentioned above is provided.

이하, 본 발명의 강판에 포함되는 성분계에 관하여 보다 상세히 설명한다. 단, 성분계의 %는 중량%를 의미한다.Hereinafter, the component system contained in the steel sheet of the present invention will be described in more detail. However,% of a component system means weight%.

C: 0.03~0.20%C: 0.03-0.20%

본 발명에서 C는 강도를 확보하기 위한 원소로서 0.03~0.20%로 한정한다. C 의 함량이 0.03% 미만인 경우에는 기지 상의 자체 강도가 저하될 수 있어 바람직하지 않은 반면, 0.20%를 초과하면 인성 및 용접성의 저하가 발생하여 원자력 발전소에 사용하기 적합하지 않다는 문제점이 있다.In the present invention, C is limited to 0.03 to 0.20% as an element for securing strength. If the content of C is less than 0.03%, the strength on the matrix may be lowered, which is not preferable. However, if the content of C is less than 0.20%, the toughness and weldability may be deteriorated, which is not suitable for use in nuclear power plants.

Si: 0.15~0.55%Si: 0.15 to 0.55%

Si은 탈산 효과, 고용 강화 효과 및 충격 천이 온도 상승 효과를 위하여 첨가되는 합금 원소로서, 0.15% 이상을 첨가한다. 하지만, 그 함량이 0.55%를 초과하면 용접성이 저하되고 강판 표면에 산화 피막이 심하게 형성될 수 있으므로 Si는 0.15~0.40%로 첨가한다.Si is an alloying element added for the deoxidation effect, the solid solution strengthening effect, and the impact transition temperature raising effect, and at least 0.15% is added. However, if the content exceeds 0.55%, the weldability is lowered and the oxide film may be severely formed on the surface of the steel sheet, so Si is added at 0.15 to 0.40%.

Mn: 0.9~1.5%Mn: 0.9-1.5%

Mn이 과다하게 첨가되면 S와 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온 인성을 저하시키므로 본 발명에서는 Mn을 1.5% 이하로 관리한다. 그러나, 본 발명의 성분 특성상 Mn이 0.9% 미만이 되면 적절한 강도를 확보하기 어려우므로 Mn의 첨가량은 0.6~1.2%로 제한한다.Excessive addition of Mn forms MnS, which is a non-metallic inclusion drawn together with S, thereby lowering room temperature elongation and low temperature toughness, thereby managing Mn to 1.5% or less. However, when Mn is less than 0.9% due to the component properties of the present invention, it is difficult to secure appropriate strength, so the amount of Mn added is limited to 0.6 to 1.2%.

Al: 0.001~0.05%Al: 0.001-0.05%

Al은 Si와 더불어 제강 공정에서 강력한 탈산제의 하나로서 0.001% 이상을 첨가하여야 이러한 효과를 얻을 수 있다. 하지만, 0.05%를 초과하여 첨가하면 그 효과는 포화되며 오히려 제조 원가가 상승하므로 Al은 0.001~0.05%로 한정한다.Al, together with Si, is one of the strong deoxidizers in the steelmaking process to add 0.001% or more to achieve this effect. However, if the content is added in excess of 0.05%, the effect is saturated and the manufacturing cost is increased, so Al is limited to 0.001 to 0.05%.

P: 0.030% 이하P: 0.030% or less

P는 저온 인성을 해치는 원소이므로 최대한 낮게 관리하는 것이 좋으나, 제강 공정에서 이를 과다하게 제거하는 것은 많은 비용이 소요되므로 0.030% 이하의 범위 내에서 관리한다.Since P is an element that impairs low temperature toughness, it is better to manage it as low as possible, but to remove it excessively in the steelmaking process is expensive, so it is managed within 0.030% or less.

S: 0.030% 이하S: 0.030% or less

S 역시 P와 더불어 저온인성에 악영향을 주는 원소이지만 P와 마찬가지로 제강 공정에서 제거하는데 과다한 비용이 소요될 수 있으므로 0.030%이하의 범위 내에서 관리함이 적절하다.S is also an element that adversely affects low temperature toughness along with P, but like P, it may be excessively expensive to remove in the steelmaking process, so it is appropriate to manage it within 0.030% or less.

Cr: 0.30% 이하Cr: 0.30% or less

Cr은 강도를 증대시킬 수 있는 합금 원소이지만 고가의 원소이므로 0.30%를 초과하여 첨가하는 경우에는 제조비의 상승을 초래하므로 0.30% 이내로 한정한다.Cr is an alloying element that can increase the strength, but since it is an expensive element, the addition of more than 0.30% causes an increase in manufacturing cost, so it is limited to within 0.30%.

Mo: 0.2% 이하Mo: 0.2% or less

Mo는 Cr과 같이 강도 향상에 유효한 합금 원소이며 황화물에 의한 균열 발생을 방지하는 원소로 알려져 있다. 하지만 Mo 역시 고가의 원소로서 0.2% 이하의 범위에서 첨가하는 것이 경제성 측면에서 바람직하다.Mo is an alloying element that is effective for improving strength, such as Cr, and is known as an element that prevents cracking caused by sulfides. However, Mo is also an expensive element, it is preferable to add in the range of 0.2% or less from the economical point of view.

Ni: 0.6% 이하Ni: 0.6% or less

Ni은 저온 인성의 향상에 효과적인 원소로서 본 발명에 첨가되지만, Ni 역시 고가의 원소로서 경제성 측면에서 0.6% 이하로 첨가한다.Ni is added to the present invention as an element effective in improving low temperature toughness, but Ni is also added as an expensive element at an economical level of 0.6% or less.

V: 0.07% 이하V: 0.07% or less

V은 Cr, Mo 등과 같이 강도의 증대에 효과적인 원소이지만 고가인 관계로 0.07% 이하로 첨가함이 바람직하다.V is an element effective for increasing strength, such as Cr and Mo, but is preferably added at 0.07% or less due to its high cost.

Nb: 0.04% 이하Nb: 0.04% or less

Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 또한 Ti와 더불어 기지(Matrix)와 정합을 이루는 탄질화물((Nb,Ti)(C,N))로 석출되어 강의 강도를 증가시키는 중요한 원소로 작용한다. 그러나, Nb가 지나치게 다량으로 첨가되면 연주 단계에서 조대한 석출물로 나타나 수소 유기 균열의 사이트로 작용할 수 있으므로, 본 발명에서 Nb의 함량은 0.04% 이하로 제한한다.Nb is dissolved in austenite to increase the hardenability of austenite, and also precipitates as carbonitride ((Nb, Ti) (C, N)) that matches the matrix with Ti to increase the strength of the steel. Acts as an important element However, when Nb is added in an excessively large amount, it may appear as a coarse precipitate in the playing step to act as a site of hydrogen organic cracking, so the content of Nb in the present invention is limited to 0.04% or less.

Ca: 5~50ppmCa: 5 ~ 50ppm

Ca은 CaS로 생성되어 MnS의 비금속 개재물을 억제하는 역할을 하는바, 이를 위하여 본 발명에서는 5ppm 이상 첨가한다. 하지만 그 첨가량이 과다하면 강중에 함유된 O와 반응하여 비금속 개재물인 CaO를 생성하여 물성에 좋지 않으므로 그 상한치를 50ppm으로 정한다.Ca is produced by CaS serves to suppress the non-metallic inclusions of MnS, for this purpose is added 5ppm or more. However, if the amount is excessive, the upper limit is set to 50 ppm because it reacts with O contained in the steel to form CaO, which is a non-metallic inclusion, which is not good for physical properties.

Ti: 0.005~0.025%Ti: 0.005-0.025%

Ti의 적정 첨가량은 Nb 및 N의 함량에 따라 다소 유동적으로 변할 수 있다. 만일 N의 양에 비해 Ti의 첨가량이 상대적으로 적으면, (Nb,Ti)N의 생성량이 적어져서 결정립의 미세화에 불리하고, 반면 상대적으로 과량 첨가되면 가열 공정 중 (Nb,Ti)N이 조대해져서 결정립 성장 억제 효과가 오히려 감소하게 된다. 따라서 Ti의 첨가량은 통상적으로 함유되는 N의 함량(20 ~ 60ppm)을 고려하여 0.005 ~ 0.025%로 한정한다.The appropriate amount of Ti may vary somewhat depending on the content of Nb and N. If the amount of Ti added is relatively small compared to the amount of N, the amount of (Nb, Ti) N is reduced, which is detrimental to the refinement of grains, whereas when the amount is added in excess, (Nb, Ti) N becomes coarse during the heating process. Thus, the effect of inhibiting grain growth is rather reduced. Therefore, the amount of Ti is generally limited to 0.005 to 0.025% in consideration of the N content (20 to 60ppm) contained.

N: 0.0020~0.0060%(20~60ppm)N: 0.0020 to 0.0060% (20 to 60 ppm)

N는 Nb, Ti과 함께 TiN 석출물을 형성하여 강의 결정립을 미세화시켜 모재의 인성 및 HAZ부 충격 인성을 증대시키는 역할을 하는 것으로 알려져 있다. 이를 위하여 본 발명에서는 N의 첨가량은 Ti의 함량을 고려하여 0.0020~0.0060% 범위로 한정한다. 0.0060%를 초과하는 N의 첨가는 TiN의 생성량이 지나치게 증가하고 저온 인성이 오히려 저하될 수 있다.N forms TiN precipitates together with Nb and Ti to refine the grains of the steel to increase toughness of the base metal and impact toughness of the HAZ portion. To this end, in the present invention, the amount of N is limited to 0.0020 ~ 0.0060% range in consideration of the content of Ti. The addition of N exceeding 0.0060% may cause excessive increase in the amount of TiN produced and lower the low temperature toughness.

Cu + Ni + Cr + Mo: 1.5% 이하Cu + Ni + Cr + Mo: 1.5% or less

Cr + Mo: 0.4% 이하Cr + Mo: 0.4% or less

V + Nb: 0.1% 이하V + Nb: 0.1% or less

Ca/S: 1.0 이하Ca / S: 1.0 or less

Cu + Ni + Cr + Mo, Cr + Mo 및 V + Nb의 관계는 압력용기용 강재의 기본 규 격(ASTM A20)에서 각각 제한하고 있는 수치로서, 이에 따라 Cu + Ni + Cr + Mo함량은 1.5% 이하로, Cr + Mo함량은 0.4% 이하로, 그리고 V + Nb함량은 0.1% 이하로 제한한다.The relationship between Cu + Ni + Cr + Mo, Cr + Mo, and V + Nb is a value limited by the basic standard (ASTM A20) of steel for pressure vessels, and accordingly, Cu + Ni + Cr + Mo content is 1.5 Below%, Cr + Mo content is limited to 0.4% or less, and V + Nb content is limited to 0.1% or less.

그리고 Ca / S의 비는 MnS 개재물을 구상화시켜 수소 유기 균열 저항성을 향상시키는 필수 구성비로서 1.0 이하에서는 그 효과를 기대하기 어려우므로 그 비율을 1.0이 초과되도록 조절한다.And the ratio of Ca / S is an essential constituent ratio to improve the hydrogen organic crack resistance by spheroidizing the MnS inclusions, and since the effect is difficult to be expected at 1.0 or less, the ratio is adjusted to exceed 1.0.

이하 본 발명을 구성하는 미세조직에 관하여 보다 상세히 설명한다.Hereinafter, the microstructure constituting the present invention will be described in more detail.

조직: 템퍼드 마르텐사이트Organization: Temper Martensite

본 발명에서는 압연을 거쳐 냉각 과정에서 마르텐사이트 조직이 형성되도록 급냉시키게 된다. 마르텐사이트의 강한 인장 강도 향상 효과로 본 발명에서는 700MPa 이상의 인장강도를 얻을 수 있게 된다. 하지만, 마르텐사이트는 자체적으로 취성이 강하기 때문에, 그대로 원자력 발전소에 사용한다면 외부로부터의 충격에 Vessel이 파손될 수 있고 이는 심각한 위험을 초래하게 된다. 따라서, 본 발명에서는 -50℃를 기준으로 300J 이상의 충격 인성을 얻기 위하여 마르텐사이트 조직에 템퍼링 과정을 거쳐 템퍼드 마르텐사이트 조직을 형성시킴으로써 인장 강도를 기존에 비해 대폭 향상시킴과 동시에 충분한 인성을 얻도록 한다. In the present invention, it is quenched to form martensite structure during the cooling process through rolling. In the present invention, it is possible to obtain a tensile strength of 700 MPa or more due to the strong tensile strength improving effect of martensite. However, since martensite is brittle in itself, if used in a nuclear power plant as it is, the vessel may be damaged by an external shock, which causes a serious danger. Therefore, in the present invention, the tempered martensite structure is formed through the tempering process in the martensite structure to obtain impact toughness of 300J or more based on -50 ° C, so that the tensile strength can be greatly improved and sufficient toughness is obtained at the same time. do.

이하, 본 발명의 강판을 제조하는 방법에 관하여 보다 상세히 설명한다. Hereinafter, the method of manufacturing the steel sheet of the present invention will be described in more detail.

본 발명에서는 상술한 성분계를 바탕으로 700MPa 이상의 인장 강도를 얻을 수 있는 템퍼드 마르텐사이트로 이루어진 조직을 형성하기 위하여 다음과 같이 적절한 압연 및 열처리 과정을 거친다.In the present invention, in order to form a structure consisting of tempered martensite which can obtain a tensile strength of 700MPa or more based on the above-described component system is subjected to the appropriate rolling and heat treatment process as follows.

재가열 온도: 1050~1250℃Reheating Temperature: 1050 ~ 1250 ℃

본 발명에서는 상술한 조성을 가지는 슬라브를 1050~1250℃에서 재가열한다. 재가열 온도가 1050℃보다 낮을 경우에는 용질원자의 고용이 어렵고, 반면 재가열 온도가 1250℃를 초과하면 오스테나이트 결정립 크기가 너무 조대하게 되어 강판의 물성이 저하되기 때문이다. In the present invention, the slab having the composition described above is reheated at 1050 to 1250 ° C. If the reheating temperature is lower than 1050 ℃, it is difficult to solute the solute atoms, while if the reheating temperature exceeds 1250 ℃ austenite grain size becomes too coarse to reduce the properties of the steel sheet.

재결정역 제어 압연: Tnr ~Tnr+100℃의 온도, 각 압연 패스당 10% 이상의 압하율로 누적압하량 50% 이상, 870 ~ 950℃에서 압연 종료Recrystallization zone controlled rolling: Temperature of Tnr to Tnr + 100 ° C, rolling reduction at 50% or more at 870 ° C to 950 ° C with a cumulative reduction of 10% or more per rolling pass

본 발명에서는 평균 약 30㎛이하의 미세한 구 오스테나이트 조직을 얻기 위하여 제어 압연 및 제어 냉각 과정을 거치게 된다. 구 오스테나이트 평균 결정립의 크기를 평균 약 30㎛ 이하로 제어하기 위해서는 재결정 제어 압연이 가장 중요한 변수로 작용한다.In the present invention, in order to obtain a fine old austenite structure of less than about 30㎛ on average, it is subjected to a controlled rolling and controlled cooling process. In order to control the size of the old austenite average grain size to about 30 μm or less on average, recrystallization controlled rolling serves as the most important variable.

상기 재결정 제어 압연은 미재결정 이상의 온도에서 열간 압연을 행하는 것을 의미하며 미재결정 온도인 Tnr은 잘 알려져 있는 하기 식 1을 통해 계산이 가능 하다. 단, 수식에서 각 합금원소의 단위는 중량%를 나타낸다. 압연 패스당 압하율 및 누적압하량은 후술할 Banding Index값의 확보를 위해 필요한 조건으로 조직 미세화를 위하여 이러한 압연 조건으로 압연을 실시한다.The recrystallized controlled rolling means hot rolling at a temperature higher than the uncrystallized crystal , and the recrystallized temperature, T nr , can be calculated through Equation 1 below. However, in the formula, the unit of each alloy element represents weight%. The rolling reduction rate and the cumulative rolling reduction per rolling pass are carried out under such rolling conditions for the structure refinement to the conditions necessary for securing a banding index value to be described later.

[식 1][Equation 1]

Tnr(℃)=887-464ⅹC+890ⅹTi+363ⅹAl-357ⅹSi+(6445ⅹNb-644ⅹNb1/2)+(732ⅹV-230ⅹV1/2)Tnr (℃) = 887-464ⅹC + 890ⅹTi + 363ⅹAl-357ⅹSi + (6445ⅹNb-644ⅹNb 1/2 ) + (732ⅹV-230ⅹV 1/2 )

본 발명에서는, 재결정 제어 압연을 Tnr ~ Tnr+100℃의 온도 범위 구간에서 각 압연 패스당 10% 이상의 압하율을 가하여 누적압하량 50% 이상을 부여하게 된다. 누적 압하량이 50% 미만인 경우에는 미세한 결정립 크기를 기대할 수 없기 때문이다. In the present invention, the recrystallized controlled rolling is applied with a reduction ratio of 10% or more per rolling pass in a temperature range section of Tnr to Tnr + 100 ° C. to give a cumulative reduction of 50% or more. This is because when the cumulative reduction is less than 50%, a fine grain size cannot be expected.

그리고, 압연의 종료는 870~950℃ 범위에서 하는데, 압연 종료 온도가 870℃ 미만이면 소입 효과가 부족해져 이후 직접 소입 과정에 의하더라도 강도 및 인성의 확보가 어려워지고, 반면 950℃를 초과하는 경우에는 결정립이 조대하게 성장하여 인성의 열화가 발생할 수 있다.And, the end of the rolling is in the range of 870 ~ 950 ℃, if the end of the rolling temperature is less than 870 ℃ quenching effect is insufficient, it is difficult to secure the strength and toughness even after the direct quenching process, whereas if it exceeds 950 ℃ Grain grows coarsely, leading to degradation of toughness.

직접 소입: 5~50℃/sec의 냉각속도Direct hardening: 5 ~ 50 ℃ / sec cooling rate

압연 종료 후 냉각 속도 5~50℃/sec의 냉각 속도로 직접 소입을 실시한다. 냉각 속도가 5℃/sec 미만일 경우, 소입 효과가 부족하여 충분한 강도 및 인성의 확보가 어렵고, 반면 50℃/sec를 초과하는 냉각 속도는 일반적인 가속 냉각 공정에서 얻어지기 어려운 범위이므로 직접 소입 냉각 속도의 범위는 5~50℃/sec로 한정한다.After rolling, direct hardening is performed at a cooling rate of 5 to 50 ° C / sec. If the cooling rate is less than 5 ℃ / sec, it is difficult to secure sufficient strength and toughness due to the lack of the hardening effect, while the cooling rate exceeding 50 ℃ / sec is difficult to obtain in the normal accelerated cooling process, so The range is limited to 5 to 50 ° C / sec.

템퍼링 조건: 650~700℃에서 1.9*t + (10~30분)간 실시 Tempering condition: 1.9 * t + (10-30 minutes) at 650 ~ 700 ℃

직접 소입에 의하여 급냉 처리된 강재는 마르텐사이트 조직을 포함하는바, 상기 마르텐사이트 조직의 취성을 완화시키기 위하여 본 발명에서는 템퍼링 공정을 수행한다. 이 경우, 템퍼링 온도는 650~700℃에서 실시하는데, 템퍼링 온도가 650℃보다 낮으면 탄화물 등의 석출이 원활하지 않아 마르텐사이트의 템퍼링 효과를 충분히 얻을 수 없고, 반면 700℃를 초과하는 온도에서는 오히려 강재의 강도가 저하될 수 있다.Steel quenched by direct quenching includes martensite structure, and in order to alleviate brittleness of the martensite structure, the present invention performs a tempering process. In this case, the tempering temperature is carried out at 650 ~ 700 ℃, but if the tempering temperature is lower than 650 ℃, the precipitation of carbides, etc. is not smooth, so that the tempering effect of martensite is not sufficiently obtained, whereas at temperatures exceeding 700 ℃ The strength of the steel can be lowered.

또한, 템퍼링 시간 조건은 두께에 따라 달리 하는 것이 바람직한데, 본 발명에서는 1.9*t + (10~30분) (단, t는 강재의 두께(mm)를 의미)의 조건으로 실시한다.In addition, the tempering time condition is preferably different depending on the thickness, in the present invention is carried out under the conditions of 1.9 * t + (10-30 minutes) (where t means the thickness (mm) of the steel).

이하 본 발명을 하기 실시예를 통해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

(실시예)(Example)

본 실시예에서는 하기 표 1과 같은 화학 성분으로 발명재와 비교재를 각각 제조하였다. 각 화학 조성의 강 슬라브를 적정한 온도범위에서 가열하고 재결정역에서 재결정 제어 압연을 55~80% 범위의 압하율로 실시하여 구 오스테나이트 평균 결정립 크기를 약 30㎛이하로 제어하였다.In this example, the invention and the comparative material were prepared using the chemical components shown in Table 1 below. The steel slabs of each chemical composition were heated at an appropriate temperature range, and recrystallization controlled rolling was carried out at a reduction ratio of 55 to 80% in the recrystallization zone to control the average austenite grain size of about 30 μm or less.

CC MnMn SiSi PP SS AlAl NiNi CrCr MoMo VV NbNb BB TiTi NN CaCa

foot
persons
ashes
aa 0.060.06 1.351.35 0.350.35 0.0080.008 0.00130.0013 0.020.02 0.050.05 0.030.03 0.150.15 0.0030.003 0.0130.013 0.00150.0015 0.0130.013 0.00280.0028 0.00180.0018
bb 0.070.07 1.401.40 0.340.34 0.0100.010 0.00140.0014 0.010.01 0.150.15 0.050.05 0.100.10 0.0050.005 0.0120.012 0.00120.0012 0.0120.012 0.00350.0035 0.00210.0021

ratio
School
ashes
cc 0.170.17 1.051.05 0.280.28 0.0100.010 0.00170.0017 0.030.03 0.180.18 0.150.15 0.080.08 0.0100.010 0.0100.010 -- -- 0.00320.0032 0.00250.0025
dd 0.140.14 1.151.15 0.290.29 0.0120.012 0.00140.0014 0.010.01 0.150.15 0.200.20 0.150.15 0.0090.009 0.0120.012 -- -- 0.00340.0034 0.00230.0023

그리고 나서, 제어 압연, 직접 소입, 템퍼링 열처리 등의 조건을 하기 표 2에 나타난 바와 같이 실시한 후, 항복 강도, 인장 강도 및 저온 인성을 평가하여 그 결과를 하기 표 3에 나타내었다.Then, after performing conditions such as controlled rolling, direct quenching, tempering heat treatment, and the like as shown in Table 2 below, yield strength, tensile strength and low temperature toughness were evaluated, and the results are shown in Table 3 below.

단, 저온 인성은 -50℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격 에너지값으로 평가한 것이다.However, low-temperature toughness is evaluated by the Charpy impact energy value obtained by carrying out the Charpy impact test of the specimen which has a V notch at -50 degreeC.

구분division 강판두께
(mm)
Steel plate thickness
(mm)
슬라브
재가열온도
(℃)
Slab
Reheating temperature
(℃)
재결정제어압연
누적압하량
(%)
Recrystallization Control Rolling
Cumulative pressure drop
(%)
직접 소입
온도
(℃)
Direct hardening
Temperature
(℃)
템퍼링
온도
(℃)
Tempering
Temperature
(℃)


foot
persons
ashes
aa 1313 12001200 6565 900900 670670
2525 11801180 7070 930930 670670 4545 11201120 6060 910910 670670 5050 11201120 6565 910910 670670 bb 3030 11001100 8080 910910 670670 6060 11001100 7575 930930 670670 8080 11001100 6565 900900 670670

ratio
School
ashes
cc 2020 12001200 2020 900*900 * --
2525 11501150 3030 900*900 * -- dd 5050 11001100 4040 900*900 * --

** 단, 비교재의 직접 소입 온도는 '노멀라이징 온도'를 나타냄.** However, the direct quenching temperature of the comparative material represents the 'normalizing temperature'.

구분division YS(항복 강도)
(Mpa)
YS (yield strength)
(Mpa)
TS(인장 강도)
(Mpa)
TS (tensile strength)
(Mpa)
-50℃
충격인성(J)
-50 ℃
Impact Toughness (J)
발명재Invention aa 694694 735735 310310 691691 731731 309309 680680 734734 315315 672672 725725 329329 bb 690690 730730 314314 695695 732732 320320 687687 728728 330330 비교재Comparative material cc 370370 539539 186186 365365 530530 175175 dd 358358 520520 190190

상기 표 3에서 볼 수 있듯이, 본 발명의 성분계 및 제조 조건을 만족하는 발명재 a 및 b는 항복 강도 및 인장 강도가 우수하며, 나아가 저온 인성 역시 향상되었음을 알 수 있었다.As can be seen in Table 3, the invention materials a and b satisfying the component system and the production conditions of the present invention was excellent in yield strength and tensile strength, it can be seen that the low temperature toughness also improved.

Claims (5)

C: 0.03~0.20%, Si: 0.15~0.55%, Mn: 0.9~1.5%, Al: 0.001~0.05%, P: 0.030% 이하, S: 0.030% 이하, Cr: 0.30% 이하, Mo: 0.2% 이하, Ni: 0.6% 이하, V: 0.07% 이하, Nb: 0.04% 이하, Ca: 5~50ppm, Ti: 0.005~0.025%, N: 0.0020~0.0060%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,C: 0.03-0.20%, Si: 0.15-0.55%, Mn: 0.9-1.5%, Al: 0.001-0.05%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30% or less, Mo: 0.2% Ni: 0.6% or less, V: 0.07% or less, Nb: 0.04% or less, Ca: 5-50 ppm, Ti: 0.005-0.025%, N: 0.0020-0.0060%, balance Fe and other unavoidable impurities, Cu + Ni + Cr + Mo: 1.5% 이하;Cu + Ni + Cr + Mo: 1.5% or less; Cr + Mo: 0.4% 이하;Cr + Mo: 0.4% or less; V + Nb: 0.1% 이하; 및V + Nb: 0.1% or less; And Ca/S: 1.0 이하Ca / S: 1.0 or less 의 관계를 만족하며,Satisfy the relationship of, 미세조직은 템퍼드 마르텐사이트 조직임을 특징으로 하는 압력용기용 고강도 강판.Microstructure is a high strength steel sheet for pressure vessel, characterized in that the tempered martensite structure. 제1항에 있어서, 상기 강판은 인장 강도가 700MPa 이상이고 -50℃에서의 충격 인성이 300J 이상임을 특징으로 하는 압력용기용 고강도 강판.The high strength steel sheet for pressure vessel according to claim 1, wherein the steel sheet has a tensile strength of 700 MPa or more and an impact toughness of -50 ° C. or more. C: 0.03~0.20%, Si: 0.15~0.55%, Mn: 0.9~1.5%, Al: 0.001~0.05%, P: 0.030% 이하, S: 0.030% 이하, Cr: 0.30% 이하, Mo: 0.2% 이하, Ni: 0.6% 이하, V: 0.07% 이하, Nb: 0.04% 이하, Ca: 5~50ppm, Ti: 0.005~0.025%, N: 0.0020~0.0060%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,C: 0.03-0.20%, Si: 0.15-0.55%, Mn: 0.9-1.5%, Al: 0.001-0.05%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30% or less, Mo: 0.2% Ni: 0.6% or less, V: 0.07% or less, Nb: 0.04% or less, Ca: 5-50 ppm, Ti: 0.005-0.025%, N: 0.0020-0.0060%, balance Fe and other unavoidable impurities, Cu + Ni + Cr + Mo: 1.5% 이하;Cu + Ni + Cr + Mo: 1.5% or less; Cr + Mo: 0.4% 이하;Cr + Mo: 0.4% or less; V + Nb: 0.1% 이하; 및V + Nb: 0.1% or less; And Ca/S: 1.0 이하Ca / S: 1.0 or less 의 관계를 만족하는 강 슬라브에 대하여, For steel slabs that satisfy the relationship of 1050~1250℃로 가열하는 재가열 단계;Reheating step to heat to 1050 ~ 1250 ℃; Tnr ~Tnr+100℃의 온도에서 압연하여 870~950℃에서 압연 종료하는 재결정역 압연 단계;A recrystallization station rolling step of rolling at a temperature of Tnr ˜Tnr + 100 ° C. to finish rolling at 870 ° C. to 950 ° C .; 5~50℃/sec의 냉각속도로 냉각하는 직접 소입 단계; 및Direct quenching step of cooling at a cooling rate of 5 ~ 50 ℃ / sec; And 650~700℃에서 템퍼링하는 템퍼링 단계Tempering step to temper at 650 ~ 700 ℃ 를 포함하는 것을 특징으로 하는 압력용기용 고강도 강판의 제조방법.Method for producing a high strength steel sheet for pressure vessel comprising a. 제3항에 있어서, 상기 재결정역 압연 단계는 각 압연 패스당 10% 이상의 압하율로 누적압하량 50% 이상으로 실시되는 것을 특징으로 하는 압력용기용 고강도 강판의 제조방법,The method of claim 3, wherein the recrystallization rolling step is performed at a cumulative reduction of 50% or more at a reduction ratio of 10% or more per each rolling pass. 제3항에 있어서, 상기 템퍼링 단계는 1.9*t + (10~30분)간 실시되는 것을 특징으로 하는 압력용기용 고강도 강판의 제조방법.The method of claim 3, wherein the tempering step is performed for 1.9 * t + (10 to 30 minutes).
KR1020080134865A 2008-12-26 2008-12-26 High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof KR101091398B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080134865A KR101091398B1 (en) 2008-12-26 2008-12-26 High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080134865A KR101091398B1 (en) 2008-12-26 2008-12-26 High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20100076728A true KR20100076728A (en) 2010-07-06
KR101091398B1 KR101091398B1 (en) 2011-12-07

Family

ID=42638402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080134865A KR101091398B1 (en) 2008-12-26 2008-12-26 High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR101091398B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253959B1 (en) * 2010-12-28 2013-04-16 주식회사 포스코 Ultra thick steel sheet for pressure vessel having excellent central properties and method for manufacturing the same
KR101271990B1 (en) * 2009-12-01 2013-06-05 주식회사 포스코 High strength steel sheet and method for manufacturing the same
CN111270150A (en) * 2020-03-30 2020-06-12 南京钢铁股份有限公司 Production method of ultralow-temperature high-strength 13MnNi6-3 container steel
CN111270149A (en) * 2020-03-30 2020-06-12 南京钢铁股份有限公司 Production method of ultralow-temperature high-center impact large-thickness 13MnNi6-3 container steel
CN115216685A (en) * 2021-04-19 2022-10-21 宝山钢铁股份有限公司 Large-thickness steel plate with high crack-stopping performance and manufacturing method thereof
CN116121646A (en) * 2022-12-23 2023-05-16 鞍钢股份有限公司 High-strength low-carbon equivalent steel for nuclear reactor containment vessel and manufacturing method thereof
CN116219279A (en) * 2022-12-23 2023-06-06 鞍钢股份有限公司 High-strength high-toughness steel for nuclear reactor containment vessel and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833069B1 (en) * 2006-12-13 2008-05-27 주식회사 포스코 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271990B1 (en) * 2009-12-01 2013-06-05 주식회사 포스코 High strength steel sheet and method for manufacturing the same
KR101253959B1 (en) * 2010-12-28 2013-04-16 주식회사 포스코 Ultra thick steel sheet for pressure vessel having excellent central properties and method for manufacturing the same
CN111270150A (en) * 2020-03-30 2020-06-12 南京钢铁股份有限公司 Production method of ultralow-temperature high-strength 13MnNi6-3 container steel
CN111270149A (en) * 2020-03-30 2020-06-12 南京钢铁股份有限公司 Production method of ultralow-temperature high-center impact large-thickness 13MnNi6-3 container steel
CN111270150B (en) * 2020-03-30 2021-11-19 南京钢铁股份有限公司 Production method of ultralow-temperature high-strength 13MnNi6-3 container steel
CN115216685A (en) * 2021-04-19 2022-10-21 宝山钢铁股份有限公司 Large-thickness steel plate with high crack-stopping performance and manufacturing method thereof
CN116121646A (en) * 2022-12-23 2023-05-16 鞍钢股份有限公司 High-strength low-carbon equivalent steel for nuclear reactor containment vessel and manufacturing method thereof
CN116219279A (en) * 2022-12-23 2023-06-06 鞍钢股份有限公司 High-strength high-toughness steel for nuclear reactor containment vessel and manufacturing method thereof
CN116219279B (en) * 2022-12-23 2024-04-16 鞍钢股份有限公司 High-strength high-toughness steel for nuclear reactor containment vessel and manufacturing method thereof

Also Published As

Publication number Publication date
KR101091398B1 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR100833069B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof
KR100833071B1 (en) Steel plate for pressure vessel with ts 600mpa grade and excellent hic resistance and manufacturing method thereof
KR101091306B1 (en) High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR101998991B1 (en) Steel plate for pressure vessel having excellent tensile strength and low temperature impact toughness and method of manufacturing the same
KR101322067B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR102031446B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR101091398B1 (en) High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof
KR20100076727A (en) High strength steel sheet for pressure vessel with excellent hic and fatigue resist properties and manufacturing method thereof
KR101778398B1 (en) Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
KR101676143B1 (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101568523B1 (en) Pressure vessel steel plate having excellent resistance of temper embrittlement and manufacturing method of the same
KR100833070B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof
KR101253888B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR20170074319A (en) Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same
KR101271968B1 (en) Steel sheet for high temperature applications having excellent property after post weld heat treatment and method for manufacturing the same
KR101253899B1 (en) Thick steel plate having high strength and excellent low-temperature toughness and manufacturing method thereof
KR102031450B1 (en) High strength steel sheet and manufacturing method for the same
KR101657823B1 (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
KR102031443B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR101271990B1 (en) High strength steel sheet and method for manufacturing the same
KR101353858B1 (en) Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
KR102153196B1 (en) High carbon boron added steel and manufacturing method thereof
KR101091446B1 (en) High Strength Steel Plate with Excellent Resistance of Cyclic Pressure for Low-Temperature Pressure Vessel, Manufacturing Method Thereof and Manufacturing Method of Deep Drawing Article

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 7