KR20100060279A - Composition for ameliorating the er stress or the mitochondrial dysfunction comprising the extract of angelica dahurica or imperatorin - Google Patents

Composition for ameliorating the er stress or the mitochondrial dysfunction comprising the extract of angelica dahurica or imperatorin

Info

Publication number
KR20100060279A
KR20100060279A KR1020080118813A KR20080118813A KR20100060279A KR 20100060279 A KR20100060279 A KR 20100060279A KR 1020080118813 A KR1020080118813 A KR 1020080118813A KR 20080118813 A KR20080118813 A KR 20080118813A KR 20100060279 A KR20100060279 A KR 20100060279A
Authority
KR
South Korea
Prior art keywords
disease
imperitorin
extract
liver
obesity
Prior art date
Application number
KR1020080118813A
Other languages
Korean (ko)
Other versions
KR101170874B1 (en
Inventor
김영미
김민석
구현정
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020080118813A priority Critical patent/KR101170874B1/en
Publication of KR20100060279A publication Critical patent/KR20100060279A/en
Application granted granted Critical
Publication of KR101170874B1 publication Critical patent/KR101170874B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/23Apiaceae or Umbelliferae (Carrot family), e.g. dill, chervil, coriander or cumin
    • A61K36/232Angelica
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/326Foods, ingredients or supplements having a functional effect on health having effect on cardiovascular health
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/3262Foods, ingredients or supplements having a functional effect on health having an effect on blood cholesterol
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE: A pharmaceutical containing Angelica dahurica extract or imperatorin as an active ingredient is provided to prevent or treat diseases caused by endoplasmic reticulum stress or mitochondria malfunctions. CONSTITUTION: A medicinal composition for preventing or treating diseases caused by endoplasmic reticulum stress or mitochondria malfunction contains Angelica dahurica extract or imperatorin. The diseases are liver fibrosis, metabolic syndrome, hypertension, neurodegenerative disorder, bipolar disorder, diabetes, artery scleroma, and ischemia. A medicinal formulation contains the medicinal composition and is used in the form of a tablet, oral tablet, liquids, jelly, aqueous or oil suspension, dispersion powders, or granules, emulsion, soft or hard capsule, or syrup.

Description

백지 추출물 또는 임페레이토린을 함유하는 소포체 스트레스 완화 또는 미토콘드리아 기능개선용 조성물 {Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin}Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin}

본 발명은 백지 (白芷 Angelica dahurica) 추출물 또는 임페레이토린 (imperatorin)을 유효성분으로 함유하는 소포체 스트레스 (ER stress) 또는 미토콘드리아의 기능장애 개선에 유용한 의약조성물 또는 식품조성물에 관한 것이다.The present invention relates to a pharmaceutical composition or a food composition useful for improving ER stress or dysfunction of mitochondria containing white paper ( Angelica dahurica ) extract or imperatorin (imperatorin) as an active ingredient.

소포체 (endoplasmic reticulum)는 리보좀이 붙어있는 조면 소포체 (rough ER, RER)와 활면 소포체 (smooth ER, SER)가 존재한다. 조면 소포체는 단백질 합성이 주된 기능이며 세포 내 단백질의 약 1/3이 조면 소포체에서 합성이 된다. 그러나 활면 소포체는 대부분의 세포에서 발견되며, 다양한 지질과 스테로이드 호르몬을 합성하고 칼슘 저장소로 세포 내 칼슘 농도를 조절하는데 중요한 역할을 하게 된다. 여러 가지 생리적 또는 병리적인 상태에 의해 소포체 내에 칼슘 항상성, 당단백질의 당화과정 (glycosylation) 또는 이황화 결합 (disulfide bond) 형성 등이 제대로 이루어지지 않았을 때 단백질 접힘 (folding)이 제대로 일어나지 않게 되 고, 이 때 소포체가 처리할 수 있는 능력 이상의 unfolded 단백질이 축적되거나 칼슘이 고갈되어 소포체의 기능 손상이 발생하는데 이러한 상태를 소포체 스트레스라고 한다 (Zhao & Ackerman, 2006; 김미경과 박근규, 2008).  소포체 스트레스 (ER stress)는 여러 신호전달을 통해서 세포사멸 (apoptosis)과 다량의 활성산소 (reactive oxygen species, ROS) 형성을 증가시켜 세포의 손상을 초래한다. The endoplasmic reticulum contains rough ER (RER) and smooth ER (SER) with ribosomes attached. Rough endoplasmic reticulum is the main function of protein synthesis, and about one third of the protein in the cell is synthesized in the rough endoplasmic reticulum. But vesicular vesicles are found in most cells and play an important role in synthesizing various lipids and steroid hormones and regulating intracellular calcium levels with calcium reservoirs. Due to various physiological or pathological conditions, protein folding does not occur properly when calcium homeostasis, glycosylation of glycoproteins, or disulfide bonds are formed in the endoplasmic reticulum. When the endoplasmic reticulum accumulates more than the unfolded protein or calcium depletion, this condition is called endoplasmic reticulum stress (Zhao & Ackerman, 2006; Kim Mi-kyung and Park Geun-gyu, 2008). ER stress causes cellular damage by increasing apoptosis and the formation of large amounts of reactive oxygen species (ROS) through multiple signaling.

소포체 스트레스로 인해 야기되는 질환으로는 신경퇴화질환 (neurodegenerative disease), 양극성 장애 (bipolar disorder), 당뇨병 (diabetes mellitus), 동맥경화증 (atherosclerosis), 염증 (inflammation), 국소빈혈 (ischemia), 심장병 (heart diseases), 간질환 (liver diseases), 췌장 질환 (kidney diseases), 암 (cancer) 등으로 다양한 질병의 발생에 관여하는 것으로 알려져 있으며, 특히 비만, 당뇨병과의 관련성에 대해 최근 보고되기 시작하였다. 이러한 연구결과들은 소포체 스트레스 완화가 당뇨병을 포함한 대사증후군의 발생을 예방/치료를 가능하게 할 수 있을 것임을 시사하고 있다 (Banhegyi et al., 2007; Lindholm et al., 2006; Tsiotra & Tsigos, 2006; Yoshida, 2007). Diseases caused by vesicle stress include neurorodegenerative disease, bipolar disorder, diabetes mellitus, atherosclerosis, inflammation, ischemia, heart disease (heart) It is known to be involved in the development of various diseases such as diseases, liver diseases (kidney diseases), cancer (cancer), etc., and in recent years have been reported about the relationship between obesity, diabetes. These findings suggest that endoplasmic reticulum stress relief may enable the prevention / treatment of metabolic syndrome including diabetes (Banhegyi et al., 2007; Lindholm et al., 2006; Tsiotra & Tsigos, 2006; Yoshida, 2007).

일반적으로 미토콘드리아는 세포 내에 존재하는 소기관으로 “세포의 발전소”라고 알려져 있다. 미토콘드리아는 세포에서 ATP를 생성할 뿐 아니라 세포사멸 (apoptosis), 이온 항상성 (ion homeostasis), 당 및 지방 대사 (intermediary metabolism), pyrimidine/urea/heme 합성 등 세포/개체의 생명유지에 필수적인 기능을 수행한다. In general, mitochondria are organelles within cells that are known as "cell power stations." Mitochondria not only produce ATP in the cell, but also play essential functions in cell / object life, including apoptosis, ion homeostasis, sugar and fat metabolism, and pyrimidine / urea / heme synthesis. do.

미토콘드리아 이상은 노화와 관련된 퇴행성질환-심혈관질환, 파킨슨병, 헌팅 톤병, 치매 및 척수손상-등과도 상관관계가 있는 것으로 조사된다. 즉, 이들 질병 모델에서 미토콘드리아의 전자현미경사진은 정상에 비해 부풀어 커져 있거나, 크리스타 (cristae) 구조가 소실되는 등의 구조적 변형을 보이기도 하고, 세포당 미토콘드리아 DNA (mtDNA)의 수가 감소된 경우도 있으며, mtDNA가 돌연변이 (mutation)된 경우도 관찰되었다. 사람 및 동물을 대상으로 노화에 따른 미토콘드리아 기능변화를 모니터링하였을 때, 노화가 진행됨에 따라 미토콘드리아 DNA (mtDNA)의 복제수 및 mtRNA가 감소하였으며 (Barazzoni et al., 2000), Attardi 등은 노화에 따라 mtDNA 복제 및 전사의 조절부위인 D-loop중 T414G, T408A mutation이 축적됨을 보고하였다 (Michikawa et al., 1999; Wang et al., 2001). 최근에는 이런 신경퇴행성 질환의 발병을 유발하는 인자로 동정되는 물질들이 미토콘드리아에 존재하거나, 또는 미토콘드리아 기능 손상과 밀접한 관련이 있음이 보고되고 있다 (Beal, 1995; Chen & Yan, 2007; Scheffler, 2008; Wallace, 2005).Mitochondrial abnormalities have been shown to correlate with age-related degenerative diseases such as cardiovascular disease, Parkinson's disease, Huntington's disease, dementia and spinal cord injury. In other words, in these disease models, the electron micrographs of mitochondria are swelled or enlarged compared to normal ones, and structural changes such as loss of cristae structure are observed, and the number of mitochondrial DNA (mtDNA) per cell is decreased. A case where mtDNA was mutated was also observed. Monitoring of mitochondrial function changes with aging in humans and animals decreased the number of copies of mitochondrial DNA (mtDNA) and mtRNA as aging progressed (Barazzoni et al., 2000), and Attardi et al. The accumulation of T414G and T408A mutations in the D-loop, a regulatory region of mtDNA replication and transcription, has been reported (Michikawa et al., 1999; Wang et al., 2001). Recently, it has been reported that substances identified as factors causing the development of such neurodegenerative diseases exist in mitochondria or are closely related to mitochondrial impairment (Beal, 1995; Chen & Yan, 2007; Scheffler, 2008; Wallace, 2005).

인체 질병과 관련되어 과거 미토콘드리아에 관한 유전학적 연구는 미토콘드리아 유전자의 돌연변이 (mutation)가 대사 및 신경관련 유전질환을 유발함이 증명되었다 (Wallace, 2005). 최근 본 발명의 발명자들의 연구실을 포함한, 다양한 연구실에서 보고한 연구결과들은 유전적, 환경적 원인에 의한 미토콘드리아의 기능 손상이 대사증후군 (metabolic syndrome) (비만, 당뇨, 지질대사이상, 고혈압 중 2가지 이상의 증상이 한 사람에게서 동시에 나타나는 질병이며 인슐린 저항증 (insulin resistance)이 원인으로 작용함)을 포함한 만성 염증성 질환, 신경퇴화질환, 노화과정에 직접적으로 연관되어 있음을 보여주고 있다. 한 예로, 노령층 (elderly people)에서 나타나는 인슐린 저항증이 체중 (lean body mass), 지방량 (fat mass)가 상관관계가 있으며, in vivo NMR 기법으로 측정한 노령층의 미토콘드리아 산화적 인산화 (oxidative phosphorylation) 활성이 약 40% 저하되어 있어서 미토콘드리아의 기능감소가 인슐린 저항증의 원인 인자일 가능성이 확인되었다 (Pettersen et al., 2003). 또한 인슐린 저항증의 새로운 치료제로 사용되고 있는 peroxisome proliferators activated receptor γ (PPARγ)의 리간드의 활성을 증강시키는 co-activator 인 PGC-1α가 미토콘드리아의 생성을 촉진시킴이 보고된 바 있다. 따라서 미토콘드리아의 기능과 인슐린 저항증 및 대사증후군의 발병에는 확실한 인과관계가 성립함이 받아들여지고 있다.  Past genetic studies of mitochondria associated with human disease have demonstrated that mutations in mitochondrial genes cause metabolic and neurological genetic diseases (Wallace, 2005). Recent studies reported by various laboratories, including those of the inventors of the present invention, have shown that dysfunction of mitochondria due to genetic and environmental causes is due to metabolic syndrome (obesity, diabetes, lipid metabolism, hypertension). The above symptoms have been shown to be simultaneously associated with a single person and are directly linked to chronic inflammatory diseases, including neurological disease, neurodegenerative diseases, and aging, including insulin resistance. For example, lean body mass and fat mass are correlated with insulin resistance in elderly people, and mitochondrial oxidative phosphorylation activity of the elderly was measured by in vivo NMR technique. This decrease was about 40%, suggesting that mitochondrial dysfunction is a causative agent of insulin resistance (Pettersen et al., 2003). In addition, it has been reported that PGC-1α, a co-activator that enhances the activity of ligands of peroxisome proliferators activated receptor γ (PPARγ), which is used as a new therapeutic agent for insulin resistance, promotes the production of mitochondria. Therefore, it is accepted that a clear causal relationship is established between the function of mitochondria and the development of insulin resistance and metabolic syndrome.

과체중 및 비만은 신체의 구성 성분 중 지방조직이 과다하게 축적되어 신체에 차지하는 비율이 정상 이상으로 증가한 상태로 각종 질병의 위험요인일 뿐 아니라 건강위험요인으로 평가되고 있으며 각 개인의 문제를 넘어서서 사회적으로 적극적인 관리가 필요하다. 단일 질환이지만 다양하고 심각한 보건문제의 직·간접적인 원인이 되고 있다. 현대인의 바쁜 생활 속에서 식생활의 향상과 서구화로 열량이 높고 지방과 소금이 다량 함유된 음식의 섭취가 증가하는 반면, 활동량은 오히려 감소함으로써 비만의 빈도가 증가하고 있다 (김종균 등, 2007; 이윤나 등, 2004). 이로 인한 사회경제적 손실비용이 급증하고 있는 추세이다 (Wolf & Colditz, 1998). 국내 역학 조사 결과 한국인의 비만 역시 서구처럼 저소득, 저학력의 소외층에서 비만 유병률이 2배 이상 높고, 이로 인한 각종 만성질환이 증가하고 있다고 보고되고 있다. 최근 연구에 의하면 과체중 및 비만은 당뇨병, 허혈성 심장질환, 뇌졸중 등 질병 부담율이 높은 것으로 보고되고 있다. 특히 아시아인의 경우는 외국에 비해 비만기준이 더 낮은 편으로, 우리나라의 경우는 외국의 비만보다 과체중의 문제가 더 심각한 것으로 분석되고 있다 (Jeffery & French, 1997; Must et al., 1999; 강재헌과 김남순, 2002; 김영설, 1990; 최혜미 등, 2004). Overweight and obesity is a condition that increases the percentage of fatty tissues in the body that is excessively over the body, which is not only a risk factor for various diseases, but also a health risk factor. Active management is needed. Although it is a single disease, it is a direct and indirect cause of various serious health problems. Increasing the diet and westernization of modern people's busy life increases the intake of foods high in calories, high in fat and salt, while the decrease in activity increases the frequency of obesity (Kim Jong-kyun, 2007; Et al., 2004). As a result, socio-economic losses are on the rise (Wolf & Colditz, 1998). According to the domestic epidemiological survey, obesity among Koreans is also reported to be more than double the prevalence of obesity among low-income and low-educated underprivileged people, as in the West, and increasing various chronic diseases. Recent studies have reported that overweight and obesity have a high burden of diseases such as diabetes, ischemic heart disease, and stroke. In particular, Asians have lower obesity standards than foreign countries. In Korea, overweight problems are more serious than foreign obesity (Jeffery & French, 1997; Must et al., 1999; And Kim Nam-soon, 2002; Kim Young-sul, 1990; Choi Hye-mi et al., 2004).

활동량이 적고 열량이 높은 음식을 섭취하는 환경 속에서 부모가 모두 비만일 경우, 부모의 식습관이 자식에게까지 전달되어 자녀의 70-80%는 비만이 나타난다. 또한 성인 비만인 경우 지방세포의 크기가 증가하지만 아동 비만의 경우 지방세포의 수와 크기가 증가하게 되어 성인 비만보다 아동 비만이 더 위험한 실정이며, 비만 아동이 성인이 되었을 때 성인병 발병률을 포함한 여러 가지 질환의 위험률이 증가하게 되므로 이를 예방 또는 치료가 시급하다 (Champ et al., 2005). 이렇듯 과체중 및 비만은 개인의 문제를 넘어서서 사회적으로 적극적인 관리가 필요한 심각한 문제이며, 최근 World Health Organization (WHO)에서는 전염병처럼 확산되는 비만을 질병으로 정의할 만큼 큰 문제로 인식하고 있다 (World Health Organization, 2004).When both parents are obese in a low-calorie, high-calorie environment, their eating habits are passed on to their children, resulting in 70-80% of their children becoming obese. In addition, in the case of adult obesity, the size of fat cells increases, but in the case of child obesity, the number and size of fat cells increases, obesity of children is more dangerous than adult obesity, and various diseases including the incidence of adult disease when obese children become adults Increasing risk of urine is an urgent need for prevention or treatment (Champ et al., 2005). As such, overweight and obesity are serious problems that require socially active management beyond personal problems. Recently, the World Health Organization (WHO) recognizes that obesity, which spreads like an epidemic, is a big problem that can be defined as a disease (World Health Organization, 2004).

당뇨는 크게 제1형과 제2형 당뇨병으로 분류가 되며, 제 1형 당뇨병은 어린이나 사춘기 때 발생이 되며, 췌장의 β 세포의 파괴성 병변에 의해 인슐린이 결핍되어 생기는 당뇨병이다. 그리고 제2형 당뇨병은 35세 이후에 발병하는 것으로 인슐린 분비의 저하와 인슐린 감수성 말초조직인 간, 근육, 지방세포, 췌장이 인슐린에 반응하지 않는 인슐린 저항성 (인슐린에 대한 세포 저항)으로 인해 생기게 된다. 이 질병은 인슐린 부족이나 인슐린 저항성으로 인해 음식 섭취에도 불구하고 혈당 수준을 유지하는 내당능력 (glucose tolerance) 이 감소하게 됨으로써 고혈당이 장기간 유지되고, 결국 당을 소변으로 배설하게 되는 당뇨병이 나타나게 된다. 당뇨병 초기 증상은 다뇨, 갈증, 혈당을 유지하는 능력이 떨어져 식욕항진, 인슐린 저항성의 증가로 당을 적절하게 이용할 수가 없어 체중이 감소하게 된다 (Champ et al., 2005; National Institutes of Health, 2004).Diabetes is largely classified into type 1 and type 2 diabetes. Type 1 diabetes occurs in children and puberty, and diabetes is caused by deficiency of insulin due to destructive lesions of the β cells of the pancreas. Type 2 diabetes occurs after age 35 and is caused by a decrease in insulin secretion and insulin resistance (cell resistance to insulin) that insulin-sensitive peripheral tissues such as liver, muscle, adipocytes and pancreas do not respond to insulin. The disease results in a decrease in glucose tolerance to maintain blood sugar levels despite food intake due to insulin deficiency or insulin resistance, leading to high blood sugar levels and long-term diabetes, which causes glucose to be excreted in the urine. Symptoms of early diabetes are weight loss due to poor ability to maintain urination, thirst and blood sugar, resulting in increased appetite and increased insulin resistance (Champ et al., 2005; National Institutes of Health, 2004). .

비만, 당뇨를 포함한 대사증후군의 여러 증상을 예방, 치료할 수 있는 약물은 아직까지 보고된 바가 없으며, 약물치료제의 경우 증상완화를 목적으로 하는 약제가 대부분이다. 최근 인슐린 저항증 치료제로 사용되고 있는 troglitazone 계통의 PPARγ 리간드의 경우, 한국인에게는 치료율이 낮은 것으로 관찰되고 지방생성 (adipogenesis)를 촉진하는 특성 때문에 나타날 수 있는 2차적 비만, 부종 등의 부작용으로 인해 아직 사용에 한계가 있다. 따라서, 만일 부작용이 낮으면서도 당뇨/비만/신경퇴행성 질환의 원인으로 지목되고 있는 소포체 스트레스 및/또는 (and/or) 미토콘드리아 기능손상을 예방/회복시킬 수 있는 약제가 개발된다면 환경적 또는 유전적 요인에 의해 유발되는 대사증후군과 관련 퇴행성질환을 예방/치료할 수 있는 치료제로 개발이 가능할 것이다. 이들 약제 후보물질들은 소포체 스트레스 완화효과 및 미토콘드리아 기능 개선 작용이 우수하여야 하며, 또한 식욕과 불필요한 체지방의 감소 및 인슐린 저항성을 개선시킬 수 있는 효능을 가지고 있어야 한다. 그러나 아직 이런 효능을 가지고 있는 물질은 보고된 바 없다.Drugs that can prevent and treat various symptoms of metabolic syndrome, including obesity and diabetes, have not been reported so far, and most of them are drugs aimed at alleviating symptoms. Troglitazone recently used as a drug for insulin resistance PPARγ ligands of the lineage are still limited in use due to side effects such as secondary obesity and edema that may be observed in Koreans due to low therapeutic rates and properties that promote adipogenesis. Therefore, if a drug is developed that can prevent / recover endoplasmic reticulum stress and / or mitochondrial impairment, which has low side effects and is considered to be a cause of diabetes / obesity / neurodegenerative disease, environmental or genetic factors It could be developed as a therapeutic agent to prevent / treat metabolic syndrome and related degenerative diseases caused by These drug candidates should be excellent in reducing vesicle stress and improving mitochondrial function, and should also have an effect of reducing appetite, unnecessary body fat and improving insulin resistance. However, no substance has been reported that still has this effect.

한편, 백지 (Angelica dahurica)는 한국, 중국, 일본 등에서 자생하는 2-3년생 초본으로 한방에서는 이 뿌리를 말려 만든 생약을 “백지 (白芷)“라고 하고 주 요한 생리활성 물질로는 임페레이토린, 아이소임페레이토린 (isoimperatorin), 옥시포세다닌 (oxypeucedanin), 펠롭테린 (phellopterin), 바이아칸겔리콜 (byakangelicol)로 보고되어 있다. 한방에서는 예로부터 여러 가지 백지의 효능이 알려져 있는데 특히 발한, 진정, 진통, 감기, 두통, 치통 치료에 쓰이며, 미백, 모공수축, 항염증작용도 있는 것으로 알려져 있다.  그러나 소포체 스트레스나 미토콘드리아 기능의 조절 효능 또는 인슐린 저항증, 비만, 당뇨 및 지방간에 관련된 효능 등에 대해서는 알려진 바 없다.On the other hand, Angelica dahurica is a 2-3 year-old herb native to Korea, China, and Japan. In Chinese medicine, the herbal medicine made by drying the root is called “white paper.” The main bioactive substance is imperitorin, It has been reported as isoimperatorin, oxypeucedanin, pelletopterin, and byakangelicol. In traditional Korean medicine, the efficacy of various white papers is known, especially for sweating, sedation, pain, colds, headaches, toothaches, whitening, pore shrinkage, anti-inflammatory action is known. However, there is no known effect on the regulation of vesicle stress or mitochondrial function or the effects related to insulin resistance, obesity, diabetes and fatty liver.

백지 추출물 및 임페레이토린을 유효성분으로 함유하는 약제학적 조성물에 관한 것으로는 예를 들어, 대한민국 특허등록 제10-0527876호는 “임페레이토린 및/또는 팔카린다이올을 유효성분으로 함유하는 경련성 질환의 예방 및 치료용 조성물”이라는 명칭으로 “구릿대 뿌리에서 분배, 추출한 임페레이토린 및/또는 팔카린다이올을 부작용이 적은 항경련성 치료 및 예방용을 목적으로 하는 약제학적 조성물”을 제시하고 있으며, 그 외 다른 대한민국 특허로는 등록 제10-036152호는 “백지, 고본 추출물 및 이 추출물을 함유하는 화장료 조성물" 로 제시하고 있다. 그러나 상기 조성물은 미토콘드리아 기능 개선을 통한 지방간 및 대사증후군의 발생을 억제 또는 감소시킴으로써 비만환자, 당뇨환자 및 노화에 따른 대사증후군 발생을 늦추고 증상을 호전시키는 효능에 대해서는 전혀 제시된 바 없다.The pharmaceutical composition containing white paper extract and imperitorin as an active ingredient is disclosed, for example, in Korean Patent Registration No. 10-0527876, “convulsability containing imperitorin and / or falcarindaiol as an active ingredient. A pharmaceutical composition aimed at the anti-convulsant treatment and prevention of impairtorin and / or falcarindaiol, which is distributed and extracted from copper roots, with low side effects under the name of the composition for the prevention and treatment of diseases. , And other Korean patent registration No. 10-036152 proposes a "white paper, Gobon extract and a cosmetic composition containing the extract." However, the composition is to prevent the development of fatty liver and metabolic syndrome through the improvement of mitochondrial function Inhibition or reduction slows the development of metabolic syndrome and improves symptoms of obesity, diabetes and aging Key Bar is not shown at all for efficacy.

본 발명의 명세서에 인용되는 선행문헌의 내용은 모두 본 명세서에 도입된다. 또한 이곳에 기재된 정보들은 단지 본 발명의 기술적 배경에 대한 이해를 돕고자 하는 것으로서, 본 발명에 대한 선행기술로써 작용할 수 없음은 당연하다.The contents of the prior art cited in the specification of the present invention are all incorporated herein. In addition, the information described herein is only intended to help the understanding of the technical background of the present invention, it is natural that it cannot act as a prior art for the present invention.

인슐린 저항증, 비만, 당뇨 및 지방간 등과 같은 질병들의 치료제는 질환의 증상을 완화시키는 것이 대부분이다. 따라서 본 발명은 상기 질환의 원인으로 지목되고 있는 소포체 스트레스와 미토콘드리아 기능 손상을 완화 또는 개선하는 효능을 가진 의약조성물을 제공하는 것을 해결하고자 하는 과제로 한다. Therapeutics for diseases such as insulin resistance, obesity, diabetes and fatty liver are most often alleviated symptoms of the disease. Accordingly, an object of the present invention is to provide a pharmaceutical composition having an effect of alleviating or improving endoplasmic reticulum stress and mitochondrial function impairment, which is indicated as a cause of the disease.

상기 과제를 해결고자 본 발명의 발명자들은 부단한 연구를 한 결과, 놀랍게도 천연소재인 백지 추출물 및 임페레이토린이 소포체 스트레스와 미토콘드리아 기능 손상을 완화 또는 개선시킨다는 것을 최초로 밝혀, 이와 관련된 질환들의 예방 또는 치료제로 제공한다. In order to solve the above problems, the inventors of the present invention have found that for the first time that surprisingly natural white paper extract and imperitorin alleviate or improve the endoplasmic reticulum stress and mitochondrial function impairment, and provide it as a preventive or therapeutic agent for related diseases. do.

본 발명의 백지 추출물 또는 임페레이토린 (imperatorin)을 유효성분으로 함유하는 조성물은 소포체 스트레스 완화 및/또는 미토콘드리아 기능 개선의 효과가 있다. 따라서 본 발명의 조성물은 소포체의 스트레스 완화 및/또는 미토콘드리아의 기능 개선을 위한 의약조성물 또는 식품조성물로 사용될 수 있다.The composition containing the white paper extract or imperitorin (imperatorin) of the present invention as an active ingredient has an effect of relieving vesicle stress and / or improving mitochondrial function. Therefore, the composition of the present invention can be used as a pharmaceutical composition or a food composition for stress relief of the endoplasmic reticulum and / or improve the function of the mitochondria.

또한 본 발명은 또한 백지 추출물 또는 임페레이토린을 사용하여 소포체의 스트레스 완화 및/또는 미토콘드리아의 기능을 개선시키는 방법을 제공 및 이를 위한 키트로 사용될 수 있다. In addition, the present invention can also be used as a kit for providing a method for relieving stress of the endoplasmic reticulum and / or improving the function of mitochondria by using white paper extract or imperitorin.

따라서 본 발명의 의약조성물은 소포체의 스트레스 완화 및/또는 미토콘드리 아의 기능이상과 관련이 있는 비만, 인슐린저항증, 체지방증가, 지방간, 간섬유화, 대사증후군, 지질대사이상, 고혈압, 신경퇴화질환, 양극성 장애, 당뇨병, 동맥경화증, 국소빈혈, 심장병, 간질환, 췌장질환, 암, 노화, 심혈관질환, 파킨슨병, 헌팅톤병, 치매 또는 척수손상의 예방 또는 치료를 위하여 사용될 수 있다.Therefore, the pharmaceutical composition of the present invention is obesity, insulin resistance, body fat increase, fatty liver, liver fibrosis, metabolic syndrome, lipid metabolism abnormality, hypertension, neurodegeneration associated with stress relief and / or mitochondrial dysfunction of the endoplasmic reticulum It can be used for the prevention or treatment of diseases, bipolar disorders, diabetes, arteriosclerosis, ischemia, heart disease, liver disease, pancreatic disease, cancer, aging, cardiovascular disease, Parkinson's disease, Huntington's disease, dementia or spinal cord injury.

본 발명은 백지 추출물 또는 임페레이토린 (imperatorin)을 유효성분으로 하는 소포체의 스트레스 완화 및/또는 미토콘드리아의 기능 개선을 위한 의약조성물 또는 식품조성물에 관한 것이다.The present invention relates to a pharmaceutical composition or a food composition for reducing stress and / or improving the function of the mitochondria of the endoplasmic reticulum containing the white paper extract or imperatorin (imperatorin) as an active ingredient.

본 발명은 또한 백지 추출물 또는 임페레이토린을 사용하여 소포체의 스트레스 완화 및/또는 미토콘드리아의 기능을 개선시키는 방법을 및 이를 위한 키트를 제공한다. The present invention also provides methods and kits for the use of white paper extracts or imperitorins to relieve stress in the endoplasmic reticulum and / or to improve the function of mitochondria.

본 발명의 발명자들은 Hep G2 세포에 소포체 스트레스를 유발시키면 세포 사멸이 일어나지만 백지추출물을 전처리할 경우 세포사멸이 감소하며 (도1), 소포체 스트레스 마커 유전자의 발현이 백지추출물이나 임페레이토린에 의하여 감소한다는 것을 발견하였다 (도2 및 도3). 또한 Hep G2 세포에 소포체 스트레스를 유발시키면 세포내 ATP 양이 감소하지만 임페레이토린을 처리할 경우 유의하게 ATP양을 증가시킨다는 것을 관찰하였는데 (도 4), 이러한 결과는 임페레이토린이 소포체 스트레스를 완화시킴으로써 미토콘드리아 활성을 증가시켜 ATP 생성을 증가시켰기 때문인 것으로 사료된다.The inventors of the present invention induced the endoplasmic reticulum stress in Hep G2 cells, but apoptosis is reduced when pre-treated with white paper extract (Fig. 1), the expression of the vesicle stress marker gene by the blank extract or imperitorin It was found to decrease (Figures 2 and 3). It was also observed that inducing endoplasmic reticulum stress in Hep G2 cells decreases the amount of intracellular ATP but significantly increases the amount of ATP when treated with imperitorin (FIG. 4). This may be due to increased ATP production by increasing mitochondrial activity.

또한 본 발명의 발명자들은 당뇨병 모델 생쥐 (db/db 생쥐)와 lean 생쥐에 백지추출물 (ADEx)을 33일간 투여하며 체중변화를 관찰한 결과 각 군의 식이 섭취량의 변화는 관찰되지 않았음에도 불구하고, lean 생쥐의 경우 백지추출물에 의하여 체중 증가량이 영향을 별로 받지 않았으나 db/db 생쥐는 백지추출물을 투여하였을 때 체중 증가량이 감소하였다 (도5). 또한 db/db생쥐의 경우 백지추출물을 투여할 때 정소의 백색 지방량이 유의적으로 감소하였다 (도6). 백지추출물의 투여는 생쥐의 가자미근 (soleus muscle)의 미토콘드리아 활성을 lean 생쥐, db/db 생쥐에서 모두 증가시켰다. 특히 백지추출물의 투여는 정상적인 상태보다 질환이 발생한 경우 (db/db생쥐)에 산화적 인산화 (oxidative phosphorylation, OXPHOS) 복합체의 활성을 현저하게 높은 수준으로 증가시켰다 (도7). 경구내당능시험에서는 db/db 생쥐는 대조군보다 약 4-5배정도의 높은 혈당을 보였으나 백지추출물를 투여할 경우 백지추출물에 의해 인슐린 감수성이 증진됨으로써 혈당이 db/db군보다 감소하는 것을 관찰하였다 (도 8). In addition, the inventors of the present invention administered the white paper extract (ADEx) to diabetic model mice (db / db mice) and lean mice for 33 days and observed the weight change, even though no change in the dietary intake of each group was observed. In the case of lean mice, the weight gain was not affected by the white paper extract, but in db / db mice, the weight gain decreased when the blank extract was administered (FIG. 5). In addition, the white fat content of the testis was significantly reduced in the db / db mice administration of white paper extract (Fig. 6). Administration of white paper extract increased mitochondrial activity of the soleus muscle of mice in both lean and db / db mice. In particular, administration of white paper extract significantly increased the activity of oxidative phosphorylation (OXPHOS) complexes in disease-prone (db / db mice) than normal conditions (Figure 7). In the oral glucose tolerance test, the db / db mice showed about 4-5 times higher blood glucose than the control group, but when the extract was administered, the insulin sensitivity was enhanced by the extract, which was observed to decrease the blood glucose level than the db / db group (Fig. 8).

본 발명의 발명자들은 고지방식이군 생쥐는 저지방식이군 생쥐에 비하여 체중과 식이섭취가 증가되나 임페레이토린 (IMP)을 투여할 경우 체중증가와 식이섭취증가가 감소된다는 것을 밝혔다(표1 및 2, 도9). 이러한 식이섭취의 감소는 시상하부의 식욕증진 신경펩타이드인 NPY (neuropeptide Y)와 AgRP (agouti-related protein)의 mRNA가 고지방 식이 섭취로 인해 증가되었으며, 임페레이토린 투여로 인해 이들 발현이 감소된 것 (도10)으로 밝혀져, 임페레이토린이 NPY와 AgRP의 발현을 억제함으로써 식욕 억제 효과를 나타내는 것으로 보인다. 또한 본 발명자들은 고지방 식이 섭취로 인해 체중 증가와 함께 과도하게 축적된 지방이 임페레이토린 을 함께 투여하였을 때 고농도에서 유의하게 감소하는 것을 밝혀 (도11), 임페레이토린이 고지방식이에 의해 축적되는 체지방을 감소시키는데 효과가 있음을 보여 주었다. 또한 과도한 지방의 섭취로 인하여 지방간이 형성되는데, 본 발명자들이 면역조직염색 (immunohistochemistry)으로 확인한 바에 의하면 고지방식이 섭취로 인하여 과도하게 발현된 C/EBP-α의 발현이 임페레이토린을 투여하였을 때 대조군과 유사한 수준으로 정상화되었으며 (도12), 고지방식이를 섭취한 군의 많은 lipid droplet 들이 임페레이토린을 투여하였을 때 용량 의존적으로 대조군과 유사한 간세포 형태로 정상화 되었다 (도13).  이 결과는 고지방식이 섭취로 인하여 간에 지방이 합성 또는 축적되는 것을 임페레이토린이 이를 억제하여 간 기능을 회복시키는데 우수한 효능을 가진 것을 보여준다. 또한 고지방식이 섭취군에서 임페레이토린의 투여로 근육의 미토콘드리아 활성, 특히 OXPHOS complex I의 활성이 향상됨을 관찰하였으며 (도14), 공복 혈당이 약간 감소하고 포도당 섭취 후 혈중 포도당 제거율도 증가하는 것을 관찰하였다 (도15). The inventors of the present invention found that high-fat diet mice increased body weight and dietary intake as compared to low-fat diet mice, but weight gain and dietary intake were decreased when imperitorin (IMP) was administered (Tables 1 and 2, 9). The decrease in dietary intake increased mRNAs of the hypothalamic appetite-promoting neuropeptides NPY (neuropeptide Y) and AgRP (agouti-related protein) due to high-fat dietary intake, and these expressions were reduced by imperitorin administration. As shown in Fig. 10, imperitorin appears to exhibit an appetite suppressing effect by inhibiting the expression of NPY and AgRP. In addition, the inventors found that the fat accumulated excessively with weight gain due to the high fat diet was significantly reduced at high concentrations when impairatorin was administered together (FIG. 11). It has been shown to be effective in reducing body fat. In addition, fatty liver is formed due to excessive intake of fat. According to the inventors confirmed by immunohistochemistry, the expression of C / EBP-α overexpressed due to high-fat diet was impaired upon administration of imperitorin. Normalized to a level similar to the control (Fig. 12), the lipid lipids of the high-fat diet group normalized to a hepatocellular form similar to the control when dosed with imperitorin (Fig. 13). These results show that impairitorin has an excellent effect on restoring liver function by inhibiting synthesis or accumulation of fat in the liver due to high fat diet. In addition, the administration of imperitorin in high-fat diet group improved the mitochondrial activity of muscle, especially the activity of OXPHOS complex I (Fig. 14), slightly fasting blood glucose and the increase in blood glucose removal rate after glucose intake Observation was made (FIG. 15).

따라서. 본 발명의 백지 추출물 또는 임페레이토린은 1) 유전적 또는 환경적인 요인으로 인해 증가된 체중과 식욕을 감소시켜 비만의 위험을 줄여준다. 2) 소포체 스트레스 완화를 통한 미토콘드리아 기능 개선으로 강력하게 인슐린 저항증을 개선시켜 혈중에 존재하는 포도당이 짧은 시간에 각 조직으로 흡수가 되는 것을 도와준다. 3) 백색지방 (white adipose tissue)의 무게를 감소시킴으로써 불필요한 체지방 증가를 억제하여 지방이 각 조직에 축적되는 것을 억제 또는 감소시킨다. 또한, 4) 지방간 또는 간섬유화를 억제 또는 감소시키는 작용을 갖는다. 따라서 본 발명에 따른 백지 추출물 및 임페레이토린을 함유한 조성물을 사용한다면 불규칙한 식습관과 부족한 운동량으로 야기될 수 있는 여러 가지 질환을 예방할 수 있는 강력한 작용을 나타내어 대사증후군과 이에 동반되는 지방간의 예방 및 치료제로서 약제학적 조성물로 사용될 수 있다.therefore. White paper extract or imperitorin of the present invention 1) reduce the risk of obesity by reducing the increased weight and appetite due to genetic or environmental factors. 2) It improves mitochondrial function through relieving vesicle stress, which strongly improves insulin resistance, helping to absorb glucose in blood into each tissue in a short time. 3) By reducing the weight of white adipose tissue to suppress unnecessary body fat increase to inhibit or reduce the accumulation of fat in each tissue. And 4) inhibit or reduce fatty liver or hepatic fibrosis. Therefore, if the composition containing the white paper extract and imperitorin according to the present invention exhibits a potent action that can prevent various diseases that can be caused by irregular eating habits and insufficient exercise amount, preventing and treating metabolic syndrome and accompanying fatty liver. As a pharmaceutical composition.

또한 본 발명의 백지 추출물 또는 임페레이토린은 소포체 스트레스 또는 미토콘드리아의 기능 손상으로 발생되는 질병의 예방, 개선 또는 치료를 위하여 사용될 수 있다. 예방 또는 치료 가능한 질병으로는 예를 들어, 비만, 인슐린저항증, 체지방증가, 지방간, 간섬유화, 대사증후군, 지질대사이상, 고혈압, 신경퇴화질환, 양극성 장애, 당뇨병, 동맥경화증, 국소빈혈, 심장병, 간질환, 췌장질환, 암, 노화, 심혈관질환, 파킨슨병, 헌팅톤병, 치매 또는 척수손상 등을 들 수 있으며, 이로 제한되는 것은 아니다. In addition, the white paper extract or imperitorin of the present invention can be used for the prevention, improvement or treatment of diseases caused by endoplasmic reticulum stress or impaired function of the mitochondria. Preventable or treatable diseases include, for example, obesity, insulin resistance, body fat gain, fatty liver, liver fibrosis, metabolic syndrome, lipid metabolism, hypertension, neurodegenerative disorders, bipolar disorder, diabetes, arteriosclerosis, ischemia, heart disease , Liver disease, pancreatic disease, cancer, aging, cardiovascular disease, Parkinson's disease, Huntington's disease, dementia or spinal cord injury, and the like, but is not limited thereto.

본 발명에서 "치료" 란 질환의 진전의 억제 및 경감을 의미한다. 본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는다."Treatment" in the present invention means the inhibition and alleviation of the progression of the disease. Terms not otherwise defined herein have the meanings commonly used in the art.

본 발명은 상기 백지 추출물 및 임페레이토린은 백지 뿌리에서 유기용매 (예를 들어 n-부탄올, 메탄올, 에탄올, 클로르포름 등을 사용할 수 있으며 이에 제한되는 것은 아니다) 및 물로 분배, 추출하여 수득할 수 있다. In the present invention, the white paper extract and imperitorin can be obtained by dividing and extracting organic solvent (for example, but not limited to n-butanol, methanol, ethanol, chloroform, and the like) and water from the root of white paper. There is .

본 발명의 임페레이토린은 유리형태 또는 이의 약제학적으로 허용 가능한 염의 형태로 사용할 수 있다. 약제학적으로 허용 가능한 염에는 산부가염이 포함될 수 있으며, 산부가염의 예로는 통상적인 방법으로 제조할 수 있는 염산, 브롬화수 소산, 포스폰산 및 황산과 같은 무기산 및 타타르산, 아세트산, 시트르산, 말산, 말레산, 메탄설폰산 및 글루콘산 등과 같은 유기산의 염이 포함되나 이로 제한되는 것은 아니다.Imperitorin of the present invention can be used in free form or in the form of a pharmaceutically acceptable salt thereof. Pharmaceutically acceptable salts may include acid addition salts, and examples of acid addition salts include inorganic and tartaric acid, acetic acid, citric acid, malic acid, hydrochloric acid, hydrobromic acid, phosphonic acid, and sulfuric acid, which may be prepared by conventional methods. Salts of organic acids such as maleic acid, methanesulfonic acid and gluconic acid are included, but are not limited to these.

본 발명의 약제의 제조는 당업계에 공지된 방법에 따라 수행될 수 있으며, 일반적으로 공지되고 사용되는 보조제 및 추가의 적합한 담체 또는 희석제가 사용될 수 있다. 본 발명의 제약 조성물은 고형제, 용액제, 유제, 분산제, 미셀, 리포좀 등의 형태로 사용될 수 있고, 여기서 얻어진 조성물은 경구 또는 비경구로 적용하기에 적합한 유기 또는 무기 담체 또는 부형제와 함께 활성 성분으로서 본 발명의 화합물을 포함한다. 활성 성분은, 예를 들면 정제, 펠렛제, 캡슐제, 좌약제, 용액제, 유제, 현탁제, 액제, 젤리 및 사용하기에 적합한 임의의 기타 형태에 대해 일반적으로 비독성인 제약상 허용되는 담체와 함께 혼합될 수 있다. 사용 가능한 담체에는 고체상, 반고체상 또는 액체상의 포도당, 유당, 아라비아 고무, 젤라틴, 만니톨, 전분 페이스트, 삼규산 마그네슘염, 활석, 옥수수 전분, 각질 (角質), 코로이드성 실리카, 감자 전분, 우레아, 쇄 길이가 중간 정도인 트리글리세리드, 덱스트란 및 제제의 제조에 사용하기에 적합한 기타 담체가 포함된다. 또한, 보조제, 안정화제, 증점제, 착색제 및 향료제가 사용될 수 있다. 본 발명의 백지추출물 또는 임페레이토린 또는 이의 약제학적으로 허용 가능한 염은 질병의 진행시에 또는 질병 상태에 바람직한 효과를 미치기에 충분한 양으로 제약 조성물에 포함된다. 활성 성분을 포함하는 제약 조성물은 경구용으로 사용하기에 적합한 형태, 예를 들면 정제, 구내정제, 마름모꼴 정제, 액제, 젤리, 수성 또는 유성 현탁제, 분산성 분말 제 또는 과립제, 유제, 경질 또는 연질 캡슐제, 또는 시럽제 또는 엘릭시르제 (elixir)일 수 있다. 경구용으로 사용되는 조성물은 제약 조성물의 제조를 위해 당업계에 공지된 임의의 방법에 따라 제조될 수 있고, 이들 조성물은 제약적으로 우수하고 입에 맞는 제제를 제공하기 위해 자당, 유당 또는 사카린과 같은 감미제, 박하, 노루발풀 또는 체리와 같은 조미제, 착색제 및 보존제로 이루어진 군으로부터 선택되는 1종 이상의 작용제를 포함할 수 있다. 또한, 비독성의 제약상 허용되는 부형제와 함께 활성 성분을 포함하는 정제는 공지의 방법에 의해 제조될 수 있다. 사용되는 부형제는, 예를 들면 (1) 탄산 칼슘, 유당, 인산 칼슘 또는 인산 나트륨과 같은 비활성 부형제; (2) 옥수수 전분, 감자 전분 또는 알긴산과 같은 과립화제 및 분해제 ; (3) 트래거캔스 고무, 옥수수 전분, 젤라틴 또는 아카시아와 같은 결합제 및 (4) 스테아르산 마그네슘, 스테아르산 또는 활석과 같은 윤활제일 수 있다. 정제는 피복되지 않거나 또는 위장 관에서의 분해 및 흡수를 지연시키기 위해 공지의 방법으로 피복되어 보다 긴 기간 동안 작용이 유지될 수 있다. 예를 들면, 글리세릴 모노스테아레이트 또는 글리세릴 디스테아레이트와 같은 시간 지연 물질을 사용할 수 있다. 이들은 또한 피복되어 방출을 제어하기 위한 삼투성 치료 정제를 형성할 수 있다.The preparation of a medicament of the present invention can be carried out according to methods known in the art, and commonly known and used auxiliaries and further suitable carriers or diluents can be used. The pharmaceutical compositions of the present invention may be used in the form of solids, solutions, emulsions, dispersants, micelles, liposomes and the like, wherein the composition obtained is used as an active ingredient with an organic or inorganic carrier or excipient suitable for oral or parenteral application. It includes a compound of the present invention. The active ingredient may be, for example, a pharmaceutically acceptable carrier which is generally nontoxic to tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, solutions, jelly and any other form suitable for use. Can be mixed together. Carriers that can be used include solid, semisolid or liquid glucose, lactose, gum arabic, gelatin, mannitol, starch paste, magnesium trisilicate salt, talc, corn starch, keratin, colloidal silica, potato starch, urea, Triglycerides, dextran, which have a medium chain length, and other carriers suitable for use in the preparation of the formulations are included. In addition, auxiliaries, stabilizers, thickeners, colorants and flavoring agents can be used. The blank extract or imperitorin or pharmaceutically acceptable salt thereof of the present invention is included in the pharmaceutical composition in an amount sufficient to have a desirable effect on disease progression or disease state. Pharmaceutical compositions comprising the active ingredient may be in a form suitable for oral use, eg, tablets, tablets, lozenges, solutions, jelly, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft Capsules, or syrups or elixirs. Compositions used for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions, which compositions may be prepared such as sucrose, lactose or saccharin in order to provide a pharmaceutical pharmaceutically good and fit formulation. One or more agents selected from the group consisting of sweetening agents, mints, seasonings such as peppermint grass or cherry, colorants and preservatives. In addition, tablets comprising the active ingredient in combination with nontoxic pharmaceutically acceptable excipients may be prepared by known methods. Excipients used include, for example, (1) inert excipients such as calcium carbonate, lactose, calcium phosphate or sodium phosphate; (2) granulating and disintegrating agents such as corn starch, potato starch or alginic acid; (3) binders such as tragacanth gum, corn starch, gelatin or acacia, and (4) lubricants such as magnesium stearate, stearic acid or talc. Tablets may be uncoated or coated in a known manner to delay degradation and absorption in the gastrointestinal tract so that the action can be maintained for a longer period of time. For example, a time delay material such as glyceryl monostearate or glyceryl distearate can be used. They may also be coated to form osmotic therapeutic tablets for controlling release.

일부의 경우에서, 경구용 제제는 활성 성분이 비활성 고체상 희석제, 예를 들면 탄산 칼슘, 인산 칼슘 또는 카올린과 혼합되는 경질 젤라틴 캡슐의 형태로 사용될 수 있다. 또한, 이들은 활성 성분이 물 또는 유상 매질, 예를 들면 땅콩유, 액상 파라핀 또는 올리브유와 혼합되는 연성 젤라틴 캡슐의 형태일 수 있다.In some cases, oral formulations may be used in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid phase diluent such as calcium carbonate, calcium phosphate or kaolin. They may also be in the form of soft gelatin capsules in which the active ingredient is mixed with water or an oily medium such as peanut oil, liquid paraffin or olive oil.

제약 조성물은 무균의 주사 가능 현탁액 형태일 수 있다. 이와 같은 현탁액은 적합한 분산제 또는 습윤 제 및 현탁제를 사용하여 공지의 방법에 따라 제제될 수 있다. 또한, 무균 주사 가능 제제는 비독성의 비경구적으로 허용되는 희석제 또는 용액제 중의 무균 주사 가능 용액제 또는 현탁제, 예를 들면 1,3-부탄디올 중의 용액제일 수 있다. 무균 고정유는 통상적으로 용매 또는 현탁 매질로 사용된다. 이와 같은 목적을 위하여, 합성 모노- 또는 디글리세리드, 지방산 (올레산을 포함함), 참기름과 같은 천연 식물성유, 코코넛유, 땅콩유, 목화씨유 등 또는 에틸 올레에이트 등과 같은 합성 지방 운반제를 포함하는 임의의 무자극성 고정유가 사용될 수 있다. 필요에 따라 완충제, 보존제, 산화방지제 등이 혼입될 수 있다.The pharmaceutical composition may be in the form of a sterile injectable suspension. Such suspensions may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. In addition, sterile injectable preparations may be sterile injectable solutions or suspensions in nontoxic parenterally acceptable diluents or solutions, for example solutions in 1,3-butanediol. Sterile fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, synthetic mono- or diglycerides, fatty acids (including oleic acid), natural vegetable oils such as sesame oil, coconut oil, peanut oil, cottonseed oil and the like, or synthetic fat carriers such as ethyl oleate, etc. Any non-irritating fixed oil may be used. If necessary, buffers, preservatives, antioxidants, and the like may be incorporated.

또한, 본 발명의 실행 시에 사용할만한 화합물은 약제의 직장 내 투여에 적합한 좌약제 형태로 투여될 수 있다. 이와 같은 조성물은, 보통 온도에서는 고체상이지만 직장 강에서 액체화 및 (또는) 용해되어 약제를 방출하는 코코아 버터, 폴리에틸렌 글리콜의 합성 글리세리드 에스테르와 같은 적합한 비자극성 부형제와 약제를 혼합하여 제조될 수 있다.In addition, compounds which may be used in the practice of the present invention may be administered in the form of suppositories suitable for rectal administration of the medicament. Such compositions may be prepared by mixing the agent with a suitable non-irritating excipient such as cocoa butter, synthetic glyceride esters of polyethylene glycol, which are solid in normal temperature but liquefied and / or dissolved in the rectal cavity to release the drug.

본 발명의 백지추출물 또는 임페레이토린 또는 이의 약제학적으로 허용 가능한 염의 전형적인 일일 복용량은 일반적으로 약 10μg 내지 약 200 mg/체중 kg의 범위, 바람직하게는 약 50μg 내지 약 150 mg/체중 kg 범위이다. 각각의 치료 대상은 징후의 정도가 다양하고 각 약제는 독특한 치료적 특성을 가지므로, 치료에 대한 치료 대상의 반응을 결정하고 그에 따른 투약량을 변화시키는 것은 전문가가 해야 할 일이다. Typical daily dosages of the white paper extract or imperitorin or pharmaceutically acceptable salts thereof of the present invention generally range from about 10 μg to about 200 mg / kg body weight, preferably from about 50 μg to about 150 mg / kg body weight. Because each subject has varying degrees of manifestation and each agent has unique therapeutic properties, it is up to the expert to determine the subject's response to the treatment and to change the dosage accordingly.

또한, 본 발명은 백지추출물 또는 임페레이토린을 유효성분으로 함유하는 소포체 스트레스 및/또는 미토콘드리아 기능 손상의 예방 또는 개선용 식품 첨가물 또는 음료 조성물을 제공한다. The present invention also provides a food additive or beverage composition for the prevention or improvement of endoplasmic reticulum stress and / or mitochondrial function impairment containing a blank extract or imperitorin as an active ingredient.

본 발명의 백지추출물 또는 임페레이토린을 식품 첨가물로 사용할 경우, 이들 각각을 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 통상적인 방법에 따라 적절하게 사용될 수 있다.  유효성분의 혼합량은 그의 사용 목적 (예방, 건강 또는 치료적 처치)에 따라 적합하게 결정될 수 있다.  일반적으로, 백지추출물 또는 임페레이토린은 식품 또는 음료의 제조시에 원료에 대하여 각각 0.0001 내지 30 중량%, 바람직하게는 0.1 내지 10 중량%의 양으로 첨가될 수 있으나, 첨가되는 양은 목적에 따라 얼마든지 조절이 가능하다. 상기 식품의 종류에 특별한 제한은 없다.  백지추출물 또는 임페레이토린을 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 초코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올 음료 및 비타민 복합제 등이 있다. When the blank extract or imperitorin of the present invention is used as a food additive, each of them may be added as it is or may be appropriately used according to conventional methods with other foods or food ingredients. The mixed amount of the active ingredient may be appropriately determined depending on the purpose of use (prevention, health or therapeutic treatment). In general, white paper extract or imperitorin may be added in amounts of 0.0001 to 30% by weight, preferably 0.1 to 10% by weight, based on the raw materials in the manufacture of foods or beverages, but the amount added may vary depending on the purpose. It can be adjusted. There is no particular limitation on the type of food. Examples of foods to which white paper extract or imperitorin can be added include meat, sausage, bread, chocolate, candy, snacks, confectionary, pizza, ramen, other noodles, dairy products including gums, ice cream, various soups, drinks, Tea, drink, alcoholic beverages and vitamin complexes.

이하, 본 발명을 실시예에 의하여 상세히 설명한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

실시예Example

저지방과 고지방 식이Low fat and high fat diet

실험에 사용된 10%Kcal 저지방 식이와 60%Kcal고지방 식이는 Research Diets사 (미국)에서 구입하였다. The 10% Kcal low fat and 60% Kcal high fat diets used in the experiment were purchased from Research Diets (USA).

백지 추출물 및 임페레이토린 제조White Paper Extract and Imperitorin Preparation

백지 추출물은 백지를 70% 에탄올로 실온에서 냉침으로 추출한 후, 동결 건조한 분말을 물 또는 완충용액에 녹여 사용하였다. 백지의 주요 효능 성분중 하나인 임페레이토린은 백지를 메탄올 또는 에탄올 추출물을 클로르포름으로 분획하고, 실리카젤과 컬럼크로마토그라피를 이용하여 분리, 동정한 것을 사용할 수 있으며, 본 실험에서는 합성된 임페레이토린을 사용하였고, 순도는 99.16%이었다. White paper extract was extracted by cold washing at room temperature with 70% ethanol, and the freeze-dried powder was used in water or buffer solution. Imperitorin, one of the main constituents of white paper, can be used by separating white paper with methanol or ethanol extract with chloroform, separating and identifying by using silica gel and column chromatography. Lean was used and the purity was 99.16%.

소포체 스트레스의 유도Induction of Vesicular Stress

소포체 스트레스를 유도하기 위해서는 소포체에서 새로 합성된 단백질의 당화과정 (N-glycosylation)을 억제하여 소포체 스트레스를 유도하는 것으로 알려진 투니카마이신 (Tunicamycin) 또는 소포체의 칼슘 항상성을 파괴하여 소포체 스트레스 유도하는 것으로 알려진 탑시가긴 (Thapsigargin)을 사용하였다.To induce vesicle stress, Tunicamycin, which is known to induce vesicle stress by inhibiting N-glycosylation of newly synthesized protein in endoplasmic reticulum, or known to induce vesicle stress by destroying calcium homeostasis of endoplasmic reticulum Thapsigargin was used.

Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)

소량의 조직 또는 세포에 1 mL TRIzol®시약 (Invitrogen사, 미국)을 첨가하 여 전체 RNA를 추출하였다. 추출한 RNA는 1% 아가로즈겔에서 전기영동하여 18S와 28S의 밴드를 확인하였으며, 파장 260 nm와 280 nm에서 optical density를 측정하여 그 ratio가 1.8-1.95 범위 내에 속하는지 확인하였고, 각 샘플의 optical density 값을 이용하여 RNA를 정량하였다. 1 ㎍RNA를 Maxime RT Premix Kit (Intron Biotechnology사, 한국)를 이용해 cDNA로 전환하여 아래와 같이 각 유전자에 맞게 제작된 primer를 이용하여 최적 조건에서 GeneAmp® PCR system 9700 (Applied Biosystems사, 미국)로 PCR을 수행하였다. 그리고 각 PCR product를 1% 아가로즈겔에서 전기영동을 하여 UV 상에서 image densitometer (Alpha Ease FC software (Alpha Innotech사, 미국)를 이용하여 상대적인 농도를 측정하였다. mRNA 수준은 18S rRNA 수준과 비교해서 표준화하였다. RT-PCR에 사용한 프라이머는 다음과 같다.Total RNA was extracted by adding 1 mL TRIzol® reagent (Invitrogen, USA) to a small amount of tissue or cells. The extracted RNA was electrophoresed on 1% agarose gel to confirm the bands of 18S and 28S. The optical density was measured at wavelengths of 260 nm and 280 nm, and the ratios were within the range of 1.8-1.95. RNA was quantified using the density value. 1 μgRNA was converted to cDNA using Maxime RT Premix Kit (Intron Biotechnology, Korea) and PCR using GeneAmp® PCR system 9700 (Applied Biosystems, USA) under optimal conditions using primers designed for each gene as shown below. Was performed. Each PCR product was subjected to electrophoresis on 1% agarose gel to measure relative concentration on UV using an image densitometer (Alpha Ease FC software (Alpha Innotech, USA)). MRNA levels were normalized to 18S rRNA levels. The primers used for RT-PCR are as follows.

GeneGene Primer sequence (from 5' to 3')Primer sequence (from 5 'to 3') Product Length (bp)Product Length (bp) Anealing Temp. (oC)Anealing Temp. ( o C) GRP78

XBP1p

NPY

AgRP

18S rRNA
GRP78

XBP1p

NPY

AgRP

18S rRNA
F-GAGATCATCGCCAACGATCAG
R-ACTTGATGTCCTGCTGCACAG
F-GGTCTGCTGAGTCCGCAGCAGG
R-GGGCTTGGTATATATGTGG
F-GCTTGAAGACCCTTCCATGTGGTG
R-GGCGGAGTCCAGCCTAGTGG
F-GAAGGCCTGACCAGGCTCTGTTCC
R-AAAGGCATTGAAGAAGCGGCAG
F-GAGCGAAAGCATTTGCCAAG
R-GGCATCGTTTATGGTCGGAA
F-GAGATCATCGCCAACGATCAG
R-ACTTGATGTCCTGCTGCACAG
F-GGTCTGCTGAGTCCGCAGCAGG
R-GGGCTTGGTATATATGTGG
F-GCTTGAAGACCCTTCCATGTGGTG
R-GGCGGAGTCCAGCCTAGTGG
F-GAAGGCCTGACCAGGCTCTGTTCC
R-AAAGGCATTGAAGAAGCGGCAG
F-GAGCGAAAGCATTTGCCAAG
R-GGCATCGTTTATGGTCGGAA
188

335

142

251

101
188

335

142

251

101
55

60

60

60

60
55

60

60

60

60

산소호흡률 (OOxygen Respiration Rate (O 22 consumption rate, OCR) 측정 consumption rate (OCR) measurement

희생된 생쥐에서 채취한 근육조직을 2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 mM MgCl2·6H2O, 20 mM Taurine, 15 mM Na2Phospho-creatine, 20 mM Imidazole, 0.5 mM Dithiothreitol, 50 mM MES 및 50 μg/mL saponin을 함유한 차가운 BIOPS 용액 (pH 7.1) 내에 놓고 30분 동안 교반하였다. BIOPS 용액에 있는 근육조직을 20 mM HEPES, 110 mM sucrose, 3 mM MgCl2·6H2O, 0.5 mM EGTA, 10 mM KH2PO4, 60mM K-lactobionate, 20 mM Taurine, 0.1% BSA를 함유한 차가운 respiration buffer (pH 7.1)로 옮겨 10분 동안 교반하면서 세포막의 투과성을 증가시켰다. 37oC로 유지되는 Oxygraph-2k chamber (Oroboros사, 오스트리아)에 세포막 투과성이 증가된 근육조직을 옮긴 후 100 mM p1, p5-di(adenosine-5')-pentaphosphate를 chamber에 주입함으로써 근육조직이 아데닐화 (adenylate)되는 것을 방지하였다. OCR은 각 조직의 기초 호흡률을 측정한 후 각각의 OXPHOS 복합체 (complex I, II & III, IV)에 관여하는 기질과 억제제를 순차적으로 첨가함으로써 산소소비량 (OCR)을 측정하였다. 각각의 OXPHOS 복합체를 측정하기 위해 사용된 기질과 억제제로는 2 mM ADP, 8 mM malate, 20 mM glutamatez (Complex I), 1 mM rotenone, 10 mM succinate (Complex II & III), 25 mM antimycin A, 80 μM ascorbate, 420 μM N,N,N',N'-tetramethyl-P-phenylenediamine dihydrochloride (TMPD) [Complex IV]를 사용하였다. 이렇게 측정된 OCR은 pmoles/sec/mg wt으로 표시하였다.Muscle tissue collected from the sacrificed mice was treated with 2.77 mM CaK 2 EGTA, 7.23 mM K 2 EGTA, 5.77 mM Na 2 ATP, 6.56 mM MgCl 2 · 6H 2 O, 20 mM Taurine, 15 mM Na 2 Phospho-creatine, 20 mM It was placed in a cold BIOPS solution (pH 7.1) containing Imidazole, 0.5 mM Dithiothreitol, 50 mM MES and 50 μg / mL saponin and stirred for 30 minutes. Muscle tissue in BIOPS solution was treated with 20 mM HEPES, 110 mM sucrose, 3 mM MgCl 2 .6H 2 O, 0.5 mM EGTA, 10 mM KH 2 PO 4 , 60 mM K-lactobionate, 20 mM Taurine, 0.1% BSA. Transfer to cold respiration buffer (pH 7.1) and increase cell membrane permeability with stirring for 10 minutes. After transferring muscle tissue with increased cell membrane permeability to Oxygraph-2k chamber maintained at 37 o C (Oroboros, Austria), the tissue was infused with 100 mM p1, p5-di (adenosine-5 ')-pentaphosphate into the chamber. Adenylation was prevented. OCR was measured by basal respiratory rate of each tissue and then measured oxygen consumption (OCR) by sequentially adding the substrate and inhibitor involved in each OXPHOS complex (complex I, II & III, IV). Substrates and inhibitors used to measure each OXPHOS complex include 2 mM ADP, 8 mM malate, 20 mM glutamatez (Complex I), 1 mM rotenone, 10 mM succinate (Complex II & III), 25 mM antimycin A, 80 μM ascorbate, 420 μM N, N, N ', N'-tetramethyl-P-phenylenediamine dihydrochloride (TMPD) [Complex IV] was used. The OCR thus measured is expressed in pmoles / sec / mg wt.

<실험 예1> 소포체 스트레스에 대한 백지 추출물 또는 임페레이토린의 효과Experimental Example 1 Effect of White Paper Extract or Imperitorin on Vesicular Stress

1) Hep G2 세포의 소포체 스트레스에 의한 세포사멸에 대한 효과1) Effect of Hep G2 Cells on Apoptosis due to Vesicular Stress

Hep G2 세포를 minimum essential medium (MEM)에 10% 소 태아혈청 (fetal bovine serum; FBS)이 포함된 용액 내에서 37°C, 5% 탄산가스 (CO2), 95% 공기 (O2) 조건으로 배양하였다. 배양중인 Hep G2 세포 (1×104 세포/well) 에 백지 추출물 (ADEx, 0.5μg/mL) 또는 임페레이토린 (IMP, 0.1μg/mL)을 첨가하여 5시간 전처리 하였다. 소포체 스트레스를 유도하는 탑시가긴 (3 μg/mL) 또는 투니카마이신 (4 μg/mL)을 백지추출물 또는 임페레이토린 처리군과 비처리군 각각에 첨가하여 24시간 동안 배양한 후 세포의 사멸 회복 효과를 MTT assay로 측정하였다. 백지추출물과 탑시가긴 또는 투니카마이신을 모두 처리하지 않은 대조군 (DMSO 처리군)과 비교한 세포생존률에 있어서, 백지추출물 또는 임페레이토린 전처리군은 소포체 스트레스에 의해 유도되는 간세포의 사멸을 거의 완전히 보호함을 관찰할 수 있었다 (도 1). Hep G2 cells in a solution containing 10% fetal bovine serum (FBS) in minimum essential medium (MEM) at 37 ° C, 5% carbon dioxide (CO 2 ), 95% air (O 2 ) Incubated with. Hep G2 cells (1 × 10 4 cells / well) in culture were pretreated for 5 hours by adding white paper extract (ADEx, 0.5 μg / mL) or imperitorin (IMP, 0.1 μg / mL). Topicagagin (3 μg / mL) or tunicamycin (4 μg / mL), which induces endoplasmic reticulum stress, was added to each of the blank extract or imperitorin and non-treated groups, followed by incubation for 24 hours, followed by cell death recovery. The effect was measured by MTT assay. In cell viability compared to the control group (DMSO-treated group), which was not treated with both white paper extract and topsigin or tunicamycin, the white paper extract or imperitorin pretreatment group almost completely prevented the death of hepatocytes induced by endoplasmic reticulum stress. Was observed (FIG. 1).

2) Hep G2 세포에서 소포체 스트레스 마커 유전자 발현에 대한 효과2) Effect on vesicle stress marker gene expression in Hep G2 cells

Hep G2 세포를 minimum essential medium (MEM)에 10% 소 태아혈청(fetal bovine serum; FBS)이 포함된 용액에서 37°C, 5% 탄산가스 (CO2), 95% 공기 (O2) 의 조건으로 배양하였다. 배양중인 Hep G2 세포 (1×106 세포/well) 에 백지추출물 (ADEx; 0.5 μg/mL) 또는 임페레이토린 (IMP; 0.1 μg/mL)을 첨가하여5시간 전처리하였다. 소포체 스트레스를 유도하는 탑시가긴 (3 μg/mL)을 백지추출물 또는 임페레이토린 처리군 및 비처리군에 첨가하여 24시간 동안 배양하였다. 각 시험군으로부터 RNA를 분리하여 RT-PCR을 통해 소포체 스트레스 마커 유전자인 GRP78과 XBP1p (XBP1의 processed form)의 발현을 관찰하였다. 도 2와 3에서 보이는 바와 같이 백지추출물 또는 임페레이토린을 처리한 군에서 탑시가긴 을 처리한 군 (Thap군)보다 소포체 스트레스 마커 유전자인 GRP78과 XBP1p의 발현이 감소되었다.Hep G2 cells in a solution containing 10% fetal bovine serum (FBS) in minimum essential medium (MEM) at 37 ° C, 5% carbon dioxide (CO 2 ), 95% air (O 2 ) Incubated with. Hep G2 cells (1 × 10 6 cells / well) in culture were pretreated for 5 hours by adding blank extracts (ADEx; 0.5 μg / mL) or imperitorin (IMP; 0.1 μg / mL). Topsigagin (3 μg / mL), which induces endoplasmic reticulum stress, was added to blank extracts or imperitorin treated and untreated groups and incubated for 24 hours. RNA was isolated from each test group, and the expression of the endoplasmic reticulum stress marker genes GRP78 and XBP1p (processed form of XBP1) was observed through RT-PCR. As shown in FIGS. 2 and 3, the expression of the endoplasmic reticulum stress marker genes GRP78 and XBP1p was reduced in the white paper extract or imperitorin-treated group than in the Thapsi group treated (Thap group).

3) Hep G2 세포에서 소포체 스트레스에 의한 ATP 양의 감소에 대한 효과3) Effect on Reduction of ATP Level by Antifoam Stress in Hep G2 Cells

Hep G2 세포를 minimum essential medium (MEM)에 10% 소 태아혈청(fetal bovine serum; FBS)이 포함된 용액에서 37°C, 5% 탄산가스 (CO2), 95% 공기 (O2) 의 조건으로 배양하였다. 배양중인 Hep G2 세포 (1×105 세포/well) 에 임페레이토린 (IMP; 0.1 μg/mL)을 첨가하고 배양하여5시간 전처리 한 후 소포체 스트레스를 유도하는 탑시가긴 (Thap; 3 μg/mL) 또는 투니카마이신 (Tuni; 4 μg/mL) 을 첨가하여 24시간 동안 배양하였다 (도4의 Thap+IMP군 또는 Tuni+IMP군). 그러나 대조군 (DMSO군, Thap군 또는 Tuni군)에는 임페레이토린을 첨가하지 않았다. 모든 군의 세포 (1x105 세포/mL)에서 ATP-Bioluminescence assay kit (#FLASC; Sigma-Aldrich사, 미국)을 사용하여 ATP 농도를 측정하였다.Hep G2 cells in a solution containing 10% fetal bovine serum (FBS) in minimum essential medium (MEM) at 37 ° C, 5% carbon dioxide (CO 2 ), 95% air (O 2 ) Incubated with. Emperatorin (IMP; 0.1 μg / mL) was added to Hep G2 cells (1 × 10 5 cells / well) in culture, followed by incubation for 5 hours, followed by Tophgagin (Thap; 3 μg / mL). ) Or tunicamycin (Tuni; 4 μg / mL) was added and incubated for 24 hours (Tab + IMP group or Tuni + IMP group in FIG. 4). However, no imperitorin was added to the control group (DMSO group, Thap group or Tuni group). ATP concentration was measured using an ATP-Bioluminescence assay kit (#FLASC; Sigma-Aldrich, USA) in all groups of cells (1 × 10 5 cells / mL).

도 4에서 보이는 바와 같이, 임페레이토린만 첨가한 IMP군에서는 ATP 농도가 대조군보다 약간 증가하는 경향을 보였으나 큰 차이를 보이지 않았으며, 소포체 스트레스를 준 (Thap군, Tuni 군) 에서는 ATP 농도가 유의하게 감소하는 것을 알 수 있었다. 그러나 탑시가긴 또는 투니카마이신과 임페레이토린을 같이 처리하였을 때 Thap군, Tuni군과 비교하여 유의하게 ATP 농도가 증가하였다. 이러한 결과는 임페레이토린이 두 가지 대표적인 소포체 스트레스를 모두 완화시킴으로써 미토콘드리아 활성을 증가시켜 ATP 생성을 증가시켰기 때문인 것으로 사료된다. As shown in FIG. 4, in the IMP group added with only imperitorin, the ATP concentration showed a tendency to increase slightly compared to the control group, but there was no significant difference, and in the vesicle stress (Thap group, Tuni group), the ATP concentration was increased. It was found to decrease significantly. However, ATP concentrations were significantly increased when Thap and Tunicarmycin were treated with imperitorin together with Thap and Tuni groups. These results suggest that imperitorin increased ATP production by increasing mitochondrial activity by relieving both representative endoplasmic reticulum stresses.

<실험 예2> 당뇨병 모델동물에서의 백지추출물의 효과 Experimental Example 2 Effect of White Paper Extract in Diabetic Model Animals

6주령의 Lean (C57BL/6J)과 leptin receptor가 변형된 C57BL/6J db/db (SLC사, 일본) 수컷 생쥐를 사용하였다. Lean과 당뇨병 모델동물인 db/db 생쥐를 각각 대조군과 실험군의 2군으로 나누고, 대조군은 물 (CTL)을, 실험군은 백지추출물 (ADEx) 투여하여, 총 4군으로 나누었다. 각 군은 4마리씩의 생쥐를 사용하였다. 모든 실험동물에게는 chaw 식이를 33일간 자유로 급여하였다. 실험군은 실험기간동안 oral-zonde를 이용하여 경구로 100 mg/kg/day의 용량의 백지 추출물을 1일 1회 투여하였고, 대조군은 동량의 물을 같은 방법으로 투여하였다. Six-week old Lean (C57BL / 6J) and leptin receptor-modified C57BL / 6J db / db (SLC, Japan) male mice were used. Lean and diabetic model animals db / db mice were divided into two groups, the control group and the experimental group, respectively, and the control group was divided into four groups by receiving water (CTL) and the experimental group by extracting the blank paper (ADEx). Each group used four mice. All experimental animals received a 33-day free chaw diet. The experimental group was orally administered 100 mg / kg / day white paper extract once a day orally using oral-zonde, and the control group was administered the same amount of water in the same way.

1) 체중 변화1) weight change

실험기간 각 군의 식이 섭취량의 변화는 관찰되지 않았음에도 불구하고 날짜 별로 체중을 측정한 결과, lean 생쥐는 백지추출물의 투여로 체중변화가 거의 없었으나, lean 생쥐에 비해 약 1.4배정도 높은 체중을 보이는 db/db 생쥐는 백지추출물을 투여하였을 때 체중 증가량이 감소하였다 (도5). Although the dietary intake of each group was not observed during the experimental period, the body weight of the lean mice showed almost 1.4 times higher body weight than the lean mice. db / db mice had a decrease in body weight gain after administration of white paper extract (FIG. 5).

2) 백색지방 (epididymal fat)에 대한 효과2) Effect on epididymal fat

백지추출물의 투여기간이 종료된 후 희생시킨 생쥐로부터 정소의 백색지방부분을 분리하여 무게를 측정하였다. 백지추출물 (ADEx)의 투여는 db/db 생쥐에서 정소 흰색 지방의 량을 유의적으로 감소시켰으며, lean 생쥐에서도 감소하는 경향이 보이나, 통계적으로 유의하지 않았다. (도6) After the administration period of the white paper extract, the white fat portion of the testis was separated from the sacrificed mice and weighed. The administration of blank extract (ADEx) significantly decreased the amount of testis white fat in db / db mice, and it was also statistically insignificant in lean mice. (Figure 6)

3) 미토콘드리아 활성에 대한 효과 3) Effect on Mitochondrial Activity

백지추출물의 투여기간이 종료된 후 희생시킨 생쥐의 가자미근 (soleus muscle)에서 미토콘드리아를 분리하여 (Choi et al, 2005; Gogvadze et al., 2004), 산소소모량 (산소호흡률)을 측정한 결과를 도 7에서 나타내었다. 백지추출물 (ADEx)의 투여는 생쥐의 가자미근의 미토콘드리아 활성을 lean 생쥐 (lean군), db/db 생쥐 (db/db군)에서 모두 증가시켰다. 특히 임페레이토린의 투여는 정상적인 상태보다 질환이 발생한 경우 (db/db군)에 산화적 인산화 (oxidative phosphorylation, OXPHOS) 복합체를 현저하게 높은 수준으로 증가시켰다.Mitochondria were isolated from the soleus muscle of sacrificed rats after the administration period of the white paper extract (Choi et al, 2005; Gogvadze et al., 2004), and the results of oxygen consumption (oxygen respiration rate) were measured. Shown in 7. Administration of white paper extract (ADEx) increased the mitochondrial activity of soleus muscle in mice in both lean mice (lean group) and db / db mice (db / db group). In particular, administration of imperitorin significantly increased the level of oxidative phosphorylation (OXPHOS) complexes in the case of disease (db / db group) than normal condition.

4) 혈당 및 인슐린 저항성에 대한 효과 4) Effects on Blood Sugar and Insulin Resistance

혈당 측정 또는 인슐린 저항성을 측정하기 위하여 상기 실험동물을 16시간 공복상태로 유지한 후 2 g/kg 포도당을 경구 투여하여 시간별 (0, 15, 30, 60, 120 분)로 혈당을 측정 (Oral glucose tolerence test, OGTT 경구내당능시험) 하였다(도8). In order to measure blood glucose or insulin resistance, the test animal was kept on an empty stomach for 16 hours, and then 2 g / kg glucose was orally administered to measure blood glucose hourly (0, 15, 30, 60, 120 minutes) (Oral glucose tolerence test, OGTT oral glucose tolerance test) (Fig. 8).

db/db군은 대조군보다 약 4-5배정도의 높은 혈당을 보였으나 백지추출물(ADEx)를 투여할 경우 임페레이토린에 의해 인슐린 감수성이 증진됨으로써 혈당이 db/db군보다 단시간에 감소하는 것을 관찰하였다. 이러한 결과는 33일동안 임페레이토린의 투여로 인해 발생된 결과이며 장기간 임페레이토린을 투여한다면 더욱 좋은 결과를 나타낼 수 있을 것이다. 또한 단시간 투여를 하였지만 초기 인슐린 감수성이 증가하는 것으로 보아 췌장의 인슐린 분비 기능에 좋은 영향을 주었다고 사료된다.In the db / db group, the blood glucose level was about 4-5 times higher than in the control group. However, the administration of blank extract (ADEx) increased insulin sensitivity by imperitorin, which resulted in a shorter decrease in blood glucose than the db / db group. It was. These results are the result of the administration of imperitorin for 33 days and may be better if long term imperitorin is administered. In addition, the short-term administration increased the initial insulin sensitivity, which may have a positive effect on the insulin secretion function of the pancreas.

<실험 예3> 고지방식이 섭취 생쥐에서의 임페레이토린의 효과Experimental Example 3 Effect of Imperitorin on High-Fat Diet Ingested Mice

6주령의 C57BL/6J (SLC사, 일본) 수컷 생쥐를 대조군으로 저지방식이군 (LF; #D12450B; Research diets사, 미국; 10%Kcal 지방), 고지방식이 섭취군 (HF; #D12492; Research diets사; 60%Kcal 지방), 고지방 식이와 함께 5 mg/kg/day 또는 10 mg/kg/day의 임페레이토린 (IMP)을 각각 처리한 군 (HF+IMP5와 HF+IMP10)으로 총 4군으로 나누었다. 각군은 생쥐7마리씩을 사용하였다. 실험동물에게는 각각 저지방식이와 고지방식이를 7주간 급여하였으며 임페레이토린을 처리한 군은 실험기간동안 oral-zonde를 이용하여 경구투여를 통해 임페레이토린을 투여하였다. 상기 와 같이 하여 사육된 실험동물을 7주 후 희생하여 각각 혈액, 뇌, 시상하부 및 간, 가지미근 (soleus muscle)을 적출하여 검사를 실시하였다.Low-fat diet group (LF; # D12450B; Research diets, USA; 10% Kcal fat), high-fat diet group (HF; # D12492; Research) were 6-week-old male mice with C57BL / 6J (SLC, Japan). diets; 60% Kcal fat) and high-fat diet with 5 mg / kg / day or 10 mg / kg / day imperitorin (IMP), respectively (HF + IMP5 and HF + IMP10). Divided into groups. Each group used 7 mice. The experimental animals were fed low-fat diet and high-fat diet for 7 weeks, respectively. Imperatorin-treated groups received oral-zonde oral administration during the experimental period. After 7 weeks, the experimental animals bred as described above were sacrificed, and blood, brain, hypothalamus and liver, and soleus muscles were extracted and tested.

1) 체중과 식이 섭취 변화1) change in weight and dietary intake

아래 표1은 각 실험동물군의 평균체중의 변화를, 표2 및 도9는 식이 섭취율의 변화를 측정한 결과이다. Table 1 below shows the change in the average body weight of each experimental animal group, Table 2 and Figure 9 is the result of measuring the change in dietary intake rate.

Figure 112008081874437-PAT00001
Figure 112008081874437-PAT00001

Figure 112008081874437-PAT00002
Figure 112008081874437-PAT00002

상기 실험동물에서 실험기간 동안 체중과 식이섭취율 (kcal/day)이 증가되었으며, 임페레이토린 (IMP)투여에 의해서 체중과 식이섭취가 감소되는 경향을 보였다.Body weight and dietary intake rate (kcal / day) was increased in the experimental animals, and weight and dietary intake were decreased by administration of imperitorin (IMP).

2) 시상하부에서의 식욕조절 신경펩타이드의 발현에 대한 효과2) Effect on Expression of Appetite-regulating Neuropeptides in Hypothalamus

식이섭취 감소 원인을 알아내기 위하여 각 군의 생쥐로부터 시상하부를 분리하여 식욕조절에 관여하는 신경펩타이드 mRNA의 발현을 RT-PCR로 측정하였다. 식욕증진 신경펩타이드인 NPY (neuropeptide Y)와 AgRP (agouti-related protein)의 mRNA가 고지방 식이 섭취로 인해 증가되었으며, 임페레이토린 (IMP) 투여로 인해 이들 발현이 감소된 것을 관찰하였다 (도10). 따라서 임페레이토린은 NPY와 AgRP의 발현을 억제함으로써 식욕 억제 효과를 나타내는 것으로 보인다.In order to determine the cause of decreased dietary intake, the hypothalamus was isolated from each group of mice, and the expression of neuropeptide mRNA involved in appetite regulation was measured by RT-PCR. The appetite-stimulating neuropeptides NPN (neuropeptide Y) and AgRP (agouti-related protein) mRNAs were increased due to high-fat dietary intake, and their expression was reduced by imperitorin (IMP) administration (FIG. 10). . Therefore, imperitorin appears to have an appetite suppressing effect by inhibiting the expression of NPY and AgRP.

3) 백색지방 (epididymal fat)에 대한 효과3) Effect on epididymal fat

고지방 식이 섭취로 인해 체중 증가와 함께 과도한 지방의 축적이 야기된다. 상기 실험동물군의 백색 지방 (epididymal fat)을 정소로부터 채취한 후 무게를 측정하였다. 고지방 식이 섭취에 따른 과도한 지방의 축적이 임페레이토린 (IMP)을 함께 투여하였을 때 고농도에서 백색지방이 유의하게 감소하였다 (도 11). 이 결과는 임페레이토린이 고지방식이에 의해 축적되는 체지방을 감소시키는데 효과가 있음을 보여준다.High fat diets lead to weight gain and excess fat accumulation. White fat (epididymal fat) of the experimental animal group from testes After collection, the weight was measured. Excess fat accumulation following dietary intake of high fat significantly reduced white fat at high concentrations when administered with imperitorin (IMP) (FIG. 11). These results show that imperitorin is effective in reducing body fat accumulated by high fat diet.

4) 지방간에 대한 효과4) Effects on fatty liver

과도한 지방의 섭취는 간에서 분해할 수 있는 능력 이상으로 지방이 유입되면서 더 이상 지방을 분해를 하지 못하고 지방이 간에 축적되는 지방간이 형성이 된다. 지방간이 더욱 심해지면 간섬유화까지 진행되어 결국에는 간이 제대로 역할을 수행할 수 없게 된다. 따라서 고지방 식이를 섭취하였을 때 간 조직의 세포들의 형태를 보기 위해서 면역조직염색 (immunohistochemistry)으로 확인하여 도 12와 13에서 나타냈다.Too much fat intake is more than enough to break down in the liver, so fat can no longer break down and fat builds up. Fatty liver becomes more severe, and liver fibrosis is progressed and eventually the liver cannot function properly. Therefore, when the high-fat diet was ingested by immunohistostaining (immunohistochemistry) to see the shape of the cells of the liver tissue is shown in Figures 12 and 13.

도 12는 지방 대사 및 지방세포 분화 등에 주요한 역할을 하는 단백질인 C/EBP-α의 발현을 확인해 본 결과이다. 고지방 식이 섭취로 인해 과도하게 발현된 C/EBP-α는 임페레이토린을 투여하였을 때 대조군과 유사한 수준으로 정상화되는 것을 알 수 있다.12 shows the results of confirming the expression of C / EBP-α, a protein that plays a major role in adipose metabolism and adipocyte differentiation. Overexpressed C / EBP-α due to high fat diet can be seen to normalize to similar levels as the control group when administered imperitorin.

또한 도 13은 H&E 염색을 통해서 간세포의 형태를 확인해 본 결과이다. 대조군에서는 세포의 형태가 그대로 나타나지만 고지방식이를 섭취한 군에서는 세포의 형태를 알아볼 수 없을 만큼 많이 손상되어 있고, 많은 lipid droplet 들이 생성되어 있는 것을 확인할 수 있었다. 임페레이토린을 투여하였을 때 용량 의존적으로 대조군과 유사한 간세포 형태로 정상화 되는 것을 알 수 있었다.In addition, Figure 13 is the result of confirming the shape of the hepatocytes through H & E staining. In the control group, the morphology of the cells remained intact, but in the high-fat diet group, the morphology of the cells was injured so much, and many lipid droplets were produced. When administration of imperitorin, dose-dependent normalization of hepatocytes similar to the control group was found.

이 결과는 고지방식이 섭취로 인하여 간에 지방이 합성 또는 축적되는 것을 임페레이토린이 이를 억제하여 간 기능을 회복시키는데 우수한 효능을 가진 것을 보여준다. These results show that impairitorin has an excellent effect on restoring liver function by inhibiting synthesis or accumulation of fat in the liver due to high fat diet.

5) 미토콘드리아 활성에 대한 효과5) Effect on Mitochondrial Activity

실험대상 생쥐에서 분리한 가자미근 (soleus muscle)을 이용하여 미토콘드리아 산소호흡률을 측정하였다. 도 14는 고지방식이가 미토콘드리아의 산소소모량을 의미있게 감소시키지는 않았지만, 임페레이토린의 투여로 근육의 미토콘드리아 활성, 특히 OXPHOS complex I의 활성이 향상됨을 보여준다. Mitochondrial oxygen respiration rate was measured using soleus muscle isolated from the test mice. Figure 14 shows that high fat diet did not significantly reduce the oxygen consumption of mitochondria, but administration of imperitorin improves the mitochondrial activity of muscle, especially the activity of OXPHOS complex I.

6) 경구 내당능 시험 (OGTT, oral glucose tolerance test)6) Oral glucose tolerance test (OGTT)

인슐린 저항성을 측정하기 위하여 상기 실험동물을 16시간 공복상태로 유지한 후 2 g/kg 포도당을 경구 투여하여 시간별 (0, 15, 30, 60, 120 분)로 혈당을 측정하여 도 15에 나타냈다. 고지방식이군에서는 정상식이군에 비해 공복혈당이 증가하였고, 포도당 투여후 2시간후에도 고혈당이 지속되어 당뇨 및 인슐린 저항증이 나타났다. 한편 임페레이토린을 투여한 고지방식이군에서는 공복 혈당이 약간 감소하고 포도당 섭취 후 혈중 포도당 제거율도 증가하였으나, 완전히 혈당을 정상화하지는 못하였다. 이 결과는 고지방 식이에 의해 나타나는 혈당의 증가 및 인슐린 저항증을 임페레이토린이 완전히 정상화 하지는 않지만, 인슐린 저항증을 개선시킬 수 있음을 보여준다. In order to measure insulin resistance, the experimental animals were kept on an empty stomach for 16 hours, and then 2 g / kg glucose was orally administered to measure blood glucose by time (0, 15, 30, 60, 120 minutes), and is shown in FIG. 15. Fasting blood glucose was increased in the high-fat diet group compared with the normal diet group, and hyperglycemia persisted 2 hours after the administration of glucose, resulting in diabetes and insulin resistance. On the other hand, in the high-fat diet group administered imperitorin, fasting blood glucose was slightly decreased and blood glucose removal rate was increased after ingestion of glucose, but blood glucose was not normalized completely. These results show that the imperitorin does not completely normalize the increase in blood glucose and insulin resistance caused by a high fat diet, but may improve insulin resistance.

<제조예><Production Example>

본 발명의 백지추출물 또는 임페레이토린을 함유하는 하기와 같이 다양한 경로를 통하여 투여 가능한 제품을 만들 수 있으며 이에 제한되는 것은 아니다. It is possible to make products which can be administered through various routes, including the blank extract or imperitorin of the present invention, but are not limited thereto.

캡슐제Capsule

백지추출물 20.0% (w/w) / 유당 79.5% (w/w) / 스테아르산 마그네슘 0.5%(w/w)White Paper Extract 20.0% (w / w) / Lactose 79.5% (w / w) / Magnesium Stearate 0.5% (w / w)

성분들을 혼합하고 각각 약 100 mg을 함유하는 캡슐로 분산한다. The ingredients are mixed and dispersed into capsules containing about 100 mg each.

정제refine

임페레이토린 20.0% (w/w) / 스테아르산 마그네슘 0.5% (w/w)Imperitorin 20.0% (w / w) / Magnesium Stearate 0.5% (w / w)

크로스카멜로스 나트륨 2.0% (w/w) / 유당 76.5% (w/w) Croscarmellose Sodium 2.0% (w / w) / Lactose 76.5% (w / w)

PVP(폴리비닐피롤리딘) 1.0% (w/w)Polyvinylpyrrolidine (PVP) 1.0% (w / w)

성분들을 결합하고 용매, 예컨대 메탄올을 사용하여 과립화한다. 그 후, 제형을 건조하고 적절한 타정기로 정제를 형성한다.The components are combined and granulated with a solvent such as methanol. Thereafter, the formulation is dried and tablets are formed with a suitable tablet press.

음료beverage

백지추출물 9중량%, 과당 10 중량 %, 정백당 1 중량%, 구연산나트륨 0.2 중량%에 정제수를 총 100 중량% 되도록 배합하고 교반하여 통상의 음료제조 방법으로 제조하였다.9% by weight of white paper extract, 10% by weight fructose, 1% by weight per white sugar, 0.2% by weight of sodium citrate was added to 100% by weight of purified water and stirred to prepare a conventional beverage production method.

참고문헌references

1. Beal, M. F. (1995). Mitochondrial dysfunction and oxidative damage in neurodegenerative diseases. Austin: R.G. Landes Co.Beal, M. F. (1995). Mitochondrial dysfunction and oxidative damage in neurodegenerative diseases. Austin: R.G. Landes Co.

2. Banhegyi, G., Baumeister, P., Benedetti, A., Dong, D., Fu, Y., Lee, A. S., et al. (2007). Endoplasmic reticulum stress. Ann N Y Acad Sci, 1113, 58-71.Banhegyi, G., Baumeister, P., Benedetti, A., Dong, D., Fu, Y., Lee, AS, et al. (2007). Endoplasmic reticulum stress. Ann NY Acad Sci , 1113, 58-71.

3. Chen, J. X. & Yan, S. D. (2007). Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis, 12(2), 177-184.Chen, JX & Yan, SD (2007). Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis , 12 (2), 177-184.

4. Champe, P. C., Harvey, R. A., & Ferrier, D. R. (2005). Biochemistry (3rd ed). Philadelphia: Lippincott/Williams & Wilkins.4. Champe, P. C., Harvey, R. A., & Ferrier, D. R. (2005). Biochemistry (3rd ed). Philadelphia: Lippincott / Williams & Wilkins.

5. Choi YS, Ryu BK, Min HK, Lee SW, and Pak YK (2005) Analysis of proteome bound to D-loop region of mitochondrial DNA by DNA-linked affinity chromatography and reverse-phase liquid chromatography/tandem mass spectrometry, Ann. N.Y. Acad. Sci. 1042. 88-100Choi YS, Ryu BK, Min HK, Lee SW, and Pak YK (2005) Analysis of proteome bound to D-loop region of mitochondrial DNA by DNA-linked affinity chromatography and reverse-phase liquid chromatography / tandem mass spectrometry, Ann . NY Acad. Sci. 1042. 88-100

6. Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2004). Assessment of celll toxicity. In M. D. Maines (Ed.), Current protocols in toxicology (pp. 2.10.13-2.10.14). New York: John Wiley.6. Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2004). Assessment of celll toxicity. In M. D. Maines (Ed.), Current protocols in toxicology (pp. 2.10.13-2.10.14). New York: John Wiley.

7. Jeffery, R. W., & French, S. A. (1997). Preventing weight gain in adults: design, methods and one year results from the Pound of Prevention study. Int J Obes Relat Metab Disord, 21(6), 457-464.Jeffery, RW, & French, SA (1997). Preventing weight gain in adults: design, methods and one year results from the Pound of Prevention study. Int J Obes Relat Metab Disord , 21 (6), 457-464.

8. Lindholm, D., Wootz, H., & Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death Differ, 13(3), 385-392.8. Lindholm, D., Wootz, H., & Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death Differ , 13 (3), 385-392.

9. Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., & Dietz, W. H. (1999). The disease burden associated with overweight and obesity. JAMA, 282(16), 1523-1529.9. Must, A., Spadano, J., Coakley, EH, Field, AE, Colditz, G., & Dietz, WH (1999). The disease burden associated with overweight and obesity. JAMA , 282 (16), 1523-1529.

10. National Institutes of Health (2004). Insulin resistance and pre-diabetes. MD, USA: Author10. National Institutes of Health (2004). Insulin resistance and pre-diabetes. MD, USA: Author

11. Scheffler, I. E. (2008). Mitochondria (2nd ed.). Hoboken, N. J. : Wiley-Liss.11. Scheffler, I. E. (2008). Mitochondria (2nd ed.). Hoboken, N. J .: Wiley-Liss.

12. Tsiotra, P. C., & Tsigos, C. (2006). Stress, the endoplasmic reticulum, and insulin resistance. Ann N Y Acad Sci, 1083, 63-76.12. Tsiotra, PC, & Tsigos, C. (2006). Stress, the endoplasmic reticulum, and insulin resistance. Ann NY Acad Sci , 1083, 63-76.

13. Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet, 39, 359-407.13. Wallace, DC (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet , 39, 359-407.

14. World Health Organization (2004). Obesity: preventing and managing the global epidemic Report of a WHO Consultation. Geneva, Switzerland: Author14. World Health Organization (2004). Obesity: preventing and managing the global epidemic Report of a WHO Consultation. Geneva, Switzerland: Author

15. Wolf, A. M., & Colditz, G. A. (1998). Current estimates of the economic cost of obesity in the United States. Obes Res, 6(2), 97-106.15. Wolf, AM, & Colditz, GA (1998). Current estimates of the economic cost of obesity in the United States. Obes Res , 6 (2), 97-106.

16. Yoshida, H. (2007). ER stress and diseases. FEBS J, 274(3), 630-658.16. Yoshida, H. (2007). ER stress and diseases. FEBS J , 274 (3), 630-658.

17. Zhao, L., & Ackerman, S. L. (2006). Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol, 18(4), 444-452.17. Zhao, L., & Ackerman, SL (2006). Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol , 18 (4), 444-452.

18. 강재헌, 김남순. (2002) 한국의 비만추이. 대한비만학회지, 11(4), 329-336.18. Jaehun Kang, Namsun Kim. (2002) Obesity Trends in Korea. Korean Journal of Obesity , 11 (4), 329-336.

19. 김미경, 박근규 (2008). 소포체 스트레스 (Endoplasmic Reticulum Stres)와 당뇨병. 대한내분비학회지, 23(1), 1-8.19. Mi-Kyung Kim and Geun-Kyu Park (2008). Endoplasmic Reticulum Stres and Diabetes. Korean Journal of Endocrinology , 23 (1), 1-8.

20. 김영설. (1990). 비만증의 분류 및 평가. 한국영양학회지, 23(5), 337-340.20. Kim Young Sul. (1990). Classification and evaluation of obesity. Korean Journal of Nutrition , 23 (5), 337-340.

21. 김종균, 임정수, 임준, 박상현, 홍두호. (2007). 경제적 수준에 따른 인천지역 청소년 비만 차이. 대한비만학회지. 16(2), 76-85.21. Kim Jong Kyun, Jung Soo Lim, Jun Jun, Sang Hyun Park, Doo Ho Hong. (2007). Differences in Adolescent Obesity in Incheon by Economic Level. Korean Journal of Obesity . 16 (2), 76-85.

22. 이윤나, 이행신, 김복희, 장영애, 김초일. (2004). 우리 나라 비만인구의 식생활 특성. 대한비만학회 춘계학술대회 22. Yoon Na Lee, Hae Shin Shin, Bok Hee Kim, Young Ae Jang, Cho Cho Il. (2004). Dietary Characteristics of Obese Population in Korea. Korean Society of Obesity Spring Conference

23. 최혜미, 서연경. (2004). “비만과 대사증후군” - 그들의 식생활은 어떠한가? 대한비만학회 춘계학술대회 23. Hyemi Choi, Yeonkyung Seo. (2004). "Obesity and Metabolic Syndrome"-How is their diet? Korean Society of Obesity Spring Conference

도1은 탑시가긴 또는 투니카마이신에 의하여 유발된 소포체 스트레스에 의한 Hep G2 세포의 세포사멸에 대한 백지추출물 (ADEx) 또는 임페레이토린(IMP)의 효과를 나타낸 것이다.      FIG. 1 shows the effect of blank extract (ADEx) or imperitorin (IMP) on apoptosis of Hep G2 cells by vesicle stress induced by Topsigagin or tunicamycin.

도2는 Hep G2 세포에서 소포체 스트레스에 의하여 발현된 소포체 스트레스 마커 유전자인 GRP78과 XBP1p의 발현에 대한 백지추출물 (ADEx)의 억제효과를 보여주는 결과이다. Figure 2 is a result showing the inhibitory effect of white paper extract (ADEx) on the expression of endoplasmic reticulum stress marker genes GRP78 and XBP1p expressed by endoplasmic reticulum stress in Hep G2 cells.

도3은 Hep G2 세포에서 소포체 스트레스 마커 유전자인 GRP78과 XBP1p의 발현에 대한 임페레이토린 (IMP)의 억제효과를 보여주는 결과이다.       3 is a result showing the inhibitory effect of imperitorin (IMP) on the expression of the vesicle stress marker genes GRP78 and XBP1p in Hep G2 cells.

도4는 Hep G2 세포에서 소포체 스트레스 (탑시가긴 또는 투니카마이신)에 의한 ATP 양의 감소에 대한 임페레이토린(IMP)의 효과를 보여주는 결과이다. FIG. 4 is a result showing the effect of imperitorin (IMP) on the reduction of ATP amount by endoplasmic reticulum stress (tapsigarin or tunicamycin) in Hep G2 cells.

도5는 당뇨병 생쥐에 백지추출물 (ADEx)를 투여하였을 때 체중 변화량에 대한 효과를 보여주는 결과이다.Figure 5 is a result showing the effect on the weight change when administered the blank extract (ADEx) to diabetic mice.

도6은 당뇨병 생쥐에 백지추출물 (ADEx)의 투여에 의한 정소의 흰색지방 무게에 대한 효과를 보여주는 결과이다.Figure 6 is a result showing the effect on the testosterone white fat weight by administration of white paper extract (ADEx) to diabetic mice.

도7은 백지추출물 (ADEx)을 투여한 생쥐의 가자미근 (soleus muscle)에서 미토콘드리아 활성인 산소소모량을 Oxygraph-2k 기기로 측정하여 확인한 결과이다.FIG. 7 shows the results obtained by measuring the amount of mitochondrial-activated oxygen in the soleus muscle of mice administered white paper extract (ADEx) using an Oxygraph-2k instrument.

도8은 Lean 생쥐와 당뇨병 모델 (db/db) 생쥐의 경구내당능시험에 있어 백지추출물 (ADEx) 투여효과를 보여주는 결과이다. 8 shows the results of administration of white paper extract (ADEx) in oral glucose tolerance test of Lean mice and diabetic model (db / db) mice.

도9는 고지방식이군과 저지방식이군 생쥐에서 임페레이토린의 투여에 의한 식이섭취량의 변화를 측정한 결과이다.9 is a result of measuring the change in dietary intake by administration of imperitorin in high-fat diet and low-fat diet mice.

도 10은 저지방식이군과 고지방식이군 생쥐의 뇌의 시상하부 (hypothalamus)에서 식욕촉진 유전자의 발현에 대한 임페레이토린의 효과를 나타낸 것이다.Figure 10 shows the effect of imperitorin on the expression of appetite promoting genes in the hypothalamus (hypothalamus) of the brain of the low-fat diet and high-fat diet mice.

도 11은 저지방식이군과 고지방식이군 생쥐의 백색지방의 무게에 대한 임페레이토린의 효과를 보여준다.Figure 11 shows the effect of imperitorin on the weight of white fat in low-fat diet and high-fat diet mice.

도 12는 저지방식이군과 고지방식이군 생쥐의 간에서 C/EBP-α 발현에 대한 임페레이토린의 효과를 면역조직염색 (immunohistochemistry)로 확인한 결과이다12 shows the results of immunohistochemistry confirming the effect of imperitorin on C / EBP-α expression in liver of low-fat diet and high-fat diet mice.

도 13은 저지방식이군과 고지방식이군 생쥐의 간에서 H&E 염색을 이용하여 임페리이토린 투여여부에 따른 세포의 형태를 확인한 결과이다.FIG. 13 shows the results of confirming the morphology of cells according to the administration of imperitorin using H & E staining in the liver of low-fat diet and high-fat diet mice.

도 14는 저지방식이군과 고지방식이군 생쥐에서 채취한 가자미근 (soleus muscle)에서 임페레이토린 투여 여부에 따른 미토콘드리아 산소소모량을 Oxygraph-2k 기기 (Oroboros사, 오스트리아)를 이용하여 측정한 결과이다. FIG. 14 shows the results of measuring mitochondrial oxygen consumption according to whether administration of imperitorin in soleus muscle collected from low-fat diet and high-fat diet mice using an Oxygraph-2k device (Oroboros, Austria).

도 15는 저지방식이군과 고지방식이군 생쥐에서 임페레이토린 투여여부에 따른 경구내당능을 측정한 결과이다.15 is a result of measuring the oral glucose tolerance according to whether administration of imperitorin in low-fat diet group and high-fat diet group mice.

Claims (7)

백지 추출물 및 약제학적으로 허용 가능한 담체를 포함하는 비만, 인슐린저항증, 체지방증가, 지방간, 간섬유화, 대사증후군, 지질대사이상, 고혈압, 신경퇴화질환, 양극성 장애, 당뇨병, 동맥경화증, 국소빈혈, 심장병, 간질환, 췌장질환, 암, 노화, 심혈관질환, 파킨슨병, 헌팅톤병, 치매 또는 척수손상의 예방 또는 치료용 의약 조성물.Obesity, insulin resistance, body fat increase, fatty liver, liver fibrosis, metabolic syndrome, lipid metabolism, hypertension, neurodegenerative disorders, bipolar disorder, diabetes, arteriosclerosis, ischemia, including white paper extract and pharmaceutically acceptable carrier, Pharmaceutical composition for the prevention or treatment of heart disease, liver disease, pancreatic disease, cancer, aging, cardiovascular disease, Parkinson's disease, Huntington's disease, dementia or spinal cord injury. 임페레이토린 또는 이의 약제학적으로 허용 가능한 염 및 약제학적으로 허용 가능한 담체를 포함하는 비만, 인슐린저항증, 체지방증가, 지방간, 간섬유화, 대사증후군, 지질대사이상, 고혈압, 신경퇴화질환, 양극성 장애, 당뇨병, 동맥경화증, 국소빈혈, 심장병, 간질환, 췌장질환, 암, 노화, 심혈관질환, 파킨슨병, 헌팅톤병, 치매 또는 척수손상의 예방 또는 치료용 의약 조성물.Obesity, insulin resistance, body fat gain, fatty liver, liver fibrosis, metabolic syndrome, lipid metabolism, hypertension, neurodegenerative disorders, bipolar disorder, including imperitorin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier Pharmaceutical composition for preventing or treating diabetes, arteriosclerosis, ischemia, heart disease, liver disease, pancreatic disease, cancer, aging, cardiovascular disease, Parkinson's disease, Huntington's disease, dementia or spinal cord injury. 제 1항 또는 제2항에 있어서, 상기 의약조성물은 소포체 스트레스 완화 및/또는 미토콘드리아 기능 개선을 특징으로 하는 의약조성물.The pharmaceutical composition according to claim 1 or 2, wherein the pharmaceutical composition is characterized by alleviating vesicle stress and / or improving mitochondrial function. 제 1항 또는 제2항의 의약조성물을 포함하는 정제, 구내정제, 마름모꼴 정제, 액제, 젤리, 수성 또는 유성 현탁제, 분산성 분말제 또는 과립제, 유제, 경질 또는 연질 캡슐제, 또는 시럽제 또는 엘릭시르제 (elixir)로 구성된 군에서 선택된 의약 제제.Tablets, tablets, lozenges, liquids, jellies, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs comprising the pharmaceutical composition of claim 1 or 2 pharmaceutical preparations selected from the group consisting of (elixir). 백지추출물 또는 임페레이토린을 유효성분으로 포함하는, 소포체 스트레스 완화 및/또는 미토콘드리아 기능 개선을 위한 식품 조성물. Food composition for reducing vesicle stress and / or improve mitochondrial function comprising a blank extract or imperitorin as an active ingredient. 백지추출물 또는 임페레이토린을 유효성분으로 포함하는, 소포체 스트레스 완화 및/또는 미토콘드리아 기능 개선을 위한 음료 조성물. Containing blank extract or imperitorin as an active ingredient, vesicle stress relief and / or beverage composition for improving mitochondrial function. 백지 추출물 또는 임페리이토린을 유효성분으로 포함하는 비만, 인슐린저항증, 체지방증가, 지방간, 간섬유화, 대사증후군, 지질대사이상, 고혈압, 신경퇴화질환, 양극성 장애, 당뇨병, 동맥경화증, 국소빈혈, 심장병, 간질환, 췌장질환, 암, 노화, 심혈관질환, 파킨슨병, 헌팅톤병, 치매 또는 척수손상의 예방 또는 개선용 식품 조성물.Obesity, insulin resistance, body fat increase, fatty liver, liver fibrosis, metabolic syndrome, lipid metabolism, hypertension, neurodegenerative disorders, bipolar disorder, diabetes, arteriosclerosis, ischemia Food composition for preventing or improving heart disease, liver disease, pancreatic disease, cancer, aging, cardiovascular disease, Parkinson's disease, Huntington's disease, dementia or spinal cord injury.
KR1020080118813A 2008-11-27 2008-11-27 Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin KR101170874B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080118813A KR101170874B1 (en) 2008-11-27 2008-11-27 Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080118813A KR101170874B1 (en) 2008-11-27 2008-11-27 Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020120055072A Division KR20120060192A (en) 2012-05-23 2012-05-23 Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin

Publications (2)

Publication Number Publication Date
KR20100060279A true KR20100060279A (en) 2010-06-07
KR101170874B1 KR101170874B1 (en) 2012-08-03

Family

ID=42361215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080118813A KR101170874B1 (en) 2008-11-27 2008-11-27 Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin

Country Status (1)

Country Link
KR (1) KR101170874B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140391B1 (en) * 2011-04-06 2012-05-03 강원대학교산학협력단 Preparation of adipocyte for screening anti-obesity material using heme oxygenase-1 and use of the same
CN102721597A (en) * 2012-07-16 2012-10-10 上海相宜本草化妆品股份有限公司 Method for preparing standard substance for detecting imperatorin in cosmetics
CN103070982A (en) * 2010-07-21 2013-05-01 李政育 Traditional Chinese medicine composition for inhibiting cancer cell growth and traditional Chinese medicine extractant thereof
KR20160008395A (en) 2014-07-14 2016-01-22 대구가톨릭대학교산학협력단 Composition comprising Angelica Dahurica root extract or imperatorin having protective and therapeutic effects on excitotoxic neuronal damage
WO2016043517A1 (en) * 2014-09-19 2016-03-24 경희대학교 산학협력단 Pharmaceutical composition for treating and preventing degenerative neurological disorders, containing, as active ingredient, mixture extract of moutan root bark, angelica dahurica root and bupleurum root or fraction thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677168B1 (en) 2015-04-16 2016-11-17 주식회사 포스팜 Phellopterin as an agonist for PPAR
KR101782532B1 (en) 2015-06-19 2017-10-11 서울대학교산학협력단 A composition comprising extract of Angelica dahurica or furanocoumarins isolated therefrom for preventing or treating Avian influenza, Swine influenza or Corona virus
KR101833428B1 (en) * 2016-09-20 2018-03-02 가천대학교 산학협력단 Pharmaceutical composition or prevention or treatment of diabetes comprising the extract of Angelica dahurica, fractions thereof or compound Phellopterin isolated therefrom as an active ingredient

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103070982A (en) * 2010-07-21 2013-05-01 李政育 Traditional Chinese medicine composition for inhibiting cancer cell growth and traditional Chinese medicine extractant thereof
KR101140391B1 (en) * 2011-04-06 2012-05-03 강원대학교산학협력단 Preparation of adipocyte for screening anti-obesity material using heme oxygenase-1 and use of the same
CN102721597A (en) * 2012-07-16 2012-10-10 上海相宜本草化妆品股份有限公司 Method for preparing standard substance for detecting imperatorin in cosmetics
KR20160008395A (en) 2014-07-14 2016-01-22 대구가톨릭대학교산학협력단 Composition comprising Angelica Dahurica root extract or imperatorin having protective and therapeutic effects on excitotoxic neuronal damage
WO2016043517A1 (en) * 2014-09-19 2016-03-24 경희대학교 산학협력단 Pharmaceutical composition for treating and preventing degenerative neurological disorders, containing, as active ingredient, mixture extract of moutan root bark, angelica dahurica root and bupleurum root or fraction thereof
KR20160035615A (en) * 2014-09-19 2016-03-31 경희대학교 산학협력단 Pharmaceutical composition containing combination extract of Moutan Root Bark, Angelica Dahurica Root and Bupleurum Root and fractions thereof for prevention and treatment of neurodegenerative disorder
JP2017529344A (en) * 2014-09-19 2017-10-05 ユニバーシティ インダストリー コオペレイション グループ オブ キョンヒ ユニバーシティ Pharmaceutical composition for the treatment and prevention of neurodegenerative disorders comprising, as an active ingredient, button root bark, Angelica dafrika root, Mishima psycho root or a fraction thereof
CN108064160A (en) * 2014-09-19 2018-05-22 庆熙大学校产学协力团 For treating and preventing the extract of the mixture containing moutan root bark, root of Dahurain angelica root and radix bupleuri root of nerve degenerative diseases or its fraction pharmaceutical composition as active component
RU2668135C1 (en) * 2014-09-19 2018-09-26 Юниверсити-Индастри Кооперейшн Груп Оф Киунг Хее Юниверсити Pharmaceutical composition for the treatment and prevention of degenerative neurological disorders which comprises, as an active ingredient, a mixed root extract of the tree peony root, the root of dahuric angelica and the root of thorowax or its fraction
US10660928B2 (en) 2014-09-19 2020-05-26 University-Industry Cooperation Group Of Kyung Hee University Pharmaceutical composition containing combination extracts of Moutan Root Bark, Angelica Dahurica Root, bupleurum root or fractions thereof for prevention and treatment of neurodegenerative disorder

Also Published As

Publication number Publication date
KR101170874B1 (en) 2012-08-03

Similar Documents

Publication Publication Date Title
KR101170874B1 (en) Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin
US20060233902A1 (en) Compositions and foods for improving lipid metabolism
KR101225486B1 (en) Pharmaceutical compositions comprising extract from smilax china linne for preventing or treating obesity hyperlipidemia or fatty liver
JP2006306800A (en) Farnesoid x receptor activator
US11752187B2 (en) Anti-obesity composition including Geumhwagyu extract as active ingredient
US8377894B2 (en) Drug and food or drink for improving pancreatic functions
KR101498218B1 (en) Novel Pentadienoyl Piperidine Derivatives and Use Thereof
US20110300246A1 (en) Herbal Extracts for Treatment of Diabetic Complications and Oxidative Stress
KR20100135424A (en) Chalcone compounds as activators of ddah promoter from glycyrrhiza uralensis and compositions for prevention and treatment of islet cellular apoptosis and diabetic nephropathy containing the same as an active ingredient
JP2022535353A (en) A composition for prevention, amelioration and treatment of metabolic syndrome associated with obesity and/or diabetes, containing a compound of an Indian gooseberry extract and a young barley leaf extract (IB compound) as an active ingredient
KR20130026976A (en) Composition for improving obesity and fatty liver using an extract of leaves of sasa quelpaertensis or p-coumaric acid
EP2942056B1 (en) Novel uses of licochalcone a
KR20160122507A (en) Pharmaceutical composition for preventing or treating obesity or lipid related metabolic disease comprising extract of Atractylodis macrocephalae rhizoma
KR101074030B1 (en) Novel use of idesolide
US20070160687A1 (en) Composition for prevention and treatment of diabetic complication
KR20150012926A (en) A composition comprising Chrysanthemum zawadskii extracts having anti-obesity activity
KR20190113272A (en) Composition for treating, alleviating or preventing non-alcoholic fatty liver disease comprising rosa rugosa thunb extract
KR20120060192A (en) Composition for ameliorating the ER stress or the mitochondrial dysfunction comprising the extract of Angelica dahurica or imperatorin
KR20130044256A (en) Composition for ameliorating the er stress or the mitochondrial dysfunction comprising the extract of angelica dahurica or imperatorin
KR102245273B1 (en) Composition for preventing or treating cardiometabolic syndrome comprising noranhydroicaritin
KR20140114950A (en) A composition comprising Amomum cardamomum L. extracts having anti-obesity activity
KR101669717B1 (en) Antiobesity composition comprising Capsicoside G
KR20120115963A (en) Composition for prevention or treatment of cardiovascular disease containing extracts of dioscorea batatas decne
KR20210004133A (en) Compositions for preventing or treating fatty liver disease comprising Allomyrina dichotoma larva extract
JP2020535222A (en) Composition for weight control by regulating peptide levels involved in satiety and / or appetite

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150702

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160512

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee