KR20100041024A - Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating - Google Patents

Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating Download PDF

Info

Publication number
KR20100041024A
KR20100041024A KR1020080100002A KR20080100002A KR20100041024A KR 20100041024 A KR20100041024 A KR 20100041024A KR 1020080100002 A KR1020080100002 A KR 1020080100002A KR 20080100002 A KR20080100002 A KR 20080100002A KR 20100041024 A KR20100041024 A KR 20100041024A
Authority
KR
South Korea
Prior art keywords
axis
displacement
splitter
diffraction
light
Prior art date
Application number
KR1020080100002A
Other languages
Korean (ko)
Inventor
김종안
김재완
강주식
엄태봉
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020080100002A priority Critical patent/KR20100041024A/en
Publication of KR20100041024A publication Critical patent/KR20100041024A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Abstract

PURPOSE: An apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating is provided, which uses the light coming from the same light source. CONSTITUTION: An apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating comprises a light source(12), a diffraction grating(11), a Z-axis displacement measuring unit, an X-axis displacement measuring unit, and a Y-axis displacement measuring unit. The light source has a monochromatic laser beam. The diffraction grating is attached to the surface of the measurement object. The diffraction grating generates a plurality of diffraction beams. The Z-axis displacement measuring unit measures the Z-axis axial displacement of the diffraction grating. The X-axis displacement measuring unit measures the X-axis axial displacement of the diffraction grating. The Y-axis displacement measuring unit measures the Y-axis axial displacement of the diffraction grating.

Description

2차원 회절 격자를 이용한 6 자유도 측정 장치{Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating}Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating}

본 발명은 6 자유도 변위 측정 장치에 관한 것으로서, 더욱 상세하게는 2차원 회절 격자를 이용한 3축 변위 측정방법을 확장하여 3축 회전 각도를 포함한 6 자유도 측정이 가능한 6 자유도 변위 측정 장치에 관한 것이다.The present invention relates to a six degree of freedom displacement measuring apparatus, and more particularly, to a six degree of freedom displacement measuring apparatus capable of measuring six degrees of freedom including a three axis rotation angle by extending a three axis displacement measuring method using a two-dimensional diffraction grating. It is about.

통상, 정밀 측정기기나 가공기기에는 측정기나 가공기를 원하는 위치까지 이동시키기 위한 스테이지가 부착되어 있다. 이 스테이지가 구동되면 스테이지에는 구동축 방향의 직선 운동과 함께 기생 운동 (2축 직선 운동과 3축 회전 운동) 발생한다. 따라서 정밀 스테이지의 성능은 이러한 기생 운동을 평가하고 감소시켜 정확한 직선 운동을 할 수 있는가에 따라 결정된다.Usually, a precision measuring instrument and a processing apparatus are attached with a stage for moving a measuring instrument or a processing machine to a desired position. When this stage is driven, the stage generates parasitic motion (two-axis linear motion and three-axis rotational motion) together with the linear motion in the drive shaft direction. Therefore, the performance of the precision stage is determined by evaluating and reducing these parasitic motions to ensure accurate linear motion.

따라서 이송대의 정확한 구동이나 성능향상을 위해서는 이송축의 위치변화(변위)와 다축 기생 운동을 측정할 수 있는 기기가 필요하다. 기존의 측정 방법으로는 구동 변위와 5축 방향의 기생 운동을 동시에 측정할 수 없어 여러 종류의 측 정기를 사용하여야 하고 이에 따라 측정 정확도가 감소되고 측정의 어려움이 증가되고 있다.Therefore, in order to accurately drive or improve the performance of the feeder, a device capable of measuring the position change (displacement) and multi-axis parasitic motion of the feed shaft is required. Conventional measuring methods cannot measure the driving displacement and parasitic motion in the 5-axis direction at the same time. Therefore, various types of measuring instruments have to be used, which reduces the measurement accuracy and increases the difficulty of the measurement.

도 6은 변위를 측정하기 위한 마이켈슨 간섭계의 예시도이다.6 is an exemplary diagram of a Michelson interferometer for measuring displacement.

먼저, 광원(Light Source)(101)에서 나온 빛 중 P-편광은 편광 분할기(polarizing beam splitter)(102)에 의해 반사되어 1/4 파장판(quarter wave plate)(105)을 투과한 후 기준 거울(106)에 입사되고, S-편광은 편광 분할기(102)와 1/4 파장판(103)을 투과한 후 스테이지와 함께 이동되는 스테이지 거울(stage mirror)(104)에 입사된다.First, P-polarized light out of the light source 101 is reflected by a polarizing beam splitter 102 to pass through a quarter wave plate 105 and then the reference The incident light is incident on the mirror 106 and the S-polarized light is incident on a stage mirror 104 that passes through the polarization splitter 102 and the quarter wave plate 103 and then moves with the stage.

이때 1/4 파장판(105)에 의해 기준 거울(106)에 원편광(circular polarized light)으로 입사되었던 선편광(linear polarized light)인 P-편광은 다시 1/4 파장판(105)을 투과하면서 수직으로 방향 전환된 S-편광 성분으로 변형된 후 편광분할기(102)를 투과하여 선편광기(107)에 입사된다. At this time, the P-polarized light, which is linear polarized light that was incident on the reference mirror 106 by the quarter wave plate 105 as circular polarized light, passes through the quarter wave plate 105 again. After deforming to the S-polarized component that is vertically redirected, it is transmitted through the polarization splitter 102 and is incident on the linear polarizer 107.

이 S-편광은 편광 방향이 45°로 놓인 선편광기(107)에 의해 S-편광과 P-편광 성분을 모두 갖는 선편광으로 변형되어 거리 측정을 위한 기준광으로 광 검출기(photo diode)(108)에 입사된다.This S-polarized light is transformed into linearly polarized light having both S-polarized light and P-polarized light by the linear polarizer 107 having a polarization direction of 45 ° to the photodiode 108 as a reference light for distance measurement. Incident.

또한 1/4 파장판(103)에 의해 스테이지 거울(104)에 원편광으로 입사되었던 원편광인 S-편광은 반사되어 1/4 파장판(103)을 투과하면서 수직으로 방향 전환된 P-편광 성분으로 변환된 후 편광 분할기(102)에 의해 반사된다. In addition, the S-polarized light, which is circularly polarized light incident on the stage mirror 104 by the quarter wave plate 103, is reflected and transmitted vertically while passing through the quarter wave plate 103. After being converted into components, it is reflected by polarization splitter 102.

이 P-편광은 편광 방향이 45°로 놓인 선편광기(107)를 거치면서 S-편광 성분과 P-편광 성분을 모두 갖춘 선편광으로 변형되어 거리측정을 위한 빛으로 광 검 출기(108)에 입사된다.This P-polarized light is transformed into a linearly polarized light having both an S-polarized component and a P-polarized component while passing through the linear polarizer 107 having a 45 ° polarization direction, and is incident on the photodetector 108 as light for distance measurement. do.

이에 따라 광 검출기(108)에 연결된 도시되지 않은 신호 처리회로(signal process circuit)와 컴퓨터는 기준 거울(106)에 의해 반사된 빛과 스테이지 거울(104)에 반사된 빛의 위상차를 비교 분석하여 스테이지 거울(104), 즉 스테이지에 의해 위치 이동된 정밀 측정기기의 측정기나 가공기기의 가공기의 전후 이동거리를 연산할 수 있다.Accordingly, a signal process circuit (not shown) connected to the photo detector 108 and a computer compare and analyze the phase difference between the light reflected by the reference mirror 106 and the light reflected by the stage mirror 104. The front and rear movement distances of the measuring device of the precision measuring device or the processing device of the processing device which are moved by the mirror 104, that is, the stage, can be calculated.

상기한 레이저 간섭계는 빛의 파장을 단위로 변위를 측정하므로 나노미터 수준까지 정밀하게 측정할 수 있지만 각도 변화는 측정할 수 없다. 경우에 따라서는 상기한 레이저 간섭계의 구조를 바꿔서 변위와 한 방향의 각도 변화를 동시에 측정할 수는 있으나 아직까지 변위와 두 방향의 각도를 동시에 측정할 수 없다.Since the laser interferometer measures displacement based on the wavelength of light, the laser interferometer can accurately measure down to the nanometer level, but cannot measure the angular change. In some cases, the structure of the laser interferometer may be changed to measure the displacement and the angle change in one direction at the same time, but the displacement and the angle in both directions may not be measured at the same time.

도 7은 정밀한 각도 변화를 측정하기 위한 오토콜리메이터(autocollimator)의 원리도이다.7 is a principle diagram of an autocollimator for measuring precise angle changes.

먼저, 핀 홀(pin hole)(202)을 통해 광원(201)에서 나온 빛 중 일부는 광 분할기(203)를 투과해서 렌즈(204)를 통해 평행빔(collimated beam)이 되어 스테이지 거울(205)에 입사되고, 나머지 일부는 광 분할기(203)에 의해 반사(도시되지 않음)된다.First, some of the light emitted from the light source 201 through the pin hole 202 passes through the light splitter 203 and becomes a collimated beam through the lens 204 to form the stage mirror 205. Is incident on and the remaining portion is reflected (not shown) by the light splitter 203.

스테이지 거울(205)에 입사되었다 반사되는 빛 중 일부는 광 분할기(203)에 의해 반사되어 위치 감지 검출기(position sensitive detector)(206)에 입사되고, 나머지 일부는 광 분할기(203)를 투과해서 광원(201)으로 입사(도시하지 않음)된다. Some of the light that has been incident on the stage mirror 205 is reflected by the light splitter 203 and is incident on the position sensitive detector 206, and the other part passes through the light splitter 203 to emit light. Incident (not shown) to 201 is made.

이때 위치 감지 검출기(206)에 입사되는 빛은 입사위치를 정확하게 파악할 수 있도록 렌즈(204)에 의해 하나의 점으로 집광된다.At this time, the light incident on the position detection detector 206 is collected by a lens 204 to one point so as to accurately determine the incident position.

따라서 위치 감지 검출기(206)에 연결된 도시되지 않은 신호 처리회로와 컴퓨터는 위치 감지 검출기(206)에 입사된 빛의 위치를 분석하여 스테이지 거울(205), 즉 스테이지에 의해 위치 이동된 정밀 측정기기의 측정기나 가공기기의 가공기의 두 방향의 각도변화를 연산할 수 있다.Accordingly, a signal processing circuit and a computer (not shown) connected to the position detection detector 206 analyze the position of the light incident on the position detection detector 206 to detect the position of the stage mirror 205, that is, the precision measuring device that is moved by the stage. The angle change in two directions of the measuring machine or the processing machine can be calculated.

상기한 오토콜리메이터는 작은 각도 변화를 정밀하게 측정하는 기기로서 두 방향(yaw와 pitch)의 각도 변화를 측정할 수 있으나 거리는 측정할 수 없다. 따라서 변위와 각도 변화를 모두 측정하기 위해서는 레이저 간섭계와 오토콜리메이터가 함께 사용되어야 한다. The auto collimator is a device that accurately measures small angle changes, and can measure angle changes in two directions (yaw and pitch), but cannot measure distance. Therefore, a laser interferometer and an autocollimator must be used together to measure both displacement and angle change.

그러나, 서로 다른 두 장비로 변위와 각도 변화를 측정하는 경우에는 두 물리량의 측정 축이 서로 다르므로 아베 오차(abbe error)가 생겨 측정성능의 제한이 생긴다. However, in case of measuring displacement and angular change with two different devices, the measurement axes of the two physical quantities are different from each other, resulting in an Abbe error, thereby limiting the measurement performance.

또한 서로 다른 두 장비로 변위와 각도 변화를 측정하기 위해서는 별도의 추가 장치를 필요로 하므로 변위와 각도 변화측정을 위한 비용이 증가한다는 결점이 있다.In addition, the measurement of displacement and angle change with two different equipment requires a separate additional device, which increases the cost of measuring displacement and angle change.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 기존의 3축 변위측정에서 미러 대신에 광분할기를 사용하여 하나의 광원에서 나온 회절빔으로부터 회전각도 측정을 위한 회절빔을 하나 더 추출함으로써, 정밀 측정기기나 가공기기 등에서 측정기나 가공기를 위치이동시키는 스테이지에 부착된 회절격자의 3축 변위 및 3방향의 회전각도의 변화를 동시에 측정할 수 있도록 한 6 자유도 변위 측정 장치를 제공하는데 그 목적이 있다.The present invention has been made in view of the above, by extracting one more diffraction beam for rotation angle measurement from the diffraction beam from one light source using a light splitter instead of a mirror in the conventional three-axis displacement measurement, The purpose of the present invention is to provide a six degree of freedom displacement measuring device capable of simultaneously measuring the three-axis displacement and the change in the rotation angle in three directions of a diffraction grating attached to a stage for moving a measuring device or a processing machine in a precision measuring device or a processing device. have.

상기한 목적은 단일파장의 레이저 빔을 갖는 광원; 측정물의 표면에 부착되며, 상기 광원으로부터 입사되어 복수의 회절빔을 발생시키는 회절격자; 상기 회절격자의 Z축 방향 변위를 측정하기 위한 Z축 변위측정수단; 상기 회절격자의 X축 방향 변위를 측정하기 위한 X축 변위측정수단; 상기 회절격자의 Y축 방향 변위를 측정하기 위한 Y축 변위측정수단; 상기 회절격자의 X,Y,Z축 회전각도를 측정하기 위한 3축 회전각도측정수단을 포함하는 것을 특징으로 하는 6 자유도 변위 측정 장치에 의해 달성된다.The above object is a light source having a single wavelength laser beam; A diffraction grating attached to a surface of a workpiece and generating a plurality of diffraction beams incident from the light source; Z-axis displacement measuring means for measuring the Z-axis displacement of the diffraction grating; X-axis displacement measuring means for measuring the X-axis displacement of the diffraction grating; Y-axis displacement measuring means for measuring the Y-axis displacement of the diffraction grating; It is achieved by a six degree of freedom displacement measuring device characterized in that it comprises a three-axis rotation angle measuring means for measuring the X, Y, Z axis rotation angle of the diffraction grating.

바람직하게는, 상기 Z축 변위측정수단은 광원과 회절격자 사이에 배치되고, 상기 광원에서 나온 빛 중 일부를 반사하고 나머지 일부를 투과시키는 Z축 광분할기; 상기 광분할기에서 투과된 빛 중 일부를 반사시키고 나머지 일부를 투과시키는 편광분할기; 상기 Z축 광분할기 및 편광분할기에 의해 반사된 빔의 위상차를 검출하는 기준빔 광검출기 및 Z축방향 광검출기를 포함하고, 상기 광검출기에 의해 검출된 위상차를 통해 Z축 방향의 변위를 측정한다.Preferably, the Z-axis displacement measuring means is disposed between the light source and the diffraction grating, the Z-axis splitter for reflecting some of the light emitted from the light source and transmits the remaining portion; A polarization splitter that reflects a part of the light transmitted from the light splitter and transmits a part of the light; A reference beam photodetector and a Z-axis photodetector for detecting the phase difference of the beam reflected by the Z-axis optical splitter and the polarization splitter, and measuring the displacement in the Z-axis direction through the phase difference detected by the photodetector .

상기 X축 변위측정수단은 회절격자에 의해 반사된 X축방향 회절빔의 경로에 배치되어 상기 회절빔을 반사시키는 미러; 상기 미러에 의해 반사된 회절빔의 일부를 반사시키고 나머지 일부를 투과시키는 X축 편광분할기; 상기 X축 편광분할기를 통해 반사된 회절빔과 투과된 빔의 위상차를 검출하는 제1 및 제2광검출기를 포함하고, 상기 광검출기에 의해 검출된 위상차를 통해 X축 방향의 변위를 측정한다.The X-axis displacement measuring means includes a mirror disposed in the path of the X-axis diffraction beam reflected by the diffraction grating to reflect the diffraction beam; An X-axis polarization splitter that reflects a portion of the diffracted beam reflected by the mirror and transmits the remaining portion; And first and second photodetectors for detecting a phase difference between the diffracted beam and the transmitted beam reflected through the X-axis polarization splitter, and measuring displacement in the X-axis direction through the phase difference detected by the photodetector.

상기 Y축 변위측정수단은 회절격자에 의해 반사된 Y축방향 회절빔의 경로에 배치되어 상기 회절빔의 일부를 반사시키는 Y축 광분할기; 상기 Y축 광분할기에 의해 반사된 회절빔의 일부를 반사시키고 나머지 일부를 투과시키는 Y축 편광분할기; 상기 Y축 편광분할기를 통해 반사된 회절빔과 투과된 빔의 위상차를 검출하는 제3 및 제4광검출기를 포함하고, 상기 광검출기에 의해 검출된 위상차를 통해 Y축 방향의 변위를 측정한다.The Y-axis displacement measuring means includes a Y-axis splitter disposed in a path of the Y-axis diffraction beam reflected by the diffraction grating to reflect a portion of the diffraction beam; A Y-axis polarization splitter that reflects a portion of the diffracted beam reflected by the Y-axis splitter and transmits the remaining portion; And a third and fourth photodetectors for detecting a phase difference between the diffracted beam and the transmitted beam reflected through the Y-axis polarization splitter, and measuring displacement in the Y-axis direction through the phase difference detected by the photodetector.

상기 3축 회전각도측정수단은 Y축 광분할기를 통해 투과된 회절빔의 위치변화를 감지하는 위치감지검출기와, 상기 Y축 광분할기와 위치감지검출기 사이에 상기 회절빔이 투과되도록 설치된 렌즈를 포함하고, 상기 위치감지검출기를 통해 감지된 위치변화로 3축의 회전각도를 계산한다.The three-axis rotation angle measuring means includes a position detection detector for detecting a position change of the diffraction beam transmitted through the Y-axis optical splitter, and a lens installed to transmit the diffraction beam between the Y-axis optical splitter and the position detection detector. Then, the rotation angle of the three axes is calculated by the position change detected by the position detection detector.

이에 따라 본 발명에 따른 6 자유도 변위 측정 장치에 의하면, 기존의 격자간섭계, 레이저 간섭계, 오토콜리메이터 기능을 모두 갖춘 하나의 복합측정장치를 구성함으로써, 스테이지에 의해 위치 이동되는 정밀 측정기기의 측정기나 가공기기의 가공기 등과 같은 측정대상의 3축 이동변위와 3축 회전각도를 동시에 측정할 수 있다.Accordingly, according to the six-degree-of-freedom displacement measuring apparatus according to the present invention, by configuring a single complex measuring device having all of the existing grating interferometer, laser interferometer, auto collimator function, the measuring device of the precision measuring device that is moved by the stage It is possible to simultaneously measure the three-axis movement displacement and the three-axis rotation angle of the measurement object such as the processing machine of the processing equipment.

또한, 하나의 장비로 거리와 각도변화를 동시에 측정할 수 있어 측정시간을 단축할 수 있을 뿐만아니라 변위측정과 각도측정을 위한 장비를 각각 구입할 필요가 없으므로 비용을 절감할 수 있다.In addition, it is possible to measure distance and angle change at the same time with a single device, which not only shortens the measurement time but also reduces the cost because there is no need to purchase equipment for displacement measurement and angle measurement.

또한, 동일한 광원에서 나오는 빛을 이용하므로 3축 직선 변위와 3축 각도 변화를 아베의 오차 없이 동시에 측정할 수 있는 장점이 있다.In addition, since the light from the same light source is used, the three-axis linear displacement and the three-axis angle change can be simultaneously measured without an error of ABE.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 1은 본 발명의 일실시예에 따른 6 자유도 변위 측정 장치의 개념을 설명하기 위한 개념도이고, 도 2는 도 1의 평면도이고, 도 3은 도 1의 6 자유도 변위 측정 장치에서 X축 방향의 측면을 나타내는 구성도이고, 도 4는 도 1의 6 자유도 변위 측정 장치에서 Y축 방향의 측면을 나타내는 구성도이고, 도 5는 도 1의 6 자유도 변위 측정 장치에서 3축 회전각도 측정방법을 설명하기 위한 개념도이고 각 축 방향 회전 변위에 따른 위치검출기 상 회절빔의 감지 위치 변화를 나타낸다.1 is a conceptual view illustrating a concept of a 6 degree of freedom displacement measuring apparatus according to an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a view of the 6 degree of freedom displacement measuring apparatus of FIG. 1. 4 is a configuration diagram showing a side in the X-axis direction, FIG. 4 is a configuration diagram showing a side in the Y-axis direction in the 6 degrees of freedom displacement measuring apparatus of FIG. 1, and FIG. 5 is a 3 axis in the 6 degrees of freedom displacement measuring apparatus of FIG. 1. This is a conceptual diagram illustrating a method of measuring a rotation angle, and shows a change in sensing position of a diffraction beam on a position detector according to each axial rotational displacement.

본 발명에 따른 정밀 측정기기나 가공기기에는 정밀 측정기기나 가공기기(측 정물(10))의 6자유도, 즉 X축, Y축, Z축 변위와, X축, Y축, Z축 회전각도를 측정하기 위해 회절격자(11)를 부착한다.In the precision measuring device or processing device according to the present invention, six degrees of freedom of the precision measuring device or processing device (measurement 10), that is, X axis, Y axis, Z axis displacement, and X axis, Y axis, Z axis rotation angle A diffraction grating 11 is attached for measurement.

상기 회절격자(11)는 X축과 Y축 방향의 2차원 평면에서 요철형태를 가지며, 위에서 보면 주기적인 형상의 사각형 또는 사인파 형태로 돌출되어 있다. 이때, 회절격자(11)의 간격은 수직으로 입사된 레이저 빔에 의해서 발생되는 회절빔의 각도가 측정 시스템을 구성하기 용이하도록 결정된다.The diffraction grating 11 has a concave-convex shape in a two-dimensional plane in the X-axis and Y-axis directions, and protrudes in a rectangular or sinusoidal shape of a periodic shape when viewed from above. At this time, the interval of the diffraction grating 11 is determined so that the angle of the diffraction beam generated by the vertically incident laser beam is easy to construct the measurement system.

광원(12)은 파장, 위상, 진행방향이 같은 빛을 내며, 세기가 아주 강하고 멀리까지 퍼지지 않고 전달되는 단색광을 방출하는 레이저 빔을 사용한다.The light source 12 emits light having the same wavelength, phase, and propagation direction, and uses a laser beam that emits monochromatic light having a very high intensity and transmitted without spreading far.

광원(12)을 회절격자(11)면에 수직방향으로 입사시키고 회절격자면에서 반사된 4개의 회절빔 -1x, +1x, -1y, +1y를 얻는다.The light source 12 is incident on the plane of the diffraction grating 11 in the vertical direction and four diffraction beams -1x, + 1x, -1y, and + 1y which are reflected on the plane of the diffraction grating are obtained.

먼저, Z축 방향의 변위를 구하기 위해 광원(12)과 회절격자(11) 사이에 Z축방향으로 광분할기(13)(BS,Beam Splitter)와, 편광분할기(14)(PBS, Polarizing Beam Splitter), 기준빔 광검출기(18), Z축방향 광검출기(19)를 구성한다.First, a light splitter 13 (BS, beam splitter) and a polarizer splitter 14 (PBS) in the Z-axis direction between the light source 12 and the diffraction grating 11 to obtain a displacement in the Z-axis direction. ), A reference beam photodetector 18, and a Z-axis photodetector 19.

상기 광분할기(13)는 광원(12)에서 나온 빛을 2개로 분할하는 역할을 하고, 광원(12)에서 나온 빛 중 일부는 반사시키고, 다른 일부는 투과시키게 된다.The light splitter 13 divides the light from the light source 12 into two, reflects some of the light from the light source 12, and transmits the other part.

광원(12)에서 나온 빛 중 일부가 광분할기(13)에 의해 반사되어 45°편광필터(17)를 투과한 후 기준빔 광검출기(18)로 입사되고, 광원(12)에서 나온 빛 중 일부가 광분할기(13)를 투과한 후 편광분할기(14)에 의해 반사되어 반파장판(15)(Half Wave Plate)을 투과한다.Some of the light emitted from the light source 12 is reflected by the light splitter 13, passes through the 45 ° polarization filter 17 and then enters the reference beam photodetector 18, and a part of the light emitted from the light source 12. After passing through the light splitter 13, the light splitter 13 is reflected by the polarization splitter 14 to pass through the half wave plate 15.

광원(12)에서 나온 빛 중 일부가 광분할기(13), 편광분할기(14), 반파장 판(15)(Half Wave Plate)을 투과한 후 회절격자(11)에 입사된다.Some of the light emitted from the light source 12 passes through the light splitter 13, the polarizer splitter 14, and the half wave plate 15 and then enters the diffraction grating 11.

회절격자(10)에서 수직 반사된 0차 회절빔은 반파장판(15)(Half Wave Plate)을 투과한 후 편광분할기(14)에서 반사되어 45°편광필터(17)를 투과한 후 Z축 방향 광검출기(19)로 입사된다.The zero-order diffracted beam reflected by the diffraction grating 10 is transmitted through the half wave plate 15 and then reflected by the polarization splitter 14 to pass through the 45 ° polarization filter 17 and then Z-direction. It enters into the photodetector 19.

따라서, 상기 기준빔 광검출기(18)와 Z축방향 광검출기(19)에 연결된 신호처리회로와 컴퓨터가 광분할기(13)에 의해 반사된 빛과 편광분할기(14)에 의해 반사된 빛의 위상차를 비교 분석하여 측정물(10)의 Z축방향 변위를 계산할 수 있다.Therefore, the signal processing circuit connected to the reference beam photodetector 18 and the Z-axis photodetector 19 and the phase difference between the light reflected by the optical splitter 13 and the computer reflected by the optical splitter 13 By comparing and analyzing the Z-axis displacement of the workpiece 10 can be calculated.

다음은 X축, Y축 변위를 측정한다. X축 변위를 측정하기 위해 미러(20), 편광분할기(21)를 추가로 구성한다. Next, the X and Y axis displacements are measured. The mirror 20 and the polarization splitter 21 are further configured to measure the X-axis displacement.

광원(12)에서 나온 빛은 광분할기(13)와 편광분할기(14)를 투과한 후 회절격자(11)에서 반사되어 -1x와 +1x의 회절빔을 얻는다. 상기 -1x와 +1x의 회절빔은 미러(20)에 의해 반사되며 X축방향 편광분할기(21)를 통해 2개의 빛으로 분할된다.The light emitted from the light source 12 passes through the light splitter 13 and the polarization splitter 14 and is then reflected by the diffraction grating 11 to obtain diffraction beams of -1x and + 1x. The -1x and + 1x diffraction beams are reflected by the mirror 20 and split into two lights through the X-axis polarization splitter 21.

미러(20)에서 반사된 -1x 회절빔 중 일부는 상기 편광분할기(21)에 의해 반사된 후 X축방향 제1광검출기(22)로 입사되고, 편광분할기(21)를 투과한 빛은 X축방향 제2광검출기(23)로 입사된다.Some of the -1x diffracted beams reflected by the mirror 20 are reflected by the polarization splitter 21 and then incident to the first optical detector 22 in the X-axis direction, and the light transmitted through the polarization splitter 21 is X Incident on the axial second photodetector 23.

또한, 미러(20)에서 반사된 +1x 회절빔 중 일부는 상기 편광분할기(21)에 의해 반사되어 X축방향 제2광검출기(23)로 입사되고, 편광분할기(21)를 투과한 빛은 X축방향 제1광검출기(22)로 입사된다.In addition, part of the + 1x diffracted beam reflected from the mirror 20 is reflected by the polarization splitter 21 and is incident to the second optical detector 23 in the X-axis direction, and the light transmitted through the polarization splitter 21 is It enters into the X-axis direction first photodetector 22.

따라서, 상기 X축방향 제1광검출기(22)와 제2광검출기(23)에 연결된 신호처리회로와 컴퓨터가 편광분할기(21)에 의해 반사된 빛과 편광분할기(21)를 투과한 빛의 위상차를 비교 분석하여 측정물(10)의 X축방향 변위를 계산할 수 있다.Accordingly, the signal processing circuit and the computer connected to the first and second photodetectors 22 and 23 in the X-axis direction, the light reflected by the polarization splitter 21 and the light transmitted through the polarization splitter 21 By comparing the phase difference, the X-axis displacement of the workpiece 10 may be calculated.

Y축 변위를 측정하기 위해 광분할기(26), 편광분할기(21)를 추가로 구성한다. A light splitter 26 and a polarizer splitter 21 are further configured to measure the Y-axis displacement.

여기서, 미러(20)를 사용하지 않고 광분할기(26)를 사용하는 목적은 3축 변위를 확장하여 3축 회전각도를 동일한 광축(광원(12))에서 측정하기 위함이다. 왜냐하면, 만약에 미러(20)를 사용할 경우 회절빔을 경로를 바꾸어 반사만 시키므로, 하나의 광축으로 본 발명에서 회전각도를 측정하기 위한 회절빔을 얻을 수 없기 때문이다.Here, the purpose of using the optical splitter 26 without using the mirror 20 is to extend the three-axis displacement to measure the three-axis rotation angle at the same optical axis (light source 12). This is because, if the mirror 20 is used, since the diffraction beam is changed only by changing the path, the diffraction beam for measuring the rotation angle cannot be obtained in the present invention with one optical axis.

광원(12)에서 나온 빛은 광분할기(26)와 편광분할기(21)를 투과한 후 회절격자(11)에서 반사되어 -1y와 +1y의 회절빔을 얻는다. 상기 -1y와 +1y의 회절빔은 광분할기(26)에 의해 반사되며 Y축방향 편광분할기(21)를 통해 2개의 빛으로 분할된다.The light emitted from the light source 12 passes through the light splitter 26 and the polarization splitter 21 and is reflected by the diffraction grating 11 to obtain a diffraction beam of -1y and + 1y. The -1y and + 1y diffraction beams are reflected by the light splitter 26 and split into two lights through the Y-axis polarization splitter 21.

광분할기(26)에서 반사된 -1y 회절빔 중 일부는 상기 편광분할기(21)에 의해 반사된 후 Y축방향 제3광검출기(24)로 입사되고, 편광분할기(21)를 투과한 빛은 Y축방향 제4광검출기(25)로 입사된다.Some of the -1y diffraction beams reflected by the optical splitter 26 are reflected by the polarization splitter 21 and then incident to the third optical detector 24 in the Y-axis direction, and the light transmitted through the polarizer splitter 21 It enters into the Y-axis fourth photodetector 25.

또한, 광분할기(26)에서 반사된 +1y 회절빔 중 일부는 상기 편광분할기(21)에 의해 반사되어 Y축방향 제4광검출기(25)로 입사되고, 편광분할기(21)를 투과한 빛은 Y축방향 제3광검출기(24)로 입사된다.In addition, some of the + 1y diffracted beams reflected by the optical splitter 26 are reflected by the polarization splitter 21 and are incident to the fourth optical detector 25 in the Y-axis direction, and transmitted through the polarization splitter 21. Is incident on the Y-axis direction third photodetector 24.

따라서, 상기 Y축방향 제3광검출기(24)와 제4광검출기(25)에 연결된 신호처리회로와 컴퓨터가 편광분할기(21)에 의해 반사된 빛과 편광분할기(21)를 투과한 빛의 위상차를 비교 분석하여 측정물(10)의 Y축방향 변위를 계산할 수 있다.Accordingly, the signal processing circuit and the computer connected to the third and fourth photodetectors 24 and 25 in the Y-axis direction and the light transmitted by the polarizer splitter 21 and the light transmitted through the polarizer splitter 21 are used. The phase difference may be compared and analyzed to calculate the Y-axis displacement of the workpiece 10.

한편, 상기 Y축방향 광분할기(26)를 투과한 Y축방향 회절빔을 이용하여 측정물(10)의 X축, Y축, Z축의 회전각도(θx, θy, θx)를 측정한다. 상기 Y축방향의 회절빔을 이용하여 회절빔의 위치변화를 위치감지검출기(28)가 검출한 다음, 상기 회절빔의 위치변화를 각도로 환산하면 다음 식과 같다.Meanwhile, the rotation angles (θx, θy, θx) of the X-axis, Y-axis, and Z-axis of the measurement object 10 are measured using the Y-axis diffraction beam transmitted through the Y-axis light splitter 26. The position detection detector 28 detects the position change of the diffraction beam using the diffraction beam in the Y axis direction, and then converts the position change of the diffraction beam into an angle as follows.

Figure 112008071031419-PAT00001
Figure 112008071031419-PAT00001

여기서, dX+1,dX-1,dY+1,dY-1 은 위치감지검출기(28)로 측정된 회절빔의 X축과 Y축 방향 위치변화량이고, f는 렌즈(27)와 포토 다이오드 사이의 거리이며, dX+1,dX-1,dY+1,dY-1 의 값은 3축 변위 측정과는 별개의 값이다.Here, dX +1 , dX -1 , dY +1 , dY -1 are the amount of change in the X and Y axis directions of the diffraction beam measured by the position detector 28, and f is between the lens 27 and the photodiode. The values of dX + 1 , dX -1 , dY +1 , and dY -1 are separate values from the 3-axis displacement measurement.

3축 회전각도를 측정하는 원리는 오토콜리메이터(autocollimator)와 같다. 즉 회절격자(11)에서 반사된 후 광분할기(26)를 투과한 회절빔은 위치감지검출기(28)로 입사되고, 위치감지검출기(28)에 입사되는 빛은 입사위치를 정확하게 파악할 수 있도록 렌즈(27)에 의해 하나의 점으로 집광된다.The principle of measuring the three-axis rotation angle is the same as that of an autocollimator. That is, the diffracted beam reflected from the diffraction grating 11 and transmitted through the light splitter 26 is incident to the position detector 28, and the light incident on the position detector 28 is a lens so as to accurately determine the incident position. By 27, the light is collected at one point.

따라서, 위치감지검출기(28)에 연결된 도시되지 않은 신호 처리회로와 컴퓨터는 위치 감지 검출기에 입사된 빛의 위치를 분석하여 위치이동된 측정물(10)의 3 축방향의 각도변화를 연산할 수 있다.Therefore, a signal processing circuit and a computer (not shown) connected to the position detection detector 28 can analyze the position of the light incident on the position detection detector to calculate the angular change in the three axis directions of the moved object 10. have.

이와 같은 방법에 따라, 광원(12)을 회절격자(11)에 입사시켜 얻은 4개의 회절빔을 이용하여 3축 변위를 측정하는 원리는 종래의 3축변위 측정과 대동소이하나, 미러(20) 대신에 광분할기(26)를 통해 회절빔을 하나 더 추출하여 3축 회전각도를 측정함으로써, 3축 변위 측정을 확장하여 3축 회전각도를 동일한 광축상에서 동시에 측정할 수 있다.According to this method, the principle of measuring the three-axis displacement using four diffraction beams obtained by injecting the light source 12 into the diffraction grating 11 is similar to the conventional three-axis displacement measurement, the mirror 20 Instead, by extracting one more diffraction beam through the optical splitter 26 and measuring the three-axis rotation angle, the three-axis displacement measurement can be extended to measure the three-axis rotation angle simultaneously on the same optical axis.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.

도 1은 본 발명의 일실시예에 따른 6 자유도 변위 측정 장치의 개념을 설명하기 위한 개념도,1 is a conceptual diagram for explaining the concept of a six degree of freedom displacement measuring apparatus according to an embodiment of the present invention,

도 2는 도 1의 평면도,2 is a plan view of FIG.

도 3은 도 1의 6 자유도 변위 측정 장치에서 X축 방향의 측면을 나타내는 구성도,3 is a configuration diagram showing the side of the X-axis direction in the 6 degree of freedom displacement measurement device of FIG.

도 4는 도 1의 6 자유도 변위 측정 장치에서 Y축 방향의 측면을 나타내는 구성도,4 is a configuration diagram showing the side in the Y-axis direction in the six degree of freedom displacement measurement device of FIG.

도 5는 도 1의 6 자유도 변위 측정 장치에서 3축 회전각도 측정방법을 설명하기 위한 개념도,5 is a conceptual diagram for explaining a three-axis rotation angle measuring method in the six degree of freedom displacement measuring apparatus of FIG.

도 6은 변위를 측정하기 위한 마이켈슨 간섭계의 예시도,6 is an exemplary diagram of a Michelson interferometer for measuring displacement;

도 7은 정밀한 각도 변화를 측정하기 위한 오토콜리메이터(autocollimator)의 원리도이다.7 is a principle diagram of an autocollimator for measuring precise angle changes.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 측정물 11 : 회절격자10: measuring object 11: diffraction grating

12 : 광원 13 : Z축 광분할기12 light source 13 Z-axis light splitter

14 : Z축 편광분할기 15 : 반파장판14 Z-axis polarization splitter 15 Half-wave plate

16,20 : 미러 17 : 편광필터16,20 mirror 17 polarization filter

18 : 기준빔 광검출기 19 : Z축방향 광검출기18: reference beam photodetector 19: Z-axis photodetector

21 : X축,Y축 편광분할기 22 : 제1광검출기21: X-axis, Y-axis polarization splitter 22: First photodetector

23 : 제2광검출기 24 : 제3광검출기23: second photodetector 24: third photodetector

25 : 제4광검출기 26 : Y축 광분할기25: fourth photodetector 26: Y-axis light splitter

27 : 렌즈 28 : 위치감지검출기27: lens 28: position detection detector

Claims (5)

단일파장의 레이저 빔을 갖는 광원;A light source having a single wavelength laser beam; 측정물의 표면에 부착되며, 상기 광원으로부터 입사되어 복수의 회절빔을 발생시키는 회절격자;A diffraction grating attached to a surface of a workpiece and generating a plurality of diffraction beams incident from the light source; 상기 회절격자의 Z축 방향 변위를 측정하기 위한 Z축 변위측정수단;Z-axis displacement measuring means for measuring the Z-axis displacement of the diffraction grating; 상기 회절격자의 X축 방향 변위를 측정하기 위한 X축 변위측정수단;X-axis displacement measuring means for measuring the X-axis displacement of the diffraction grating; 상기 회절격자의 Y축 방향 변위를 측정하기 위한 Y축 변위측정수단;Y-axis displacement measuring means for measuring the Y-axis displacement of the diffraction grating; 상기 회절격자의 X,Y,Z축 회전각도를 측정하기 위한 3축 회전각도측정수단을 포함하는 6 자유도 변위 측정 장치.And 6-axis displacement angle measuring means for measuring the X, Y, Z axis rotation angle of the diffraction grating. 청구항 1에 있어서,The method according to claim 1, 상기 Z축 변위측정수단은 광원과 회절격자 사이에 배치되고, 상기 광원에서 나온 빛 중 일부를 반사하고 나머지 일부를 투과시키는 Z축 광분할기;The Z-axis displacement measuring means is disposed between the light source and the diffraction grating, the Z-axis splitter for reflecting a portion of the light emitted from the light source and transmits the remaining portion; 상기 광분할기에서 투과된 빛 중 일부를 반사시키고 나머지 일부를 투과시키는 편광분할기;A polarization splitter that reflects a part of the light transmitted from the light splitter and transmits a part of the light; 상기 Z축 광분할기 및 편광분할기에 의해 반사된 빔의 위상차를 검출하는 기준빔 광검출기 및 Z축방향 광검출기를 포함하고, 상기 광검출기에 의해 검출된 위상차를 통해 Z축 방향의 변위를 측정하는 것을 특징으로 하는 6 자유도 변위 측정 장치.A reference beam photodetector and a Z-axis photodetector for detecting the phase difference of the beam reflected by the Z-axis optical splitter and the polarization splitter, and measuring the displacement in the Z-axis direction through the phase difference detected by the photodetector 6 degrees of freedom displacement measuring device. 청구항 2에 있어서,The method according to claim 2, 상기 X축 변위측정수단은 회절격자에 의해 반사된 X축방향 회절빔의 경로에 배치되어 상기 회절빔을 반사시키는 미러;The X-axis displacement measuring means includes a mirror disposed in the path of the X-axis diffraction beam reflected by the diffraction grating to reflect the diffraction beam; 상기 미러에 의해 반사된 회절빔의 일부를 반사시키고 나머지 일부를 투과시키는 X축 편광분할기; An X-axis polarization splitter that reflects a portion of the diffracted beam reflected by the mirror and transmits the remaining portion; 상기 X축 편광분할기를 통해 반사된 회절빔과 투과된 빔의 위상차를 검출하는 제1 및 제2광검출기를 포함하고, 상기 광검출기에 의해 검출된 위상차를 통해 X축 방향의 변위를 측정하는 것을 특징으로 하는 6 자유도 변위 측정 장치.A first and second photodetectors for detecting a phase difference between the diffracted beam and the transmitted beam reflected through the X-axis polarization splitter, and measuring displacement in the X-axis direction through the phase difference detected by the photodetector. 6 degrees of freedom displacement measuring device. 청구항 3에 있어서,The method according to claim 3, 상기 Y축 변위측정수단은 회절격자에 의해 반사된 Y축방향 회절빔의 경로에 배치되어 상기 회절빔의 일부를 반사시키는 Y축 광분할기;The Y-axis displacement measuring means includes a Y-axis splitter disposed in a path of the Y-axis diffraction beam reflected by the diffraction grating to reflect a portion of the diffraction beam; 상기 Y축 광분할기에 의해 반사된 회절빔의 일부를 반사시키고 나머지 일부를 투과시키는 Y축 편광분할기;A Y-axis polarization splitter that reflects a portion of the diffracted beam reflected by the Y-axis splitter and transmits the remaining portion; 상기 Y축 편광분할기를 통해 반사된 회절빔과 투과된 빔의 위상차를 검출하는 제3 및 제4광검출기를 포함하고, 상기 광검출기에 의해 검출된 위상차를 통해 Y 축 방향의 변위를 측정하는 것을 특징으로 하는 6 자유도 변위 측정 장치.And a third and fourth photodetectors for detecting a phase difference between the diffracted beam and the transmitted beam reflected through the Y-axis polarization splitter, and measuring displacement in the Y-axis direction through the phase difference detected by the photodetector. 6 degrees of freedom displacement measuring device. 청구항 4에 있어서,The method according to claim 4, 상기 3축 회전각도측정수단은 Y축 광분할기를 통해 투과된 회절빔의 위치변화를 감지하는 위치감지검출기와, 상기 Y축 광분할기와 위치감지검출기 사이에 상기 회절빔이 투과되도록 설치된 렌즈를 포함하고, 상기 위치감지검출기를 통해 감지된 위치변화로 3축의 회전각도를 계산하는 것을 특징으로 하는 6 자유도 변위 측정 장치.The three-axis rotation angle measuring means includes a position detection detector for detecting a position change of the diffraction beam transmitted through the Y-axis optical splitter, and a lens installed to transmit the diffraction beam between the Y-axis optical splitter and the position detection detector. And calculating a rotation angle of three axes by the position change detected by the position detection detector.
KR1020080100002A 2008-10-13 2008-10-13 Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating KR20100041024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080100002A KR20100041024A (en) 2008-10-13 2008-10-13 Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080100002A KR20100041024A (en) 2008-10-13 2008-10-13 Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating

Publications (1)

Publication Number Publication Date
KR20100041024A true KR20100041024A (en) 2010-04-22

Family

ID=42216838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080100002A KR20100041024A (en) 2008-10-13 2008-10-13 Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating

Country Status (1)

Country Link
KR (1) KR20100041024A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130108121A (en) * 2012-03-22 2013-10-02 덕터 요한네스 하이덴하인 게엠베하 Position-measuring device and system having such a position-measuring device
CN109916315A (en) * 2019-03-29 2019-06-21 华侨大学 A kind of measuring device based on separate type grating
WO2022095128A1 (en) * 2020-11-06 2022-05-12 中国科学院上海光学精密机械研究所 Six-degree-of-freedom measuring grating scale
CN114993190A (en) * 2022-05-10 2022-09-02 清华大学 Six-degree-of-freedom displacement measurement system for grating of photoetching machine
CN115790398A (en) * 2023-01-06 2023-03-14 中国科学院长春光学精密机械与物理研究所 Multi-degree-of-freedom measuring device based on arbitrary cross two-dimensional grating
CN116481435A (en) * 2023-03-20 2023-07-25 东北林业大学 Compact six-degree-of-freedom measurement system
WO2023155657A1 (en) * 2022-02-21 2023-08-24 清华大学深圳国际研究生院 Absolute six-degrees-of-freedom grating encoder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130108121A (en) * 2012-03-22 2013-10-02 덕터 요한네스 하이덴하인 게엠베하 Position-measuring device and system having such a position-measuring device
CN109916315A (en) * 2019-03-29 2019-06-21 华侨大学 A kind of measuring device based on separate type grating
CN109916315B (en) * 2019-03-29 2024-02-23 华侨大学 Measuring device based on separation type grating
WO2022095128A1 (en) * 2020-11-06 2022-05-12 中国科学院上海光学精密机械研究所 Six-degree-of-freedom measuring grating scale
WO2023155657A1 (en) * 2022-02-21 2023-08-24 清华大学深圳国际研究生院 Absolute six-degrees-of-freedom grating encoder
CN114993190A (en) * 2022-05-10 2022-09-02 清华大学 Six-degree-of-freedom displacement measurement system for grating of photoetching machine
CN114993190B (en) * 2022-05-10 2023-11-07 清华大学 Six-degree-of-freedom displacement measuring system for grating of photoetching machine
CN115790398A (en) * 2023-01-06 2023-03-14 中国科学院长春光学精密机械与物理研究所 Multi-degree-of-freedom measuring device based on arbitrary cross two-dimensional grating
CN115790398B (en) * 2023-01-06 2023-05-12 中国科学院长春光学精密机械与物理研究所 Multi-degree-of-freedom measuring device based on arbitrary crossed two-dimensional grating
CN116481435A (en) * 2023-03-20 2023-07-25 东北林业大学 Compact six-degree-of-freedom measurement system
CN116481435B (en) * 2023-03-20 2024-03-19 东北林业大学 Compact six-degree-of-freedom measurement system

Similar Documents

Publication Publication Date Title
CN109579780B (en) Polarization-based light splitting auto-collimation three-dimensional angle measuring device and method
CN106595480B (en) For measuring the laser measurement system and method for shaft six degree of freedom geometric error
KR20100041024A (en) Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating
JP2007171206A (en) Littrow interferometer
JP4142532B2 (en) Optical speedometer, displacement information measuring device, and conveyance processing device
JP6329456B2 (en) Optical position measuring device
US9200893B2 (en) Position-measuring device and system having a plurality of position-measuring devices
US9068811B2 (en) Device for determining distance interferometrically
Kuang et al. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module
US9291481B2 (en) Optical position-measuring device
KR100608892B1 (en) Displacement, yaw and pitch measuring method and measuring apparatus therefor
US9518816B2 (en) Dual beam splitter interferometer measuring 3 degrees of freedom, system and method of use
TWI502170B (en) Optical measurement system and method for measuring linear displacement, rotation and rolling angles
KR100997948B1 (en) a system for simultaneous measurement of linear and angilar displacement
JP2022145717A (en) Multiaxis laser interference length measurer and displacement detection method
US8687200B2 (en) Method and device for measuring motion error of linear stage
TWI579525B (en) An optical system and measuring methods for simultanuous absolute positioning distance and tilting angular measurements of a moving object
JP2010066090A (en) Optical measuring instrument
TW585989B (en) Measurement system with 6 degrees of freedom by 2D optical rule
Dobosz Application of a focused laser beam in a grating interferometer for high-resolution displacement measurements
TWI414747B (en) A five - degree - of - freedom optical system
JP5868058B2 (en) POSITION MEASURING DEVICE, OPTICAL COMPONENT MANUFACTURING METHOD, AND MOLD MANUFACTURING METHOD
Chen et al. Multi-DOF incremental optical encoder with laser wavelength compensation
TW201043916A (en) Geometric error detection device
JP5149085B2 (en) Displacement meter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application