KR20100040469A - A dual mode control method for a combustion system using a additional co concentration - Google Patents

A dual mode control method for a combustion system using a additional co concentration Download PDF

Info

Publication number
KR20100040469A
KR20100040469A KR1020080099585A KR20080099585A KR20100040469A KR 20100040469 A KR20100040469 A KR 20100040469A KR 1020080099585 A KR1020080099585 A KR 1020080099585A KR 20080099585 A KR20080099585 A KR 20080099585A KR 20100040469 A KR20100040469 A KR 20100040469A
Authority
KR
South Korea
Prior art keywords
atmosphere
concentration
oxidation
reduction
control method
Prior art date
Application number
KR1020080099585A
Other languages
Korean (ko)
Other versions
KR101027824B1 (en
Inventor
정종렬
김율란
강덕홍
김창영
김기홍
김영일
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020080099585A priority Critical patent/KR101027824B1/en
Publication of KR20100040469A publication Critical patent/KR20100040469A/en
Application granted granted Critical
Publication of KR101027824B1 publication Critical patent/KR101027824B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0067General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display by measuring the rate of variation of the concentration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE: A method for controlling oxidation-reduction atmosphere using a system for measuring the concentration of carbon oxide is provided to obtain a reduction level based on the measured value of the carbon oxide. CONSTITUTION: The internal concentration of carbon oxide is measured by a heating process. Referring to the measured concentration of the carbon oxide, oxidation-reduction atmosphere is evaluated. In a system for controlling the atmosphere, the concentration of the carbon oxide is additionally measured. An air lead controls to maintain the perfect combustion in the oxidation atmosphere. A fuel lead controls maintains the reduction atmosphere(330).

Description

CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법{A dual mode control method for a combustion system using a additional CO concentration} Redox atmosphere control method using CO concentration measurement system {A dual mode control method for a combustion system using a additional CO concentration}

본 발명은 CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법에 관한 것으로, 보다 상세하게는, CO2 농도 기반의 분위기 자동 제어 시스템에서 CO를 추가적으로 측정하여 분위기의 산화 환원 정도(레벨)를 평가하도록 하는 CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법에 관한 것이다. The present invention relates to a redox atmosphere control method using a CO concentration measurement system, and more particularly, to evaluate the redox level (level) of the atmosphere by additionally measuring CO in a CO 2 concentration-based atmosphere automatic control system. A redox atmosphere control method using a CO concentration measuring system.

일반적으로, 분위기 가스의 산화성 평가는 환원성 평가와 같이 환원 분위기 정도를 판단하는 것으로 분위기를 판정하는 방법을 이용한다. In general, the oxidative evaluation of the atmospheric gas uses a method of determining the atmosphere by judging the degree of the reducing atmosphere as in the reductive evaluation.

도 1은 종래의 환원 분위기 제어 구성도이고, 도 2는 종래의 산화/환원 평행 곡선을 나타내는 도면이다. 1 is a diagram illustrating a conventional reducing atmosphere control configuration, and FIG. 2 is a diagram illustrating a conventional oxidation / reduction parallel curve.

산화 분위기가 일반적인 가열로에서 완전 연소를 위한 조건이고, 이 경우에 연소 배가스 중의 CO는 인체의 유해성과 연소 효율 악화의 원인으로 작동하므로 감 시의 대상으로만 사용된다. The oxidizing atmosphere is a condition for complete combustion in a typical furnace, in which case the CO in the combustion flue gas is used only for monitoring because it acts as a cause of human harm and deterioration of combustion efficiency.

환원 분위기 유지가 목적인 연소 설비(소둔로 계열)의 경우는 복사관을 이용한 간접가열방식을 택하고, 분위기 가스는 수소 혹은 질소만으로 이루어진 환원 분위기 가스를 이용하며, 환원 분위기의 정도를 판단하기 위해서 이슬점 측정기(hygrometer)를 이용하여 환원 분위기 상태를 판단한다.(도 1 참조)In the case of combustion equipment (annealing furnace series) for the purpose of maintaining a reducing atmosphere, an indirect heating method using a radiant tube is used, and the atmosphere gas uses a reducing atmosphere gas composed of only hydrogen or nitrogen, and the dew point is used to determine the degree of the reducing atmosphere. The reducing atmosphere is determined using a hygrometer (see FIG. 1).

이를 근거로 수소의 공급량을 제어하는 방식으로 관리하는 것(도 1)이 일반적이고, 직접 연소의 경우도 연소 배가스의 이슬점을 측정하여 공연비를 제어하는 방법을 이용할 수 있다. On the basis of this, it is common to manage hydrogen supply in a manner of controlling the supply amount (FIG. 1), and in the case of direct combustion, a method of controlling the air-fuel ratio by measuring the dew point of the combustion exhaust gas may be used.

환원 정도를 판정하는 것은 분위기 온도에서 발생 가능한 산화물들의 산화/ 환원 평행 곡선(도 2 참조)에서 환원쪽으로 치우치게 관리하는데 필요한 이슬점을 찾고 그 이슬점보다 낮게 분위기가 관리되도록 한다. Determining the degree of reduction finds the dew point required to manage towards the reduction in the oxidation / reduction parallel curve of oxides that can occur at ambient temperature (see FIG. 2) and allows the atmosphere to be managed below that dew point.

이러한 이슬점 기준 관리는 챔버가 소규모이고 온도가 균일한 시스템에서는 유효하나 가열 챔버가 크고 온도가 균일하지 않은 조건에서는 특정 위치의 이슬점 측정의 샘플링 홀을 통한 일부 분위기 가스를 기준으로 평가하는 것은 많은 오차를 가질 수 있다.This dew point reference management is valid for systems with small chambers and uniform temperatures, but under conditions of large heating chambers and uneven temperatures, evaluating the reference to some ambient gas through the sampling hole of the dew point measurement at a specific location is more error prone. Can have

특히 산화, 환원 분위기를 동시에 제어하여야 하는 시스템에서 제어용으로 CO2를 사용하는 시스템에서 환원 분위기의 정도를 판단하기 위해서는 추가적으로 환원가스 성분을 계측하여야 가능한 경우가 발생한다.In particular, in a system in which oxidation and reducing atmospheres are to be controlled at the same time, it is possible to additionally measure reducing gas components in order to determine the degree of reducing atmosphere in a system using CO 2 for control.

상술한 바와 같은 문제점을 해결하기 위해, 본 발명의 목적은 산화/환원 분위기 동시 제어시스템(특히 CO2는 제어용으로 이용하는)에서 광학식 CO센서를 활용하여 분위기의 환원성을 직접 평가하는 방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, it is an object of the present invention to provide a method for directly evaluating the reducing property of the atmosphere by using an optical CO sensor in a simultaneous control system for oxidation / reduction atmosphere (especially CO 2 is used for control). The purpose.

또한, 본 발명은, CO2 농도 기반의 분위기 자동 제어 시스템에서 CO를 추가적으로 측정하여 분위기의 산화 환원 정도(레벨)를 평가하도록 하는 CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for controlling redox atmosphere using a CO concentration measuring system for additionally measuring CO in an atmosphere automatic control system based on CO 2 concentration to evaluate the degree of redox (level) of the atmosphere. do.

상술한 바와 같은 문제점을 해결하기 위해, 본 발명의 CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법은, 가열로 내부 CO 농도를 측정하는 단계; 상기 측정된 CO 농도를 CO2 농도와 연계하여 산화 환원 분위기 평가를 하도록 하는 단계; 분위기 제어 시스템에서 CO 측정치를 추가 측정하는 단계; 및 산화분위기에서 완전연소가 유지되도록 하는 에어 리드(Air lead) 로 제어되고, 환원 분위기에서 환원성 유지를 하도록 하는 연료 리드(Fuel lead) 로 제어되도록 구성하는 것을 특징으로 한다.In order to solve the problems described above, the redox atmosphere control method using the CO concentration measuring system of the present invention, the step of measuring the CO concentration in the furnace; Assessing a redox atmosphere by linking the measured CO concentration with a CO 2 concentration; Further measuring the CO measurement in an atmosphere control system; And controlled by an air lead to maintain complete combustion in the oxidizing atmosphere, and controlled by a fuel lead to maintain reducing in a reducing atmosphere.

본 발명에 따르면, CO 추가 측정치를 이용하는 CO2 기반의 산화/환원 분위기 뿐만 아니라 CO 측정치의 기반으로 환원 레벨을 얻을 수 있는 효과가 있다.According to the present invention, there is an effect of obtaining a reduction level based on CO measurement as well as CO 2 based oxidation / reduction atmosphere using additional CO measurement.

이하, 도면을 참조하여 CO 농도의 추가 측정을 이용한 산화 환원 동시 제어 시스템 및 방법에 대하여 상세히 설명하도록 한다. Hereinafter, a redox simultaneous control system and method using additional measurement of CO concentration will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 Fe 의 산화 환원 평행곡선을 나타내는 도면이고, 도 4는 CO2와 CO의 비율 연산에 필요한 신호들을 나타내는 도면이고, 도 5는 본 발명에 따른 CO2/CO 기반 산화/환원 동시 제어 구성도를 나타내는 도면이다. 3 is a diagram showing a redox parallel curve of Fe according to the present invention, FIG. 4 is a diagram showing signals required for calculating a ratio of CO 2 and CO, and FIG. 5 is CO 2 / CO based oxidation / It is a figure which shows a reduction simultaneous control block diagram.

상기 도 3 내지 도 5에 도시된 바와 같이, CO 농도의 추가 측정을 이용한 산화 환원 동시 제어 시스템 및 방법은, 일반적인 철강 공정의 재가열로(reheating furnace)에서는 철산화물(FeO)의 생성 여부가 산화 환원의 판단 기준으로 이용되고, 그 산화 특성은 Fe 산화/환원 평행 곡선(도 3참조)에서 CO2/CO의 비율값에 따른 온도의 함수로 확인 가능하다.3 to 5, the simultaneous redox control system and method using an additional measurement of the CO concentration, in the reheating furnace of a general steel process whether or not the production of iron oxide (FeO) is redox It is used as a criterion of, and its oxidation characteristic can be confirmed as a function of temperature according to the ratio of CO 2 / CO in the Fe oxidation / reduction parallel curve (see FIG. 3).

즉, 가열로의 분위기 온도가 1300℃ 까지 도달하는 경우의 CO2/CO는 약 0.3 이하를 유지해야 한다는 사실을 도 3을 통하여 판단할 수 있다. That is, it can be determined through FIG. 3 that CO 2 / CO should be maintained at about 0.3 or less when the ambient temperature of the heating furnace reaches 1300 ° C.

제어 시스템에서 계측되는 CO2의 농도를 항상 검출 가능하다고 봄으로 광학 식 CO농도 측정 시스템의 추가 설치(도 4 참조)로 그래프의 평행 곡선(도 3 참조) 이하를 유지하도록 제어 loop를 구성하는 것으로 원하는 목적을 달성할 수 있다. It is assumed that the concentration of CO 2 measured by the control system is always detectable, and the additional installation of the optical CO concentration measurement system (see FIG. 4) is configured to maintain the control loop to keep the graph below the parallel curve (see FIG. 3). The desired purpose can be achieved.

제어계의 CO2측정치와 추가 설치한 CO의 측정치를 근거로 환원제어 유지 제어가 가능하다. Reduction control maintenance control is possible on the basis of the measured CO 2 value of the control system and the additional measured CO value.

도 5는 상기와 같은 신호를 기반으로 산화/환원 분위기를 자동 제어하기 위한 시스템 구성도를 SAMA(Scientific Apparatus Makers Association)법을 기준으로 도시한 도면으로, 상기 도 5의 CO 에 근거한 산화, 환원 분위기 제어 구성도를 보면, 현재의 공정치 출력 산소농도(배가스의 산소농도(flue O2 PV치, 110)가 계측되어 O2제어기(120)로 전달되고, 제어는 환원 분위기와 산화 분위기를 사용자의 모드선택(환원:??1,산화:+1)에 따라 결정되고, 절환은 f1의 선형 절환함수에 의해 부드럽게 절환가능하게 되고(310), limiter값들도 f2 함수에 의해서 부드럽게 변화되어 구성된다.(320) FIG. 5 is a diagram illustrating a system configuration for automatically controlling an oxidation / reduction atmosphere based on the above signal based on the SAMA (Scientific Apparatus Makers Association) method. Based on the oxidation and reduction atmosphere control scheme based on the current process value , the output oxygen concentration (flue O 2 PV value 110 of exhaust gas) is measured and transmitted to the O 2 controller 120, and the control is performed with the reducing atmosphere. The oxidation atmosphere is determined by the user's mode selection (reduction: ?? 1, oxidation: +1), switching is smoothly switchable by the linear switching function of f1 (310), and limiter values are smoothed by the f2 function. It is changed and configured. (320)

f3는 산화 분위기에서는 완전연소가 유지되는 것을 우선하는 Air lead 제어와 환원 분위기에서는 환원성 유지가 우선하는 Fuel lead 제어가 동시에 가능하도록 한다.(330)f3 allows simultaneous control of air lead, which prioritizes complete combustion in an oxidizing atmosphere, and fuel lead control, which preferentially maintains reducibility in a reducing atmosphere (330).

이상에서 설명한 본 발명은 전술한 발명의 상세한 설명 및 첨부된 도면에 의하여 한정되는 것은 아니고, 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 해당 기술분야의 당업자가 다양하게 수정 및 변경시킨 것 또한 본 발명의 범위 내에 포함됨은 물론이다.The present invention described above is not limited to the above-described detailed description of the invention and the accompanying drawings, and those skilled in the art can be variously modified without departing from the spirit and scope of the present invention described in the claims below. Modifications and variations are also included within the scope of the invention.

도 1은 종래의 환원 분위기 제어 구성도.1 is a conventional reducing atmosphere control configuration diagram.

도 2는 종래의 산화/환원 평행 곡선을 나타내는 도면. 2 shows a conventional oxidation / reduction parallel curve.

도 3은 본 발명에 따른 Fe 의 산화 환원 평행곡선을 나타내는 도면.Figure 3 shows a redox parallel curve of Fe according to the present invention.

도 4는 CO2와 CO의 비율 연산에 필요한 신호들을 나타내는 도면.4 is a diagram showing signals required for calculating a ratio of CO 2 to CO.

도 5는 본 발명에 따른 CO2/CO 기반 산화/환원 동시 제어 구성도를 나타내는 도면. 5 is a view showing a schematic diagram of CO 2 / CO-based oxidation / reduction simultaneous control according to the present invention.

Claims (2)

CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법에 있어서, In the redox atmosphere control method using a CO concentration measuring system, 가열로 내부 CO 농도를 측정하는 단계;Measuring the CO concentration in the furnace; 상기 측정된 CO 농도를 CO2 농도와 연계하여 산화 환원 분위기 평가를 하도록 하는 단계; Assessing a redox atmosphere by linking the measured CO concentration with a CO 2 concentration; 분위기 제어 시스템에서 CO 측정치를 추가 측정하는 단계; 및 Further measuring the CO measurement in an atmosphere control system; And 산화분위기에서 완전연소가 유지되도록 하는 에어 리드(Air lead) 로 제어되고, 환원 분위기에서 환원성 유지를 하도록 하는 연료 리드(Fuel lead) 로 제어되도록 구성하는 것을 특징으로 하는 CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법.Oxidation reduction using a CO concentration measurement system, characterized in that it is controlled by an air lead to maintain complete combustion in the oxidizing atmosphere, and controlled by a fuel lead to maintain reducibility in a reducing atmosphere. Atmosphere control method. 제 1항에 있어서, The method of claim 1, 사용자 모드선택에서 환원분위기는 -1, 산화분위기는 +1 에 따라 제어되어 결정되는 것을 특징으로 하는 CO 농도 측정 시스템을 이용한 산화 환원 분위기 제어 방법.Redox atmosphere control method using a CO concentration measuring system, characterized in that in the user mode selection, the reducing atmosphere is controlled by -1, the oxidation atmosphere is controlled according to +1.
KR1020080099585A 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration KR101027824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080099585A KR101027824B1 (en) 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080099585A KR101027824B1 (en) 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration

Publications (2)

Publication Number Publication Date
KR20100040469A true KR20100040469A (en) 2010-04-20
KR101027824B1 KR101027824B1 (en) 2011-04-07

Family

ID=42216553

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080099585A KR101027824B1 (en) 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration

Country Status (1)

Country Link
KR (1) KR101027824B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187463B2 (en) 2016-12-20 2021-11-30 Posco Apparatus and method for controlling concentration of oxygen in heating furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306475B2 (en) * 1991-12-24 2002-07-24 矢崎総業株式会社 Ceramic firing furnace
JP2943969B2 (en) 1993-07-15 1999-08-30 矢崎総業株式会社 Gas concentration measuring device
JP3139672B2 (en) * 1995-10-06 2001-03-05 矢崎総業株式会社 Carbon monoxide concentration measuring method and measuring instrument
JP4219202B2 (en) 2003-03-28 2009-02-04 三井造船株式会社 Method for producing phosphorus-containing carbide fertilizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187463B2 (en) 2016-12-20 2021-11-30 Posco Apparatus and method for controlling concentration of oxygen in heating furnace

Also Published As

Publication number Publication date
KR101027824B1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
US9581389B2 (en) Method for heat treatment, heat treatment apparatus, and heat treatment system
CN103672948B (en) The combustion control system of industrial furnace and control method
KR101028538B1 (en) A system for controlling atmosphere gas inside furnace
KR101500595B1 (en) Method and apparatus for controlling a furnace pressure of a continuous annealing furnace
US20040006435A1 (en) Systems and methods for controlling the activity of carbon in heat treating atmospheres
CN104848247A (en) Atmosphere field control system of heating furnace
KR101027824B1 (en) A dual mode control method for a combustion system using a additional CO concentration
KR890008333A (en) Heat treatment process under gas atmosphere containing nitrogen and hydrocarbon
KR20160000711A (en) Apparatus for measuring air pollution level and method for measuring air pollution level of mobile communication terminal by using same
KR101705542B1 (en) Device for preventing gas leak fire / explosion incident using gas sensor and method for controling the apparatus
CN204575583U (en) A kind of test decarburization annealing furnace furnace atmosphere dew-point detecting device
CN104677942A (en) Device for detecting acid dew point temperature of flue gas
CN104903649A (en) In situ probe with improved diagnostics and compensation
RU2012142810A (en) METHOD FOR REGULATING SLAG CONSISTENCY AND DEVICE FOR EXECUTING THE METHOD
TW202104102A (en) Method for tin bath monitoring and control
KR100925039B1 (en) Control method of Air-fuel ratio in furnace
Butschbach et al. Extensive reduction of toxic gas emissions of firewood-fueled low power fireplaces by improved in situ gas sensorics and catalytic treatment of exhaust gas
DK1780286T3 (en) Bacterial counting method, bacterial counter and cell used for the counter
KR20100041057A (en) A dual mode control method for a reheating furnace using co2 concentration
KR20000007693A (en) Gas sensing method and device
JP5320314B2 (en) Gas detector
JP2019070608A (en) Gas detector
KR20090067937A (en) Method of controlling for maintaining zero oxidation condition in the heating furnace and device therof
CN216816539U (en) In situ oxygen analyzer with solid electrolyte oxygen sensor and auxiliary output
JP2014012631A (en) Method for determining carbon monoxide ratio in exhaust gas flow, and particularly control unit and regenerative burner-type industrial furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190314

Year of fee payment: 9