JP4219202B2 - Method for producing phosphorus-containing carbide fertilizer - Google Patents

Method for producing phosphorus-containing carbide fertilizer Download PDF

Info

Publication number
JP4219202B2
JP4219202B2 JP2003092566A JP2003092566A JP4219202B2 JP 4219202 B2 JP4219202 B2 JP 4219202B2 JP 2003092566 A JP2003092566 A JP 2003092566A JP 2003092566 A JP2003092566 A JP 2003092566A JP 4219202 B2 JP4219202 B2 JP 4219202B2
Authority
JP
Japan
Prior art keywords
carbonization
oxygen concentration
carbide
oxygen
livestock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003092566A
Other languages
Japanese (ja)
Other versions
JP2004300198A (en
Inventor
潤一 高橋
一孝 梅津
奈美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003092566A priority Critical patent/JP4219202B2/en
Publication of JP2004300198A publication Critical patent/JP2004300198A/en
Application granted granted Critical
Publication of JP4219202B2 publication Critical patent/JP4219202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化炉に関し、詳細には、有機性廃棄物などの有機物から炭化物を製造する際に有利に利用できる炭化炉の改良に関する。
【0002】
【従来の技術】
家畜糞尿、都市の一般ごみ、汚泥などの有機性廃棄物の処理方法として、これを炭化処理し、炭化物として再資源化する方法が採用されている(例えば、特許文献1〜3)。従来の炭化炉による炭化は、被処理物中の炭素が二酸化炭素、一酸化炭素などの酸化物となって失われ灰化することを防ぐため、非酸素条件下で加熱することにより行われてきた。
【0003】
ところで、近年BSE(牛海綿状脳症)への対策として、家畜屠体由来の肉骨粉等を飼料へ添加することが禁止された結果、家畜屠体由来の有機物の大部分は廃棄処理せざるを得ない状況になっている。特にBSEに罹患した疑いのある家畜については、肉や脂肪も含めて廃棄処分しなければならない。その際、BSEの原因となる異常プリオンを環境へ放出することは避ける必要があるため、肉骨粉やその原料となる骨や肉、さらにそれらを含んでいる家畜屠体を安全に処理する方法の開発が緊急の課題となっている。
【0004】
このため、家畜屠体に由来する有機物を焼却してセメント原料化する方法が検討されているが、焼却には補助燃料として大量の化石エネルギーが必要となる。また家畜屠体は、セメント原料とするには発熱量やカルシウム量が十分でない一方、家畜屠体中にはリンなどの有用成分が豊富に含まれているにもかかわらず、セメント原料化すると、その有効利用を図ることが出来なくなってしまうという問題がある。
【0005】
一方、家畜屠体由来の有機物を炭化させた炭化物として骨炭が知られている。この骨炭は、家畜屠体由来の有機物を酸素遮断条件下、高温で加熱処理することによって炭化させたものであり、肥料や飼料添加物、排水処理用の活性炭等として有用性が高い上、異常プリオン等の有害物質が残存する危険性もない。従って、家畜屠体有機物の処理を図る上で炭化処理はセメント原料化よりも有利であると考えられる。
【0006】
【特許文献1】
特開平6−154728号公報
【特許文献2】
特開平6−32608号公報
【特許文献3】
特開平10−202298号公報
【0007】
【発明が解決しようとする課題】
しかし、特許文献1〜3のような炭化方法では、原料となる家畜屠体由来の有機物中に含まれているはずのリンの多くが失われてしまう。これは、非酸素条件(還元雰囲気)での加熱により、リンが水素化物の形で生成ガス中に放散してしまう為である。また、従来の非酸素条件での炭化では、炭化物の表面積があまり増大しないため、活性炭として使用する場合の吸着能力も十分に高められない。このため、従来方法によって得られる骨炭は、肥料や吸着材としての価値において、家畜屠体有機物を原料とする優位性が多くが減失してしまっており、改善の余地が大きかった。また、家畜屠体由来の有機物に限らず、例えば生ごみや汚泥から炭化物を生成する際にも十分な表面積が得られないという課題があった。
【0008】
本発明は上記実情に鑑みてなされたものであり、家畜屠体をはじめとする原料有機物から、リンの損失が小さく、表面積の大きな骨炭等の炭化物を製造できる炭化炉を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明の第1の態様に係る炭化炉の発明は、有機物を炭化室に収容した状態で、該炭化室内を昇温して有機物を炭化させる炭化炉であって、前記炭化室内の酸素濃度を検知する酸素濃度検知手段を備えたことを特徴とする。
【0010】
この炭化炉の発明によれば、炭化室内の酸素濃度を検知する酸素濃度検知手段を備えたので、炭化室内が所望の酸化状態になるように酸素濃度を制御して炭化を行うことが可能になる。これにより、還元雰囲気で生じるリンの放散を抑え、骨炭をはじめとする炭化物中に残存させることが可能になる。また、従来の非酸素条件での炭化では、活性炭としての吸着能力を十分に高めることができないが、炭化過程で所定の酸素条件を作り出すことによって、炭化物を多孔質化して表面積を増大させ、吸着性能に優れた炭化物を得ることができる。
【0011】
本発明の第2の態様に係る炭化炉の発明は、第1の態様において、前記炭化室内のガスを強制的に循環させる強制循環手段を備えたことを特徴とする。
【0012】
この炭化炉の発明によれば、強制循環手段を備えたことにより、炭化室内のガスを強制循環させ均一な状態にしながら、酸素濃度を制御して炭化を行うことが可能になる。よって、酸素の濃度むらなどを生じさせることがなく、炭化物の性状を均質なものにすることができる。
【0013】
本発明の第3の態様に係る炭化物の製造方法の発明は、第1の態様または第2の態様の炭化炉により、炭化室内の酸素濃度を制御しながら、有機物を炭化し、および/または炭化物を冷却することを特徴とする。
【0014】
この特徴によれば、酸素濃度検知手段により炭化室内の酸素濃度を検知し、制御しながら炭化や冷却を行うことによって、還元雰囲気でのリンの放散を防ぎ、かつ炭化物を多孔質化して、その表面積を大きくすることができる。従って、得られる炭化物は、リンの損失が抑えられており、肥料としての価値が高いものとなるほか、吸着材としても優れた性能を持つ炭化物となる。よって、本発明方法により、有機物資源の再利用化と高付加価値化が実現する。
【0015】
本発明の第4の態様に係る炭化物の製造方法の発明は、第3の態様において、前記有機物が家畜屠体由来の有機物であることを特徴とする。家畜屠体由来の有機物には、多量のリンが含まれているため、これを第3の態様の方法で炭化させることによって、リンを豊富に含有し、肥料や土壌改良剤として良質な骨炭等の炭化物が得られる。また、この骨炭等の炭化物は、表面積が大きいため、活性炭と同様の用途で使用することができる。
【0016】
【発明の実施の形態】
本発明において有機物とは、炭化物を生成するものであれば特に制限はないが、有機性廃棄物が好ましい。有機性廃棄物としては、例えば、畜産廃棄物や緑濃廃棄物、排水処理汚泥などが挙げられる。ここで畜産廃棄物としては、家畜の糞尿や、屠体および/またはその加工品が挙げられ、より具体的には牛、羊、山羊、ニワトリ等の家畜の屠体、そこから分離された骨、肉、脂肪、内蔵、血液、脳、眼球、皮、蹄、角などのほか、例えば肉骨粉、肉粉、骨粉、血粉などに代表される家畜屠体の破砕物や、血液などを乾燥した乾燥物も含まれる。また緑濃廃棄物には、家庭の生ごみのほか、産業廃棄物生ごみとして、農水産業廃棄物、食品加工廃棄物等が含まれる。
【0017】
以下、図面に基づき本発明の実施の形態を説明する。
図1は、本発明の一実施形態に係る炭化炉10を備えた畜産廃棄物処理装置100の概略構成を示す図面である。この畜産廃棄物処理装置100は、家畜屠体などの畜産廃棄物から骨炭などの炭化物を製造する目的に適した装置である。
【0018】
畜産廃棄物処理装置100は、外部燃焼方式の炭化炉10を備えており、該炭化炉10の炭化室11内には、酸素濃度検知手段としての酸素センサー12が配備されている。酸素センサー12としては既知のものを使用可能であるが、炭化室11内に設置可能なものとして、例えば、ジルコニア固体電解質型酸素濃度計または磁気式酸素濃度計等を使用することが好ましい。なお、図示はしていないが、炭化室11には、温度検知手段として、例えば熱電対等も配備されている。
【0019】
この畜産廃棄物処理装置100は、骨などの大型の有機物を投入できるように構成されたカッター29を備える大型ホッパー21と、肉骨粉などの小型の有機物を投入する小型ホッパー23とを備えている。大型ホッパー21および/または小型ホッパー23に投入された畜産廃棄物は、破砕手段としてのスクリューコンベア25に送られ、さらに破砕されながら炭化炉10へ向けて所定量ずつ移送される。
【0020】
一方、家畜屠体の中でもそのままでは炭化処理しにくい水分含量の高い部位(例えば内臓など)は、必要に応じて破砕処理を行ってスラリー化した後、嫌気性処理装置31に投入し、所定期間メタン発酵処理を施すことができる。メタン発酵物は、発酵液処理装置33において固形残渣と液分に分別される。ここで分別された固形残渣は、炭化炉10に投入され、炭化物への転換が図られる。液分は膜処理装置35に導入され、監視装置37により環境基準に達するレベルまで処理された後、放出または再利用される。
【0021】
炭化炉10は、外部燃焼室13で発生する熱が伝達されることにより、炭化室11内を、例えば450〜900℃まで加熱できるように構成されている。炭化室11内に移行した有機物は、ここで所定時間加熱されて炭化する。炭化は、通常空気を遮断した状態で所定温度まで有機物を加熱して行うものであるが、本発明においては、後記するように所定の酸素供給条件を含むように炭化が実施される。
【0022】
炭化に使用する炭化炉10の形式としては、例えばロータリーキルン式、スクリューコンベア式、重力落下式、バッチ固定床式などが挙げられる。比較的低温(450〜500℃)で乾燥・炭化を行う場合は、いずれの方式のものでも使用できるが、800℃以上の高温で乾燥・炭化を行う場合、ロータリーキルン方式、スクリューコンベア方式など機械的要素の大きい乾燥・炭化装置では耐熱性の材質を選定することが重要になる。
【0023】
炭化室11内の酸素センサー12は、炭化室11内の雰囲気中の酸素濃度を検知する。ブロア15は、炭化室11内の酸素濃度を制御するため、純窒素と外部空気を所定比率で導入できるように構成されている。つまり、ブロア15は空気導入時においては酸素供給手段として機能するものである。
【0024】
酸素センサー12とブロア15は協働して炭化室11内の酸素濃度を制御する酸素濃度制御手段を構成している。酸素センサー12は、検知した酸素濃度に基づきブロア15の制御部(図示せず)へ向けて制御信号を送出できるように構成されている。前記ブロア15の制御部では、酸素センサー12からの信号を受けて酸素の供給量(窒素ガスへの空気の混入量)を増減する。すなわち、酸素センサー12によって検知された酸素濃度が設定範囲の上限に近づいた場合あるいは超えた場合には、ブロア15の空気混入比率を低下させ、検知された酸素濃度が設定範囲の下限に近づいた場合あるいは下回った場合には、ブロア15の空気混入比率を増加させるようになされる。このようにして、炭化過程で炭化室11内の酸化還元状態を所定の時間、所望の状態に制御することが可能になる。
【0025】
炭化炉10において、ブロア15は、炭化室11内のガスを強制的に循環させる強制循環手段としても作用する。
すなわち、炭化炉10では、ブロア15でガスを炉内に送り込み、炉内を流通させるが、そのガスをそのまま放散させるのではなく、図示しない排気口から外部に取出した後、新鮮な空気を一部混合して再度ブロア15で炉内に循環させるようにしている。このようなガスの強制循環は必ずしも必須ではないが、強制循環により炭化室11内のガスが均質化され、導入酸素の濃度ムラが生じにくくなるため、炭化物の性状を安定化させることができるので有利である。なお、強制循環手段としてはファン等の送風機能を有するものを使用することができる。
【0026】
炭化に要する条件の一例として、加熱は、例えば450〜900℃程度(好ましくは500〜850℃)まで昇温した後、この温度に30分〜10時間程度保持することにより行うことができる。
【0027】
前記温度までの昇温過程あるいは昇温後のある時間内において、炭化室11内が例えば1〜20体積%程度以下(好ましくは、1〜10体積%程度以下)の酸素濃度となるように制御を行う。酸素を供給する時間は、例えば1分〜1時間程度(好ましくは5分〜30分間程度)とすることができる。酸素供給は、連続的または不連続的(間欠的)に行うことができる。炭化物(有機物)は、空気中では500℃で着火するため、炭化室11内に多量の空気(過剰空気)を入れることは避けるべきである。酸素供給が過剰になると、炭化室11内が酸化雰囲気にかたより、炭化物が灰化して歩留りが低下する場合がある。一方、還元状態だけでは、リン等の有用成分が揮散してしまい炭化物中の残存率が低下するとともに、表面積の増大が図れない場合がある。このため、酸素濃度の制御においては、酸素(空気)の導入量や導入タイミング、導入時間等を加熱温度との関係で選定することが好ましい。また、自己燃焼させて表面賦活を図る目的で空気導入を行う場合でも空気量には十分注意して余計な燃焼を避けることが好ましい。ただし、例えばバッチ式の炭化炉において、炭化物が生成した後の冷却過程(非加熱時で、温度が例えば400℃など)で多量の空気を注入することは好ましい表面賦活方法である。
【0028】
以上のことから、酸素濃度を制御する為に空気を混合する割合は、100%空気導入から酸素濃度数十ppmまでの広い範囲から、温度、被炭化物(有機物)、目的(リンの固定、賦活等)、時間などに応じて選択することができる。
【0029】
また、リンは、比較的低い加熱温度(500℃前後)では水素化の速度が大きくならず残留する傾向にあるため、低めの温度で加熱して炭化を進め、最終段階で酸素供給を行って所定の酸化条件に制御することも好ましい。加熱および酸素濃度制御の好ましい例を挙げると、原料となる有機物が家畜屠体由来の肉骨粉等の有機物である場合は、炭化室11内を無酸素雰囲気にして500〜800℃以上になるまで昇温し、同温度範囲に1〜8時間程度保持した後、この温度域のまま一時的(例えば5〜30分間程度)に空気を導入して数体積%(例えば5〜10体積%)の酸素濃度とする。
【0030】
炭化室11の下部には、加熱中に融解して液化する油脂等を貯留するための液化物受14が備えられており、家畜屠体等に含まれる脂肪の多くは炭化物と分けて回収される。回収された油脂は、外部燃焼室13の燃料等として再利用することができる。
【0031】
炭化炉10で加熱され生成した骨炭は、炭化物貯留部41に移送され貯留される。一方、炭化の過程では大量の熱分解ガスが生成するため、これを有効利用すべく燃料電池53が付設されている。炭化に伴い発生した熱分解ガスは、前処理装置51において脱硫、改質を施した後、燃料電池53において電力に転換することができる。
【0032】
【実施例】
次に、実施例、試験例により、本発明を更に詳細に説明するが、本発明はこれらによって制約されるものではない。
試験例
畜産廃棄物として牛の肉骨粉を使用し炭化試験を行った。肉骨粉の主な組成は、表1に示すとおりである。肉骨粉には、肉、骨、皮、毛などが混在しているので、これらが目視で均一に混ざる程度に採取、破砕混合し試験に供した。
【0033】
【表1】

Figure 0004219202
【0034】
上記試料について、図2に示す簡易試験装置により炭化実験を行った。この簡易試験装置80は、内径20mmの石英管81を管状炉82で覆い、石英管81内に試料90を収容できるように構成されている。また、石英管81内には熱電対83が配備され、これにより内部の温度を検知できる。気体供給器84は、純窒素と空気を切り換えて導入できるように構成されている。
【0035】
酸素濃度計の設置場所の検討を行うため、管状炉82に覆われた石英管81内にはジルコニア固体電解質型酸素濃度計85を配備するとともに、炉外部には、隔膜式酸素濃度計86を配備した。また、炭化処理中に発生する熱分解生成物を含むガスを洗浄するため、ガス流れ方向の下流側にはキシレンによるトラップ装置87を設けた。
【0036】
石英管81内に約140mmにわたって試料90(肉骨粉)を約20〜35g詰め、管状炉82により加熱し炭化させた。炭化条件は表2に示すとおりであり、500〜800℃の炭化処理は窒素気流中で行い、酸化雰囲気にする場合は空気を混入した。空気の混入量は、管状炉82内に配備したジルコニア固体電解質型酸素濃度計85および炉外部に配備した隔膜式酸素濃度計86の出力に基づき調節した。
【0037】
【表2】
Figure 0004219202
【0038】
以上のようにして得られた炭化物に対し、炭化物の活性炭としての吸着特性および土壌改良材としての肥料成分の含有量を把握するため、成分分析を行うとともに、走査電子顕微鏡−電子プローブマイクロアナライザー(SEM−EPMA)によって表面状態および元素分布の確認を行った。
【0039】
また、炭化物をn−ヘキサンで抽出し、そこに含まれる有機物を、GC−MS(ガスクロマトグラフ−質量分析装置;アジレントテクノロジー社6890シリーズGCおよび5973MSD)によって検出した。
【0040】
炭化処理中、熱分解生成物を含む管状炉82出口ガスは、トラップ装置87によるキシレン洗浄を行った。分解実験後にキシレンの一部を採取し、熱濃硫酸、硝酸によって処理し、濾過後、モリブデン酸アンモニウムを添加してリンの検出を試みた。
【0041】
<結果>
(1) 酸素センサーの配備位置の検討結果:
管状炉82(石英管81)内に配備したジルコニア固体電解質型酸素濃度計85により、炉内の酸素濃度を正確に測定することができ、この測定結果に基づいて酸素濃度を適切に制御することが可能であった。これに対して、炉外に設けた隔膜式酸素濃度計86は、隔膜表面にタール状物質が付着してしまい、酸素濃度を十分正確に測定することができず、酸素濃度の制御も十分に行うことができなかった。
(2)酸化還元条件の検討:
骨炭の成分分析結果を表3に示す。空気を混入した条件1は、同じ温度で空気を混入せずに炭化を行った条件2に比べ、リンの含有量が多いことが判明した。このことから、条件1で製造した骨炭は、土壌改良剤として十分な施肥効果を持つことが示された。
【0042】
【表3】
Figure 0004219202
【0043】
なお、加熱温度を500℃に設定した条件3は最もリンの含有量が多い結果となった。このことより、500℃前後から800℃前後までの温度範囲でリンを残留させ得ることが明らかとなった。
【0044】
また、酸素を導入して炭化させた条件1は、条件2に比べ、BET比表面積およびヨウ素吸着量が有意に大きく、活性炭に非常に近い吸着性能を持つことが示された。
【0045】
さらに、各条件で製造した骨炭を水蒸気賦活処理した結果を表4に示す。この表4から、酸素導入を行った条件1の骨炭は、水蒸気賦活によって、BET比表面積およびヨウ素吸着量が顕著に増加することが示された。
【0046】
【表4】
Figure 0004219202
【0047】
また、キシレントラップ装置87のキシレンを採取してモリブデン酸アンモニウム法によりリンの分析を行った結果、呈色の強さは条件2、条件1、条件3の順であり、条件2のときに最も多くのリンが揮散したことが確認された。
【0048】
なお、炭化物のn−ヘキサン抽出物をGC−MSで計測した結果、残存有機物は検出されなかった。
【0049】
実施例1
図1と同様の畜産廃棄物処理装置100を用い、牛の肉骨粉から骨炭を製造した。
すなわち、畜産廃棄物処理装置100に肉骨粉を投入し、炭化炉10において800℃、1時間窒素気流中で加熱し、炭化させた。空気は加熱後、放冷の段階で炭化炉10中のガスの約1体積%となるように1時間程度導入した。空気の量は、酸素センサー12(ジルコニア固体電解質型酸素濃度計)により測定し、制御した。得られた骨炭については、常法に従い水蒸気賦活を施した。原料となった肉骨粉の成分を表5に、および得られた骨炭(水蒸気賦活後)の成分を表6に示す。
【0050】
【表5】
Figure 0004219202
【0051】
【表6】
Figure 0004219202
【0052】
以上、本発明を種々の実施形態に関して述べたが、本発明は上記実施形態に制約されるものではなく、特許請求の範囲に記載された発明の範囲内で、他の実施形態についても適用可能である。
【0053】
【発明の効果】
本発明では、炭化炉に、炭化室内の酸素濃度を検知する酸素濃度検知手段を設けたことにより、炭化室内が所望の酸化状態になるように酸素濃度を制御して炭化を行うことが可能になる。これにより、還元雰囲気で生じるリンの放散を抑え、骨炭をはじめとする炭化物中に残存させることが可能になる。また、従来の非酸素条件での炭化では、活性炭としての吸着能力を十分に高めることができないが、炭化過程で所定の酸素条件を作り出すことによって、比表面積を向上させ、吸着性能に優れた炭化物を得ることができる。
【0054】
本発明方法により得られる骨炭などの炭化物は、リンの損失がすくなく、肥料としての価値が高いものとなるほか、吸着材としても優れた性能を持つ炭化物となる。よって、土壌改良剤や肥料として有用であるほか、活性炭と同様に脱臭剤、水処理剤等の各種吸着剤としての用途に使用可能である。さらに活性炭としての使用後に、畑などに散布しても施肥効果が期待できる。
【図面の簡単な説明】
【図1】畜産廃棄物処理装置の概略構成を示す図面。
【図2】炭化試験装置の概略構成を示す図面。
【符号の説明】
10 炭化炉
11 炭化室
12 酸素センサー
13 外部燃焼室
14 液化物受
15 ブロア
31 嫌気性処理装置
33 発酵液処理装置
35 膜処理装置
37 監視装置
41 炭化物貯留部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbonization furnace, and in particular, to an improvement of a carbonization furnace that can be advantageously used when producing a carbide from an organic substance such as an organic waste.
[0002]
[Prior art]
As a method for treating organic waste such as livestock manure, municipal waste, sludge, etc., a method of carbonizing this and recycling it as a carbide is employed (for example, Patent Documents 1 to 3). Carbonization in conventional carbonization furnaces has been performed by heating under non-oxygen conditions in order to prevent carbon in the workpiece from being lost as oxides such as carbon dioxide and carbon monoxide and ashing. It was.
[0003]
By the way, as a measure against BSE (bovine spongiform encephalopathy) in recent years, it has been banned to add meat-and-bone meal derived from livestock carcasses to feed, and as a result, most of organic matter derived from livestock carcasses must be disposed of. The situation is not possible. In particular, livestock suspected of suffering from BSE must be disposed of, including meat and fat. At that time, it is necessary to avoid releasing abnormal prions that cause BSE to the environment. Therefore, there is a method for safely processing meat-and-bone meal, bone and meat as raw materials, and livestock carcasses containing them. Development has become an urgent issue.
[0004]
For this reason, methods for incinerating organic matter derived from livestock carcass to produce cement raw materials have been studied, but incineration requires a large amount of fossil energy as auxiliary fuel. Livestock carcasses do not have enough calorific value or calcium to be used as cement raw materials, but livestock carcasses contain abundant useful components such as phosphorus, but are effective when used as cement raw materials. There is a problem that it is impossible to use.
[0005]
On the other hand, bone charcoal is known as a carbonized carbonized organic matter derived from livestock carcass. This bone charcoal is obtained by carbonizing organic matter derived from carcass of livestock by heat treatment at high temperature under oxygen-blocking conditions. It is highly useful as fertilizer, feed additive, activated carbon for wastewater treatment, etc. There is no danger of remaining harmful substances such as prions. Therefore, it is considered that carbonization treatment is more advantageous than cement raw material in treating livestock carcass organic matter.
[0006]
[Patent Document 1]
JP-A-6-154728 [Patent Document 2]
JP-A-6-32608 [Patent Document 3]
Japanese Patent Laid-Open No. 10-202298
[Problems to be solved by the invention]
However, in the carbonization methods such as Patent Documents 1 to 3, most of phosphorus that should be contained in the organic matter derived from livestock carcass as a raw material is lost. This is because phosphorus is diffused into the product gas in the form of hydride by heating under non-oxygen conditions (reducing atmosphere). Further, in the conventional carbonization under non-oxygen conditions, the surface area of the carbide does not increase so much, so that the adsorption capacity when used as activated carbon cannot be sufficiently increased. For this reason, the bone charcoal obtained by the conventional method has lost much of its advantage of using livestock carcass organic matter as a raw material in terms of the value as a fertilizer or an adsorbent, and there is much room for improvement. In addition, not only organic matter derived from livestock carcass, there is a problem that a sufficient surface area cannot be obtained even when carbide is generated from, for example, garbage or sludge.
[0008]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a carbonization furnace capable of producing carbides such as bone charcoal with a small loss of phosphorus and a large surface area from raw material organic matter including livestock carcass. To do.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention of the carbonization furnace according to the first aspect of the present invention is a carbonization furnace in which the organic matter is carbonized by raising the temperature in the carbonization chamber in a state where the organic matter is contained in the carbonization chamber. An oxygen concentration detection means for detecting the oxygen concentration in the carbonization chamber is provided.
[0010]
According to the invention of the carbonization furnace, since the oxygen concentration detection means for detecting the oxygen concentration in the carbonization chamber is provided, it is possible to perform carbonization by controlling the oxygen concentration so that the carbonization chamber is in a desired oxidation state. Become. Thereby, it is possible to suppress the diffusion of phosphorus generated in a reducing atmosphere and to remain in carbides such as bone charcoal. In addition, the conventional carbonization under non-oxygen conditions cannot sufficiently increase the adsorption capacity as activated carbon, but by creating a predetermined oxygen condition during the carbonization process, the carbide is made porous to increase the surface area and adsorb Carbide excellent in performance can be obtained.
[0011]
The invention of the carbonization furnace according to the second aspect of the present invention is characterized in that, in the first aspect, forcibly circulating means for forcibly circulating the gas in the carbonization chamber is provided.
[0012]
According to the invention of the carbonization furnace, by providing the forced circulation means, it is possible to perform carbonization by controlling the oxygen concentration while forcibly circulating the gas in the carbonization chamber to make it uniform. Therefore, the characteristics of the carbide can be made uniform without causing unevenness of the oxygen concentration and the like.
[0013]
The invention of the method for producing carbide according to the third aspect of the present invention includes the carbonization furnace according to the first aspect or the second aspect, wherein the organic substance is carbonized while controlling the oxygen concentration in the carbonization chamber, and / or the carbide. It is characterized by cooling.
[0014]
According to this feature, by detecting the oxygen concentration in the carbonization chamber by the oxygen concentration detection means, and performing carbonization and cooling while controlling, the emission of phosphorus in the reducing atmosphere is prevented and the carbide is made porous. The surface area can be increased. Therefore, the obtained carbide is suppressed in loss of phosphorus, has high value as a fertilizer, and becomes a carbide having excellent performance as an adsorbent. Thus, the method of the present invention realizes reuse of organic resources and high added value.
[0015]
The invention of the method for producing carbide according to the fourth aspect of the present invention is characterized in that, in the third aspect, the organic matter is an organic matter derived from livestock carcass. Since organic matter derived from livestock carcasses contains a large amount of phosphorus, it is carbonized by the method of the third aspect, so that it contains abundant phosphorus and is a high quality bone charcoal as a fertilizer or soil conditioner. Of carbides. Moreover, since carbides, such as bone charcoal, have a large surface area, they can be used in the same applications as activated carbon.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the organic substance is not particularly limited as long as it generates a carbide, but organic waste is preferable. Examples of organic waste include livestock waste, green waste, and wastewater treatment sludge. Examples of livestock waste include livestock manure, carcass and / or processed products thereof. More specifically, livestock carcasses such as cattle, sheep, goats and chickens, and bones separated therefrom. In addition to meat, fat, internal organs, blood, brain, eyeballs, skin, hoofs, horns, etc., for example, meat bone meal, meat meal, bone meal, blood meal etc. Things are also included. In addition to household garbage, green-rich waste includes agricultural and industrial waste, food processing waste, etc. as industrial waste.
[0017]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a schematic configuration of a livestock waste treatment apparatus 100 including a carbonization furnace 10 according to an embodiment of the present invention. This livestock waste processing apparatus 100 is an apparatus suitable for the purpose of producing carbides such as bone charcoal from livestock waste such as livestock carcasses.
[0018]
The livestock waste treatment apparatus 100 includes an external combustion type carbonization furnace 10, and an oxygen sensor 12 as an oxygen concentration detection means is provided in the carbonization chamber 11 of the carbonization furnace 10. A known sensor can be used as the oxygen sensor 12, but it is preferable to use, for example, a zirconia solid electrolyte oxygen concentration meter or a magnetic oxygen concentration meter as a device that can be installed in the carbonization chamber 11. Although not shown, the carbonization chamber 11 is also provided with, for example, a thermocouple as temperature detection means.
[0019]
This livestock waste disposal apparatus 100 includes a large hopper 21 including a cutter 29 configured to be able to input a large organic substance such as bone, and a small hopper 23 that inputs a small organic substance such as meat-and-bone meal. . The livestock waste thrown into the large hopper 21 and / or the small hopper 23 is sent to a screw conveyor 25 as crushing means, and further transferred to the carbonization furnace 10 by a predetermined amount while being crushed.
[0020]
On the other hand, in a livestock carcass, a portion with a high water content that is difficult to be carbonized as it is (for example, viscera) is crushed as necessary to be slurried and then put into an anaerobic treatment device 31 for a predetermined period. Methane fermentation treatment can be performed. The fermented methane product is separated into a solid residue and a liquid component in the fermented liquid processing apparatus 33. The solid residue separated here is put into the carbonization furnace 10 to be converted into carbide. The liquid component is introduced into the film processing device 35, processed to a level that reaches the environmental standard by the monitoring device 37, and then released or reused.
[0021]
The carbonization furnace 10 is configured to heat the inside of the carbonization chamber 11 to, for example, 450 to 900 ° C. by transferring heat generated in the external combustion chamber 13. The organic matter transferred into the carbonization chamber 11 is heated and carbonized for a predetermined time here. Carbonization is usually performed by heating an organic substance to a predetermined temperature in a state where air is shut off. In the present invention, carbonization is performed so as to include predetermined oxygen supply conditions as will be described later.
[0022]
Examples of the type of the carbonization furnace 10 used for carbonization include a rotary kiln type, a screw conveyor type, a gravity drop type, and a batch fixed bed type. When drying and carbonizing at a relatively low temperature (450 to 500 ° C.), any method can be used, but when drying and carbonizing at a high temperature of 800 ° C. or higher, a rotary kiln method, a screw conveyor method, etc. It is important to select a heat-resistant material in a drying / carbonizing apparatus with large elements.
[0023]
The oxygen sensor 12 in the carbonization chamber 11 detects the oxygen concentration in the atmosphere in the carbonization chamber 11. The blower 15 is configured so that pure nitrogen and external air can be introduced at a predetermined ratio in order to control the oxygen concentration in the carbonization chamber 11. That is, the blower 15 functions as oxygen supply means when air is introduced.
[0024]
The oxygen sensor 12 and the blower 15 cooperate to constitute an oxygen concentration control means for controlling the oxygen concentration in the carbonization chamber 11. The oxygen sensor 12 is configured to send a control signal toward a control unit (not shown) of the blower 15 based on the detected oxygen concentration. The control unit of the blower 15 increases or decreases the supply amount of oxygen (amount of air mixed into the nitrogen gas) in response to a signal from the oxygen sensor 12. That is, when the oxygen concentration detected by the oxygen sensor 12 approaches or exceeds the upper limit of the setting range, the air mixing ratio of the blower 15 is reduced, and the detected oxygen concentration approaches the lower limit of the setting range. If it falls or falls, the air mixing ratio of the blower 15 is increased. Thus, it becomes possible to control the oxidation-reduction state in the carbonization chamber 11 to a desired state for a predetermined time during the carbonization process.
[0025]
In the carbonization furnace 10, the blower 15 also functions as a forced circulation means for forcibly circulating the gas in the carbonization chamber 11.
That is, in the carbonization furnace 10, gas is sent into the furnace by the blower 15 and is circulated in the furnace. However, the gas is not diffused as it is, but is taken out from an exhaust port (not shown) and fresh air is removed. The parts are mixed and circulated through the furnace again by the blower 15. Such forced circulation of gas is not necessarily essential, but the gas in the carbonization chamber 11 is homogenized by forced circulation, and uneven concentration of introduced oxygen is less likely to occur, so that the properties of the carbide can be stabilized. It is advantageous. In addition, what has a ventilation function, such as a fan, can be used as a forced circulation means.
[0026]
As an example of the conditions required for carbonization, the heating can be performed by, for example, raising the temperature to about 450 to 900 ° C. (preferably 500 to 850 ° C.) and then maintaining this temperature for about 30 minutes to 10 hours.
[0027]
Control is performed so that the inside of the carbonization chamber 11 has an oxygen concentration of, for example, about 1 to 20% by volume or less (preferably about 1 to 10% by volume or less) in the temperature raising process up to the temperature or within a certain time after the temperature raising. I do. The time for supplying oxygen can be, for example, about 1 minute to 1 hour (preferably about 5 to 30 minutes). The oxygen supply can be performed continuously or discontinuously (intermittently). Since the carbide (organic substance) is ignited at 500 ° C. in the air, it should be avoided to put a large amount of air (excess air) in the carbonization chamber 11. If the oxygen supply becomes excessive, the carbide may be ashed and the yield may be lowered due to the inside of the carbonization chamber 11 being in an oxidizing atmosphere. On the other hand, in the reduced state alone, useful components such as phosphorus are volatilized, the residual rate in the carbide is reduced, and the surface area may not be increased. For this reason, in controlling the oxygen concentration, it is preferable to select the introduction amount, introduction timing, introduction time, etc. of oxygen (air) in relation to the heating temperature. Even when air is introduced for the purpose of surface activation by self-combustion, it is preferable to pay attention to the amount of air and avoid unnecessary combustion. However, for example, in a batch type carbonization furnace, it is a preferable surface activation method to inject a large amount of air in the cooling process after the formation of carbides (when not heated, the temperature is, for example, 400 ° C.).
[0028]
From the above, the ratio of mixing air in order to control the oxygen concentration is from a wide range from 100% air introduction to oxygen concentration of several tens of ppm, temperature, to-be-carburized (organic matter), purpose (phosphorus fixation, activation) Etc.) and can be selected according to the time.
[0029]
Also, since phosphorus tends to remain at a relatively low heating temperature (around 500 ° C.) without increasing the hydrogenation rate, it is heated at a lower temperature to promote carbonization, and oxygen is supplied at the final stage. It is also preferable to control to a predetermined oxidation condition. When the preferable example of a heating and oxygen concentration control is given, when the organic substance used as a raw material is organic substances, such as meat-and-bone meal derived from livestock carcass, it will be 500-800 degreeC or more by making the inside of the carbonization chamber 11 into an oxygen-free atmosphere. After raising the temperature and maintaining it in the same temperature range for about 1 to 8 hours, air is introduced temporarily (for example, about 5 to 30 minutes) in this temperature range and several volume% (for example, 5 to 10 volume%) Use oxygen concentration.
[0030]
In the lower part of the carbonization chamber 11, there is provided a liquefied receptacle 14 for storing oil and fat that melts and liquefies during heating, and most of the fat contained in the livestock carcass is collected separately from the carbide. The The recovered oil and fat can be reused as fuel or the like in the external combustion chamber 13.
[0031]
The bone charcoal heated and generated in the carbonization furnace 10 is transferred to and stored in the carbide storage unit 41. On the other hand, since a large amount of pyrolysis gas is generated in the carbonization process, a fuel cell 53 is attached to effectively use this. The pyrolysis gas generated along with the carbonization can be converted into electric power in the fuel cell 53 after being desulfurized and reformed in the pretreatment device 51.
[0032]
【Example】
EXAMPLES Next, although an Example and a test example demonstrate this invention further in detail, this invention is not restrict | limited by these.
Test Example A carbonization test was conducted using beef meat-and-bone meal as livestock waste. The main composition of the meat-and-bone meal is as shown in Table 1. Since meat, bone, skin, hair, etc. are mixed in the meat-and-bone meal, it was sampled, crushed and mixed to the extent that these were mixed evenly by visual observation and used for the test.
[0033]
[Table 1]
Figure 0004219202
[0034]
About the said sample, carbonization experiment was done with the simple test apparatus shown in FIG. The simple test apparatus 80 is configured such that a quartz tube 81 having an inner diameter of 20 mm is covered with a tubular furnace 82 and a sample 90 can be accommodated in the quartz tube 81. In addition, a thermocouple 83 is provided in the quartz tube 81, whereby the internal temperature can be detected. The gas supplier 84 is configured so that pure nitrogen and air can be switched and introduced.
[0035]
In order to examine the location of the oxygen concentration meter, a zirconia solid electrolyte type oxygen concentration meter 85 is provided in the quartz tube 81 covered with the tubular furnace 82, and a diaphragm type oxygen concentration meter 86 is provided outside the furnace. Deployed. Moreover, in order to wash | clean the gas containing the thermal decomposition product which generate | occur | produces during carbonization, the trap apparatus 87 by xylene was provided in the downstream of the gas flow direction.
[0036]
About 20 to 35 g of sample 90 (meat and bone meal) was packed in the quartz tube 81 over about 140 mm, and heated and carbonized by the tubular furnace 82. The carbonization conditions are as shown in Table 2. Carbonization treatment at 500 to 800 ° C. was performed in a nitrogen stream, and air was mixed in an oxidizing atmosphere. The amount of air mixed in was adjusted based on the outputs of the zirconia solid electrolyte oximeter 85 disposed in the tubular furnace 82 and the diaphragm oximeter 86 disposed outside the furnace.
[0037]
[Table 2]
Figure 0004219202
[0038]
In order to grasp the adsorption characteristics of the carbide as activated carbon and the content of the fertilizer component as a soil improver for the carbide obtained as described above, a component analysis is performed and a scanning electron microscope-electron probe microanalyzer ( The surface state and element distribution were confirmed by SEM-EPMA.
[0039]
Moreover, the carbide | carbonized_material was extracted with n-hexane, and the organic substance contained there was detected by GC-MS (gas chromatograph-mass spectrometer; Agilent Technologies 6890 series GC and 5973MSD).
[0040]
During the carbonization treatment, the outlet gas of the tubular furnace 82 containing the pyrolysis product was subjected to xylene cleaning by the trap device 87. A part of xylene was collected after the decomposition experiment, treated with hot concentrated sulfuric acid and nitric acid, filtered, and then ammonium molybdate was added to detect phosphorus.
[0041]
<Result>
(1) Results of examination of oxygen sensor deployment position:
The zirconia solid electrolyte oxygen concentration meter 85 provided in the tubular furnace 82 (quartz tube 81) can accurately measure the oxygen concentration in the furnace, and appropriately control the oxygen concentration based on the measurement result. Was possible. On the other hand, the diaphragm type oxygen concentration meter 86 provided outside the furnace has tar-like substances adhering to the surface of the diaphragm, so that the oxygen concentration cannot be measured sufficiently accurately, and the oxygen concentration is sufficiently controlled. Could not do.
(2) Examination of redox conditions:
Table 3 shows the results of component analysis of bone charcoal. It was found that the condition 1 in which air was mixed had a higher phosphorus content than the condition 2 in which carbonization was performed without mixing air at the same temperature. From this, it was shown that the bone charcoal manufactured on condition 1 has a sufficient fertilization effect as a soil improvement agent.
[0042]
[Table 3]
Figure 0004219202
[0043]
Condition 3 in which the heating temperature was set to 500 ° C. resulted in the highest phosphorus content. This revealed that phosphorus can remain in a temperature range from about 500 ° C. to about 800 ° C.
[0044]
Moreover, it was shown that Condition 1 in which oxygen was introduced and carbonized had significantly larger BET specific surface area and iodine adsorption than Condition 2 and had adsorption performance very close to activated carbon.
[0045]
Further, Table 4 shows the results of steam activation treatment of bone charcoal produced under each condition. From Table 4, it was shown that the bone charcoal of Condition 1 into which oxygen was introduced significantly increased the BET specific surface area and iodine adsorption amount by steam activation.
[0046]
[Table 4]
Figure 0004219202
[0047]
In addition, as a result of collecting xylene from the xylene trap device 87 and analyzing phosphorus by the ammonium molybdate method, the intensity of coloration is in the order of condition 2, condition 1, and condition 3. It was confirmed that much phosphorus was volatilized.
[0048]
In addition, as a result of measuring the n-hexane extract of carbide by GC-MS, no remaining organic matter was detected.
[0049]
Example 1
Bone charcoal was produced from beef meat-and-bone meal using the same livestock waste treatment apparatus 100 as in FIG.
That is, meat-and-bone meal was put into the livestock waste disposal apparatus 100 and heated in a nitrogen stream at 800 ° C. for 1 hour in the carbonization furnace 10 to be carbonized. After heating, the air was introduced for about 1 hour so as to be about 1% by volume of the gas in the carbonization furnace 10 at the stage of cooling. The amount of air was measured and controlled by an oxygen sensor 12 (zirconia solid electrolyte type oxygen concentration meter). About the obtained bone charcoal, steam activation was performed according to the conventional method. Table 5 shows components of the meat-and-bone meal used as a raw material, and Table 6 shows components of the obtained bone charcoal (after steam activation).
[0050]
[Table 5]
Figure 0004219202
[0051]
[Table 6]
Figure 0004219202
[0052]
The present invention has been described above with reference to various embodiments. However, the present invention is not limited to the above embodiments, and can be applied to other embodiments within the scope of the invention described in the claims. It is.
[0053]
【The invention's effect】
In the present invention, by providing the carbonization furnace with oxygen concentration detection means for detecting the oxygen concentration in the carbonization chamber, it is possible to perform carbonization by controlling the oxygen concentration so that the carbonization chamber is in a desired oxidation state. Become. Thereby, it is possible to suppress the diffusion of phosphorus generated in a reducing atmosphere and to remain in carbides such as bone charcoal. In addition, the conventional carbonization under non-oxygen conditions cannot sufficiently increase the adsorption capacity as activated carbon, but by creating a predetermined oxygen condition in the carbonization process, the specific surface area is improved and the carbide with excellent adsorption performance. Can be obtained.
[0054]
Carbides such as bone charcoal obtained by the method of the present invention have little loss of phosphorus, have high value as fertilizers, and have excellent performance as an adsorbent. Therefore, in addition to being useful as a soil conditioner and fertilizer, it can be used for various adsorbents such as a deodorizing agent and a water treatment agent in the same manner as activated carbon. Furthermore, after use as activated carbon, fertilization effect can be expected even if sprayed in fields.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a livestock waste disposal apparatus.
FIG. 2 is a drawing showing a schematic configuration of a carbonization test apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Carbonization furnace 11 Carbonization chamber 12 Oxygen sensor 13 External combustion chamber 14 Liquefaction receptacle 15 Blower 31 Anaerobic processing device 33 Fermentation liquid processing device 35 Membrane processing device 37 Monitoring device 41 Carbide storage part

Claims (2)

炭化室内の酸素濃度を検知する酸素濃度検知手段を備えた炭化室内に家畜屠体由来の有機物を収容した状態で、前記炭化室内を500〜800℃に昇温して前記有機物を炭化させることを特徴とするリン含有炭化物肥料の製造方法。In a state where the carbonized chamber having an oxygen concentration detection means for detecting the oxygen concentration in the carbonized chamber containing the organic material from cattle carcasses, the temperature was raised to the carbonization chamber to 500 to 800 ° C. thereby carbonizing the organic substance A method for producing a phosphorus-containing carbide fertilizer. 請求項1において、前記炭化室内のガスを強制的に循環させる強制循環手段を備えたことを特徴とするリン含有炭化物肥料の製造方法。  The method for producing phosphorus-containing carbide fertilizer according to claim 1, further comprising forced circulation means for forcibly circulating the gas in the carbonization chamber.
JP2003092566A 2003-03-28 2003-03-28 Method for producing phosphorus-containing carbide fertilizer Expired - Fee Related JP4219202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092566A JP4219202B2 (en) 2003-03-28 2003-03-28 Method for producing phosphorus-containing carbide fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092566A JP4219202B2 (en) 2003-03-28 2003-03-28 Method for producing phosphorus-containing carbide fertilizer

Publications (2)

Publication Number Publication Date
JP2004300198A JP2004300198A (en) 2004-10-28
JP4219202B2 true JP4219202B2 (en) 2009-02-04

Family

ID=33405614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092566A Expired - Fee Related JP4219202B2 (en) 2003-03-28 2003-03-28 Method for producing phosphorus-containing carbide fertilizer

Country Status (1)

Country Link
JP (1) JP4219202B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027824B1 (en) 2008-10-10 2011-04-07 재단법인 포항산업과학연구원 A dual mode control method for a combustion system using a additional CO concentration
JP5156599B2 (en) * 2008-11-27 2013-03-06 株式会社Ihi Sludge heat treatment method and sludge heat treatment apparatus
JP2011178653A (en) * 2010-02-04 2011-09-15 Ss Kenkyusho:Kk Method for producing phosphate fertilizer, phosphate fertilizer, carbide of dead livestock
CN103738937B (en) * 2013-12-24 2016-06-01 安徽省淮河制胶有限公司 The production technique of a kind of bone black powder
CN105018117B (en) * 2015-07-27 2017-12-01 长兴嘉诚炉业有限公司 A kind of meat corpse continous way pyrolysis charring method
CN105154112B (en) * 2015-07-27 2017-12-01 长兴嘉诚炉业有限公司 A kind of meat corpse continous way pyrolysis charring device
CN105885886B (en) * 2016-06-08 2018-12-14 浙江悟能环保科技发展有限公司 A kind of pyrolysis plant and method with automatic charging, charging and material unloading function
CN105969411B (en) * 2016-06-08 2018-12-14 浙江悟能环保科技发展有限公司 A kind of continous way pyrolysis processing technique with automatic charging, charging and material unloading function
CN109456779B (en) * 2018-12-29 2023-09-05 江苏亿尔等离子体科技有限公司 Superheated steam continuous anaerobic carbonization cracking furnace device and method
CN110788107A (en) * 2019-09-23 2020-02-14 杭州泽灿环境科技有限公司 Kitchen waste treatment method
CN114606018B (en) * 2022-04-24 2023-10-10 安徽克林泰尔环保科技有限公司 Be applied to scrap tire schizolysis carbon black carbonization equipment and system
CN116333771B (en) * 2023-05-10 2023-10-20 中国矿业大学 Device and method for improving light oil yield of oil shale

Also Published As

Publication number Publication date
JP2004300198A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4219202B2 (en) Method for producing phosphorus-containing carbide fertilizer
Liu et al. The catalytic pyrolysis of food waste by microwave heating
JP2007260538A (en) Organic waste treatment system
KR20210032989A (en) Pyrolysis and gasification using microwaves
JPH078936A (en) Method and apparatus for carbonizing organic waste
CN105439659A (en) Application of charcoal in reducing discharge of TVOCs (Total Volatile Organic Compounds) in livestock manure and straw compost
CN106215878B (en) A kind of extraordinary desulfurizing agent and deodorization process of food waste deodorization process
JP3406535B2 (en) Method and apparatus for producing dry matter from wet organic waste
JP4399394B2 (en) Fertilizer manufacturing method and manufacturing system
JP2004033899A (en) Method for treating organic substance of stock carcass and method for producing bone char
KR101429210B1 (en) Closed system for treating Organic waste
JP2004174425A (en) Waste disposal system
JP2004300199A (en) Carbonization system and method for producing carbonized material
JP4056842B2 (en) Method for removing fermentation odor
JPH11323345A (en) Carbide preparation apparatus
JP5670802B2 (en) Solid fuel manufacturing method, apparatus therefor, and solid fuel
JP2000169130A (en) Production of granular organic sludge carbon from activated sludge
JP2012219152A (en) Method of manufacturing solid fuel, device therefor, and solid fuel
JP2015000884A (en) Solid fuel and method for manufacturing the same as well as heat treatment method of organic sludge
JP2000197898A (en) Method for treating sludge and the like
JP3968969B2 (en) Compost-like object manufacturing method and compost-like object manufacturing apparatus
JP2016155086A (en) Recycling system
JP2010083742A (en) Manufacturing method of fertilizer
KR100998604B1 (en) Microwave-heating anaerobic digester
JP2023173973A (en) Method for producing fermented and dried sludge, and system for producing fermented and dried sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees