KR101027824B1 - A dual mode control method for a combustion system using a additional CO concentration - Google Patents

A dual mode control method for a combustion system using a additional CO concentration Download PDF

Info

Publication number
KR101027824B1
KR101027824B1 KR1020080099585A KR20080099585A KR101027824B1 KR 101027824 B1 KR101027824 B1 KR 101027824B1 KR 1020080099585 A KR1020080099585 A KR 1020080099585A KR 20080099585 A KR20080099585 A KR 20080099585A KR 101027824 B1 KR101027824 B1 KR 101027824B1
Authority
KR
South Korea
Prior art keywords
concentration
air
measuring
redox
reduction
Prior art date
Application number
KR1020080099585A
Other languages
Korean (ko)
Other versions
KR20100040469A (en
Inventor
정종렬
김율란
강덕홍
김창영
김기홍
김영일
Original Assignee
재단법인 포항산업과학연구원
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 주식회사 포스코 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020080099585A priority Critical patent/KR101027824B1/en
Publication of KR20100040469A publication Critical patent/KR20100040469A/en
Application granted granted Critical
Publication of KR101027824B1 publication Critical patent/KR101027824B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0067General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display by measuring the rate of variation of the concentration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

본 발명은 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법에 관한 것으로 보다 상세하게는 CO2 농도 기반의 공기 자동 제어 시스템에서 CO를 추가적으로 측정하여 공기의 산화 환원 정도(레벨)를 평가하도록 하는 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법에 관한 것이다.The present invention relates to a method for controlling redox air using a CO concentration measuring system. More specifically, the CO concentration for evaluating the degree of redox (level) of air by additionally measuring CO in a CO 2 concentration-based air automatic control system. The present invention relates to a method for controlling redox air using a measurement system.

상기 목적을 달성하기 위해 본 발명은 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법에 있어서, 가열로 내부 CO 농도를 측정하는 단계; 상기 측정된 CO 농도를 CO2 농도와 연계하여 산화 환원 공기 평가를 하도록 하는 단계; 공기 제어 시스템에서 CO 측정치를 추가 측정하는 단계; 및 산화 공기상태에서 완전연소가 유지되도록 하는 에어 리드(Air lead) 로 제어되고, 환원 공기상태에서 환원성 유지를 하도록 하는 연료 리드(Fuel lead) 로 제어되도록 구성하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for controlling redox air using a CO concentration measuring system, the method comprising: measuring CO concentration in a heating furnace; Performing an oxidation-reduction air evaluation by linking the measured CO concentration with a CO 2 concentration; Further measuring the CO measurement in an air control system; And controlled by an air lead to maintain complete combustion in an oxidized air state, and controlled by a fuel lead to maintain reducibility in a reduced air state.

CO 농도, 가열로, 산화, 환원 CO concentration, heating furnace, oxidation, reduction

Description

CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법{A dual mode control method for a combustion system using a additional CO concentration} A dual mode control method for a combustion system using a additional CO concentration}

본 발명은 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법에 관한 것으로, 보다 상세하게는, CO2 농도 기반의 공기 자동 제어 시스템에서 CO를 추가적으로 측정하여 공기의 산화 환원 정도(레벨)를 평가하도록 하는 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법에 관한 것이다. The present invention relates to a method for controlling redox air using a CO concentration measuring system, and more particularly, to measure the degree of redox (level) of air by additionally measuring CO in a CO 2 concentration-based air automatic control system. The present invention relates to a method for controlling redox air using a CO concentration measurement system.

일반적으로, 공기상태의 산화성 평가는 환원성 평가와 같이 환원 공기 정도를 판단하는 것으로 공기상태를 판정하는 방법을 이용한다. In general, the oxidative evaluation of the air state uses a method of determining the air state by determining the degree of reducing air as in the reducibility evaluation.

도 1은 종래의 환원 공기 제어 구성도이고, 도 2는 종래의 산화/환원 평행 곡선을 나타내는 도면이다. 1 is a diagram illustrating a conventional reduced air control configuration, and FIG. 2 is a diagram illustrating a conventional oxidation / reduction parallel curve.

산화 공기가 일반적인 가열로에서 완전 연소를 위한 조건이고, 이 경우에 연소 배가스 중의 CO는 인체의 유해성과 연소 효율 악화의 원인으로 작동하므로 감시의 대상으로만 사용된다. Oxidized air is the condition for complete combustion in a typical furnace, in which case the CO in the combustion flue gas is used only for monitoring because it acts as a cause of human harm and deterioration of combustion efficiency.

환원 공기상태 유지가 목적인 연소 설비(소둔로 계열)의 경우는 복사관을 이용한 간접가열방식을 택하고, 공기는 수소 혹은 질소만으로 이루어진 환원 공기를 이용하며, 환원 공기의 정도를 판단하기 위해서 이슬점 측정기(hygrometer)를 이용하여 환원 공기 상태를 판단한다.(도 1 참조)In the case of combustion equipment (annealing furnace series) for the purpose of maintaining the reduced air state, the indirect heating method using a radiant tube is used, and the air uses the reducing air composed of hydrogen or nitrogen only. (hygrometer) is used to determine the state of reducing air (see FIG. 1).

이를 근거로 수소의 공급량을 제어하는 방식으로 관리하는 것(도 1)이 일반적이고, 직접 연소의 경우도 연소 배가스의 이슬점을 측정하여 공연비를 제어하는 방법을 이용할 수 있다. On the basis of this, it is common to manage hydrogen supply in a manner of controlling the supply amount (FIG. 1), and in the case of direct combustion, a method of controlling the air-fuel ratio by measuring the dew point of the combustion exhaust gas may be used.

환원 정도를 판정하는 것은 공기상태에서 발생 가능한 산화물들의 산화/ 환원 평행 곡선(도 2 참조)에서 환원쪽으로 치우치게 관리하는데 필요한 이슬점을 찾고 그 이슬점보다 낮게 공기상태가 관리되도록 한다. Determining the degree of reduction finds the dew point needed to manage towards the reduction in the oxidation / reduction parallel curve of oxides that can occur in the air (see FIG. 2) and allows the air condition to be managed below that dew point.

이러한 이슬점 기준 관리는 챔버가 소규모이고 온도가 균일한 시스템에서는 유효하나 가열 챔버가 크고 온도가 균일하지 않은 조건에서는 특정 위치의 이슬점 측정의 샘플링 홀을 통한 일부 공기상태를 기준으로 평가하는 것은 많은 오차를 가질 수 있다.This dew point reference management is valid for systems with small chambers and uniform temperatures, but under conditions of large heating chambers and uneven temperatures, evaluating based on some air conditions through sampling holes for dew point measurements at specific locations can result in many errors. Can have

특히 산화, 환원 공기상태를 동시에 제어하여야 하는 시스템에서 제어용으로 CO2를 사용하는 시스템에서 환원 공기의 정도를 판단하기 위해서는 추가적으로 환원가스 성분을 계측하여야 가능한 경우가 발생한다.In particular, in a system that requires simultaneous control of oxidation and reducing air conditions, it is necessary to additionally measure reducing gas components in order to determine the degree of reducing air in a system using CO 2 for control.

상술한 바와 같은 문제점을 해결하기 위해, 본 발명의 목적은 산화/환원 공기 동시 제어시스템(특히 CO2는 제어용으로 이용하는)에서 광학식 CO센서를 활용하여 공기의 환원성을 직접 평가하는 방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, it is an object of the present invention to provide a method for directly evaluating the reducibility of air using an optical CO sensor in a simultaneous control system for oxidation / reduction air (particularly CO 2 is used for control). The purpose.

또한, 본 발명은, CO2 농도 기반의 공기 자동 제어 시스템에서 CO를 추가적으로 측정하여 공기의 산화 환원 정도(레벨)를 평가하도록 하는 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for controlling redox air using a CO concentration measuring system for additionally measuring CO in the CO 2 concentration-based air automatic control system to evaluate the degree of redox (level) of air. do.

상술한 바와 같은 문제점을 해결하기 위해, 본 발명의 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어 방법은, 가열로 내부 CO 농도를 측정하는 단계; 상기 측정된 CO 농도를 CO2 농도와 연계하여 산화 환원 공기상태 평가를 하도록 하는 단계; 공기기 제어 시스템에서 CO 측정치를 추가 측정하는 단계; 및 산화공기상태에서 완전연소가 유지되도록 하는 에어 리드(Air lead) 로 제어되고, 환원 공기상태에서 환원성 유지를 하도록 하는 연료 리드(Fuel lead) 로 제어되도록 구성하는 것을 특징으로 한다.In order to solve the problems as described above, the method for controlling redox air using the CO concentration measuring system of the present invention comprises the steps of measuring the CO concentration in the furnace; Evaluating an oxidation-reduction air state by linking the measured CO concentration with a CO 2 concentration; Further measuring CO measurements in the air control system; And controlled by an air lead to maintain complete combustion in the oxidized air state, and controlled by a fuel lead to maintain reducibility in the reduced air state.

본 발명에 따르면, CO 추가 측정치를 이용하는 CO2 기반의 산화/환원 공기 뿐만 아니라 CO 측정치의 기반으로 환원 레벨을 얻을 수 있는 효과가 있다.According to the present invention, there is an effect of obtaining a reduction level based on CO measurement as well as CO 2 based oxidation / reduction air using additional CO measurement.

이하, 도면을 참조하여 CO 농도의 추가 측정을 이용한 산화 환원 동시 제어 시스템 및 방법에 대하여 상세히 설명하도록 한다. Hereinafter, a redox simultaneous control system and method using additional measurement of CO concentration will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 Fe 의 산화 환원 평행곡선을 나타내는 도면이고, 도 4는 CO2와 CO의 비율 연산에 필요한 신호들을 나타내는 도면이고, 도 5는 본 발명에 따른 CO2/CO 기반 산화/환원 동시 제어 구성도를 나타내는 도면이다. 3 is a diagram showing a redox parallel curve of Fe according to the present invention, FIG. 4 is a diagram showing signals required for calculating a ratio of CO 2 and CO, and FIG. 5 is CO 2 / CO based oxidation / It is a figure which shows a reduction simultaneous control block diagram.

상기 도 3 내지 도 5에 도시된 바와 같이, CO 농도의 추가 측정을 이용한 산화 환원 동시 제어 시스템 및 방법은, 일반적인 철강 공정의 재가열로(reheating furnace)에서는 철산화물(FeO)의 생성 여부가 산화 환원의 판단 기준으로 이용되고, 그 산화 특성은 Fe 산화/환원 평행 곡선(도 3참조)에서 CO2/CO의 비율값에 따른 온도의 함수로 확인 가능하다.3 to 5, the simultaneous redox control system and method using an additional measurement of the CO concentration, in the reheating furnace of a general steel process whether or not the production of iron oxide (FeO) is redox It is used as a criterion of, and its oxidation characteristic can be confirmed as a function of temperature according to the ratio of CO 2 / CO in the Fe oxidation / reduction parallel curve (see FIG. 3).

즉, 가열로의 공기 온도가 1300℃ 까지 도달하는 경우의 CO2/CO는 약 0.3 이하를 유지해야 한다는 사실을 도 3을 통하여 판단할 수 있다. That is, it can be determined through FIG. 3 that CO 2 / CO should be maintained at about 0.3 or less when the air temperature of the heating furnace reaches 1300 ° C.

제어 시스템에서 계측되는 CO2의 농도를 항상 검출 가능하다고 봄으로 광학 식 CO농도 측정 시스템의 추가 설치(도 4 참조)로 그래프의 평행 곡선(도 3 참조) 이하를 유지하도록 제어 loop를 구성하는 것으로 원하는 목적을 달성할 수 있다. It is assumed that the concentration of CO 2 measured by the control system is always detectable, and the additional installation of the optical CO concentration measurement system (see FIG. 4) is configured to maintain the control loop to keep the graph below the parallel curve (see FIG. 3). The desired purpose can be achieved.

제어계의 CO2측정치와 추가 설치한 CO의 측정치를 근거로 환원제어 유지 제어가 가능하다. Reduction control maintenance control is possible on the basis of the measured CO 2 value of the control system and the additional measured CO value.

도 5는 상기와 같은 신호를 기반으로 산화/환원 공기를 자동 제어하기 위한 시스템 구성도를 SAMA(Scientific Apparatus Makers Association)법을 기준으로 도시한 도면으로, 상기 도 5의 CO 에 근거한 산화, 환원 공기 제어 구성도를 보면, 현재의 공정치 출력 산소농도(배가스의 산소농도(flue O2 PV치, 110)가 계측되어 O2제어기(120)로 전달되고, 제어는 환원 공기와 산화 공기를 사용자의 모드선택(환원:??1,산화:+1)에 따라 결정되고, 절환은 f1의 선형 절환함수에 의해 부드럽게 절환가능하게 되고(310), limiter값들도 f2 함수에 의해서 부드럽게 변화되어 구성된다.(320) 5 is a diagram illustrating a system configuration for automatically controlling oxidation / reduction air based on the signal as described above based on the SAMA (Scientific Apparatus Makers Association) method. To look at the oxidation-reduction air control arrangement is also based, the current unfair output an oxygen concentration (oxygen concentration in the exhaust gas (flue O 2 PV value, 110) is measured and transmitted to the O 2 controller 120, control reduction of air and The oxidizing air is determined by the user's mode selection (reduction: ?? 1, oxidation: +1), the switching is smoothly switchable by the linear switching function of f1 (310), and the limiter values are smoothed by the f2 function. It is changed and configured. (320)

f3는 산화 공기상태에서는 완전연소가 유지되는 것을 우선하는 Air lead 제어와 환원 공기상태에서는 환원성 유지가 우선하는 Fuel lead 제어가 동시에 가능하도록 한다.(330)f3 enables simultaneous control of the air lead that prioritizes complete combustion in the oxidizing air state and fuel lead control that preferentially maintains reducibility in the reducing air state (330).

이상에서 설명한 본 발명은 전술한 발명의 상세한 설명 및 첨부된 도면에 의하여 한정되는 것은 아니고, 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 해당 기술분야의 당업자가 다양하게 수정 및 변경시킨 것 또한 본 발명의 범위 내에 포함됨은 물론이다.The present invention described above is not limited to the above-described detailed description of the invention and the accompanying drawings, and those skilled in the art can be variously modified without departing from the spirit and scope of the present invention described in the claims below. Modifications and variations are also included within the scope of the invention.

도 1은 종래의 환원 분위기 제어 구성도.1 is a conventional reducing atmosphere control configuration diagram.

도 2는 종래의 산화/환원 평행 곡선을 나타내는 도면. 2 shows a conventional oxidation / reduction parallel curve.

도 3은 본 발명에 따른 Fe 의 산화 환원 평행곡선을 나타내는 도면.Figure 3 shows a redox parallel curve of Fe according to the present invention.

도 4는 CO2와 CO의 비율 연산에 필요한 신호들을 나타내는 도면.4 is a diagram showing signals required for calculating a ratio of CO 2 to CO.

도 5는 본 발명에 따른 CO2/CO 기반 산화/환원 동시 제어 구성도를 나타내는 도면. 5 is a view showing a schematic diagram of CO 2 / CO-based oxidation / reduction simultaneous control according to the present invention.

Claims (2)

CO2 농도를 기반으로 하는 산화 환원 공기 제어시스템에 CO 농도 측정 시스템을 추가하고, 가열로 내부의 CO 농도를 측정하는 단계;Adding a CO concentration measurement system to the redox air control system based on the CO 2 concentration, and measuring the CO concentration inside the furnace; 상기 가열로 내부의 공기 온도가 1300℃ 까지 도달하는 경우, 측정된 상기 CO 농도를 기준으로 하는 CO2 농도의 비율 CO2 농도/ CO 농도의 값을 0.3 이하로 유지시키는 단계;If the step of reaching to the air temperature inside the heating furnace 1300 ℃, maintaining the value of the percentage CO 2 concentration / CO concentration of CO 2 concentration based on the measured CO concentration of less than 0.3; 상기 산화 환원 공기 제어시스템에서 CO 농도를 추가 측정하여 산화 환원레벨을 측정하는 단계; 및 Measuring a redox level by further measuring a CO concentration in the redox air control system; And 산화 공기상태에서 완전연소가 유지되도록 에어 리드(Air lead)로 제어하고, 환원 공기상태에서 환원성이 유지되도록 연료 리드(Fuel lead)로 제어하도록 구성하는 것을 특징으로 하는 CO 농도 측정 시스템을 이용한 산화 환원 공기 제어방법.Oxidation reduction using a CO concentration measuring system, characterized in that it is configured to control with an air lead to maintain complete combustion in the oxidizing air state, and to control with a fuel lead to maintain reducibility in the reducing air state. Air control method. 삭제delete
KR1020080099585A 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration KR101027824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080099585A KR101027824B1 (en) 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080099585A KR101027824B1 (en) 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration

Publications (2)

Publication Number Publication Date
KR20100040469A KR20100040469A (en) 2010-04-20
KR101027824B1 true KR101027824B1 (en) 2011-04-07

Family

ID=42216553

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080099585A KR101027824B1 (en) 2008-10-10 2008-10-10 A dual mode control method for a combustion system using a additional CO concentration

Country Status (1)

Country Link
KR (1) KR101027824B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101917445B1 (en) 2016-12-20 2018-11-09 주식회사 포스코 Apparatus and method for controlling oxygen concentration in a heating furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172470A (en) * 1991-12-24 1993-07-09 Yazaki Corp Kiln for ceramic art
JPH09101284A (en) * 1995-10-06 1997-04-15 Yazaki Corp Method and instrument for measuring carbon monoxide concentration
JP2943969B2 (en) 1993-07-15 1999-08-30 矢崎総業株式会社 Gas concentration measuring device
JP2004300198A (en) 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Carbonization furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172470A (en) * 1991-12-24 1993-07-09 Yazaki Corp Kiln for ceramic art
JP2943969B2 (en) 1993-07-15 1999-08-30 矢崎総業株式会社 Gas concentration measuring device
JPH09101284A (en) * 1995-10-06 1997-04-15 Yazaki Corp Method and instrument for measuring carbon monoxide concentration
JP2004300198A (en) 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Carbonization furnace

Also Published As

Publication number Publication date
KR20100040469A (en) 2010-04-20

Similar Documents

Publication Publication Date Title
US9581389B2 (en) Method for heat treatment, heat treatment apparatus, and heat treatment system
US20040006435A1 (en) Systems and methods for controlling the activity of carbon in heat treating atmospheres
CN102876864A (en) Control system and closed-loop control method for hearth atmosphere of annealing furnace and closed-loop control method
KR101027824B1 (en) A dual mode control method for a combustion system using a additional CO concentration
CN104848247A (en) Atmosphere field control system of heating furnace
CN103062790A (en) Method for controlling combustion inside heating furnace
RU2011133683A (en) METHOD AND DEVICE FOR REGULATING EMISSIONS OF CARBON CARBON OXIDE
CN105734264A (en) Online measuring and controlling system for combustion condition of steel rolling heating furnace
CN104677942A (en) Device for detecting acid dew point temperature of flue gas
CN103673223A (en) Air supply quality early warning based fresh air system and intelligent control method thereof
CN102445090A (en) Novel monitoring method for combustion condition of industrial furnace kiln
RU2012142810A (en) METHOD FOR REGULATING SLAG CONSISTENCY AND DEVICE FOR EXECUTING THE METHOD
KR100925039B1 (en) Control method of Air-fuel ratio in furnace
KR100363576B1 (en) Gas detection method and gas detection device using the same
DK1780286T3 (en) Bacterial counting method, bacterial counter and cell used for the counter
JPS6353247B2 (en)
KR20100041057A (en) A dual mode control method for a reheating furnace using co2 concentration
Zhuiykov Development of dual sulfur oxides and oxygen solid state sensor for “in situ” measurements
KR101334212B1 (en) Children's room management system and method to improve concentration
KR20090067937A (en) Method of controlling for maintaining zero oxidation condition in the heating furnace and device therof
JP2019070608A (en) Gas detector
JP2014012631A (en) Method for determining carbon monoxide ratio in exhaust gas flow, and particularly control unit and regenerative burner-type industrial furnace
CN102103117B (en) Method to put an exhaust gas probe capable of heating into 'ready for operation' state quickly
CN108950176A (en) A kind of annealing furnace method for controlling combustion and device based on the compensation of residual oxygen
CN216816539U (en) In situ oxygen analyzer with solid electrolyte oxygen sensor and auxiliary output

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190314

Year of fee payment: 9