KR20100025258A - Photocatalyst sol and manufacturing method thereof - Google Patents

Photocatalyst sol and manufacturing method thereof Download PDF

Info

Publication number
KR20100025258A
KR20100025258A KR1020080083955A KR20080083955A KR20100025258A KR 20100025258 A KR20100025258 A KR 20100025258A KR 1020080083955 A KR1020080083955 A KR 1020080083955A KR 20080083955 A KR20080083955 A KR 20080083955A KR 20100025258 A KR20100025258 A KR 20100025258A
Authority
KR
South Korea
Prior art keywords
sol
germanium
hydroxyapatite
titanium dioxide
tio
Prior art date
Application number
KR1020080083955A
Other languages
Korean (ko)
Other versions
KR100980516B1 (en
Inventor
장순웅
이시진
조일형
Original Assignee
장순웅
이시진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장순웅, 이시진 filed Critical 장순웅
Priority to KR1020080083955A priority Critical patent/KR100980516B1/en
Publication of KR20100025258A publication Critical patent/KR20100025258A/en
Application granted granted Critical
Publication of KR100980516B1 publication Critical patent/KR100980516B1/en

Links

Images

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A composite material photocatalyst sol and a method for manufacturing the photocatalyst sol are provided to obtain excellent antibacterial and anti-fungi performance and to have an air cleaning function according to a discharge of far-infrared radiation and an anion. CONSTITUTION: A method for manufacturing a composite material photocatalyst sol comrpsies: a step of manufacturing titanium dioxide(TiO2) sol by mixing a titanium precursor with a solvent and adding a nitric acid solution and triethylamine(C6H15N); a step of manufacturing hydroxyapatite sol by mixing ammonium hydroxide(NH4OH) with the mixture after mixing potassium nitrate tetrahydrate(Ca(NO3)2·4H2O) and triethyl phosphate(P(OC2H5)3) with the solvent; a step of mixing a colloidal silica with the prepared titanium dioxide sol and the hydroxyapatite sol; and a step of mixing a germanium aqueous solution with the photocatalytic sol in which the titanium dioxide(TiO2) and the hydroxyapatite are included.

Description

복합소재 광촉매 졸 및 그 제조방법{PHOTOCATALYST SOL AND MANUFACTURING METHOD THEREOF}Composite photocatalyst sol and its manufacturing method {PHOTOCATALYST SOL AND MANUFACTURING METHOD THEREOF}

본 발명은 복합소재로 이루어진 광촉매 졸(sol) 및 그 제조방법에 관한 것으로, 보다 상세하게는 산화티탄(TiO2), 하이드록시아파타이트(Hydroxyapatite) 및 게르마늄(Germanium)을 포함하는 광촉매 복합소재로서 항균성, 항곰팡이성 및 공기정화능이 우수한 졸 형태의 광촉매를 통해 타일, 벽지 등 각종 건축용 내ㆍ외장재의 표면 처리에 환경친화적인 소재로 적극 활용될 수 있도록 한 복합소재 광촉매 졸 및 그 제조방법에 관한 것이다.The present invention relates to a photocatalyst sol made of a composite material and a method for manufacturing the same, and more particularly, to a photocatalyst composite material including titanium oxide (TiO 2 ), hydroxyapatite and germanium (Germanium). Composite photocatalyst sol and its manufacturing method which can be actively used as an environmentally friendly material for surface treatment of various interior and exterior building materials such as tiles and wallpaper through sol type photocatalyst with excellent anti-mildew and air purifying ability .

일반적으로, 광촉매(光觸媒, photocatalyst)란 빛을 받아들여 화학반응을 촉진시키는 물질을 말하는 것으로, 주로 띠 간격에너지(band gap energy) 이상의 빛 에너지를 광촉매에 조사하였을 때 전자와 정공이 발생하고, 정공에 의해 생성되는 수산화라디칼(-OH)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 광산화반응을 일으킨다.In general, photocatalyst refers to a substance that receives light and promotes a chemical reaction. When a photocatalyst is irradiated with light energy of more than a band gap energy, electrons and holes are generated and holes are generated. The strong oxidative power of radical (-OH) produced by the photocatalyst causes a photooxidation reaction in which gaseous or liquid organic matter adsorbed on the surface of the photocatalyst is decomposed.

즉, 광촉매는 빛 에너지를 흡수함으로써 촉매활성을 나타내게 되는데, 이때 발생하는 강력한 산화력으로 환경오염물질을 산화분해하는 것이다.That is, the photocatalyst exhibits catalytic activity by absorbing light energy, and oxidatively decomposes environmental pollutants with the strong oxidizing power generated at this time.

이러한 광촉매 반응을 유도하는 물질로는 TiO2(아나타제), TiO2(루틸), ZrO2, ZnO, V2O5, CdS, GaP, InP, GaAs, BaTiO3, KNbO3, Fe2O3, Ta2O5, WO3, SnO2, Bi2O3, NiO, Cu2O, SiO, SiO2, MoS2, InPb, RuO2, CeO2, 부루카이드(Brookite) 등이 사용되고 있으며, 상기 광촉매에 Pt, Rh, Ag, Cu, Sn, Ni, Fe 등의 금속 및 이들의 금속산화물을 첨가하여 사용할 수도 있다.Materials that induce such photocatalytic reactions include TiO 2 (anatase), TiO 2 ( rutile), ZrO 2 , ZnO, V 2 O 5 , CdS, GaP, InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , Bi 2 O 3 , NiO, Cu 2 O, SiO, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2 , Brookite and the like are used. Metals such as Pt, Rh, Ag, Cu, Sn, Ni, Fe, and metal oxides thereof may be added to the photocatalyst.

이 중에서도 산화티탄(TiO2:아나타제)은 인체에 무해하고, 광촉매 활성이 탁월하며, 내광부식성이 우수하고, 화학적ㆍ생물학적으로 비활성을 가지며, 가격이 저렴하여 가장 많이 사용되고 있다.Among them, titanium oxide (TiO 2 : anatase) is most used because it is harmless to human body, has excellent photocatalytic activity, excellent corrosion resistance, chemical and biological inertness, and low price.

이와 같은 산화티탄은 388㎚ 이하의 자외선을 흡수하여 반응함으로써 전자(전도대)와 정공(가전자대)이 생성되며, 이때 자외선 광원으로는 태양에너지 외에 형광등, 백열전등, 수은램프 등의 인공조명 등이 사용될 수도 있다.The titanium oxide absorbs and reacts with ultraviolet rays of 388 nm or less to generate electrons (conductor bands) and holes (gap bands) .At this time, ultraviolet light sources include artificial light such as fluorescent lamps, incandescent lamps and mercury lamps. May be used.

상기 반응에서 생성된 전자와 정공은 9~12초만에 재결합하지만, 재결합하기 전에 오염물질 등이 표면에 흡착하게 되면 상기 전자와 정공에 의해 분해되게 되는데 그러한 반응 기전은 아래와 같다.The electrons and holes generated in the reaction are recombined in 9 to 12 seconds, but when contaminants and the like are adsorbed on the surface before recombination, the electrons and holes are decomposed by the electrons and holes.

TiO2+ hν→ e- + h+ TiO 2 + hν → e - + h +

e- + O2 → O2 - 라디칼 e - + O 2 → O 2 - radical

h+ + -OH → -OH 라디칼h + + -OH → -OH radical

O2 - 라디칼 + A(유기물, 균, 오염물질) → AO 2 - radical + A (organic, bacteria, pollutant) → A

-OH 라디칼 + B(유기물, 균, 오염물질) → B-OH radical + B (organic, bacteria, pollutant) → B

이와 같이 오염물질을 흡착·분해 시킬 수 있는 광촉매의 반응특성을 지닌 코팅물을 제공하기 위하여 광촉매(이산화티탄(TiO2))를 함유한 코팅용 졸(sol)의 개발에 대한 연구가 활발히 진행되어 왔다.In order to provide a coating having a reaction characteristic of a photocatalyst capable of adsorbing and decomposing contaminants, research on the development of a coating sol containing a photocatalyst (titanium dioxide (TiO 2 )) has been actively conducted. come.

예컨대, 공개특허 2002-0045856 "상온경화형 광촉매 코팅용 졸 및 이의 제조방법", 공개특허 2002-0083455 "광촉매 활성과 고흡착성을 동시에 가지는 광촉매 코팅용 졸", 공개특허 2002-009267 "금속이 첨가된 고활성 광촉매 산화티탄-졸 제조방법", 공개특허 2004-0099976 "마이크로 캡슐화된 천연향이 첨가된 광촉매 코팅용 졸 및 이의 제조방법", 공개특허 2006-0106519 "고활성 광촉매 졸 제조방법", 등록특허 제0825084호 "이산화티탄 광촉매 졸 제조방법 및 이를 포함하는 이산화티탄 광촉매 제조방법" 등을 들 수 있다.For example, Korean Patent Application Publication No. 2002-0045856 "sol for cure photocatalyst coating and preparation method thereof", Patent Application Publication No. 2002-0083455 "photocatalyst coating sol having photocatalytic activity and high adsorption at the same time," Patent Publication 2002-009267 "Metal added Highly active photocatalyst manufacturing method of titanium oxide sol ", Patent Publication 2004-0099976" Microencapsulated photocatalyst added sol and its manufacturing method ", Patent Publication 2006-0106519" Highly active photocatalyst sol manufacturing method ", registered patent No. 0825084 "Method for preparing titanium dioxide photocatalyst sol and method for preparing titanium dioxide photocatalyst comprising the same", and the like.

그런데, 이러한 초기 아나타제형 산화티탄 광촉매는 비정질 구조로서 열처리 과정을 거쳐야만 제조될 수 있기 때문에 유리, 도자기, 금속류 등 지지체의 열처리가 가능한 곳에서는 사용이 가능하나, 주로 건축용 재료 혹은 벽지 등으로 사용되는 종이, 목재, 플라스틱류에 사용하는 것은 제한을 받을 수밖에 없는 단점이 있었다.However, since the initial anatase-type titanium oxide photocatalyst is an amorphous structure and can be manufactured only by heat treatment, it can be used where heat treatment of the support such as glass, ceramics, and metals is possible, but it is mainly used as a building material or wallpaper. In addition, the use of wood, plastics had a disadvantage that must be limited.

뿐만 아니라, 개시된 기술들을 포함한 종래 아나타제형 산화티탄 광촉매는 빛에너지를 화학에너지로 변환시켜 화학반응에 이용한 것으로 촉매 반응을 위해서는 이산화티탄 광촉매의 띠간격(3.0~3.2eV) 이상의 광에너지를 필요로 하는데, 이는 자외선 영역에 해당하기 때문에 대부분이 가시광 영역인 태양광중 5% 미만에 불과한 자외선 영역을 효과적으로 흡수할 수 있는 형태가 아니어서 활성이 낮아 그 활용도가 매우 협소하다는 단점을 여전히 해결하지 못하고 있다.In addition, the conventional anatase-type titanium oxide photocatalyst including the disclosed techniques is used for chemical reaction by converting light energy into chemical energy, and for the catalytic reaction, it requires light energy of more than the band gap of the titanium dioxide photocatalyst (3.0 ~ 3.2eV). However, since it corresponds to the ultraviolet region, it is not a form capable of effectively absorbing the ultraviolet region, which is mostly less than 5% of the sunlight, which is the visible region, and thus does not solve the disadvantage that its utilization is very low due to its low activity.

특히, 최근 웰빙의 열풍이 고조됨에 따라 친환경적인 건축용 재료(벽지나 타일) 등에 소비자들의 관심이 집중되면서 인체에 유용한 원적외선이나 음이온이 다량 방출되는 소재들이 등장하게 되었고, 일예로 황토와 같은 것을 들 수 있으나 황토는 시공의 난점은 물론 비용이 비싸다는 단점이 있으므로 이를 적극적으로 대체할 수 있는 광촉매의 개발이 시급히 요청되고 있다.In particular, as the hot air of well-being has increased, consumers' attention has been focused on environmentally friendly building materials (wallpaper and tiles), and materials that emit large amounts of far-infrared rays and anions, which are useful for the human body, have emerged. However, because of the difficulty of construction and cost of ocher, it is urgently required to develop a photocatalyst that can actively replace it.

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 산화티탄(TiO2), 하이드록시아파타이트(Hydroxyapatite)의 전구물질(前驅物質)을 이용하여 졸로 만들고, 여기에 게르마늄을 첨가·혼합함으로써 가시광선 영역에서도 쉽게 활성화될 수 있는 광촉매 복합소재에 대한 것이다. The present invention was created in view of the above-mentioned problems in the prior art, and is solved by using a precursor of titanium oxide (TiO 2 ) and hydroxyapatite (Hydroxyapatite) to form a sol, and The present invention relates to a photocatalyst composite material which can be easily activated even in the visible light region by adding and mixing germanium.

본 발명을 타일, 벽지 등 각종 건축용 내·외장재의 표면 처리에 활용하여 항균성, 항곰팡이성은 물론 원적외선 방사 및 음이온방출에 의한 공기정화기능이 뛰어나면서도 저렴한 비용으로 친환경적인 주거공간을 구축할 수 있도록 한 복합소재 광촉매 졸 및 그 제조방법을 제공함에 그 주된 해결 과제가 있다.By utilizing the present invention in the surface treatment of various building interior and exterior materials such as tiles and wallpaper, it is possible to build an environment-friendly residential space with excellent antibacterial, anti-mildew, as well as air purification function by far infrared radiation and anion emission while being excellent in cost. There is a major problem in providing a composite photocatalyst sol and its preparation method.

상기와 같은 과제를 해결하기 위한 본 발명의 요지는 다음과 같다. The gist of the present invention for solving the above problems is as follows.

(1) 이산화티탄(TiO2)과 하이드록시아파타이트(Hydroxyapatite)를 함유하는 복합소재 광촉매 졸(sol)을 제조하는 방법에 있어서,(1) A method for producing a composite photocatalyst sol containing titanium dioxide (TiO 2 ) and hydroxyapatite

(a) 용매에 티타늄전구체를 혼합하여 질산용액 및 트리에틸아민(C6H15N)을 첨가하여 교반하므로써 이산화티탄(TiO2) 졸(sol)을 제조하는 단계; (a) mixing titanium precursor with a solvent to prepare a titanium dioxide (TiO 2 ) sol by stirring by adding nitric acid solution and triethylamine (C 6 H 15 N);

(b) 용매에 질산칼륨4수화물(Ca(NO3)4H2O)과 삼에틸아인산(P(OC2H5)3)을 교반하고 여기에 수산화암모늄(NH4OH)을 교반하여 하이드록시아파타이트(Hydroxyapatite) 졸(sol)을 제조하는 단계; (b) Potassium nitrate tetrahydrate (Ca (NO 3 ) 2 · 4H 2 O) and triethyl phosphite (P (OC 2 H 5 ) 3 ) are stirred in a solvent, and ammonium hydroxide (NH 4 OH) is stirred therein. Preparing a hydroxyapatite sol;

(c) 상기 (a)단계에 의해 생성된 이산화티타늄 졸(sol)과 상기 (b)단계에 의해 제조된 하이드록시아파타이트 졸(sol)에 콜로이달실리카를 혼합하여 교반하는 단계; 및 (c) mixing and stirring colloidal silica with the titanium dioxide sol produced by step (a) and the hydroxyapatite sol prepared by step (b); And

(d) (a)단계, (b)단계 및 (c)단계에 의해 제조된 이산화티탄(TiO2)과 하이드록시아파타이트(Hydroxyapatite)를 함유하는 광촉매 졸(sol)에 게르마늄(Germanium) 수용액을 혼합하여 교반하는 단계를 포함하는 복합소재 광촉매 졸(sol)의 제조방법.(d) Mixing an aqueous germanium solution with a photocatalyst sol containing titanium dioxide (TiO 2 ) and hydroxyapatite prepared in steps (a), (b) and (c) Method for producing a composite photocatalyst sol (sol) comprising the step of stirring.

(2) 상기 용매는 알코올계 용매인 것을 특징으로 하는 상기(1) 기재의 복합소재 광촉매 졸(sol)의 제조방법.(2) The method for producing a composite photocatalyst sol according to the above (1), wherein the solvent is an alcohol solvent.

(3) 상기 티타늄전구체는 티타늄테트라이소프로포사이드(Ti(OCH(CH3)2)4)인 것을 특징으로 하는 상기(1) 기재의 복합소재 광촉매 졸(sol)의 제조방법.(3) The method for producing a composite photocatalyst sol according to the above (1), wherein the titanium precursor is titanium tetraisopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ).

(4) 상기 게르마늄 수용액은 게르마늄 원석을 80~100mesh 크기로 분쇄하여 제조된 것을 특징으로 하는 상기(1) 기재의 복합소재 광촉매 졸(sol)의 제조방법.(4) The method of producing a composite photocatalyst sol (1) according to the above (1), wherein the aqueous germanium solution is prepared by pulverizing germanium ore into an 80-100 mesh size.

(5) 이산화티탄(TiO2)졸 17중량% 내지 28중량% 및 하이드록시아파타이트 (Hydroxyapatite)졸 21중량% 내지 38중량%, 게르마늄(Germanium) 수용액 5중량% 내지 10중량%, 콜로이달 실리카를 3중량% 내지 9중량%를 포함하는 것을 특징으로 하는 복합소재 광촉매 졸(sol).(5) 17 wt% to 28 wt% of titanium dioxide (TiO 2 ) sol, 21 wt% to 38 wt% of hydroxyapatite sol, 5 wt% to 10 wt% of aqueous solution of germanium, colloidal silica Composite photocatalyst sol (Sol) comprising 3 to 9% by weight.

(6) 상기 이산화티탄(TiO2)졸은 티타늄테트라이소프로포사이드 (Ti(OCH(CH3)2)4)와 이소프로판올((CH3)2CHOH)을 1:1 내지 1:3의 비율로 포함하고 있는 것을 특징으로 하는 상기(5) 기재의 복합소재 광촉매 졸(sol). (6) The titanium dioxide (TiO 2 ) sol is a titanium tetraisopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ) and isopropanol ((CH 3 ) 2 CHOH) in a ratio of 1: 1 to 1: 3. The composite photocatalyst sol of the above-mentioned (5), characterized in that it comprises.

(7) 상기 하이드록시아파타이트(Hydroxyapatite)졸은 질산칼륨4수화물 (Ca(NO3)4H2O) 0.09M~0.15M과 삼에틸아인산(P(OC2H5)3)을 0.059M~0.09M 포함하는 것을 특징으로 하는 상기(5) 기재의 복합소재 광촉매 졸(sol). (7) The hydroxyapatite sol is 0.09 M to 0.15 M of potassium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) and 0.059 M of triethylphosphoric acid (P (OC 2 H 5 ) 3 ). Composite photocatalyst sol according to the above (5), characterized in that it comprises ~ 0.09M.

(8) 상기 게르마늄 수용액은 80~100mesh 크기의 게르마늄 원석을 포함하고 있는 것을 특징으로 하는 상기(5) 기재의 복합소재 광촉매 졸(sol).(8) The composite photocatalyst sol according to the above (5), wherein the aqueous germanium solution contains germanium ore having a size of 80 to 100 mesh.

본 발명에 따른 복합소재 광촉매 졸은 보다 친환경적인 복합소재로의 기능을 담당할 수 있고, 또한 이들 구성의 상호 작용에 의해 가시광선 영역의 빛 에너지를 가지고도 광산화반응을 일으킬 수 있어 광촉매의 활성을 매우 높이며, 항균성, 항곰팡이성이 우수하고, 원적외선방사 및 음이온 방출에 따른 공기정화기능이 뛰어난 효과를 얻을 수 있다. The composite photocatalyst sol according to the present invention can play a role as a more environmentally friendly composite material, and can also cause a photo-oxidation reaction even with light energy in the visible range by the interaction of these components. Very high, antibacterial, anti-mold, excellent air purification function according to far infrared radiation and anion release can be obtained.

이산화티탄(TiO2), 하이드록시아파타이트(Hydroxyapatite), 게르마늄(Germanium)의 복합소재는 기존의 이산화티탄-하이드록시아파타이트의 장점을 그대로 보유하면서 게르마늄과의 시너지 효과를 통해 보다 효율적인 복합 광촉매로 작용한다.The composite material of titanium dioxide (TiO 2 ), hydroxyapatite and germanium retains the advantages of the existing titanium dioxide-hydroxyapatite and acts as a more efficient composite photocatalyst through synergy with germanium. .

이 방안은 이산화티탄(TiO2)의 감도 측면에서 좋은 방안일 뿐만 아니라 광전 자 특성에 영향을 주어 광기전력이 발생 되기도 한다. 특히 유기물 분해나 항균적 측면에 있어 중요한 산화기능의 경우 게르마늄과 이산화티탄과의 반응에 의해 산화력이 증가 된다.This method is not only good in terms of sensitivity of titanium dioxide (TiO 2 ) but also affects the photoelectron characteristics, resulting in photovoltaic generation. In particular, the oxidation function is important in the decomposition of organic matter or antimicrobial aspect by the reaction of germanium and titanium dioxide increases the oxidation power.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 구체적으로 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

본 발명에 따른 복합소재 광촉매 졸은 이산화티탄(TiO2), 하이드록시아파타이트(Hydroxyapatite)의 전구물질을 사용하여 졸(Sol)을 만든 후 여기에 게르마늄(Germanium) 등을 첨가·혼합함으로써 기존의 이산화티탄(TiO2)-하이드록시아파타이트(Hydroxyapatite)의 장점은 그대로 유지하면서 이산화티탄(TiO2)의 산화력을 높이고, 게르마늄(Germanium)과의 시너지 효과를 통해 보다 효율적인 복합소재 광촉매 졸을 제조할 수 있도록 한 것이다.Composite photocatalyst sol according to the present invention is prepared by using a precursor of titanium dioxide (TiO 2 ), hydroxyapatite (Hydroxyapatite) to form a sol (Sol) and then adding and mixing germanium (Germanium), etc. Titanium (TiO 2 ) -Hyroxyapatite maintains the advantages of titanium dioxide (TiO 2 ) while maintaining the advantages, synergies with germanium (Germanium) through a more efficient composite photocatalyst sol can be produced It is.

이를 위해, 본 발명에 따른 복합소재 광촉매 졸은 이산화티탄(TiO2) 졸(sol) 17~28중량%, 하이드록시아파타이트(Hydroxyapatite) 졸(sol) 21~38중량%, 게르마늄(Germanium) 수용액 5~10중량%, 바인더 3~9중량% 및 잔부인 물로 조성된다. To this end, the composite photocatalyst sol according to the present invention is 17 to 28% by weight of titanium dioxide (TiO 2 ) sol (sol), 21 to 38% by weight of hydroxyapatite (sol), aqueous solution of germanium (Germanium) 5 It consists of -10 weight%, a binder 3-9 weight%, and balance water .

이때, 이산화티탄은 광이 있는 조건에서 반응의 효율을 향상시키기 위한 광촉매 화합물로서, 중금속, 활성 등을 고려하고, 광부식이 없어서 안정적이며, 생물 학적ㆍ화학적으로 비활성을 갖는다.At this time, titanium dioxide is a photocatalyst compound for improving the efficiency of the reaction in the presence of light, considering the heavy metals, activity and the like, is stable because there is no photo-corrosion, and biologically and chemically inert.

이러한 이산화티탄(TiO2)은 이산화티탄 전구물질을 이용하여 졸(sol) 형태로 제조되어, 이산화티탄(TiO2) 졸(sol)이 전체 복합소재 광촉매 졸(sol)에 있어 17~28중량%가 첨가됨이 바람직한데, 이는 17중량% 미만으로 첨가되게 되면 촉매의 활성이 저하되고, 28중량%를 초과하게 되면 광에 의한 의존도가 높아지게 되어, 광(光)이 없는 경우 광산화반응의 효율성이 급격히 저하되므로 상기 범위로 한정함이 바람직하기 때문이다.Titanium dioxide (TiO 2 ) is prepared in the form of a sol using a titanium dioxide precursor, the titanium dioxide (TiO 2 ) sol (17) to 28% by weight in the total composite photocatalyst sol (sol) It is preferable to add a catalyst, which is less than 17% by weight, the activity of the catalyst is lowered, when it exceeds 28% by weight, the dependence of light is increased, the efficiency of the photooxidation reaction in the absence of light It is because it is preferable to limit to the said range since it falls rapidly.

한편, 상기 하이드록시아파타이트(Hydroxyapatite)는 치아나 뼈 등의 생체 경조직의 주성분으로서 다양한 양이온이나 음이온과 이온 교환하기 쉽고, 높은 생체친화성 및 흡착 특성을 갖는다.On the other hand, the hydroxyapatite (Hydroxyapatite) is a major component of living hard tissues such as teeth and bones, and is easy to ion exchange with various cations and anions, and has high biocompatibility and adsorption characteristics.

즉, 상기 하이드록시아파타이트(Hydroxyapatite)는 뼈의 65%, 치아 에나멜질의 95%를 구성하는 물질로서 단백질 등의 흡착성이 뛰어나 세균, 바이러스, 암모니아, 질소산화물, 알데히드류 등을 흡착 가능하므로 친환경 정화재료로 적합한 특성을 가진다.That is, the hydroxyapatite is a substance that constitutes 65% of bone and 95% of tooth enamel and has excellent adsorption of proteins and the like, and thus can adsorb bacteria, viruses, ammonia, nitrogen oxides, aldehydes, and the like. Has suitable properties.

이러한 이유로, 상기 하이드록시아파타이트(Hydroxyapatite)는 인공뼈, 인공치근 등의 의료용 재료를 비롯하여, 크로마토그래피(chromatography)용 흡착제, 화학센서, 이온교환체, 촉매 등의 폭넓은 분야에서 응용되고 있으며, 특히 단백질 등의 유기물을 특이적으로 흡착하는 능력도 갖는다.For this reason, the hydroxyapatite has been applied in a wide range of fields such as medical materials such as artificial bones and artificial roots, adsorbents for chromatography, chemical sensors, ion exchangers, catalysts, and the like. It also has the ability to specifically adsorb organic substances such as proteins.

상기와 같은 하이드록시아파타이트(Hydroxyapatite)는 졸(sol) 형태로 제조하여 하이드록시아파타이트(Hydroxyapatite) 졸(sol)을 전제 복합소재 광촉매 졸의 21중량%~38중량%가 첨가됨이 바람직한데, 이는 21중량% 미만으로 첨가되게 되면 그 양이 너무 미약하여 유기물질의 흡착성이 떨어지고, 38중량%를 초과하게 되면 흡착에 의한 의존도가 높아지게 되어 광에 의한 효율성이 저하되므로 상기 범위로 한정함이 바람직하기 때문이다.The hydroxyapatite as described above is prepared in the form of a sol, and hydroxyapatite is preferably 21% to 38% by weight of the composite photocatalyst sol, which is premised on the hydroxyapatite sol. If the amount is less than 21% by weight, the amount is so weak that the adsorptivity of the organic material is lowered. If it exceeds 38% by weight, the dependence by adsorption is increased and the efficiency of light is lowered. Because.

또한, 상기 포함 물질의 하나인 게르마늄(Germaniun)은 회백색 광물로서, 원적외선을 방출하고, 독성 물질을 흡인하여 화학적으로 결합 후 독성이 없는 다른 물질로 만드는 제독작용이 있으며, 더불어 음이온 방출효과도 있음은 잘 알려진 사실이다.In addition, germanium (Germaniun), which is one of the included substances, is an off-white mineral, and emits far infrared rays, and absorbs toxic substances to make other substances which are not toxic after chemically bonding, and also has an anion-releasing effect. This is a well known fact.

이러한 게르마늄(Germaniun)은 질량수 76의 규산염 중에 일부의 규소가 치환되어 존재하기도 하고, 황화광 혹은 석탄 중에도 존재하는 회백색의 입방정계, 다이몬드구조를 갖는 물질이기도 하며, 현재 게르마늄(Germaniun)을 사용하여 응용화된 기술들은 항암제, 화상치료제, 질 세정제, 각종 피부질환자, 안질환자 등의 치료제로도 적용되고 있다.Such germanium (Germaniun) is a part of the silicate having a mass number of 76 is substituted by some of the silicon, and is also a material having an off-white cubic system and diamond structure present in sulfide or coal or coal, currently applied by using germanium (Germaniun) The technology has been applied to anticancer drugs, burn treatments, vaginal cleansers, various skin diseases and eye diseases.

특히, 국내에서 게르마늄 광맥이 발견되면서 게르마늄의 활용방안에 대한 관심이 커지고 있는 상황이며, 하기한 표 1과 같이 여러 분야에서 기술 개발이 진행되고 있다.In particular, the discovery of germanium veins in the domestic situation is growing interest in the utilization of germanium, technology development is progressing in various fields as shown in Table 1 below.

종류  Kinds 원소기호 Symbol 용도 Usage 순도 water 상태 condition 비고 Remarks 게르마늄  germanium Ge Ge 반도체, 피부용 Semiconductor, skin 99.99% 99.99% 인코트 Incoat 독일의 C.윙클러 발견 Discover C. Winkler in Germany 유기 게르마늄 Organic germanium Ge Ge 식품 및 의약용 For food and medicine 42.8% 42.8% 파우더 powder 무색, 무취, 약간 신맛이 남, 물에 상당히 잘 녹음(수용성) Colorless, odorless, slightly acidic, well watered (water soluble) 이산화 게르마늄 Germanium dioxide GeO2 GeO 2 공업용 Industrial 69.42% 69.42% 파우더 powder 공업용으로 쓰임, 인체사용시 치명적임, 물에 안 녹음 Used for industrial purposes, deadly in human use, not recording in water

상기 표 1에서와 같이, 게르마늄(Germanium) 관련 산업은 반도체 산업에 의해 주도적으로 발전하고 있지만 환경에 대한 관심이 높아지면서 점차 환경적 용도 및 건강상의 용도로의 사용이 급증하고 있다.As shown in Table 1, germanium-related industries are being led by the semiconductor industry, but with increasing environmental concerns, their use in environmental and health uses is increasing rapidly.

본 발명에서는 상기 게르마늄(Germanium)을 통한 항균성, 항곰팡이성, 즉 강력한 산화력을 확보하기 위해 적정 입도로 구성할 필요가 있다.In the present invention, the germanium (Germanium) through the antimicrobial, anti-fungal, that is, it is necessary to configure the appropriate particle size in order to secure a strong oxidizing power.

이를 위해, 상기 게르마늄(Germanium)은 이산화티탄(TiO2)과 잘 혼합되면서 적어도 95% 이상의 항균성을 갖도록 하기 위해 80-100 mesh의 입도를 갖도록 함이 바람직하다.To this end, the germanium (Germanium) is preferably mixed with titanium dioxide (TiO 2 ) to have a particle size of 80-100 mesh in order to have at least 95% antimicrobial activity.

이는 도 1에 도시된 조건으로, 게르마늄 원석을 사용하여 이를 분쇄한 후 해당 mesh로 체질하여 분류하고, 각 mesh별 E.coli(대장균) 실험을 실시하여 효율을 비교 분석해 본 결과, 80-100 mesh일 때 E.coli의 제거율이 도 2의 그래프에서와 같이 95% 이상 되었음을 확인하여 게르마늄(Germanium)은 상기 범위의 입경을 갖도록 하는 것이 본 발명에 가장 적당하기 때문이다. This is the conditions shown in Figure 1, using a germanium ore, pulverized it and sieved by the mesh, classify, and by performing an E. coli (E. coli) experiment for each mesh to compare and analyze the efficiency, 80-100 mesh When it is confirmed that the removal rate of E. coli is more than 95% as shown in the graph of Figure 2 because the germanium (Germanium) having a particle size of the above range is most suitable for the present invention.

즉, 그래프에 나타난 바와 같이 80~100mesh 이하의 조건에서는 대장균 제거의 효율이 크게 차이가 나지 않으므로 게르마늄 원석 가공 조건을 80~100mesh로 선정함이 가장 제조공정의 단계를 줄이고 비용을 절약할 수 있는 범위이다.That is, as shown in the graph, the efficiency of E. coli removal is not significantly different under the conditions of 80-100 mesh or less, so selecting the germanium gemstone processing condition as 80-100 mesh reduces the steps of the manufacturing process and saves the cost. to be.

뿐만 아니라, 이산화티탄(TiO2)과의 시너지 효과를 얻기 위해서는 상기 게르마늄(Germanium)을 수용액으로 제조하여 5~10중량%의 구성이 되도록 하여야 한다. In addition, in order to obtain a synergistic effect with titanium dioxide (TiO 2 ), the germanium (Germanium) should be prepared in an aqueous solution to have a composition of 5 to 10% by weight.

이는 이산화티탄(TiO2)의 감도 측면에서 좋은 방안일 뿐만 아니라 광전자 특성에 영향을 주어 광기전력이 발생 되기도 하며, 특히 유기물 분해나 항균적 측면에 있어 중요한 산화 기능의 경우 게르마늄(Germanium)과 이산화티탄(TiO2)과의 반응에 의해 산화력을 더욱 증가시킬 수 있기 때문이다.This is not only a good solution in terms of the sensitivity of titanium dioxide (TiO 2 ) but also affects the optoelectronic properties, which can generate photovoltaic power. In particular, germanium and titanium dioxide are important for the oxidation function in terms of organic decomposition or antibacterial. This is because the oxidizing power can be further increased by the reaction with (TiO 2 ).

다시 말해, 게르마늄(Germanium)과 이산화티탄(TiO2)이 연계되었을 때 하기의 Balanced half-reaction에서와 같이, 이산화티탄(TiO2)의 전자를 빼앗아 자유정공을 만들고 이렇게 생성된 더 많은 자유정공으로 인해 기존의 이산화티탄(TiO2)-하이드록시아파타이트(Hydroxyapatite)의 구성보다 산화력이 증가되고 더 넓은 범위의 파장에서의 반응성을 확보할 수 있게 되며, 이를 통해 본 발명에 따른 광촉매는 자외선 영역에서만 광반응을 하는 것이 아니라 가시광선 영역에서도 쉽게 광반응을 수행할 수 있게 되어 그 활용범위가 현격히 증가될 수 있게 된다.In other words, when germanium and titanium dioxide (TiO 2 ) are linked, as in the balanced half-reaction below, the electrons of titanium dioxide (TiO 2 ) are taken away to create free holes and thus more free holes Due to this, the oxidizing power is increased and the reactivity at a wider range of wavelengths can be obtained than the composition of the conventional titanium dioxide (TiO 2 ) -hydroxyapatite, and thus the photocatalyst according to the present invention can be used only in the ultraviolet region. Rather than reacting, it is possible to easily perform photoreaction in the visible light range, so that the range of application can be increased significantly.

BalancedBalanced halfhalf -- reactionreaction

Ge2 + + 2e- Ge(s)Ge 2 + + 2e - Ge (s)

GeO2(s) + 4H+ + 2e- Ge2 + + 2H2OGeO 2 (s) + 4H + + 2e - Ge 2 + + 2H 2 O

GeO2(s) + 4H+ + 4e- Ge + 2H2OGeO 2 (s) + 4H + + 4e - Ge + 2H 2 O

H2GeO3 + 4H+ + 4e- Ge(s) + 3H2OH 2 GeO 3 + 4H + + 4e - Ge (s) + 3H 2 O

GeO(s) + 2H+ + 2e- Ge(s) + H2OGeO (s) + 2H + + 2e - Ge (s) + H 2 O

따라서, 본 발명에서는 상기 게르마늄을 수용액 형태로 제조하여 5-10중량% 로 첨가되어야 하는데, 5중량% 미만으로 첨가하면 원적외선 방사나 음이온 방출 효과가 미약하고, 10중량%를 초과하여 첨가되게 되면 비용부담이 급증하므로 상기 범위로 한정하여 첨가됨이 바람직하다.Therefore, in the present invention, the germanium should be prepared in the form of an aqueous solution and added at 5-10% by weight. If it is added below 5% by weight, the effect of far-infrared radiation or anion emission is weak, and if more than 10% by weight is added, the cost Since burden increases rapidly, it is preferable to add in the said range.

한편, 바인더는 각 성분을 혼합시킬 때 성분 간의 결합력을 높이기 위한 것으로, SiO2를 함유한 무기계 바인더를 사용함이 바람직하다.On the other hand, the binder is to increase the bonding force between the components when mixing each component, it is preferable to use an inorganic binder containing SiO 2 .

이는 상기 무기계 바인더의 경우 본 발명에 따른 조성물이 갖는 광 및 무광촉매의 특성과, 살균, 항균 작용에 대한 방해를 하지 않기 때문이다.This is because the inorganic binder does not interfere with the properties of the light and matte catalysts, the sterilization and the antibacterial action of the composition according to the present invention.

이러한 무기계 바인더로는 특히, 콜로이달실리카가 바람직한데, 이는 결합성, 내열성, 조막성 및 흡착성에 있어 우수하기 때문이다.Colloidal silica is particularly preferred as such an inorganic binder because it is excellent in binding, heat resistance, film formation and adsorption properties.

나아가, 상기 무기계 바인더는 이미 하이드록시아파타이트(Hydroxyapatite)내에 Ca가 함유되어 있어 이 Ca가 어느 정도 바인더 역할을 하고 있으므로 과량 첨가될 필요는 없으며, 상기 하이드록시아파타이트(Hyroxyapatite)를 고려하여 3-9중량%의 범위로 첨가함이 바람직하다.Furthermore, since the inorganic binder already contains Ca in hydroxyapatite, Ca does not need to be added in excess because it acts as a binder to some extent, and 3-9 weight in consideration of the hydroxyapatite. It is preferable to add in the range of%.

마지막으로, 잔부인 물 15-54중량%를 상술한 성분들과 혼합함으로써 졸 형태로 만들 수 있다. Finally, the remaining 15 to 54% by weight of water can be made into the sol form by mixing with the above-mentioned ingredients.

이러한 조성으로 이루어진 본 발명에 따른 광촉매 졸(sol)은 다음과 같은 방법으로 제조될 수 있다.The photocatalyst sol according to the present invention having such a composition can be prepared by the following method.

도 3에 도시된 바와 같이, 본 발명에 따른 복합소재 광촉매 졸을 만들기 위해 먼저 게르마늄(Germanium) 수용액 제조단계(S100)를 거치게 된다.As shown in Figure 3, to make a composite photocatalyst sol according to the present invention is first subjected to a germanium (Germanium) aqueous solution manufacturing step (S100).

이때, 상기 게르마늄(Germanium) 수용액 제조단계(S100)는 게르마늄(Germanium) 원석을 특정 입경(80~100mesh)을 갖도록 분쇄하고, 분쇄된 게르마늄 분말에 물을 가하여 교반하는 과정을 포함한다.At this time, the germanium (Germanium) aqueous solution manufacturing step (S100) includes a process of grinding the germanium (Germanium) ore to have a specific particle diameter (80 ~ 100mesh), adding water to the crushed germanium powder and stirring.

즉, 게르마늄 수용액 제조를 위해 게르마늄(Germanium) 원석을 구비한 다음 200-250℃의 로터리킬른에서 분쇄하게 되는데, 분쇄시 게르마늄(Germanium)의 입경은 앞서 설명하였던 바와 같이 80-100 mesh가 되도록 하여 준다.That is, the germanium (Germanium) ore is prepared for the aqueous solution of germanium is then pulverized in a rotary kiln of 200-250 ℃, the particle size of the germanium (Germanium) at the time of pulverization is to be 80-100 mesh as described above .

이후, 게르마늄(Germanium)과 물을 1:10의 비율로 혼합한 다음 3-5시간 정도 저속 교반하여 게르마늄 수용액을 만들게 된다.Thereafter, germanium and water are mixed at a ratio of 1:10, and then stirred at a low speed for about 3-5 hours to make an aqueous germanium solution.

여기에서, 게르마늄(Germanium) 원석을 200-250℃로 유지되는 로터리킬른에서 분쇄하는 이유는 게르마늄 원석을 200℃ 미만에서 분쇄하면 기공형성에 문제가 발생하고 250℃이상이면 균열이 생기는 문제가 있기 때문이다. Here, the reason why the germanium ore is pulverized in the rotary kiln maintained at 200-250 ° C. is because when the germanium ore is crushed at less than 200 ° C., the pore formation problem occurs, and if it is above 250 ° C., there is a problem of cracking. to be.

그리고, 상기 이산화티탄 (TiO2) 졸 제조단계(S200)가 수행되는데, 이는 이산화티탄(TiO2)의 전구물질로부터 제조되는 이산화티탄(TiO2) 졸의 제조 방법이다.And, there is carried out the titanium dioxide (TiO 2) sol production phase (S200), which is a method of producing titanium dioxide (TiO 2) sol prepared from a precursor of titanium dioxide (TiO 2).

여기에서, 상기 이산화티탄(TiO2) 졸은 Titanium tetraisopropoxide (Ti(OCH(CH3)2)4)와 Isopropanol((CH3)2CHOH)를 1:1 또는 1:3의 중량비로 첨가 혼합한 다음 0.5시간 교반한 후 0.5~2M의 질산(HNO3)을 첨가하여 12~36시간 교반한다. 그리고 Triethylamine(C6H15N)을 2~5M 첨가, 혼합하여 6~18 시간 교반하여 N-TiO2 졸(sol)을 제조한다.Here, the titanium dioxide (TiO 2 ) sol is a mixture of Titanium tetraisopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ) and Isopropanol ((CH 3 ) 2 CHOH) in a weight ratio of 1: 1 or 1: 3 Next, the mixture was stirred for 0.5 hours, and then nitric acid (HNO 3 ) of 0.5-2 M was added, followed by stirring for 12-36 hours. 2 ~ 5M of Triethylamine (C 6 H 15 N) was added and mixed and stirred for 6 ~ 18 hours to form N-TiO 2 To prepare a sol.

이때 상기와 같은 이산화티탄 졸 제조과정에서 첨가되는 각 성분들은 Titanium tetraisopropoxide (Ti(OCH(CH3)2)4) 전구체에 용매 Isopropanol((CH3)2CHOH)를 첨가하고 질소 도핑을 위하여 Triethylamine(C6H15N)을 첨가 혼합한다.At this time, each component added in the titanium dioxide sol manufacturing process is added to the solvent Titanium tetraisopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ) precursor Isopropanol ((CH 3 ) 2 CHOH) and triethylamine ( C 6 H 15 N) is added and mixed.

한편 하이드록시아파타이트(Hydroxyapatite)도 졸(sol) 타입으로 제조해야하는데, 하이드록시아파타이트 졸 제조단계(S300)는 100ml의 에탄올과 0.098~0.15M의 질산칼슘4수화물(Ca(NO3)2·4H2O)와, 0.059~0.09M의 삼에틸아인산(P(OC2H5)3)와, 1L의 물을 서로 혼합한 후 1~2시간 동안 교반하고, 이어 수산화암모늄(NH4OH) 90~100ml를 부가하고 다시 3~6시간 동안 교반하여 제조된다.On the other hand, hydroxyapatite (Hydroxyapatite) should also be prepared in the sol (sol) type, hydroxyapatite sol manufacturing step (S300) is 100ml of ethanol and 0.098 ~ 0.15M calcium nitrate tetrahydrate (Ca (NO 3 ) 2 · 4H 2 O), 0.059-0.09 M triethylphosphoric acid (P (OC 2 H 5 ) 3 ), and 1 L of water were mixed with each other, and then stirred for 1 to 2 hours, followed by ammonium hydroxide (NH 4 OH) 90 Prepared by adding ~ 100ml and stirring again for 3-6 hours.

이때 하이드록시아파타이트 졸 제조과정에서 첨가되는 각 성분들은 질산칼슘4수화물(Ca(NO3)2·4H2O)과 삼에틸아인산 (P(OC2H5)3) 전구물질을 첨가하여 혼합하고 pH조절을 위하여 NH4OH를 첨가하여 혼합한다.At this time, each component added during the hydroxyapatite sol preparation is mixed by adding calcium nitrate tetrahydrate (Ca (NO 3 ) 2 · 4H 2 O) and triethylphosphoric acid (P (OC 2 H 5 ) 3 ) precursor. NH 4 OH is added and mixed for pH adjustment.

이렇게 게르마늄(Germanium) 수용액과 이산화티탄 졸과 하이드록시아파타이트(Hydroxyapatite) 졸을 각각 제조하게 되면 게르마늄 수용액 5~10중량%, 이산화티탄(TiO2) 졸 17~28중량%, 하이드록시아파타이트(Hydroxyapatite) 졸 21~38중량%의 중량비로 혼합한 후, 물을 혼합하고 그 상태에서 바인더로서 콜로이달실리카를 3~9중량%를 첨가하여 1.5~3시간 동안 저속 교반하게 되면 본 발명에 따른 복합소재 광촉매 졸이 완성된다.Thus prepared germanium solution, titanium dioxide sol and hydroxyapatite sol, respectively, 5-10% by weight of germanium solution, 17-28% by weight titanium dioxide (TiO 2 ) sol, hydroxyapatite (Hydroxyapatite) After mixing in a weight ratio of 21 to 38% by weight of sol, water is mixed and in that state is added to 3 to 9% by weight of colloidal silica as a binder and low-speed stirring for 1.5 to 3 hours composite photocatalyst according to the present invention The sol is complete.

이러한 단계를 거쳐 제조된 복합소재 광촉매 졸은 벽지, 타일 등을 비롯한 각종 건축용 내ㆍ외장재의 표면에 분무, 롤링 등의 방식으로 도포되어 사용됨으로써 가시광선 영역의 빛 에너지만으로도 광산화반응을 일으킬 수 있어 광활성이 뛰어나고, 덧붙여 항균성, 항곰팡이성은 물론 원적외선 방사와 음이온 방출에 따른 공기정화기능까지 제공하는 친환경소재로 활용될 수 있다.The composite photocatalyst sol prepared through these steps is applied to the surface of various building interior and exterior materials including wallpaper, tile, etc. by spraying, rolling, etc., so that it can cause photo-oxidation reaction using only light energy in the visible region. In addition, it can be used as an eco-friendly material that provides antibacterial and antifungal properties as well as air purification function according to far infrared radiation and anion emission.

이하, 실시예에 대하여 설명한다.Hereinafter, an Example is described.

[실시예]EXAMPLE

본 발명에 따른 복합소재 광촉매 졸의 항균성, 항곰팡이성 및 원적외선 방사, 음이온 방출에 대한 효능과 가시광선 영역에서도 광산화반응이 일어나는지의 여부를 확인하기 위하여 하기한 표 2의 조성범위를 갖도록 상술한 제조방법을 통해 광촉매 졸을 만든 후 4㎝×4㎝×4㎝ 크기를 갖는 다수의 시편 벽지에 0.2㎛의 두께로 분무하여 도포한 다음 그 효능을 확인하였다.Preparation as described above to have a composition range of the following Table 2 to determine whether the photoacid reaction occurs in the visible light region and the antimicrobial, anti-fungal and far infrared radiation of the composite photocatalyst sol according to the present invention After the photocatalyst sol was made through the method, a plurality of specimen wallpaper having a size of 4 cm × 4 cm × 4 cm were sprayed and applied to a thickness of 0.2 μm, and then the efficacy thereof was confirmed.

이때, 이산화티탄의 입도는 21nm, 하이드록시아파타이트의 입도는 15㎛, 게르마늄은 90 mesh의 크기로 하였으며, 바인더로써 콜로이달 실리카를 첨가하여 180rmp의 속도로 1시간 동안 저속 교반함으로써 본 발명에 따른 광촉매 현탁액을 만들었다.At this time, the particle size of titanium dioxide is 21nm, hydroxyapatite particle size of 15㎛, germanium 90 mesh size, by adding colloidal silica as a binder at low speed for 1 hour at a speed of 180rpm by photocatalyst according to the present invention A suspension was made.

아울러, 비교를 위해 광촉매가 도포되지 않은 일반벽지(종래재)와, 기존 이산화티탄 광촉매로 도포된 벽지(비교재)를 더 마련하였으며, 실험결과를 표 2에 나타내었다.In addition, for comparison, a general wall paper (traditional material) not coated with a photocatalyst and a wallpaper (comparative material) coated with a conventional titanium dioxide photocatalyst were further prepared, and the experimental results are shown in Table 2.

그리고, 항균성을 확인하기 위해 대장균을 한천배지에 접종하여 37℃에서 24시간 배양하고, 이를 시편 벽지(발명재1,2,3)과, 종래재 및 비교재 모두에 동일한 양만큼 스프레이 한 후 24시간 방치하였다.In order to check the antimicrobial activity, E. coli was inoculated on an agar medium and incubated at 37 ° C. for 24 hours, and then sprayed on the specimen wallpaper (inventive material 1, 2, 3) and the conventional and comparative materials by the same amount. It was left for time.

이어, 24시간 경과 후 동일량의 증류수를 각각 발명재 1,2,3, 종래재 및 비교재에 스프레이하여 시험편으로부터 증식된 대장균을 증류수로 추출하였다.Subsequently, after 24 hours, the same amount of distilled water was sprayed onto the invention materials 1,2,3, the conventional material and the comparative material, respectively, and the E. coli grown from the test piece was extracted with distilled water.

그런 다음,이들로부터 추출된 증류수에 잔존하는 대장균의 감소 백분율을 계산하였으며 95%를 초과할 경우에는 매우 우수, 93-95%일 경우에는 우수, 90-93% 미만일 경우에는 보통, 90% 미만일 경우에는 불량으로 판정하였다.The percentage reduction of E. coli remaining in the distilled water extracted from these was then calculated and is very good if it exceeds 95%, good for 93-95%, normal for less than 90-93%, less than 90% It was determined that the defect was bad.

또한, 항곰팡이성 효능을 확인하기 위해 JIS Z 2911-2001 시험방법에 의하여 아스퍼질러스 니그로, 페니실리움 씨트리넘 및 케토늄 글로보솜에 대하여 28℃의 온도조건에서 발명재1,2,3, 종래재 및 비교재에 각각 대한 항진균 실험을 실시하였고, 곰팡이의 발생 여부를 확인하여 그 결과를 표 2에 나타내었다.In addition, in order to confirm the antifungal efficacy, Aspergillus nigro, Penicillium citranum and ketoneium globosome according to JIS Z 2911-2001 test method at the temperature of 28 ℃ invention materials 1, 2, 3, Antifungal experiments were performed on the conventional and comparative materials, respectively, and the results of the fungus were confirmed and the results are shown in Table 2.

아울러, 원적외선 방사 효능을 확인하기 위해 TSS-5XN(원적외선 방사율 측정기:정온 방사원에서의 적외선 조사에 따른 방사 에너지 양 검출 방식, 측정파장:2-22㎛, 측정범위:방사율 0.00-1.00, 측정 정도:±0.01 이내, 측정면적:φ15mm 이내, 시료온도:10-40℃, 출력:0-0.1V:0-1V, 표시:LED디지털 표시, 전원ㆍ전력:AC100Vㆍ50-60Hz)를 사용하여 발명재1,2,3, 종래재 및 비교재 각각에 대한 원적외선 방사 실험을 실시하였고, 그 결과를 표 2에 나타내었다.In addition, in order to confirm the efficacy of far-infrared radiation TSS-5XN (far-infrared emissivity measuring instrument: detection method of the amount of radiation energy according to infrared radiation from a constant temperature radiation source, measurement wavelength: 2-22㎛, measurement range: emissivity 0.00-1.00, measurement accuracy: Insulation material using ± 0.01 or less, measuring area: φ15 mm, sample temperature: 10-40 ° C, output: 0-0.1V: 0-1V, display: LED digital display, power / power: AC100V, 50-60Hz Far-infrared radiation experiments were carried out for each of 1,2,3, conventional and comparative materials, and the results are shown in Table 2.

나아가, 음이온 방출 효능을 확인하기 위해 에코-홀리스틱(Eco-Holistic)사에서 제조한 이온시험기를 발명재1,2,3, 종래재 및 비교재 각각에 직접 접지하여 계기판에 나타나는 수치를 읽는 방법으로 음이온 발생 여부를 확인하였고, 그 결과를 표 2에 나타내었다.Furthermore, in order to confirm the effect of releasing negative ions, an ion tester manufactured by Eco-Holistic Co., Ltd. is directly grounded to each of Inventive Materials 1, 2, 3, Conventional Materials, and Comparative Materials to read the numerical value displayed on the instrument panel. It was confirmed whether the negative ions generated, the results are shown in Table 2.

하기한 표 2에 나타낸 %는 모두 중량%이다.All percentages shown in Table 2 below are% by weight.

또한, 하기한 표 2에 표기한 "HAp"는 하이드록시아파타이트(Hydroxyapatite)를 의미하며, 표기된 부호는 각각 ◎:매우 우수, ○:우수, △:보통, ×:불량을 의미한다.In addition, "HAp" shown in Table 2 below means hydroxyapatite, and the symbols indicated are ◎: very good, ○: excellent, Δ: normal, and ×: poor.

구분  division 성분 조성 Ingredient composition 항균성 Antimicrobial activity 항곰팡 이성 Antifungal 원적외선 방사 Far infrared radiation 음이온 방출 Negative ion release TiO2TiO 2 Sol HAp졸 HAp Sol Ge수용액 Ge aqueous solution 바인더 bookbinder  water 종래재 Conventional - - - - - - - - - - × × × × × × × × 비교재 Comparative material 100% 100% - - - - - - - -  △  △ × × × × 발명재1 Invention 1 25% 25% 27% 27% 5% 5% 6% 6% 37% 37%  ◎  ◎  ○  ○ 발명재2 Invention 2 26% 26% 25% 25% 6% 6% 6% 6% 37% 37%  ◎  ◎  ○  ○ 발명재3 Invention 3 28% 28% 22% 22% 10% 10% 6% 6% 34% 34%  ◎  ◎  ◎  ◎

한편, 광산화반응의 활성여부를 확인하기 위해, 길이 900mm, T5-21W 형광등을 설치하여 이를 광원으로 사용하여 광산화반응의 활성여부를 확인하였다.On the other hand, in order to confirm the activity of the photooxidation reaction, 900mm in length, T5-21W fluorescent lamp was installed and used as a light source to check whether the photoacidification activity.

종래재를 비롯한 비교재 및 발명재 1, 2, 3, 각각에 근자외선과 가시광선을 직접 조사해 본 결과 종래재에서는 아무런 반응이 없었고, 비교재에서는 근자외선 조사시에만 광산화반응이 일어났으며, 발명재 1, 2, 3에서는 근자외선은 물론 가시광선 모두에서 광산화 반응이 일어났다.As a result of directly irradiating near ultraviolet and visible light to comparative materials and invention materials 1, 2 and 3 including conventional materials, there was no reaction in conventional materials, and photooxidation reaction occurred only in near UV irradiation in comparative materials. Inventive materials 1, 2, and 3, the photooxidation reaction occurred in both near ultraviolet light and visible light.

이상에서와 같은 결과를 바탕으로, 본 발명에 따른 광촉매는 이산화티탄만이 주성분을 이루는 형태였던 기존 광촉매에 비해 훨씬 고활성이면서 저렴하고, 또한 항균성 및 항곰팡이성이 뛰어나며, 원적외선 방사와 음이온 방출을 통해 공기정화 기능까지 보유하고 있음을 확인할 수 있었다.Based on the results as described above, the photocatalyst according to the present invention is much more active and inexpensive than the conventional photocatalyst in which only titanium dioxide is the main component, and also has excellent antibacterial and antifungal properties, and far-infrared radiation and anion emission. Through air purifying function was confirmed through.

도 1은 게르마늄의 입경을 결정하기 위한 실험 모식도.1 is an experimental schematic diagram for determining the particle diameter of germanium.

도 2는 도1에 따른 조건별 대장균 제거 효율을 비교하는 그래프.Figure 2 is a graph comparing the E. coli removal efficiency of each condition according to FIG.

도 3은 이산화티탄(TiO2), 하이드록시아파타이트(Hydroxyapatite), 게르마늄을 이용한 복합소재광촉매 졸(sol) 제조 단계 모식도.Figure 3 is a schematic diagram of a composite photocatalyst sol manufacturing step using titanium dioxide (TiO 2 ), hydroxyapatite (Hydroxyapatite), germanium.

도 4는 이산화티탄(TiO2), 하이드록시아파타이트(Hydroxyapatite), 게르마늄을 이용한 복합소재 광촉매 졸 제조 순서도.Figure 4 is a composite photocatalyst sol manufacturing flow chart using titanium dioxide (TiO 2 ), hydroxyapatite (Hydroxyapatite), germanium.

Claims (8)

이산화티탄(TiO2)과 하이드록시아파타이트(Hydroxyapatite)를 함유하는 복합소재 광촉매 졸(sol)을 제조하는 방법으로서,As a method of manufacturing a composite photocatalyst sol containing titanium dioxide (TiO 2 ) and hydroxyapatite, (a) 용매에 티타늄전구체를 혼합하여 질산용액 및 트리에틸아민(C6H15N)을 첨가하여 교반하므로써 이산화티탄(TiO2) 졸(sol)을 제조하는 단계; (a) mixing titanium precursor with a solvent to prepare a titanium dioxide (TiO 2 ) sol by stirring by adding nitric acid solution and triethylamine (C 6 H 15 N); (b) 용매에 질산칼륨4수화물(Ca(NO3)4H2O)과 삼에틸아인산(P(OC2H5)3)을 교반하고 여기에 수산화암모늄(NH4OH)을 교반하여 하이드록시아파타이트(Hydroxyapatite) 졸(sol)을 제조하는 단계; (b) Potassium nitrate tetrahydrate (Ca (NO 3 ) 2 · 4H 2 O) and triethyl phosphite (P (OC 2 H 5 ) 3 ) are stirred in a solvent, and ammonium hydroxide (NH 4 OH) is stirred therein. Preparing a hydroxyapatite sol; (c) 상기 (a)단계에 의해 생성된 이산화티타늄 졸(sol)과 상기 (b)단계에 의해 제조된 하이드록시아파타이트 졸(sol)에 콜로이달실리카를 혼합하여 교반하는 단계; 및 (c) mixing and stirring colloidal silica with the titanium dioxide sol produced by step (a) and the hydroxyapatite sol prepared by step (b); And (d) (a)단계, (b)단계 및 (c)단계에 의해 제조된 이산화티탄(TiO2)과 하이드록시아파타이트(Hydroxyapatite)를 함유하는 광촉매 졸(sol)에 게르마늄(Germanium) 수용액을 혼합하여 교반하는 단계를 포함하는 복합소재 광촉매 졸(sol)의 제조방법.(d) Mixing an aqueous germanium solution with a photocatalyst sol containing titanium dioxide (TiO 2 ) and hydroxyapatite prepared in steps (a), (b) and (c) Method for producing a composite photocatalyst sol (sol) comprising the step of stirring. 제1항에 있어서, 상기 용매는 알코올계 용매인 것을 특징으로 하는 복합소재 광촉매 졸(sol)의 제조방법.The method of claim 1, wherein the solvent is an alcohol-based solvent. 제1항에 있어서, 상기 티타늄전구체는 티타늄테트라이소프로포사이드(Ti(OCH(CH3)2)4)인 것을 특징으로 하는 복합소재 광촉매 졸(sol)의 제조방법.The method of claim 1, wherein the titanium precursor is titanium tetraisopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ). 제1항에 있어서, 상기 게르마늄 수용액은 게르마늄 원석을 80~100mesh 크기로 분쇄하여 제조된 것을 특징으로 하는 복합소재 광촉매 졸(sol)의 제조방법.The method of claim 1, wherein the aqueous solution of germanium is prepared by pulverizing the germanium gemstone to the size of 80 ~ 100mesh. 이산화티탄(TiO2)졸 17중량% 내지 28중량% 및 하이드록시아파타이트(Hydroxyapatite)졸 21중량% 내지 38중량%, 게르마늄(Germanium) 수용액 5중량% 내지 10중량%, 콜로이달 실리카를 3중량% 내지 9중량%를 포함하는 것을 특징으로 하는 복합소재 광촉매 졸(sol).17 wt% to 28 wt% of titanium dioxide (TiO 2 ) sol and 21 wt% to 38 wt% of hydroxyapatite sol, 5 wt% to 10 wt% of aqueous solution of germanium, 3 wt% of colloidal silica Composite photocatalyst sol (Sol) comprising from 9% by weight. 제5항에 있어서, 상기 이산화티탄(TiO2)졸은 티타늄테트라이소프로포사이드(Ti(OCH(CH3)2)4)와 이소프로판올((CH3)2CHOH)을 1:1 내지 1:3의 비율로 포함하고 있는 것을 특징으로 하는 복합소재 광촉매 졸(sol). The method of claim 5, wherein the titanium dioxide (TiO 2 ) sol is a titanium tetraisopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ) and isopropanol ((CH 3 ) 2 CHOH) 1: 1 to 1: 3 Composite photocatalyst sol (Sol) characterized in that it comprises at a ratio of. 제5항에 있어서, 상기 하이드록시아파타이트(Hydroxyapatite)졸은 질산칼륨4 수화물(Ca(NO3)4H2O) 0.09M~0.15M과 삼에틸아인산(P(OC2H5)3)을 0.059M~0.09M 포함하는 것을 특징으로 하는 복합소재 광촉매 졸(sol). The method of claim 5, wherein the hydroxyapatite sol comprises potassium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) 0.09M to 0.15M and triethylphosphoric acid (P (OC 2 H 5 ) 3 ) Composite photocatalyst sol (sol) comprising a 0.059M ~ 0.09M. 제5항에 있어서, 상기 게르마늄 수용액은 80~100mesh 크기의 게르마늄 원석을 포함하고 있는 것을 특징으로 하는 복합소재 광촉매 졸(sol).The composite photocatalyst sol according to claim 5, wherein the aqueous germanium solution contains germanium ore having a size of 80 to 100 mesh.
KR1020080083955A 2008-08-27 2008-08-27 Photocatalyst sol and manufacturing method thereof KR100980516B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080083955A KR100980516B1 (en) 2008-08-27 2008-08-27 Photocatalyst sol and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080083955A KR100980516B1 (en) 2008-08-27 2008-08-27 Photocatalyst sol and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20100025258A true KR20100025258A (en) 2010-03-09
KR100980516B1 KR100980516B1 (en) 2010-09-06

Family

ID=42176841

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080083955A KR100980516B1 (en) 2008-08-27 2008-08-27 Photocatalyst sol and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100980516B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047684B1 (en) * 2011-02-18 2019-11-25 엘지전자 주식회사 Composition for inactivation of allergen and filter comprinsing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444892B1 (en) 2001-06-01 2004-08-18 티오켐 주식회사 Synthesis of highly active photocatalytic TiO2-sol containing active metals
KR100562476B1 (en) 2003-05-21 2006-03-21 (주) 나노팩 Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof

Also Published As

Publication number Publication date
KR100980516B1 (en) 2010-09-06

Similar Documents

Publication Publication Date Title
EP2802412B1 (en) Transparent photocatalyst coating
JP4878141B2 (en) Composite photocatalyst
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
US20100193449A1 (en) Materials and methods for removing arsenic from water
KR100956843B1 (en) Antimicrobial photocatalyst, antimicrobial articles coated with photocatalyst and manufacturing method thereof
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
KR20160036192A (en) Visible light active photocatalyst tile
EP2324917B1 (en) Photocatalytic ceramic glaze composition
JP4842607B2 (en) Visible light responsive photocatalyst, visible light responsive photocatalyst composition, and method for producing the same
JPWO2005110598A1 (en) Apatite, production method thereof, and apatite base material
JP4320393B2 (en) Photocatalyst material and method for producing the same
KR100674655B1 (en) Paint composition using hybrid-photo catalyst containing Titanium-dioxide nano particles
KR100980516B1 (en) Photocatalyst sol and manufacturing method thereof
KR20160039135A (en) A Photocatalytic Filter for Efficient Removal of Mixed Gas and Manufacturing Method thereof
JP4883913B2 (en) Photocatalyst and method for producing the same
KR101584789B1 (en) Bio ceramic composition and method for controlling odor and hazardous substance by using same
US20220111353A1 (en) Monolithic composite photocatalysts
KR100425024B1 (en) Hybrid material with multifunctional properties
KR101675630B1 (en) Antimicrobial photocatalyst, antimicrobial articles coated with photocatalyst and manufacturing method thereof
KR102058629B1 (en) Photocatalytic Structure Having Catalytic Ingredients Immobilized on Substrate Using Lattice Matching and Method for Preparing the Same
JP3933640B2 (en) photocatalyst
KR100489219B1 (en) Manufacturing process of Titanium Dioxide Photocatalysts supporting Silicagel
JP2005200302A (en) Metal-modified apatite and its manufacturing method
JP4324660B2 (en) Metal-modified apatite and method for producing the same
CN1829396B (en) Rare earth nanometer titanium film electrothermal tube

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130826

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140820

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee