KR20100024833A - Palladium(pd) coating electrolyte solution for hydrogen delayed fracture quality evaluation of high strength steel, method for pd coating using the same and plating bath - Google Patents

Palladium(pd) coating electrolyte solution for hydrogen delayed fracture quality evaluation of high strength steel, method for pd coating using the same and plating bath Download PDF

Info

Publication number
KR20100024833A
KR20100024833A KR1020080083568A KR20080083568A KR20100024833A KR 20100024833 A KR20100024833 A KR 20100024833A KR 1020080083568 A KR1020080083568 A KR 1020080083568A KR 20080083568 A KR20080083568 A KR 20080083568A KR 20100024833 A KR20100024833 A KR 20100024833A
Authority
KR
South Korea
Prior art keywords
palladium
coating
hydrogen
solution
concentration
Prior art date
Application number
KR1020080083568A
Other languages
Korean (ko)
Other versions
KR101038793B1 (en
Inventor
김동현
이유환
류근수
석병설
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080083568A priority Critical patent/KR101038793B1/en
Publication of KR20100024833A publication Critical patent/KR20100024833A/en
Application granted granted Critical
Publication of KR101038793B1 publication Critical patent/KR101038793B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor

Abstract

PURPOSE: A palladium coating electrolyte solution for hydrogen delayed fracture quality evaluation of a steel material, and a method and a plating bath for palladium coating using the same are provided to achieve excellent hydrogen release prevention characteristic compared to cadmium coating, secure data stably and reduce the risk of safety accidents. CONSTITUTION: A palladium coating electrolyte solution comprises potassium hydroxide(KOH) aqueous solution and/or sodium hydroxide(NaOH) aqueous solution, and palladium chloride(PdCl2). The concentration of PdCl2 is 0.008~0.015M. The concentration of KOH aqueous solution is 2~15M. The concentration of NaOH aqueous solution is 6~10M.

Description

강재의 수소지연파괴 특성 평가를 위한 팔라듐(Pd) 코팅용 전해액, 이를 이용한 팔라듐(Pd) 코팅방법과 코팅용 도금조{PALLADIUM(Pd) COATING ELECTROLYTE SOLUTION FOR HYDROGEN DELAYED FRACTURE QUALITY EVALUATION OF HIGH STRENGTH STEEL, METHOD FOR Pd COATING USING THE SAME AND PLATING BATH}Palladium (Pd) coating electrolyte for evaluating hydrogen delayed fracture properties of steel, Palladium (Pd) coating method and coating bath using the same FOR Pd COATING USING THE SAME AND PLATING BATH}

본 발명은 강재의 수소지연파괴 실험시 충전된 수소의 방출을 억제하기 위한 코팅막을 형성시키기 위해 필수적으로 요구되는 카드뮴(Cd) 코팅을 대체하기 위해 제안된 팔라듐(Pd) 코팅용 전해액, 그 전해액을 이용한 팔라듐(Pd) 코팅방법 및 코팅시 사용되는 도금조에 관한 것이다. The present invention proposes an electrolytic solution for palladium (Pd) coating proposed to replace a cadmium (Cd) coating, which is essentially required to form a coating film for suppressing the release of charged hydrogen during a hydrogen delayed fracture test of steel materials. It relates to the palladium (Pd) coating method used and the plating bath used in the coating.

최근의 구조물의 대형화 및 복잡화에 따라 고강도화를 목표로 연구개발 노력이 진행되고 있다. 현재 가장 널리 사용되고 있는 고강도 볼트는 성형을 위한 신선, 냉간 압조(cold heading), 전조 등의 공정과 기계적 성질 부여를 위한 담금질(quenching) 및 템퍼링(tempering) 공정을 거쳐 제조된다. 이러한 공정을 거친 조직은 다른 조직에 비하여 고강도를 나타내지만 템퍼링시 탄화물들이 수소의 트랩 사이트(trap site)에 앞선 오스테나이트(prior austenite) 결정립계에서 우선적으로 석출되며, 이러한 탄화물들은 수소의 트랩 사이트로 작용하므로 앞선 오스테나 이트 결정립계에서 확산성 수소의 집적이 발생하여 강도저하와 더불어 파괴기점으로 작용하므로 지연파괴에 취약한 것으로 알려져 있다.With the recent increase in size and complexity of structures, research and development efforts are underway with the aim of increasing the strength. The most widely used high-strength bolts are manufactured through the process of drawing, cold heading and rolling for forming and quenching and tempering to impart mechanical properties. Tissues undergoing this process show higher strength than other tissues, but when tempering, carbides preferentially precipitate at the austenite grain boundary preceding the trap site of hydrogen, and these carbides act as a trap site for hydrogen. Therefore, it is known to be susceptible to delayed fracture because the accumulation of diffusible hydrogen occurs at the previous austenite grain boundary and acts as a breaking point along with the decrease in strength.

따라서 이러한 수소지연파괴 기구 및 저항성 부여를 위해, 모사실험을 통한 수소흡수량 평가는 고강도 볼트의 가장 중요한 평가 지표로 사용되고 있다. 통상적으로 확산성 및 비확산성 수소의 방출량을 승온 속도에 따라 측정할 수 있는 열시차분석 장치(Thermal Desorption Spectroscopy, TDS)를 이용하는 경우, 수소 분석시험을 위해 수소를 충전시킨 다음, 충전된 수소가 방출되지 않도록 전기화학적 방법을 통해 카드뮴(Cd)을 코팅해야만 한다. 그러나 카드뮴의 경우, 카드뮴 제거를 위한 용해시 발생하는 산화카드뮴 증기 또는 카드뮴 화합물에 의한 중독으로 인하여 환경정책 기본법에 위배될 뿐만 아니라(수질 및 사람의 건강보호 기준 0.005mg/L), 전기화학적 방법에 의해 코팅시에도 카드뮴 수용액의 재연성 부족과 균일한 코팅층을 얻을 수 없다는 단점을 가지고 있다. Therefore, in order to impart the hydrogen delayed destruction mechanism and resistance, the hydrogen absorption evaluation through simulation experiment is used as the most important evaluation index of high strength bolts. In general, when using a Thermal Desorption Spectroscopy (TDS) which can measure the amount of diffuse and non-diffusible hydrogen at elevated temperatures, the hydrogen is charged for hydrogen analysis and then the charged hydrogen is released. Cadmium (Cd) must be coated by electrochemical method. However, in the case of cadmium, the poisoning by cadmium oxide vapor or cadmium compounds generated during dissolution to remove cadmium violates the basic laws of environmental policy (0.005 mg / L of water and human health standards), In addition, the coating has disadvantages such as lack of reproducibility of cadmium aqueous solution and a uniform coating layer.

한편, 전기화학적 방법이 아닌 전기 아크 스프레이 방법 또는 플라즈마 방법을 적용할 경우 코팅가격 상승 및 실험에 요구되는 단시간내의 코팅이 불가능하여 정확한 수소억제막을 형성할 수 없다.On the other hand, when the electric arc spray method or the plasma method is applied to the non-electrochemical method, it is impossible to form an accurate hydrogen inhibiting film because the coating price is not increased and the coating is required in a short time required for the experiment.

수소지연파괴 특성 분석을 위한 실험방법에서 상기 언급한 기술분야와 관련하여 종래기술을 살펴보면,Looking at the prior art in connection with the above-mentioned technical field in the experimental method for the hydrogen delayed fracture characteristic analysis,

한국특허출원번호 2007-0112654호는 승온속도에 따른 수소의 방출 속도를 이용한 금속학적 수소의 트랩 활성화에너지 측정방법에 관한 것으로서, 수소지연파괴 특성 분석을 위한 결과를 이론적인 수식을 이용하여 수소의 결합에너지를 계산하는 방법에 관한 기술로서, 시편 분석을 위해서는 카드뮴 코팅이 필수적이나 그 개선방법에 대해서는 언급된 바가 없다. Korean Patent Application No. 2007-0112654 relates to a method for measuring the trap activation energy of metallic hydrogen using the release rate of hydrogen according to the rate of temperature rise. As a technique for calculating the energy, cadmium coating is essential for specimen analysis, but there is no mention of how to improve it.

또한 한국특허공개번호 2005-0032270호 및 2006-0017408호에서는 팔라듐(Pd) 코팅 방법을 제시하고 있으나 대부분이 나노 금속 촉매 혹은 연료전지의 선택적 투과막 형성을 위한 화학적 코팅 혹은 물리적 코팅에 국한되어 있을 뿐, 이를 수소지연파괴 특성 분석을 위한 카드뮴 대체 전기화학적 코팅에 적용한 기술은 전무한 실정이다.In addition, Korean Patent Publication Nos. 2005-0032270 and 2006-0017408 disclose palladium (Pd) coating methods, but most of them are limited to chemical or physical coatings for the selective permeation of nano metal catalysts or fuel cells. However, no technology has been applied to cadmium-substituted electrochemical coatings for hydrogen delayed fracture characterization.

또한 카드뮴 코팅의 경우, 카드뮴은 인체에 여과 없이 축적되게 되어 골연화증 및 전신쇠약을 통해 사망에 이를 수 있을 만큼 매우 중독성이 강하며, 이에 국제적으로도 사용량에 대해 매우 엄격한 규제로 통제되고 있어, 재현성 실험 및 신뢰성 데이터의 구축이 매우 어려운 실정이다.In addition, in the case of cadmium coating, cadmium accumulates without filtration in the human body and is very addictive enough to cause death through osteomalacia and systemic weakness, which is controlled internationally under very strict regulations on usage. And it is very difficult to build reliability data.

본 발명은 강재의 수소지연파괴 특성 분석시, 수소방출을 차단하기 위해 사용되던 카드뮴(Cd) 코팅 대신, 인체에 무해한 팔라듐(Pd) 코팅으로 대체하기 위해서 사용되는 팔라듐(Pd) 코팅용 전해액, 이를 이용한 코팅방법 및 코팅시 사용되는 도금조를 제공하는 것이다.The present invention is an electrolytic solution for palladium (Pd) coating used to replace the palladium (Pd) coating harmless to the human body, instead of the cadmium (Cd) coating used to block hydrogen emissions when analyzing the hydrogen delayed fracture characteristics of steel, It is to provide a coating method and a plating bath used in the coating.

본 발명은 수산화칼륨(KOH)수용액 및 수산화나트륨(NaOH)수용액의 1 종 이상과 염화 팔라듐(PdCl2)을 포함하는 팔라듐 코팅용 전해액을 제공한다.The present invention provides an electrolytic solution for palladium coating comprising at least one of potassium hydroxide (KOH) solution and sodium hydroxide (NaOH) solution and palladium chloride (PdCl 2 ).

또한, 본 발명은 수산화칼륨(KOH)수용액 및 수산화나트륨(NaOH)수용액의 1 종 이상과 염화 팔라듐(PdCl2)을 포함하는 팔라듐 코팅용 전해액을 도금조에 준비하는 단계;In addition, the present invention comprises the steps of preparing a plating bath for a palladium coating electrolyte solution containing at least one of potassium hydroxide (KOH) solution and sodium hydroxide (NaOH) solution and palladium chloride (PdCl 2 );

상기 도금조의 음극으로 지연파괴용 시편을 설치하고, 양극으로 백금 또는 팔라듐 금속을 설치하는 단계; 및Installing a specimen for delayed destruction as a cathode of the plating bath, and installing platinum or palladium metal as an anode; And

상기 팔라듐 코팅용 전해액이 담긴 도금조에 침지된 양극과 음극을 각각 전원의 애노드(Anode)와 캐소드(Cathode)에 연결하고 전류를 흐르게 하여 상기 시편에 팔라듐 코팅층을 형성하는 단계;Forming a palladium coating layer on the specimen by connecting an anode and a cathode immersed in the plating bath containing the electrolytic solution for palladium coating to an anode and a cathode of a power source, respectively, and flowing a current;

를 포함하는 것을 특징으로 하는 팔라듐 코팅방법을 제공한다.It provides a palladium coating method comprising a.

또한, 본 발명은 상기 코팅방법에 사용되는 도금조의 재질이 테프론 소재인 것을 특징으로 하는 도금조를 제공한다.In addition, the present invention provides a plating bath, characterized in that the material of the plating bath used in the coating method is a Teflon material.

상술한 바와 같이, 본 발명은 수소지연파괴 특성 실험을 위해 필수적으로 요구되는 카드뮴(Cd) 코팅 대신 팔라듐(Pd)을 코팅하는 것으로서 인체에 무해할 뿐만 아니라, 카드뮴 코팅과 비교하여 수소방출억제 특성이 보다 뛰어나고, 데이터의 안정적인 확보와 더불어 안전사고 저감에도 큰 효과가 있다. As described above, the present invention is not only harmless to the human body by coating palladium (Pd) instead of the cadmium (Cd) coating which is essential for the hydrogen delayed fracture characteristics experiment, as well as the hydrogen release inhibitory properties compared to the cadmium coating It is more effective and secures data, and has a great effect on reducing safety accidents.

상술한 문제점을 극복하기 위해서, 본 발명자들은 깊이 연구한 결과 기존의 카드뮴(Cd) 코팅을 대신해 팔라듐(Pd)을 코팅하는 방법을 발명하게 되었다. 이하 본 발명에서 적용되는 팔라듐 코팅용 전해액, 이를 이용한 팔라듐 코팅방법 및 코팅시 사용되는 도금조에 대하여 상세히 설명한다.In order to overcome the above-mentioned problems, the present inventors have studied in depth a method of coating palladium (Pd) instead of the conventional cadmium (Cd) coating. Hereinafter, the palladium coating electrolyte solution applied in the present invention, a palladium coating method using the same, and a plating bath used for coating will be described in detail.

먼저 팔라듐(Pd) 코팅용 전해액에 대해서 상세히 설명한다.First, the electrolytic solution for palladium (Pd) coating will be described in detail.

수소지연파괴 시험에 있어서, 팔라듐은 시편에 도금되어 수소 방출의 차폐제로 작용함으로서 수소지연파괴 시험의 신뢰성 증가에 기여하고, 균일한 두께의 코팅막 형성을 통하여 용이한 분석이 가능하고, 지연파괴 실험을 위해 코팅막 제거시 세공이 완전히 제거될 수 있도록 한다.In the hydrogen delayed fracture test, palladium is plated on the specimen to act as a shield for hydrogen release, contributing to the increase in reliability of the hydrogen delayed fracture test, and easy analysis through the formation of a uniform thickness coating film. When removing the coating film, the pores can be completely removed.

본 발명의 코팅용 전해액에서 팔라듐(Pd)은 염화 팔라듐(PdCl2) 형태로 첨가한다. 통상적인 전해액에 팔라듐이 첨가되면, 첨가효과가 미비하게 나타나므로 염화 팔라듐(PdCl2)의 형태로 첨가하는 것이 바람직하다.In the coating electrolyte of the present invention, palladium (Pd) is added in the form of palladium chloride (PdCl 2 ). When palladium is added to a conventional electrolyte solution, since the addition effect is insignificant, it is preferable to add it in the form of palladium chloride (PdCl 2 ).

또한 그 첨가량이 너무 적으면 팔라듐 코팅막에 미세한 구멍이 생기게 되며, 너무 많이 첨가되면 지연파괴 시편에 코팅층이 너무 두텁게 형성되어, 코팅층 제거가 용이하지 못하다. 따라서 염화 팔라듐(PdCl2)의 첨가량은 0.008~0.015 M(몰농도)로 설정하는 것이 바람직하고, 보다 바람직하게는 0.009~0.013 M로 설정한다.In addition, if the addition amount is too small, fine holes are formed in the palladium coating film, if too much is added, the coating layer is formed too thick in the delayed fracture specimens, it is not easy to remove the coating layer. Therefore, the addition amount of palladium chloride (PdCl 2 ) is preferably set to 0.008 to 0.015 M (molar concentration), more preferably 0.009 to 0.013 M.

본 발명에 따라 염화 팔라듐(PdCl2)이 첨가될 전해액은 특별히 한정하는 것이 아니다. 염화 팔라듐(PdCl2)이 첨가될 전해액의 예로는 수산화칼륨(KOH)수용액, 수산화나트륨(NaOH)수용액 또는 이를 혼합한 수용액을 사용하는 것이 바람직하다. According to the present invention, the electrolyte to which palladium chloride (PdCl 2 ) is added is not particularly limited. As an example of the electrolyte solution to which palladium chloride (PdCl 2 ) is added, it is preferable to use an aqueous solution of potassium hydroxide (KOH), an aqueous solution of sodium hydroxide (NaOH) or a mixture thereof.

상기 수산화칼륨(KOH)수용액의 농도는 2~15M, 수산화나트륨(NaOH)수용액의 농도는 6~10M인 것이 보다 바람직하다.The concentration of the potassium hydroxide (KOH) solution is more preferably 2 to 15M, the concentration of the sodium hydroxide (NaOH) solution is 6 to 10M.

이하, 상기 팔라듐 코팅용 전해액을 이용한 코팅방법에 대하여 상세히 설명한다.Hereinafter, a coating method using the palladium coating electrolyte solution will be described in detail.

먼저 팔라듐 코팅용 전해액을 도금조에 준비한 후 음극으로 지연파괴용 시편을 설치하고, 양극으로 백금 또는 팔라듐 금속을 설치한다.First, a palladium coating electrolyte is prepared in a plating bath, and then a delayed fracture specimen is installed as a cathode, and platinum or palladium metal is installed as an anode.

상기 팔라듐 코팅 전해액이 담긴 도금조에 침지된 양극과 음극을 각각 외부 전원의 애노드(Anode)와 캐소드(Cathode)에 연결하고 전류를 흐르게 한다. A positive electrode and a negative electrode immersed in the plating bath containing the palladium-coated electrolyte solution are connected to an anode and a cathode of an external power source, respectively, to flow a current.

본 발명에서 팔라듐 코팅층이 형성되는 메커니즘은 전류에 의해 전해액의 염화 팔라듐(PdCl2)이 팔라듐 이온으로 변화되면서 지연파괴 시편 방향으로 이동하여 음극에서 발생하는 전자와 반응하여 지연파괴 시편의 표면에 도금되는 것이다.In the present invention, the mechanism of forming the palladium coating layer is plated on the surface of the delayed fracture specimen by reacting with electrons generated in the cathode by moving in the direction of the delayed fracture specimen as the palladium chloride (PdCl 2 ) of the electrolyte is changed to palladium ions by the current will be.

본 발명에 의한 팔라듐 코팅층은 그 두께가 14~25㎛인 것이 바람직하다. 코팅층 두께가 너무 얇으면 수소지연파괴의 재연성이 안정적이지 못하고 너무 두꺼우면 수소 충전 후 실험을 위해 코팅층 제거시 Pd 이온들의 이온결합층에 의해 제거가 힘들며, 재연성이 보장되지 않는다. It is preferable that the thickness of the palladium coating layer by this invention is 14-25 micrometers. If the thickness of the coating layer is too thin, the flammability of hydrogen delayed fracture is not stable and too thick. When the coating layer is removed for the experiment after hydrogen filling, it is difficult to remove by the ion bonding layer of Pd ions, and the flammability is not guaranteed.

상기 팔라듐 코팅방법에 적용되는 도금조는 테프론 소재로 하는 것이 바람직하다. 이는 전기화학적 도금에 있어서 도금조의 전기 도전을 억제하기 위한 것이다.Plating bath applied to the palladium coating method is preferably made of Teflon material. This is to suppress the electrical conduction of the plating bath in the electrochemical plating.

이하, 본 발명의 실시예에 대하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

(실시예)(Example)

표 1은 고강도강의 Pd 코팅층을 형성하기 위해서 각각 다른 농도의 염화 팔라듐(PdCl2)을 포함하는 코팅용 전해액을 마련하고 도 1에 나타난 도금조를 이용하 여 각각의 농도에서 전류를 흘려보냈을 때의 팔라듐(Pd) 코팅층을 측정하고 비교한 결과를 나타낸 것이다. Table 1 shows coating electrolytes containing different concentrations of palladium chloride (PdCl 2 ) in order to form a Pd coating layer of high strength steel, and when current was flowed at each concentration using the plating bath shown in FIG. 1. It shows the result of measuring and comparing the palladium (Pd) coating layer.

PdCl2농도(M)PdCl 2 concentration (M) 반복횟수Repeat count 코팅층 두께(㎛)Coating layer thickness (㎛) 횟수당 두께 오차범위Thickness error range per number 비고Remarks 0.0010.001 55 1.151.15 ±0.15± 0.15 비교예Comparative example 0.0030.003 55 5.045.04 ±0.13± 0.13 비교예Comparative example 0.0060.006 55 11.211.2 ±0.11± 0.11 비교예Comparative example 0.0080.008 55 14.914.9 ±0.03± 0.03 발명예Inventive Example 0.0110.011 55 19.719.7 ±0.03± 0.03 발명예Inventive Example 0.0150.015 55 24.124.1 ±0.03± 0.03 발명예Inventive Example 0.0200.020 55 30.030.0 ±0.08± 0.08 비교예Comparative example 0.0230.023 55 33.933.9 ±0.18± 0.18 비교예Comparative example

상기 표 1에 의하면 염화 팔라듐(PdCl2)의 농도가 0.008M 미만인 경우 코팅층의 두께가 너무 얇게 되어 코팅막에 미세한 구멍이 생길 수 있고, 횟수당 두께의 오차범위가 크게되어 코팅의 재연성이 보장되지 않는다. 또한 염화 팔라듐(PdCl2)의 농도가 0.015M 초과하는 경우 코팅층 두께의 오차범위가 증가되어 재연성이 보장되지 않을 뿐만 아니라, 수소충전 후 실험을 위해 코팅층 제거시 그 제거가 힘들게 된다.According to Table 1, when the concentration of palladium chloride (PdCl 2 ) is less than 0.008M, the thickness of the coating layer is too thin, so that fine pores may be formed in the coating layer, and the error range of the thickness per number is increased, thereby preventing reproducibility of the coating. . In addition, when the concentration of palladium chloride (PdCl 2 ) is greater than 0.015M, the error range of the coating layer thickness is increased, and reproducibility is not guaranteed, and it is difficult to remove the coating layer for the experiment after hydrogen charging.

도 2에서는 수소 충전 후 시간변화에 따른 Pd 코팅과 Cd 코팅의 수소량 측정결과를 나타낸 것이다. 카드뮴 코팅 후의 시편과 비교하여, 팔라듐이 전기화학적으로 코팅괸 시편의 경우에서도 시간 변화에 따라 수소량의 저하 혹은 감소(degradation)가 일어나지 않으며, 재연성 평가에서도 수소량의 변화가 없음을 알 수 있다.Figure 2 shows the results of measuring the hydrogen content of the Pd coating and Cd coating with time change after hydrogen charging. Compared to the specimen after cadmium coating, even in the case of the palladium electrochemically coated specimen, the hydrogen content does not decrease or decrease with time, and there is no change in the hydrogen content even in the evaluation of flammability.

도 1은 본 발명의 전기 화학적 팔라듐(Pd) 코팅방법을 나타내는 개략도이다.1 is a schematic view showing the electrochemical palladium (Pd) coating method of the present invention.

도 2는 카드뮴 코칭 시편 및 팔라듐 코팅 시편에 대한 수소 충전 후 시간변화에 따른 수소량 측정결과를 나타낸 것이다.Figure 2 shows the results of measuring the amount of hydrogen over time after the hydrogen filling for cadmium coaching specimens and palladium coated specimens.

Claims (10)

수산화칼륨(KOH)수용액 및 수산화나트륨(NaOH)수용액의 1 종 이상과 염화 팔라듐(PdCl2)을 포함하는 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅용 전해액.An electrolytic solution for palladium coating for evaluation of hydrogen delayed fracture properties of steel, comprising at least one of potassium hydroxide (KOH) solution and sodium hydroxide (NaOH) solution and palladium chloride (PdCl 2 ). 제 1 항에 있어서, 상기 염화 팔라듐(PdCl2)의 농도는 0.008~0.015 몰농도(M)인 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅용 전해액.According to claim 1, The concentration of the palladium chloride (PdCl 2 ) is a palladium coating electrolyte for the hydrogen delay fracture characteristics evaluation of steel, characterized in that the concentration of 0.008 ~ 0.015 molarity (M). 제 1 항에 있어서, 상기 수산화칼륨(KOH)수용액의 농도는 2~15 몰농도(M)인 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅용 전해액.The method of claim 1, wherein the potassium hydroxide (KOH) solution concentration of 2 to 15 molar concentration (M), characterized in that the palladium coating electrolyte for the evaluation of hydrogen delayed fracture characteristics of the steel. 제 1 항에 있어서, 상기 수산화나트륨(NaOH)수용액의 농도는 6~10 몰농도(M)인 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅용 전해액.The method of claim 1, wherein the concentration of the sodium hydroxide (NaOH) solution is 6 to 10 molarity (M), characterized in that the palladium coating electrolyte for the evaluation of hydrogen delayed fracture characteristics of steel. 전기화학적 방법을 통한 팔라듐 코팅방법에 있어서,In the palladium coating method through the electrochemical method, 수산화칼륨(KOH)수용액 및 수산화나트륨(NaOH)수용액의 1 종 이상과 염화 팔라듐(PdCl2)을 포함하는 팔라듐 코팅용 전해액을 도금조에 준비하는 단계;Preparing a palladium coating electrolyte solution containing at least one of potassium hydroxide (KOH) solution and sodium hydroxide (NaOH) solution and palladium chloride (PdCl 2 ) in a plating bath; 상기 도금조의 음극으로 지연파괴용 시편을 설치하고, 양극으로 백금 또는 팔라듐 금속을 설치하는 단계; 및Installing a specimen for delayed destruction as a cathode of the plating bath, and installing platinum or palladium metal as an anode; And 상기 팔라듐 코팅 전해액이 담긴 도금조에 침지된 양극과 음극을 각각 전원의 애노드(Anode)와 캐소드(Cathode)에 연결하고 전류를 흐르게 하여 팔라듐 코팅층을 형성하는 단계;Forming a palladium coating layer by connecting an anode and a cathode immersed in the plating bath containing the palladium-coated electrolyte solution to an anode and a cathode of a power source, respectively, and flowing a current; 를 포함하는 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅방법.Palladium coating method for evaluating the hydrogen delayed fracture characteristics of the steel comprising a. 제 5 항에 있어서, 상기 팔라듐 코팅층은 두께가 14~25㎛가 되도록 코팅층을 형성하는 단계를 포함하는 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅방법.The palladium coating method of claim 5, wherein the palladium coating layer comprises forming a coating layer to have a thickness of 14 to 25 µm. 제 5 항 또는 제 6 항에 있어서, 상기 염화 팔라듐(PdCl2)의 농도는 0.008~0.015 몰농도(M)인 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅방법.The palladium coating method of claim 5 or 6, wherein the concentration of the palladium chloride (PdCl 2 ) is 0.008 to 0.015 molarity (M). 제 5 항 또는 제 6 항에 있어서, 상기 수산화칼륨(KOH)수용액의 농도는 2~15 몰농도(M)인 것을 특징으로 하는 강재의 수소지연파괴 특성 평가를 위한 팔라듐 코팅방법.The method of claim 5 or 6, wherein the concentration of potassium hydroxide (KOH) solution is 2 to 15 molarity (M) palladium coating method for evaluating the hydrogen delayed fracture characteristics of the steel. 제 5 항 또는 제 6 항에 있어서, 상기 수산화나트륨(NaOH)수용액의 농도는 6~10 몰농도(M)인 것을 특징으로 하는 수소지연파괴 특성 평가를 위한 강재의 팔라듐 코팅방법.The method of claim 5 or 6, wherein the concentration of the sodium hydroxide (NaOH) solution is 6-10 molar concentration (M), characterized in that the palladium coating method of the steel material for hydrogen delay fracture characteristics evaluation. 고강도강의 수소지연파괴 특성 평가시 수소의 방출을 방지하기 위한 팔라듐 코팅에 사용되는 도금조는 테프론 소재인 것을 특징으로 하는 팔라듐 코팅용 도금조.Plating bath used for the palladium coating to prevent the release of hydrogen when evaluating the hydrogen delayed fracture properties of high-strength steel is a teflon plating bath, characterized in that the material.
KR1020080083568A 2008-08-26 2008-08-26 PALLADIUMPd COATING ELECTROLYTE SOLUTION FOR HYDROGEN DELAYED FRACTURE QUALITY EVALUATION OF HIGH STRENGTH STEEL, METHOD FOR Pd COATING USING THE SAME AND PLATING BATH KR101038793B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080083568A KR101038793B1 (en) 2008-08-26 2008-08-26 PALLADIUMPd COATING ELECTROLYTE SOLUTION FOR HYDROGEN DELAYED FRACTURE QUALITY EVALUATION OF HIGH STRENGTH STEEL, METHOD FOR Pd COATING USING THE SAME AND PLATING BATH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080083568A KR101038793B1 (en) 2008-08-26 2008-08-26 PALLADIUMPd COATING ELECTROLYTE SOLUTION FOR HYDROGEN DELAYED FRACTURE QUALITY EVALUATION OF HIGH STRENGTH STEEL, METHOD FOR Pd COATING USING THE SAME AND PLATING BATH

Publications (2)

Publication Number Publication Date
KR20100024833A true KR20100024833A (en) 2010-03-08
KR101038793B1 KR101038793B1 (en) 2011-06-03

Family

ID=42176568

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080083568A KR101038793B1 (en) 2008-08-26 2008-08-26 PALLADIUMPd COATING ELECTROLYTE SOLUTION FOR HYDROGEN DELAYED FRACTURE QUALITY EVALUATION OF HIGH STRENGTH STEEL, METHOD FOR Pd COATING USING THE SAME AND PLATING BATH

Country Status (1)

Country Link
KR (1) KR101038793B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820827A (en) * 2014-02-24 2014-05-28 北京工业大学 Method for electrodepositing palladium from ionic liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2911186B2 (en) * 1989-07-10 1999-06-23 科学技術振興事業団 Composite oxide thin film
JP3187579B2 (en) * 1992-12-11 2001-07-11 ティーディーケイ株式会社 Plating equipment
JPH09235691A (en) * 1996-02-29 1997-09-09 Okuno Chem Ind Co Ltd Bright palladium plating bath
KR100760420B1 (en) 2001-11-26 2007-09-20 마츠다 산교 가부시끼가이샤 Palladium Plating Solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820827A (en) * 2014-02-24 2014-05-28 北京工业大学 Method for electrodepositing palladium from ionic liquid

Also Published As

Publication number Publication date
KR101038793B1 (en) 2011-06-03

Similar Documents

Publication Publication Date Title
CN101092694B (en) Method for processing surface of magnesium alloy
Walsh et al. Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings
El Sawy et al. Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition
KR101266096B1 (en) Fuel cell separator and method for producing same
CN110546311B (en) Method for improving corrosion resistance of chrome-plated substrate
KR20140011443A (en) Electrophoretic deposition method for coating stainless steel with graphene oxide or reduced graphene oxide and the staninless steel coated with graphene oxide or reduced graphene oxide thereof
CN105063699A (en) Nickel-plated copper material and preparation method and application thereof
Omura et al. Environmental factors affecting hydrogen entry into high strength steel due to atmospheric corrosion
CN103931034B (en) Fuel cell collector plate and manufacture method thereof
CN105063685A (en) Nickel plated copper product containing nickel-cobalt alloy clad layer, and preparation method and application thereof
KR102164120B1 (en) Sn alloy plated steel plate
JP2013044712A (en) Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal portion of moving body
Pfeiffer et al. Proton migration and water diffusion in polyaniline
TW201404899A (en) Copper film, negative electrode collector and negative electrode material of nonaqueous secondary cell
CN101709466B (en) Alkaline passivation method of chemical nickel coating
Yu et al. Insights into the corrosion mechanism and electrochemical properties of the rust layer evolution for weathering steel with various Cl− deposition in the simulated atmosphere
Pan et al. In situ investigation of atmospheric corrosion behavior of PCB-ENIG under adsorbed thin electrolyte layer
Cooper et al. Titanium nitride polyaniline bilayer coating for metallic bipolar plates used in polymer electrolyte fuel cells
KR101038793B1 (en) PALLADIUMPd COATING ELECTROLYTE SOLUTION FOR HYDROGEN DELAYED FRACTURE QUALITY EVALUATION OF HIGH STRENGTH STEEL, METHOD FOR Pd COATING USING THE SAME AND PLATING BATH
TANG et al. Composition and corrosion resistance of palladium film on 316L stainless steel by brush plating
Herrera‐Hernandez et al. Evaluation of different sealing methods for anodized aluminum‐silicon carbide (Al/SiC) composites using EIS and SEM techniques
Bindra et al. Mechanisms of electroless metal plating: II. Decomposition of formaldehyde
CN108441912B (en) Aluminum alloy surface Al3C4-Al2O3-ZrO2The preparation method of wear-resisting composite coating
Safonov et al. Electrical double layer on renewed iron electrodes in solutions based on a number of organic solvents
JP4278406B2 (en) Fuel cell separator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150527

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180528

Year of fee payment: 8