JP4278406B2 - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP4278406B2
JP4278406B2 JP2003054037A JP2003054037A JP4278406B2 JP 4278406 B2 JP4278406 B2 JP 4278406B2 JP 2003054037 A JP2003054037 A JP 2003054037A JP 2003054037 A JP2003054037 A JP 2003054037A JP 4278406 B2 JP4278406 B2 JP 4278406B2
Authority
JP
Japan
Prior art keywords
separator
gold
alkyl
fuel cell
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003054037A
Other languages
Japanese (ja)
Other versions
JP2004265695A (en
Inventor
正輝 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003054037A priority Critical patent/JP4278406B2/en
Publication of JP2004265695A publication Critical patent/JP2004265695A/en
Application granted granted Critical
Publication of JP4278406B2 publication Critical patent/JP4278406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型電池用金属セパレータおよびその製造方法、並びにそのための貴金属めっきした金属板に関する。
【0002】
【従来技術】
固体高分子電解質型燃料電池用金属セパレータは、複数の単セルが積層された燃料電池スタックを構成する部材であって、十分なガス不透過性と、セル同士の導電をするための電気伝導性が必要である。さらには、電池反応に対して高い耐食性も要する。従来、このような燃料電池用ガスセパレータは、炭素材料あるいは金属材料が用いられてきた。特に金属材料は強度に優れているため、炭素材料を用いるより薄くできることから、近年広く検討されている。
【0003】
特にステンレス鋼板は、耐食性が高く、安価であるため、チタンやハステロイの様な特殊耐食鋼等の高価な金属に比較して、セパレータ材として適している。しかし、ステンレスはその表面の酸化膜で耐食性を維持しているため、接触抵抗が高く、セル同士の電気抵抗が高くなる不具合がある。これを解決するために接触抵抗の低い貴金属でステンレスを被覆する方法が開発されている。
【0004】
特開平10−228914号(特許文献1)にはSUS304に0.01〜0.06μmの厚さの金めっき層を形成した技術が紹介されている。
ただし、単に金めっきを施しただけでは酸化膜の影響で抵抗が高いため、酸化膜を除去して金めっきを施す技術が特開平13−6713(特許文献2)に開示されている。
【0005】
また、めっきではピンホールが不可避であり、その部分の耐食性が低下する。前述の特許では問題ないとされているが、特開平14−260681(特許文献3)ではピンホールを減少するためにめっき後に圧延加工してピンホールをなくす技術が開示されている。
さらに、簡便に金を被覆する試みとして、特開平14−237311(特許文献4)では超音波を利用して金箔を被覆する技術が開示されている。
【0006】
これらのことから、ステンレスに金めっきをしただけでは、ピンホールの問題から0.01μm程度の薄い金めっきでは耐食性に問題があることが明らかである。
さらに、酸化膜を除去する工程を経ることから、ピンホール内部の酸化膜も強固ではないため、より耐食性が低くなる傾向にある。
これを解決するためには、金めっき厚を厚くしてピンホールを減少する必要があった。
事実、特開平13−345109(特許文献5)では部分的に金めっき厚を厚くして耐食性を維持し、かつ接触抵抗を低減する技術が開示されている。しかし、厚い金めっき膜の形成は、当然コストに影響し、実用的ではない。
【0007】
ところで、金めっきのピンホールを埋めるいわゆる封孔処理はコネクタ用の銅合金上の金めっきでは広く用いられている。たとえば特開平7−258887号公報(特許文献6)、特開平8−260194号公報(特許文献7)等に有機物で金めっきの封孔処理を行う技術が開示されている。しかし、コネクタへの要求性能と燃料電池用セパレータへの要求性能とは相違するものであり、したがって、コネクタへの封孔処理がそのまま適用できない。
【0008】
【特許文献1】
特開平10−228914号公報
【特許文献2】
特開平13−6713号公報
【特許文献3】
特開平14−260681号公報
【特許文献4】
特開平14−237311号公報
【特許文献5】
特開平13−345109号公報
【特許文献6】
特開平7−258887号公報
【特許文献7】
特開平8−260194号公報
【0009】
【発明が解決しようとする課題】
本発明は、かかる問題点を解消するためになされたものであり、貴金属めっきを施してステンレス鋼の接触抵抗を低減するが、薄い貴金属めっき厚でも十分な耐食性を備えた燃料電池用金属セパレータ及びその製造法を提供することを目的とする。また、本発明は、そのための貴金属めっきした金属板を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、燃料電池用金属セパレータの接触抵抗を低減しかつ耐食性を確保するため、鋭意検討した結果、金属セパレータ表面に貴金属めっき層を設け、かつそのめっき層を特定の封孔処理剤により封孔処理することにより、薄いめっき厚においても、耐食性と低接触抵抗を持たせることが可能であることを見出し、本発明に至った。
【0011】
すなわち、本発明は、
(1)ステンレス鋼板の表面上にダイレクトに形成した膜厚5〜20nmの金又は金合金層を有し、該金又は金合金層がインヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上により封孔処理されていることを特徴とする耐食性燃料電池用セパレータに用いる金又は金合金めっきしたステンレス鋼板、
【化5】

Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕
(2)燃料電池用セパレーターであって、該セパレータは、ステンレス鋼板の表面上にダイレクトに形成した膜厚5〜20nmの金又は金合金層を有し、該金又は金合金層がインヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上により封孔処理されていることを特徴とする燃料電池用セパレーター
【化6】
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕、
(3)ステンレス鋼セパレータの表面上にダイレクトに膜厚5〜20nmの金又は金合金めっきを形成した後、インヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上を合計で10〜50000ppm含有する水溶液中で該ステンレス鋼セパレータを陽極として、極間電圧Eが0.1〜5.0Vの範囲で直流電解したことを特徴とする前記(2)記載の燃料電池用セパレータの製造方法、
【化7】
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕、
(4)ステンレス鋼セパレータの表面上にダイレクトに膜厚5〜20nmの金又は金合金めっきを形成した後、インヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上を合計で10〜5000ppm含有する水溶液中で該ステンレス鋼セパレータを陽極として、極間電圧Eが0.1〜5.0Vの範囲で直流電解したことを特徴とする前記(2)記載の燃料電池用セパレータの製造方法、
【化8】
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕、
(5)前記(3)または(4)記載の方法で製造された燃料電池用セパレータ
に関する。
なお、前記(1)の貴金属めっきした金属板は、これを成形加工及び切断加工して燃料電池用セパレータとすることができる。
【0012】
金めっき層のピンホールを埋めるいわゆる封孔処理は、すでに述べたとおり、コネクタ用の銅合金上の金めっきに対しては知られている。ただし、コネクタにおいては低接触抵抗、耐食性のほかに潤滑性を必要とすること、また、密着性を高めるために下地めっきとしてニッケルめっきを施すことが一般的であること等で、燃料電池用セパレータとは要求特性が異なり、そのままの条件を適用することは望ましくなかった。特に燃料電池用セパレータでは潤滑性は必要でなく、潤滑性付与のために処理が不要もしくは悪影響を与える可能性がある。
【0013】
また、コネクタでは挿抜を繰り返すため、挿抜抵抗が低いことが要求され、結果としてたとえば10kgf程度の接触部の圧力が低い状態での低接触抵抗が必要とされる。一方、燃料電池用セパレータでは、一度セットした後は分解することはほとんど無く、また、接触圧力も、ボルト締めによるたとえば20kg/cm2程度の高い接触圧が可能である。コネクタでは1点当たりの接触圧力で評価することが多く、ボルト締めと圧力の単位が異なり、一概に比較することは難しい。しかし、ボルトの場合、ミクロで看た場合、局所的に接触している部分に圧力が集中しているため、コネクタでの接触部の圧力換算では100kgfを越える高い接触圧となっていると考えられる。
【0014】
【発明の実施の形態】
本発明の実施の形態について説明する。
SUS304、SUS316Lといったステンレス鋼を電解脱脂→水洗→電解酸洗→水洗の前処理の後、ダイレクト金めっきを施す。本発明はピンホールを封孔して金めっき厚を薄くすることが目的であるため、そのめっき厚は燃料電池用セパレータとして導通を確保するため5nm以上必要であるが、20nm以下で十分である。しかし、それ以上厚くてもかまわない。そして本発明においては、前記の用に薄い金めっき後に下記一般式(1)に示すメルカプトベンゾチアゾール誘導体の水溶液に浸漬して当該ステンレスを陽極に分極してたとえば約3秒処理することで封孔処理を行う。その後、水洗もしくは湯洗して乾燥する。
【0015】
【化9】
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕
一般式(1)で表される化合物の中で、好ましいものは、
【0016】
【化10】
Figure 0004278406
等を挙げることができる。
【0017】
メルカプトベンゾチアゾール誘導体の濃度は10〜50000ppm、好ましくは10〜5000ppmである。これより低いと耐食性を高める効果を得るのに長い処理時間が必要になる。また、5000ppmより高いと、有機物が厚くなり均一に被覆することが難しくなる。特にこの有機物は封孔効果によって耐食性を向上している関係から、厚くついた部分の効果は少ないと考えられる。さらに、有機物が厚くなることによって接触抵抗が高くなる傾向がある。ただし、前述の様に燃料電池用セパレータではコネクタと異なり、導通部の接触圧力を高くすることが可能であるため、耐食性を優先して高濃度で封孔処理を行い、接触圧力の増加で接触抵抗を下げることが可能である。
【0018】
また、陽極に分極せずに浸漬のみでも効果はあるが、陽極に分極する方が短時間で処理が終了する。分極電位は槽電圧で0.1〜5.0Vの範囲とするのが望ましい。槽電流はメルカプトベンゾチアゾール誘導体の水溶液の場合、導電率が低いため、ほとんど電流が流れない。このため電解で一般的に制御する電流密度では無く、槽電圧で制御する方が制御しやすい。ただし、電流密度で制御できないわけでは無く、槽電圧が上記の範囲に入るような電流密度制御をおこなってもかまわない。
この様にしてメルカプトベンゾチアゾール誘導体で封孔処理した燃料電池用セパレータは薄い金めっき厚でも、厚い金めっきと同等の耐食性と低接触抵抗を兼ね備える。
【0019】
【実施例】
実施例にて本発明を説明する。
厚さ0.3mmのSUS316Lを電解陽極脱脂→水洗→電解陰極酸洗→水洗の前処理を施した後、ダイレクト金めっきを施した。各前処理および金めっき条件は以下の通り。
【0020】
電解脱脂
パクナP105 40g/L
温度: 60℃
電流密度:6A/dm2
陽極電解
電解時間:30秒
【0021】
酸洗
硫酸 :200g/L
温度:常温
時間 :30秒
【0022】
金めっき
添加剤:ダイレクト金めっき浴
金濃度: 1〜4g/L
浴温:20〜40℃
電流密度:6A/dm2
めっき厚 :10、20nm
【0023】
封孔処理
メルカプトベンゾチアゾールのNa塩:100,1000,10000p
pm
温度:常温
カソード:SUS316L
槽電圧:2V
時間:3秒
【0024】
この様にして作成したステンレス金めっき材の接触抵抗、アノード分極、硫酸浸漬後の鉄溶出量を以下の条件で調査した。
接触抵抗
山崎試験機製:電気接点シミレータ CRS−1
プローブ:金
接圧:10gf
測定数: 400点
【0025】
アノード分極測定条件
温度:常温
測定液: 硫酸5%
脱酸素: アルゴン 200ml/min
スイープ速度:20mV/min
試料面積:1cm2
【0026】
硫酸浸漬試験
溶液:硫酸 5%
温度:80℃
液量:5cc
供試材: 10×50mm 浸漬
浸漬時間: 〜30日
測定方法:ICP分析にてFeイオンを定量
【0027】
接触抵抗測定結果を図1、2に示す。
この測定条件はコネクタで一般的に用いられる条件であり、接触圧は10gfと低い。この条件下では、メルカプトベンゾチアゾールNa(図中ではMBTと略す)が10000ppmの濃度では高い接触抵抗を示すことがわかる。ただし、この条件でも接触圧力を上昇することにより、図3,4に示すように接触抵抗が低下することがわかる。また、1000ppmの濃度の場合、目視で表面にまだら状に有機物の模様が観察された。これは、有機物の厚さが不均一になっているものと考えられた。
【0028】
分極測定結果を図5に示す。封孔処理なしに比較して封孔処理を施すことで腐食電流密度が減少していることがわかる。また、封孔処理MBTの処理濃度が高いほど腐食電流密度が低い。このことから、封孔処理によって耐食性が向上していることがわかる。
【0029】
【表1】
Figure 0004278406
【0030】
比較例
封孔処理なしで同様に供試材を作成した。結果は実施例の図および表に併記した。
【0031】
【発明の効果】
以上説明したように、本発明によれば薄い貴金属めっきで燃料電池用セパレータに要求される十分な耐食性を備えるとともに同時に低い接触抵抗を有することができる。また、本発明によれば、該セパレータとするための貴金属めっきした金属板を得ることができる。
【0032】
【図面の簡単な説明】
【図1】実施例のセパレータの接触抵抗測定結果を示すグラフ。
【図2】同上
【図3】実施例のセパレータの接触圧力と接触抵抗の関係を示すグラフ。
【図4】同上
【図5】実施例のセパレータの分極測定結果を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal separator for a solid polymer electrolyte battery, a method for producing the same, and a noble metal-plated metal plate therefor.
[0002]
[Prior art]
The metal separator for a solid polymer electrolyte fuel cell is a member constituting a fuel cell stack in which a plurality of single cells are stacked, and has sufficient gas impermeability and electric conductivity for conducting between cells. is required. Furthermore, high corrosion resistance is required for the battery reaction. Conventionally, carbon materials or metal materials have been used for such fuel cell gas separators. In particular, metal materials have been widely studied in recent years because they are superior in strength and can be made thinner than carbon materials.
[0003]
In particular, a stainless steel plate is suitable as a separator material compared to an expensive metal such as a special corrosion resistant steel such as titanium or Hastelloy because it has high corrosion resistance and is inexpensive. However, since stainless steel maintains corrosion resistance with an oxide film on its surface, there is a problem that contact resistance is high and electrical resistance between cells is high. In order to solve this problem, a method of coating stainless steel with a noble metal having low contact resistance has been developed.
[0004]
Japanese Patent Application Laid-Open No. 10-228914 (Patent Document 1) introduces a technique in which a gold plating layer having a thickness of 0.01 to 0.06 μm is formed on SUS304.
However, since the resistance is high due to the effect of the oxide film simply by performing the gold plating, a technique for removing the oxide film and performing the gold plating is disclosed in Japanese Patent Laid-Open No. 13-6713 (Patent Document 2).
[0005]
In addition, pin holes are unavoidable in plating, and the corrosion resistance of those portions is reduced. Although it is said that there is no problem in the above-mentioned patent, Japanese Patent Laid-Open No. 14-260681 (Patent Document 3) discloses a technique of eliminating the pinhole by rolling after plating in order to reduce the pinhole.
Furthermore, as an attempt to easily coat gold, Japanese Patent Laid-Open No. 14-237311 (Patent Document 4) discloses a technique for coating a gold foil using ultrasonic waves.
[0006]
From these facts, it is clear that only gold plating on stainless steel has a problem in corrosion resistance in thin gold plating of about 0.01 μm due to the problem of pinholes.
Furthermore, since the oxide film inside the pinhole is not strong because the oxide film is removed, the corrosion resistance tends to be lower.
In order to solve this, it was necessary to increase the gold plating thickness to reduce pinholes.
In fact, Japanese Patent Laid-Open No. 13-345109 (Patent Document 5) discloses a technique for partially increasing the gold plating thickness to maintain corrosion resistance and reducing contact resistance. However, the formation of a thick gold plating film naturally affects the cost and is not practical.
[0007]
By the way, a so-called sealing process for filling a gold-plated pinhole is widely used in gold plating on a copper alloy for a connector. For example, Japanese Patent Application Laid-Open No. 7-258887 (Patent Document 6), Japanese Patent Application Laid-Open No. 8-260194 (Patent Document 7), etc. disclose a technique for performing a gold plating sealing treatment with an organic substance. However, the required performance for the connector and the required performance for the fuel cell separator are different, and therefore the sealing treatment for the connector cannot be applied as it is.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-228914 [Patent Document 2]
Japanese Patent Laid-Open No. 13-6713 [Patent Document 3]
Japanese Patent Laid-Open No. 14-260681 [Patent Document 4]
JP-A-14-237311 [Patent Document 5]
Japanese Patent Laid-Open No. 13-345109 [Patent Document 6]
Japanese Patent Application Laid-Open No. 7-258887 [Patent Document 7]
Japanese Patent Laid-Open No. 8-260194
[Problems to be solved by the invention]
The present invention has been made to solve such problems, and reduces the contact resistance of stainless steel by applying precious metal plating, and a metal separator for a fuel cell having sufficient corrosion resistance even with a thin precious metal plating thickness and It aims at providing the manufacturing method. Another object of the present invention is to provide a noble metal plated metal plate.
[0010]
[Means for Solving the Problems]
As a result of intensive investigations to reduce the contact resistance of the metal separator for fuel cells and to ensure corrosion resistance, the present inventor has provided a noble metal plating layer on the surface of the metal separator, and the plating layer is formed with a specific sealing agent. It has been found that the sealing treatment can provide corrosion resistance and low contact resistance even with a thin plating thickness, and the present invention has been achieved.
[0011]
That is, the present invention
(1) have a gold or gold alloy layer having a thickness 5~20nm formed directly on the surface of the stainless steel plate, mercaptobenzothiazole which the gold or gold alloy layer is represented by the following formula as an inhibitor (1) one or two or more by using the separator for corrosion resistant fuel cell characterized by being sealing treatment gold or gold alloy plated stainless steel plate of derivatives,
[Chemical formula 5]
Figure 0004278406
[In the formula, R1 represents hydrogen, alkyl, substituted alkyl or halogen, and R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl or substituted amino group]
(2) A separator for a fuel cell, the separator is on the surface of the stainless steel plate having a gold or gold alloy layer having a thickness 5~20nm formed directly, the gold or gold alloy layer as an inhibitor A fuel cell separator characterized by being sealed with one or more mercaptobenzothiazole derivatives represented by the following formula (1):
Figure 0004278406
[Wherein R1 represents hydrogen, alkyl, substituted alkyl, halogen, R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl, substituted amino group],
(3) One or more mercaptobenzothiazole derivatives represented by the following formula (1) as an inhibitor after forming gold or gold alloy plating with a film thickness of 5 to 20 nm directly on the surface of the stainless steel separator The fuel cell according to (2), wherein the stainless steel separator is used as an anode in an aqueous solution containing 10 to 50000 ppm in total, and direct current electrolysis is performed in a range of an interelectrode voltage E of 0.1 to 5.0 V Separator manufacturing method,
[Chemical 7]
Figure 0004278406
[Wherein R1 represents hydrogen, alkyl, substituted alkyl, halogen, R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl, substituted amino group],
(4) One or more mercaptobenzothiazole derivatives represented by the following formula (1) are used as inhibitors after directly forming gold or gold alloy plating with a film thickness of 5 to 20 nm on the surface of the stainless steel separator. The fuel cell according to (2), wherein the stainless steel separator is used as an anode in an aqueous solution containing a total amount of 10 to 5000 ppm, and direct current electrolysis is performed in a range of an interelectrode voltage E of 0.1 to 5.0 V Separator manufacturing method,
[Chemical 8]
Figure 0004278406
[Wherein R1 represents hydrogen, alkyl, substituted alkyl, halogen, R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl, substituted amino group],
(5) The present invention relates to a fuel cell separator produced by the method according to (3) or (4).
In addition, the metal plate plated with the noble metal (1) can be formed and cut to form a fuel cell separator.
[0012]
The so-called sealing treatment for filling the pin holes in the gold plating layer is known for gold plating on a copper alloy for connectors as already described. However, in addition to low contact resistance and corrosion resistance, connectors require lubricity, and nickel plating is generally applied as a base plating to improve adhesion. It was not desirable to apply the same conditions as required. In particular, the fuel cell separator does not require lubricity, and there is a possibility that the treatment is unnecessary or has an adverse effect to impart lubricity.
[0013]
Further, since the connector is repeatedly inserted and extracted, it is required that the insertion / extraction resistance is low, and as a result, a low contact resistance is required in a state where the pressure at the contact portion is about 10 kgf, for example. On the other hand, the fuel cell separator hardly decomposes after being set once, and the contact pressure can be as high as about 20 kg / cm 2 by bolting. Connectors are often evaluated by contact pressure per point, and the units of bolting and pressure are different, making it difficult to make a general comparison. However, in the case of bolts, when viewed microscopically, the pressure is concentrated on the part that is in local contact, so the contact pressure of the connector is considered to be a high contact pressure exceeding 100 kgf. It is done.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described.
Stainless steel, such as SUS304 and SUS316L, is subjected to direct gold plating after pretreatment of electrolytic degreasing → water washing → electrolytic pickling → water washing. The purpose of the present invention is to seal the pinhole and reduce the gold plating thickness. Therefore, the plating thickness is required to be 5 nm or more to ensure conduction as a fuel cell separator, but 20 nm or less is sufficient. . However, it may be thicker. In the present invention, after the thin gold plating for the above-described purpose, the stainless steel is immersed in an aqueous solution of a mercaptobenzothiazole derivative represented by the following general formula (1), and the stainless steel is polarized to the anode and treated for about 3 seconds. Process. Then, it is washed with water or hot water and dried.
[0015]
[Chemical 9]
Figure 0004278406
[In the formula, R1 represents hydrogen, alkyl, substituted alkyl or halogen, and R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl or substituted amino group]
Among the compounds represented by the general formula (1), preferred are
[0016]
[Chemical Formula 10]
Figure 0004278406
Etc.
[0017]
The concentration of the mercaptobenzothiazole derivative is 10 to 50000 ppm, preferably 10 to 5000 ppm. If it is lower than this, a long treatment time is required to obtain the effect of enhancing the corrosion resistance. On the other hand, if it is higher than 5000 ppm, the organic matter becomes thick and it becomes difficult to coat uniformly. In particular, this organic substance is considered to have little effect on the thickened portion because the corrosion resistance is improved by the sealing effect. Furthermore, the contact resistance tends to increase as the organic matter becomes thicker. However, as described above, unlike the connector for the fuel cell separator, it is possible to increase the contact pressure of the conducting part. Therefore, the sealing treatment is performed at a high concentration giving priority to corrosion resistance, and the contact is increased by increasing the contact pressure. It is possible to reduce the resistance.
[0018]
In addition, although the immersion alone is effective without being polarized on the anode, the treatment is completed in a shorter time when the anode is polarized. The polarization potential is preferably in the range of 0.1 to 5.0 V as the cell voltage. In the case of an aqueous solution of a mercaptobenzothiazole derivative, since the electrical conductivity is low, the battery current hardly flows. For this reason, it is easier to control by controlling the cell voltage rather than the current density generally controlled by electrolysis. However, the current density cannot be controlled, and current density control may be performed so that the cell voltage falls within the above range.
Thus, the fuel cell separator sealed with the mercaptobenzothiazole derivative has the same corrosion resistance and low contact resistance as the thick gold plating, even with a thin gold plating thickness.
[0019]
【Example】
The examples illustrate the invention.
SUS316L having a thickness of 0.3 mm was subjected to pretreatment of electrolytic anode degreasing → water washing → electrolytic cathodic pickling → water washing, followed by direct gold plating. Each pretreatment and gold plating conditions are as follows.
[0020]
Electrolytic degreasing pakuna P105 40g / L
Temperature: 60 ° C
Current density: 6 A / dm 2
Anode electrolysis time: 30 seconds [0021]
Pickling sulfuric acid: 200 g / L
Temperature: Room temperature Time: 30 seconds [0022]
Gold plating additive: Direct gold plating bath gold concentration: 1-4 g / L
Bath temperature: 20-40 ° C
Current density: 6 A / dm 2
Plating thickness: 10, 20 nm
[0023]
Sealed mercaptobenzothiazole Na salt: 100,1000,10000p
pm
Temperature: Room temperature Cathode: SUS316L
Cell voltage: 2V
Time: 3 seconds [0024]
The contact resistance, anodic polarization, and iron elution after immersion in sulfuric acid of the stainless gold plating material thus prepared were investigated under the following conditions.
Contact Resistance Yamazaki Test Machine: Electric contact simulator CRS-1
Probe: Gold contact pressure: 10 gf
Number of measurements: 400 points
Anode polarization measurement condition Temperature: Room temperature Measurement solution: Sulfuric acid 5%
Deoxygenation: Argon 200ml / min
Sweep speed: 20 mV / min
Sample area: 1 cm 2
[0026]
Sulfuric acid immersion test solution: sulfuric acid 5%
Temperature: 80 ° C
Liquid volume: 5cc
Test material: 10 × 50 mm Immersion immersion time: ˜30 days Measuring method: Quantitative determination of Fe ions by ICP analysis
The contact resistance measurement results are shown in FIGS.
This measurement condition is a condition generally used in connectors, and the contact pressure is as low as 10 gf. Under these conditions, it can be seen that mercaptobenzothiazole Na (abbreviated as MBT in the figure) exhibits high contact resistance at a concentration of 10,000 ppm. However, it can be seen that by increasing the contact pressure even under these conditions, the contact resistance decreases as shown in FIGS. In the case of a concentration of 1000 ppm, a mottled organic pattern was visually observed on the surface. This was considered that the thickness of the organic substance was uneven.
[0028]
The result of polarization measurement is shown in FIG. It can be seen that the corrosion current density is reduced by performing the sealing treatment as compared with the case without the sealing treatment. Moreover, the higher the treatment concentration of the sealing treatment MBT, the lower the corrosion current density. This shows that the corrosion resistance is improved by the sealing treatment.
[0029]
[Table 1]
Figure 0004278406
[0030]
Comparative Example A test material was prepared in the same manner without sealing treatment. The results are shown in the examples and tables.
[0031]
【The invention's effect】
As described above, according to the present invention, the thin noble metal plating can provide sufficient corrosion resistance required for a fuel cell separator and at the same time have a low contact resistance. Moreover, according to this invention, the metal plate plated with the noble metal for making this separator can be obtained.
[0032]
[Brief description of the drawings]
FIG. 1 is a graph showing measurement results of contact resistance of a separator of an example.
FIG. 2 is a graph showing the relationship between the contact pressure and the contact resistance of the separator of the example.
FIG. 4 is a graph showing the polarization measurement result of the separator of the example.

Claims (5)

ステンレス鋼板の表面上にダイレクトに形成した膜厚5〜20nmの金又は金合金層を有し、該金又は金合金層がインヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上により封孔処理されていることを特徴とする耐食性燃料電池用セパレータに用いる金又は金合金めっきしたステンレス鋼板。
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕
On the surface of the stainless steel plate having a gold or gold alloy layer having a thickness 5~20nm formed directly, 1 mercaptobenzothiazole derivatives which the gold or gold alloy layer is represented by the following formula as an inhibitor (1) gold or gold alloy plated stainless steel plate used in a separator for a corrosion resistant fuel cell characterized by being sealing treatment by species or two or more.
Figure 0004278406
[In the formula, R1 represents hydrogen, alkyl, substituted alkyl or halogen, and R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl or substituted amino group]
燃料電池用セパレーターであって、該セパレータは、ステンレス鋼板の表面上にダイレクトに形成した膜厚5〜20nmの金又は金合金層を有し、該金又は金合金層がインヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上により封孔処理されていることを特徴とする耐食性燃料電池用セパレーター。
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕
A separator for a fuel cell, the separator is on the surface of the stainless steel plate having a gold or gold alloy layer having a thickness 5~20nm formed directly, the following formula wherein gold or gold alloy layer as an inhibitor ( A separator for a corrosion-resistant fuel cell, which is sealed with one or more of the mercaptobenzothiazole derivatives represented by 1).
Figure 0004278406
[In the formula, R1 represents hydrogen, alkyl, substituted alkyl or halogen, and R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl or substituted amino group]
ステンレス鋼セパレータの表面上にダイレクトに膜厚5〜20nmの金又は金合金めっきを形成した後、インヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上を合計で10〜50000ppm含有する水溶液中で該ステンレス鋼セパレータを陽極として、極間電圧Eが0.1〜5.0Vの範囲で直流電解したことを特徴とする請求項2記載の耐食性燃料電池用セパレータの製造方法。
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕
After directly forming gold or gold alloy plating with a film thickness of 5 to 20 nm on the surface of the stainless steel separator, one or more of mercaptobenzothiazole derivatives represented by the following formula (1) as an inhibitor in total 3. The corrosion-resistant fuel cell separator according to claim 2, wherein the stainless steel separator is used as an anode in an aqueous solution containing 10 to 50000 ppm, and direct current electrolysis is performed in a range of an interelectrode voltage E of 0.1 to 5.0V. Production method.
Figure 0004278406
[In the formula, R1 represents hydrogen, alkyl, substituted alkyl or halogen, and R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl or substituted amino group]
ステンレス鋼セパレータの表面上にダイレクトに膜厚5〜20nmの金又は金合金めっきを形成した後、インヒビターとして下記式(1)で表されるメルカプトベンゾチアゾール誘導体の1種もしくは2種以上を合計で10〜5000ppm含有する水溶液中で該ステンレス鋼セパレータを陽極として、極間電圧Eが0.1〜5.0Vの範囲で直流電解したことを特徴とする請求項2記載の耐食性燃料電池用セパレータの製造方法。
Figure 0004278406
〔式中、R1は水素、アルキル、置換アルキル、ハロゲンをあらわし、R2はアルカリ金属、水素、アルキル、置換アルキル、置換アミノ基をあらわす〕
After forming gold or gold alloy plating with a film thickness of 5 to 20 nm directly on the surface of the stainless steel separator, one or more of mercaptobenzothiazole derivatives represented by the following formula (1) as an inhibitor in total 3. The corrosion-resistant fuel cell separator according to claim 2, wherein the stainless steel separator is used as an anode in an aqueous solution containing 10 to 5000 ppm, and direct current electrolysis is performed in a range of an interelectrode voltage E of 0.1 to 5.0V. Production method.
Figure 0004278406
[In the formula, R1 represents hydrogen, alkyl, substituted alkyl or halogen, and R2 represents an alkali metal, hydrogen, alkyl, substituted alkyl or substituted amino group]
請求項3または4の方法で製造された耐食性燃料電池用セパレータ。A separator for a corrosion-resistant fuel cell produced by the method according to claim 3 or 4.
JP2003054037A 2003-02-28 2003-02-28 Fuel cell separator Expired - Lifetime JP4278406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054037A JP4278406B2 (en) 2003-02-28 2003-02-28 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054037A JP4278406B2 (en) 2003-02-28 2003-02-28 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2004265695A JP2004265695A (en) 2004-09-24
JP4278406B2 true JP4278406B2 (en) 2009-06-17

Family

ID=33118488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054037A Expired - Lifetime JP4278406B2 (en) 2003-02-28 2003-02-28 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP4278406B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134764A (en) * 2004-11-08 2006-05-25 Toyota Motor Corp Component for fuel cell, separator for fuel cell, and fuel cell
JP5014644B2 (en) 2006-02-27 2012-08-29 新日本製鐵株式会社 Separator for polymer electrolyte fuel cell and method for producing the same
KR101428341B1 (en) 2009-08-03 2014-08-07 신닛테츠스미킨 카부시키카이샤 Titanium material for solid polymer fuel cell separator, and process for production thereof
JP5455204B2 (en) * 2009-08-05 2014-03-26 Jx日鉱日石金属株式会社 Fuel cell separator material and fuel cell stack using the same
JP5419816B2 (en) * 2010-07-09 2014-02-19 Jx日鉱日石金属株式会社 Fuel cell separator material, fuel cell separator and fuel cell stack using the same
JP6587848B2 (en) * 2015-07-09 2019-10-09 東洋鋼鈑株式会社 Fuel cell energization member, fuel cell, fuel cell stack, and fuel cell energization member manufacturing method

Also Published As

Publication number Publication date
JP2004265695A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
CA1073857A (en) Plated metallic cathode
EP3684966B1 (en) Method of producing an electrocatalyst
Yang et al. Electrochemical behavior of rolled Pb–0.8% Ag anodes in an acidic zinc sulfate electrolyte solution containing Cl− ions
CN103069629A (en) Fuel cell separator and method for producing same
Maizelis et al. Contact displacement of copper at copper plating of carbon steel parts
JP4278406B2 (en) Fuel cell separator
JP2004139951A (en) Separator for fuel cell and its manufacturing method
Galikova et al. Properties of Ni-W alloy coatings on steel substrate
Bradley et al. Pulse-plating of copper–nickel alloys from a sulfamate solution
Xie et al. Preparation of Ni–Co alloy electrodes by pulsed electrodeposition and its application in detection of oxytetracycline
Safonov et al. Corrosion–electrochemical behavior of chromium deposits obtained from sulfuric acid solutions containing oxalates
Pavlović et al. On the use of platinized and activated titanium anodes in some electrodeposition processes
Kublanovsky et al. Electrodeposition and corrosion properties of nanocrystalline Fe-W alloys
RU2549037C2 (en) Method of surface preparation of stainless steel items prior to galvanic copperplating
JP5403642B2 (en) Corrosion resistant conductive material
Nakayama Mechanistic study by electrochemical impedance spectroscopy on reduction of copper oxides in neutral solutions
JPH02500602A (en) Method for depositing composite oxide-nickel coating on metal substrate and oxide-nickel electrode
RU2813428C1 (en) Method of processing titanium and its alloys
JPH0355558B2 (en)
JP4523234B2 (en) Fuel cell separator
Valiulienė et al. Investigation of the interaction between Co sulfide coatings and Cu (I) ions by cyclic voltammetry and XPS
NAKAYAMA Effects of Inorganic Ions for Reduction and Growth of Copper Oxides
Danil’chuk Track Membranes’ Application for Anodic and Cathodic Space Separation during Induced Codeposition of Fe–W Coatings from Citrate Bath
Bushrod et al. Stress in anodically formed lead dioxide
Kublanovsky et al. Electrodeposition of palladium coatings from iminodiacetate electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term